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Abstract

We prove new integral representations of the approximation forms in zeta values.
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In the exposition below, s and D are positive integers such that s ≥ 3D − 1, while the
parameter n is assumed to be a positive even integer. The notation

ζ(s, α) =

∞∑
n=0

1
(n + α)s

is used for the Hurwitz zeta function, so that ζ(s) = ζ(s, 1), and dn = lcm(1, 2, . . . , n).
In [1] the following approximations are constructed: for any j ∈ {1, . . . ,D}, take

rn, j =

∞∑
m=1

Rn

(
m +

j
D

)
, where Rn(t) = D3Dnn!s+1−3D

∏3Dn
l=0 (t − n + l/D)∏n

l=0(t + l)s+1 .

It is shown that
rn, j = a0, j +

∑
2≤i≤s

i≡s (mod 2)

aiζ
(
i,

j
D

)
, (1)

with
ds+1−i

n ai ∈ Z for i = 2, 3, 4, . . . , s and i ≡ s (mod 2),
ds+1

n+1a0, j ∈ Z for j ∈ {1, . . . ,D}
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(see [1, Lemmas 1 and 2]), and some further information is provided for the asymptotic
growth of the positive quantities rn, j as n→ ∞. (We note that choosing n even
implies that 3Dn + 1 + (s + 1)(n + 1) ≡ s (mod 2) and hence Rn(−n − t) = (−1)sRn(t).
This reflects on the parity in the summation in (1)—consideration in [1] is restricted
to the case of s odd.) The approximations are building blocks for linear forms in zeta
values ζ(i) with i of the same parity as s, with the help of the elementary formula

d∑
j=1

ζ
(
i,

j(D/d)
D

)
=

d∑
j=1

ζ
(
i,

j
d

)
= diζ(i)

valid for any divisor d of D.
The principal goal of this note is to establish the following integral representation

of the approximations rn, j for j ∈ {1, . . . ,D}.

Theorem 1. The linear forms (1) admit the integral representation

rn, j =
Ds−1(3Dn + 1)!

n!3D

D∑
m=1

ξ−m jr∗n,m,

where

r∗n,m = ξm
(
[0,1]s+1

∏s
i=0 xDn

i (1 − xD
i )n dxi

(1 − ξmx0 · · · xs)3Dn+2 =

∫ ξm

0

(
[0,1]s

∏s
i=0 xDn

i (1 − xD
i )n dxi

(1 − x0 · · · xs)3Dn+2

and ξ = ξD denotes a primitive root of unity of degree D.

Proof. As the rational function Rn(t) has zeros at t = m − (D − j)/D for m = 1, . . . , n
and j ∈ {1, . . . ,D}, we can write

rn, j =

∞∑
m=n

Rn

(
m +

j
D

)
= D3Dnn!s+1−3D

∞∑
k=0

∏3Dn
l=0 (k + (l + j)/D)∏n

l=0(k + n + l + j/D)s+1

=
n!s+1−3D ∏3Dn

l=0 (l + j)
D

∏n
l=0(n + l + j/D)s+1

× s+D+1Fs+D


{
3n +

j + l
D

: l = 1, . . . ,D
}
,
{
n +

j
D

}s+1

{
1 +

j − l
D

: l = 1, . . . ,D, j , l
}
,
{
2n + 1 +

j
D

}s+1

∣∣∣∣∣∣∣∣∣∣∣ 1


=
(3Dn + j)!

D n!3D( j − 1)!

(
[0,1]s+1

f j(t0 · · · ts)
s∏

i=0

tn+ j/D−1
i (1 − ti)n dti, (2)
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where

f j(t) = DFD−1


{
3n +

j + l
D

: l = 1, . . . ,D
}

{
1 +

j − l
D

: l = 1, . . . ,D, j , l
}
∣∣∣∣∣∣∣∣∣∣ t


=

∞∑
k=0

∏D
l=1

(
3n +

j + l
D

)
k∏D

l=1

(
1 +

j − l
D

)
k

tk =

∞∑
k=0

(3Dn + j + 1)Dk

( j)Dk
tk for j ∈ {1, . . . ,D}.

Recall that
∞∑

l=0

(a)l

l!
xl =

1
(1 − x)a

and observe that

(3Dn + 2) j−1

( j − 1)!
x j−1 f j(xD) =

∞∑
k=0

(3Dn + 2)Dk+ j−1

(Dk + j − 1)!
xDk+ j−1

=

∞∑
l=0

l≡ j−1 (mod D)

(3Dn + 2)l

l!
xl =

1
D

D∑
m=1

ξ−m( j−1)

(1 − ξmx)3Dn+2 .

Taking ti = xD
i for i = 0, 1, . . . , s in the integrals (2), we thus obtain

rn, j =
Ds−1(3Dn + 1)!

n!3D

D∑
m=1

ξ−m( j−1)
(
[0,1]s+1

∏s
i=0 xDn

i (1 − xD
i )n dxi

(1 − ξmx0 · · · xs)3Dn+2

for each j ∈ {1, . . . ,D}. �

Choosing D = 2 and s ≥ 5 odd, we obtain the linear forms

7rn,2 − rn,1 =
2s(6n + 1)!

n!6

(
[0,1]s+1

( 3
(1 − x0x1 · · · xs)6n+2

−
4

(1 + x0x1 · · · xs)6n+2

) s∏
i=0

x2n
i (1 − x2

i )n dxi

=
2s(6n + 1)!

n!6

(
γ×[0,1]s

∏s
i=0 x2n

i (1 − x2
i )n dxi

(1 − x0x1 · · · xs)6n+2

in Q + Qζ(5) + · · · + Qζ(s) considered previously in [2]. Here the path γ ⊂ R
for integrating with respect to x0 is given by γ = 3[0, 1] + 4[0, −1] and the parity
assumption on n can be dropped.
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