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Abstract 

Prototyping is a well-established and valued design process activity. However, capturing prototypes and the 

tacit knowledge that led to and was gained from their creation is a challenge. Beyond that, questions remain 

on how best to utilise that captured data. This paper looks at how one can exploit and generate insights from 

data that has been captured, specifically looking at graph databases, the network analysis techniques they 

permit and the differing fidelities of visualisation and interactivity that they enable. 
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1. Introduction 
Prototyping is a well-established design activity spanning the physical and digital domains 

(Camburn, et al., 2015). Physical prototypes (Figure 1) bring tangibility to an idea or concept and are 

unambiguous representations, providing insights into perception and interaction. It also supports 

validation of a designʼs function and/or performance (Liker & Pereira, 2018). A virtual prototype is 

a digital mock-up, model or simulation of a physical object or phenomena (Wang, 2002), taking 

advantage of computing to perform complex calculations quickly and repeatably. Mixed Reality 

(MR) prototyping field seeks to achieve a ʻbest-of-bothʼ, combining both digital and physical media 

(Kent, 2021). However, questions remain in the appropriate application and combination of 

prototyping activities and whether we have maximised the potential knowledge that can be gained 

(Jensen, et al., 2016; Erichsen, et al., 2021). 

The advantages and disadvantages of prototyping techniques often result in and/or necessitates a 

mixed prototyping approach to design. However, this leads to challenges in capturing information and 

rationale regarding the activities and synthesising what happened, e.g. when did it happen and by 

whom, and ultimately identifying the points where decisions were made that led to the final design. In 

many cases, the knowledge is tacit and contained within the engineers who have performed the 

activity. 

In recent years, studies have investigated how one can capture early-stage prototyping activities and how 

the results of one prototyping activity have informed subsequent activities (Erichsen, et al., 2021; Giunta, 

et al., 2022), resulting in networks of connected activities. Other works have begun to identify the key 

knowledge elements that one should capture during a prototyping activity and their relationship with the 

prototyping media used (Real, et al., 2021). The work to date has highlighted the necessity of capturing 

the relationships between prototyping activities and their interconnections and fed back into the design 

process. While tools have been developed and tested in capturing the design rationale for a projectʼs 

prototyping activities (Erichsen, et al., 2021; Giunta, et al., 2022), a question remains on the utility of the 

data collected and how it can be exploited for both design research and design practice. 
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Figure 1. The diverse world of prototyping. 

The contribution of this paper is in exploring how one can exploit and generate insights from prototyping 

relationship data using graph analysis and visualisation. These insights may take the form of identifying 

key prototypes or learnings that significantly influenced the direction of a project, a teamʼs working 

dynamics or identify gaps in a prototyping process. The insights could then be used to support, for 

example, communicating key decision points in design reviews or the onboarding of new designers. 

To start, the paper discusses the state-of-the-art in the capture of prototyping activities and how 

network analysis has already been applied to help our understanding of the design process (Section 2). 

This is followed by the methodology to explore applying network analysis to a prototyping design 

rationale dataset (Section 3). The results are presented, and a discussion ensues as to the merit of 

network analysis in developing insights from prototyping activity data and elicitation of further 

research questions and future work (Section 4). The paper concludes with the findings (Section 5). 

2. Related Work 
Capturing knowledge from the design process is a well-developed field with numerous examples and 

methods developed by the community (Goldschmidt, 2016; Wynn & Clarkson, 2018). Formulations, 

such as a design ontology for design knowledge exchange and management (Štorga, et al., 2010), and 

requirements for supporting engineering design communication (Gopsill, et al., 2013) formalise how to 

capture events in the design process such that it can be re-used and analysed in the future. Methods such 

as retrospective compilation following interviews (Lauff, et al., 2018) or logbook investigation 

(McAlpine, et al., 2017) alongside tools such as work sampling, Design Rationale eDitor (DReD), 

PartBook, and Lessons Learned methodologies have all been developed to capture portions of the design 

process (Skec, et al., 2015; Bracewell, et al., 2008; Gopsill, et al., 2015). 

2.1. Knowledge from the Prototyping Process 

Capturing knowledge from the prototyping process has also been researched. There are a large number 

of process models for capturing the design process (Wynn & Clarkson, 2018; Chandrasegaran, et al., 

2013), but recently, researchers have developed lightweight web app-based tools to specifically capture 

prototyping activities (Nelson, et al., 2019; Erichsen, et al., 2021) using images and qualitative data. 

Embedded within these tools are the schemas that manage what is captured and how it is to be stored. 

As the capture of prototyping activity has evolved and improved, the prominence and importance of the 

relationships between the prototyping activities, people involved, and the design projects they pertain to 

have risen. This has led to researchers asking how we can maximise the insights generated from these 

relational datasets, with Erichsen, et al., (2021) demonstrating the potential for visualisations of the 

network to provide insights into the design process. (Figure 2) shows the manually post-processed 

network of a single project, used to demonstrate the routes taken to reach the final concept. 

 
Figure 2. Prototyping activity network manually captured from data (Erichsen, et al., 2021) 
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2.2. Network Analysis applied to the design process 

Network analysis is a mature and well-developed field with numerous techniques to provide insights into 

network data structures, and it is no surprise that it has been used actively by the design community to 

examine the design process. In fact, the multi-disciplinary field of Design Structure Matrices (DSM), 

which evaluates the dependencies within our products and projects, is evidence of how successful and 

important this type of analysis is to design. Networks have been used to represent and analyse the design 

process through document evolution (Piccolo, et al., 2017), activities networks (Braha & Bar-Yam, 

2007), information seeking activities (Cash, et al., 2013), and email (Parraguez Ruiz & Maier, 2016; 

Štorga, et al., 2013), but none explicitly use the prototypes that are generated through a design to create 

insights and support reflection on the design process. 

Network analysis techniques have enabled us to predict the propagation of change through our product 

architectures (Clarkson, et al., 2004), and metrics, such as Modularity, provide a means to assess how 

well a graph can be clustered into sub-graphs representing modules and interfaces in a product (Gopsill, 

et al., 2019). Design teams can use this to reflect on their own teams' structures and align people to the 

emergent interfaces across their product architecture. Clustering techniques in combination with co-word 

network analysis has also been used to successfully identify emergent knowledge topics within R&D 

organisations (Gopsill, et al., 2020). 

2.3. Network Visualisation of a design process through its prototypes 

Visualisation plays a significant role in the planning, enacting and interpretation of a design process 

(Bresciani, 2019), and there are a range of representations suitable to represent different aspects of the 

design process (Idrissov, et al., 2020; Chandrasegaran, et al., 2013). Network visualisation can be used to 

aggregate and visualise the relationships between the elements of a system (in our case, the elements of a 

design process) into more manageable forms for human interpretation and decision making. A number of 

2D visualisation techniques have been employed and include: re-arranged matrices in relation to the 

partitioning of terms; force-based network diagrams to reveal the connected nature of the terms; and, 

strategic diagrams that show the movement of topics over time (Figure 3). Extending visualisation into 

3D has also been explored (Millais, et al., 2018; Anderson, et al., 2019), comparing modes and fidelities 

of inputs and interfaces, reporting that this increases data comprehension, but this comprehension is 

influenced by the novelty of the interface and the input device used. 

   
(a) Matrix view  

(From: Gopsill et al. 2016) 

(b) Network diagram  

(From: Liu et al. 2014) 

(c) Strategic diagram  

(From: Jones et al. 2015) 

Figure 3. Graph visualisations 

Given the prominence of networks and the need to capture the links between prototypes, it is logical to 

suggest that network analysis of prototyping process data will give valuable insights into the process and, 

ultimately, the design. There are currently few examples of this (Fonnet & Prie, 2021). This paper will 

use a pre-existent network graph (Giunta, et al., 2022) and typical network analysis techniques and 

visualisations to attempt to draw insights from the design process that was followed. This should include 

peripheral and tacit information, such as team dynamics and key or influential prototypes. Extending the 

visualisation capability into 3D, and what new information this permits will also be explored. The results 

are subsequently presented with the author's providing their own interpretation as to the insights each of 
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the analytical techniques brings to our understanding of prototyping - both from a design research and 

design practice perspective. 

3. Methodology 
The dataset to be used was captured using Pro2booth (Giunta, et al., 2022) as part of the International 

Design Engineering Annual challenge, a design competition involving labs from the Engineering Design 

academic community (Goudswaard, et al., 2022). The Pro2booth platform and network schema is 

described fully by Giunta, et al., (2022), and has two types of nodes, prototypes, and designers. Four teams 

of designers worked to solve an engineering challenge, documenting their progress through prototype 

captures using the Pro2booth platform. This provided a rich dataset of 204 prototypes that demonstrate the 

teams' journeys through the design process. (Table 1) provides an overview of the dataset. 

Table 1. The IDEA dataset, captured with Pro2booth. 

Category Teams Designers Prototypes Edges (Created by) Edges (Influenced By) 

Count 4 14 204 373 994 

3.1. Analysis 

The dataset was post-processed and formatted into a graph format that the Python NetworkX package 

could load and manipulate. NetworkX affords a number of network analysis and visualisation 

techniques. In this case, it was used to create sub-graphs of the individual teamʼs prototyping process 

where details such as the number of prototypes and individuals involved (i.e., nodes) and which 

prototype influenced which other prototype, as well as the individuals involved (i.e., edges), could be 

queried and reported. In addition, four centrality measures were applied: 

Degree: a count of the number of prototypes a prototype references or has been referenced by. 

Eigenvector: a measure of the influence of a prototype, with a prototype scoring highly by 

being connected to prototypes that are equally well connected. 

Closeness: an indication of how easy it is to traverse the network from one node to another. 

Betweenness: scores nodes highly if they consistently fall on the shortest paths between nodes. 

Another common analysis to perform on a graph is how well the data groups up into smaller sub-

graphs and is often an indication of how modular the process has been and the nature of the interfaces 

between elements of work, this is referred to as:  

Clustering: here the authors have applied Newman-Girvanʼs algorithm (NetworkX, 2022) to 

find a set of sub-graphs that provides an optimal Modularity score. 

3.2. Visualisation 

NetworkX was used to plot 2D figures of the network using a spring layout algorithm with different 

colours and labels denoting the prototype and individual nodes. The spring layout ʻrelaxesʼ the network, 

with more connected nodes being at the centre, and fewer or unconnected nodes pushed to the extent of 

the chart. As a result, the network can be explored visually. Two visualisations are created: 

Prototypes and designers: a spring layout visualisation of prototype and designers nodes, 

showing prototypes in relation to those who created them. 

Prototypes:  a spring layout visualisation of just the prototypes and the influences between 

them 

Deploying the data into a 3D environment gives us a new method of interacting with the network, with 

the capability of exploration giving breadth to the analysis. The advantage here is that there are multiple 

new and dynamic ways to present the data, (Millais, et al., 2018), something with few examples in 

design studies (Fonnet & Prie, 2021). The study presented here explores this via two implementations: 

Design sphere: plots prototypes randomly at the bounds of a sphere, with influences visualised 

and filtering by team possible. The sphere can be regenerated with a button press, and specific 

prototype information can be found by hovering the mouse over the node.  
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Chronological influence network: plots the prototypes in the order that they were created 

against their number of edges. 

In this instance, the 3D visualisation of the network used the Unreal Engine to generate the network in 

an interactive 3D environment. 

4. Results 
The results are presented as network analysis and visualisation. 

4.1. Network Analysis 

(Table 2) summarises the four teamsʼ prototyping process graphs. It can be seen that whilst the number 

of prototypes uploaded are not hugely different, the number of edges is. Furthermore, when considering 

the number of created by edges to the number of prototypes uploaded, it is clear that Projects A and B 

assigned more than one creator to most of their prototypes, with each prototype in Projects C and D 

typically only having one creator. The results alone could indicate the level of collaboration, mode of 

working and degrees of divergence or convergence in the design process. 

Table 2. Team network Statistics. 

 Project / Team A B C D 

Nodes People 3 4 3 4 

Prototypes 47 61 41 55 

Edges Created By 134 134 45 60 

Influenced By 186 394 248 166 

 

The analysis then continued into the generation of centrality measures for the prototypes in the graph. 

Centrality measures indicate the connectedness and inferred importance of a node to the network. Degree, 

Eigenvector, Closeness and Betweenness centralities for the four teamsʼ prototyping processes and shown 

in (Figure 4 a-d), respectively. The prototypes have been ordered by their appearance in the design process. 

  
(a) Degree centrality (b) Eigenvector centrality 

  
(c) Closeness centrality (d) Betweenness centrality 

Figure 4. Network analysis using centrality measures 
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Degree centrality: From (Figure 4a), we see Project A having the most connected prototypes near the 

end of their design process (Figure 4a-i) while B and C are more or less in the middle, with D featuring 

some highly connected prototypes early on, but overall, their prototypes are not as connected as the other 

three. 

Eigenvector centrality: (Figure 4b) features a lot of noise, but there is a trend for the early prototypes 

to have a higher score than ones further down in the process, which is logical as they have existed 

longer in the network. It also highlights how those early prototypes subsequently drive the design 

process. Thus, it may be the case that design processes with highly influential prototypes early on 

shows a convergent design process. 

Closeness centrality: (Figure 4c) is particularly noisy, due to a number of prototypes not existing as 

part of the main network. Of the connected nodes, the scores are similar, making it difficult to note 

any distinguishing features of their design process other than that they are consistent with one another. 

Betweenness centrality: (Figure 4d) reveals that some prototypes score much higher than others and 

can be easily distinguished by the score. This suggests that these prototypes form the main bridges 

across the prototyping process and are highly influential; it is interesting to see them occurring at 

different stages for each of the four teams. 

Clustering: (Figure 5)  shows the results from the cluster analysis with the number of clusters and the 

score of how successfully the networks cluster - Modularity (0-1). All but Team A have reasonable 

Modularity scores of > 0.3, indicating a ʻgoodʼ clustering (Newman, 2004). This suggests that Team 

B, C, and Dʼs prototyping processes could be broken into smaller groups of activity while Team A 

features a single large activity with lots of minor activities. These could have been prototypes that 

attempted a new but failed feature. Team D scored the highest Modularity, with clusters featuring 

similar numbers of prototypes. This suggests that Team D evaluated concepts or design features to a 

similar level of fidelity and detail. In summary, the metric results present some compelling evidence in 

their ability to describe and/or identify differences in the prototyping processes of design teams. 

 
Figure 5. Clustering the prototyping process 

4.2. Network Visualisation 

Prototypes and Designers: (Figure 6a-f) 2D spring layout views of the network reveal several previously 

unknowable insights. From (Figure 6a and 6b), it can be seen that Team A and Bʼs designers appear to 

have worked in close collaboration on all prototype (blue) nodes, as can be seen by clustering of the 

designer (red) nodes. Team C split into two teams working on different sub-systems, apparent in (Figure 

6c) split roughly into the two groups with two of the designers (red nodes (Figure 6c-i)) being tightly paired 

and working on one set of prototypes. The third designer (Figure 6c-ii) may have worked on a range of 

more converging prototypes, with fewer edges linking the prototypes. Team Dʼs graph (Figure 6d) implies 

that members assigned specific sub-systems or concepts to explore due to the lack of clustering.  

Prototypes: Team A had several highly influential prototypes (Figure 6e), seen by the centralisation of 

several of the prototypes. Team A also has several prototypes that are disconnected, in that they were 

not influenced by and did not influence any other prototype (highlighted in Figure 6e-i). Team D had 

the fewest influences among their prototypes, with no evidence of key prototypes due to the uniform 

spread of data points in (Figure 6f). For brevity, Teams B and C prototype networks are omitted. 
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(a) Team A (Prototypes and Designers) (b) Team B (Prototypes and Designers) 

   
(c) Team C (Prototypes and Designers) (d) Team D (Prototypes and Designers) 

  
(e) Team A (Prototypes) (f) Team D (Prototypes) 

Figure 6. 2D network analysis 

Design sphere: First, the entire dataset is plotted randomly at the bounds of a sphere with edges 

visualised, demonstrating the challenges with overplotting, (Figure 7a). (Figure 7b) shows the same 

sphere, but through a filter, in this case, Team C. There is still an element of over-plotting, as the 3D 

space does not lend itself to 2D images. However, these spheres can be redrawn at any scale, providing 

options for presenting and exploring the data. Specific prototyping information can also be found by 

selecting the prototype to be investigated, where previously a new query would have to be constructed. 

Chronological influence network: We can identify the most influential prototypes in Team Cʼs design 

process (Figure 7c). The first of the two has several previous prototypes that influenced it but did not 

influence future prototypes, indicating this was the endpoint of the specific line of thinking. This 

aligns with the design council double diamond (Design Council, 2022), indicating two stages of 

divergence and convergence. The influences between prototypes are also clear, and more influential 

prototypes can be scaled or placed more prominently in the visualisation. In this environment, the 

queries are embedded into the platform and linked to the interface for interrogation. Similar to 

visualisation depending on queries and metrics, immersion builds on those capabilities to add 

emerging value. 
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What is not shown here is an extension of the data into the real world, using mixed reality. Here, data 

may be explored more organically and with more context exploration, such as seeing each prototype at 

the actual physical scale rather than just relative differences. 

 
(a) All prototypes plotted as a sphere 

 
(b) Filtered to Team C 

 
(c) Team C prototypes ordered by upload with vertical position scaled by the number of edges 

Figure 7. 3D network analysis 

5. Discussion and Future Work 
Charts exist to make data interpretation more straightforward, so it stands to reason that they are useful 

to capture and interpret the design process. So far, the potential of network analysis and visualisation 

to generate insights into the design process has been demonstrated. Many of the conclusions drawn, 

particularly from the visualisations, are subjective at this stage and have taken a surface-level analysis 

of the design process and patterns that emerged. The insights are open to both reinterpretation and 

argument, but the fact that insights have been drawn indicates potential value. Furthermore, 

visualisation and immersion in 2D and 3D may help discover unknown-unknowns (Jensen, et al., 

2017), as the analyst does not need to create targeted and specific queries to obtain new insights; the 

insights can be found more organically.  

By looking beyond the analysis and opting to visualise the data with interaction, human intuition can 

take the reins and direct the data exploration. The findings of the visualisation reinforce the findings of 

the analysis in a more tractable and intuitive manner. Four instances of collaborative working 

dynamics have been demonstrated, and a series of insights into team dynamics and influential clusters 

of prototypes can be identified. An inherent risk with moving to too complex visualisations is when 

there are too many or too few data points. Too few would mean that the graph and charts will be 

sparse, and it will be difficult to draw any meaningful conclusions. Too many could cause 

overplotting, such as can be seen in (Figure 7). 

As the data has been localised in 3D space, the data can be extended into the real world, achievable 

through game engine functionality. There is work to determine the best methods and interfaces to get 

the most, if anything, out of this as part of the field of immersive analytics. VR, in particular, has been 

utilised to explore graphs and has led to fewer inaccurate insights being made compared to two-

dimensional counterparts (Millais, et al., 2018). There are also challenges here with information 

overload. This is different to too much data in that the complexity of the interface is appropriate for 

the complexity of the task (Radkowski, et al., 2015). 

The next steps are to triangulate the findings against the actual designers who generated the dataset. 

This will be achieved by inviting those designers in the project to reflect on and validate the insights, 

individually, as a team, and against the conclusions presented in this paper. These insights can also be 

explored and validated using different layouts in 2D and 3D. This will provide an opportunity to 
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compare capability vs usability. We hypothesise that more complex and capable tools in 2D and 3D 

will permit more rich insight, but at the cost of usability, requiring more time to input information, 

disrupting the design process.  

In this paper, only the connections between prototypes within the projects have been explored, but 

each prototype has embedded metadata, descriptions, rationale, and prototype specific insights that can 

be analysed. In the future, we also will explore if the data is interpreted in the same way and if 

different outputs act as a suitable intermediary or boundary object to facilitate discussion when 

reflecting on the process. 

6. Conclusion 
Prototyping is an inherently networked activity with previous prototypes influencing future prototype 

development and the direction of the design process. Recent advances in design rationale captures 

tools now enable us to capture the relationships between prototypes. In this paper, we have 

demonstrated the potential that network analysis and visualisation can bring to understanding the 

complex dynamics of prototyping. 

The paper has shown that network analysis can provide insights into the key influencing prototypes 

and the convergent/divergent thinking that occurs through the design process via centrality measures. 

While clustering provides insights into the modular nature of prototyping. Network visualisation, on 

the other hand, facilitates greater discussion on the data enabling it to be open to interpretation. In this 

study, we show that insights on modes of working and key decisions points can be developed. Overall, 

the study reveals that network analysis and visualisation has and will continue to have a leading role to 

play in how we examine and interpret the design process. 
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