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Abstract

We establish the bounds of Marcinkiewicz integrals associated to surfaces of revolution generated by
two polynomial mappings on Triebel-Lizorkin spaces and Besov spaces when their integral kernels are
given by functions Q € H'(S"™") U L(log* L)"/>(S""). Our main results represent improvements as well
as natural extensions of many previously known results.
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1. Introduction

It is well known that the Marcinkiewicz integral operator is the most typical
representative of the Littlewood—Paley g-function and L” bounds, for these operators
play a key role in the study of smoothness properties of functions and behavior
of integral transformations, such as Poisson integrals, singular integrals and, more
generally, singular Radon transforms. In recent years, the investigation on the bounds
for Marcinkiewicz integral operators on Triebel-Lizorkin spaces and Besov spaces has
attracted the attention of many authors (see [19, 29-31] for example). In this paper we
focus on this topic. More precisely, we will establish the bounds for Marcinkiewicz
integral operators associated to surfaces of revolution generated by two polynomial
mappings on the above function spaces under the rather weak size conditions on the
integral kernels.
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Let R" (n > 2) be the n-dimensional Euclidean space. For ¢ € R, 0 < p,¢g <
oo (p # ), we define the homogeneous Triebel-Lizorkin spaces F.7(R") and

homogeneous Besov spaces B.(R") by
. 1/q
(> 27y < g10)

i€Z

EPIR"Y = {f e S’ R :Ifpragn = '

< oo} (1.1)
LP(RY)

and

. . l/q
BPURYY = { FeS®M | fllaran = (Z 2|, f||‘£p(R,,)) < oo}, (1.2)
i€Z

where S’(R") denotes the tempered distribution class on R”, ‘E(f) =¢2i¢) forieZ
and ¢ € C;°(R") satisfies these conditions: 0 < ¢(x) < 1; supp(¢p) C {x: 1/2 < [|x[ < 2};
#(x) > ¢ > 0if 3/5 < |x < 5/3. It is well known that Fg’Z(R") =LP(R") forl < p< oo
and

FPP(R™) = BYP(R") VaeRand 1 < p < 0. (1.3)

See [14, 15, 27] for more properties of F2/(R") and B.Y(R"). The inhomogeneous
versions of Triebel-Lizorkin spaces and Besov spaces, which are denoted by F2/(R")
and BY(R"), respectively, are obtained by adding the term [|® * f]|.»gn) to the right-
hand side of (1.1) or (1.2) with } ;. replaced by };»;, where ® € S(R"), supp(®) C
{EeR": | <2}, @(x) > ¢ > 0if |x| <5/3. The following properties are well known
(see [14] or [15], for example): for any 1 < p,g < oo and a > 0,

FRA®RM ~ FRURYNLPRY)  and  |Ifllppagn ~ Ifllpaey + 1 flloge;  (1.4)
By'(R") ~ BR*(RMNLP(R")  and I fllgrany ~ Ifllgpan + I lr@n.  (1.5)

Let S*! be the unit sphere in R” equipped with the induced Lebesgue measure
do. Letd,m>1 and T'py = {(O(y), Y(ly])) : y € R"} be surfaces generated by two
suitable mappings ® : R” — R¢ and ¥ : [0, co) — R™. Suppose Q € L'(S"™!) satisfies
the cancellation condition

Qu)do(u) = 0. (1.6)
Snfl
For a complex number p =7 + i¥ (1,9 € R with 7 > 0), we define the parametric
Marcinkiewicz integral operator .#}, o o.w,, along the surface I'pw by

00 2dt 1/2
///h,g,@,w,pﬂu,v):( f —) . (1)
0 t

® Iyl"=*

where y’ = y/|y| for any nonzero vector y € R”?, (u,v) € R x R™ = R*"_ f € S(RI*™)
(the Schwartz class) and h € Aj(R,). Here A,(R,) for y > 0 denotes the set of all
measurable functions % defined on R, := (0, co) satisfying

1 h(lyDQ(y’
1 fu RO - — o), v — W(yl)) dy
yl<t

R 1/y
||h||Ay(R+) = sup(R_1 f |h(2)|Y dt) < oo,
R>0 0

Note that L*(R,) = Ao (R") S A, (R}) € Ay, (R,) forany 0 <y, <7y < o0.
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When ¥(¢) = (0,...,0) € R", the operator %h,g,q),\p,p essentially reduces to the
lower-dimensional Marcinkiewicz integral operator .#}, o o », Which is given by

1 h(lyDQQ’
Ji _QZQ_EZEfo_(DOO)dy
yIst

" [yl

For the sake of simplicity, we denote #), 0 0, = #o if n=d, p=1and ®(y) = y.
When A(r) = 1, the operator .4}, q reduces to the classical Marcinkiewicz integral
operator .#q. Over the last several years the L” mapping properties of .#¢ have been
studied by many authors. For example, see [8] for the case Q € H'(S""!) (the Hardy
space on the unit sphere; see [6, 26]), [1] for the case Q € L(log* L)!/?(S""), [3] for
the case Q € BEIO’_I/ 2)(S”‘l) (the Block space generated by g-block), [5] for the case
Qe 9};(8”‘1) (the Grafakos—Stefanov function class; see [16]). For relevant results on
parametric Marcinkiewicz integral operator .#, o, and other integral operators with
rough kernels, we refer the readers to [10, 17, 18, 21, 24], among others. Recently,
the investigation of the boundedness of the Marcinkiewicz integral operator on the
Triebel-Lizorkin spaces has also attracted the attention of many authors. In 2009,
Zhang and Chen [30] proved that .#q is bounded on the FL(R") for 0 < a < 1
and 1 < p,q < oo if Q€ H'(S"!). Later on, the above authors [31] showed that
My is bounded on FYYR") for O<a<1land 1+(n+1)/(n+2-1/r)<p,q<
2+ =1/r/(n+1)if Qe L’(S"") for some r > 1 and h € L*(R,). Very recently,
Yabuta [29] investigated the Triebel-Lizorkin space boundedness of Marcinkiewicz
integrals associated to certain surfaces under the integral kernels given by
Qe H(S" Y u Llog* L)!*(S"") and h € A, (R, ) for some y > 1.
We notice that the following inclusion relations are valid:

2 gp\1/2
t) )

%h,Q,CD,pf(x) = (f()

L(log* LY (S"™") ¢ L(log* LY*(S™") VB > B> > 0;
U LI(S"") € Llog* LS Y c H'(S™") VB> 1;

g>1
L(log* LY(S" Y ¢ H'(S") ¢ Llog" L") Y0<B<1;
JLis ™ e () Zus ¢ Llog" Ls™";

g>1 B£>1
(ZesHeH' s e Zps™:
p>1 p>1
BOM(S" ) c H'(S"") + Llog" L)'™ (8" Vg > 1,v>-1. (1.8)

When p=m =1, h(t) = 1, d =n and ®(y) =y, the operator .#), e w, becomes
the classical Marcinkiewicz integral operator associated to surfaces of revolution
Ty = {(y, P(Iy)) : y € R"}, denoted by .#qy. In 2002, Ding et al. [9] proved that
Moy is bounded on LP(R™!) provided that Q € H'(S""!) and the following maximal

operator
2k+l

Myg(u,v) = sup27* f lg(u — s,v —P(s))|ds
2

keZ K
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is bounded on LP(R?) for 1 < p < co. Subsequently, Fan and Sato [13] gave an
improvement of the above result. For relevant results on the operator .#q v we refer
the readers to [11, 28].

In this paper we aim to establish some new results concerning the Triebel-Lizorkin
space boundedness for parametric Marcinkiewicz integral operators associated to
certain surfaces of revolution. Before establishing our main results, let us introduce
some notation. We denote by .o, the class of polynomials of n variables with real
coefficients. For N > 1, let o7, y be the collection of polynomials in .27, which have
degrees not exceeding N, and let V,, v be the collection of polynomials in %7, y which
are homogeneous of degree N.

Our main results can be formulated as follows.

TueoreM 1.1. Let ¥(y) = Q(e(ly)) with Q = (01, ..., Qn) € ()" and ¢ € §, where
§ is the set of all positive increasing C'(R.) functions ¢ such that t¢'(t) > Cyp(t) and
P (2t) < cp@(2) for all t > 0 and some Cy,cy > 0. Let Q € L(log” L)'2(S" 1Y satisfy (1.6)
and h € A,(R,) for some y > 1. Suppose that one of the following conditions holds:

(i) n=d @) =Pl Qywith P =(Py,...,P,) € ()"
(i) @) = Ppy)y) with P = (Py,..., Py) € ()",

Then for a € (0, 1) and (1/p,1/q) € X#,, there exists a constant C > 0 such that
0.0 0 f1|raasmy < CNQA Laog" L2 f Il pragasmy,

where %, is the set of all interiors of the convex hull of three squares (%, % +
1/max{2,y'})? (3 - 1/max{2,y'}, $)* and (1/2y,1-1/2y)%. The constant C =
Cond,p.g.p.amaxi g deg(P)dee@ i8S independent of the coefficients of P; and Q; for 1 <
i<dand1 < j<m.

Tueorem 1.2. Let ¢ € &, D) = P(o(y)y) with & = (Pi,...,P,) € (Z,)? and
Y() = Qe(y) with Q = (Q4, ..., On) € ()", Suppose that Q € H'(S"™") satisfies
(1.6) and h € A,(R) for some y > 1. Then for a € (0, 1) and (1/p,1/q) € Z,, there
exists a constant C > 0 such that

- .00.0.% 0 | pogamy < CNQU a1 - fll pragasmys

where %, is given as in Theorem 1.1 and C = Cp, 4. g.0.0.des(2).dee(@) 1S independent
of the coefficients of P;and Qfor 1 <i<dand1 < j<m.

ReEmMARK 1.3. Some remarks follow.

(i) Note that #,, ¢ %,, fory; > y> > 1 and Zw. = (0, 1)*. It follows that the operator
Mho.ow, is bounded on FLI(RY™) for @ € (0,1) and 1 < p, g < o0 if Q, ©, ¥
are given as in Theorems 1.1 or 1.2 and h € L (R ).

(ii)) There are some model examples for the class &, such as t* (a > 0),
#1In(1 +1) (8> 1), tInln(e + t), real-valued polynomials P on R with positive
coefficients and P(0) = 0 and so on. It was shown in [22] that for any ¢ € §§ there
exists B, > 1 such that ¢(21) > B,(t).
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(iii)) By employing methods as in the proof of [4, Theorem 2.3] and using some
estimates about Fourier transform of measures appeared in the proofs of
Theorems 1.1-1.2, one can obtain that ., o ¢w, is bounded on LP(R¥*™) for
[1/p—1/2| <min{l/2,1/y'} if h,Q, ®, ¥ are given as in Theorems 1.1 or 1.2.

(iv) We remark that the corresponding results on singular integrals along surfaces
of revolution have been established by us in [20]. Moreover, the questions
concerning the F44(R*™) and BL*(R?*™) bounds for .4}, 0 ¢w, with @, ¥ being
as in Theorem 1.1 and Q € 9[;(5"‘1) have been answered by us in [19].

(v) It should be also pointed out that Theorem 1.2 also holds for Q e
Uter<eo BE2(S™1) by (1.8) and Theorem 1.1.

Observe that

A A0 /)X < | M 008, DX Vx, L € RE. (1.9)

Combining (1.9) with (iii) of Remark 1.3 and [19, Theorem 4.1] yields the following
theorem.

THeEOREM 1.4. Under the same conditions as in Theorems 1.1 and 1.2, these operators
are bounded on B (R™) for |1/p — 1/2] < min{1/2,1/v'}.

By the properties (1.4) and (1.5), (iii) of Remark 1.3 and Theorems 1.1 to 1.4, we
get the following results immediately.

Tueorem 1.5. Under the same conditions as in Theorems 1.1 to 1.4, these operators
are bounded on F/(R¥™) and BYI(R4™).

REmARrk 1.6. It should be pointed out that our main results are new, even in the special
casep=1,h(t)=1,n=d,m=1and O(y) =y or ¥(|y|) = yl.

The paper is organized as follows. Section 2 is devoted to presenting some auxiliary
lemmas. In Section 3 we shall prove Theorem 1.1. The proof of Theorem 1.2 will be
given in Section 4. It should be pointed out that the main method employed in this
paper is a combination of ideas and arguments from [2, 12, 19, 29]. Particularly, in
proving Theorem 1.1, the key decomposition of L(log* L)!/>(S"~!) following from [2]
will be needed. On the other hand, Theorem 1.2 is proved by applying some ideas
and techniques following from [12]. Throughout the paper, we denote by p’ the
conjugate index of p, which satisfies 1/p + 1/p’ = 1. The letter C or ¢, sometimes
with certain parameters, will stand for positive constants: not necessarily the same
one at each occurrence, but independent of the essential variables. In what follows,
we set Ry ={E€RY:1/2 <& < 1}). Let 2(f) be the difference of f for an arbitrary
function f defined on R? and £ € RY, that is, A,(f)(x) = f(x + {) — f(x). We also use
the conventions )’ pa; =0and [];qa; = 1.
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2. Preliminary lemmas
Let us begin with the following lemma of van der Corput type.

Lemma 2.1 [25]. Let [ e N\{O}, uy,...,; € R, and d,, ... ,d; be distinct positive real
numbers. Let € C'([0,1]). Then there exists a constant C > 0 independent of
Ui, ..., such that

:
f ety (1) diy
[

holds for0 <6 <t <1 and e = min{l/d,, 1/I}.

scwlrf(w(r)u f§ |¢'<r)|dr)

The following results are two vector-valued norm inequalities of maximal operators.

Lemma 2.2 [19]. Let My be the Hardy-Littlewood maximal operator on R and
Mg denote the Hardy-Littlewood maximal operator supported by polynomial
mappings & defined by M 5 f(x) = sup,., (1/r") fIyISr lf(x — Py)|dy, where &P =
(P1, Py, ..., Py) € ().

(i) Forl<p,q,r<oco, it holds that

b

JEZ

q ) 1/q
L'(Ra) LP(RY)

A2\
(Z |8zl ) )
L' (Ry)

kezZ

<C

LR

(i) Forl < p,q,r < oo, it holds that

J

g 1/q g
(Z ”M‘@fj‘”L’(‘“d)) HU(M : CH(Z sl "(‘R”))
7 JeZ

where C > 0 is independent of the coefficients of Pj for 1 < j < d.

1/q

LP(R)

Let h, Q, p be given as in (1.7). For a suitable mapping I" : R” — R?, we define the
measures {0 or}er, and {lonar:l}er, respectively by

_ 1 _oinroy PUIYDQO)
onard(x) =— f e? F(y)yT}Y dy 2.1
# Jip<pist [yl
and
- ! —2mix: h 1963
lohard(x) = — f e™? F@)w dy. (2.2)
1 Jij2<pist [yl

The following lemma is a refined estimate of a vector-valued inequality, which plays
a key role in the proofs of our main results.
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Lemma 2.3. Let T'(y) = (Pi(e(YD))ar(y'), ..., Pale(y))aqs(y’)) and v =1, where
(Pi,...,Py) e ()" and ¢ € §. Suppose that Q € L'(S"") and h € A,(Ry) for some
v > 1. Then for (1/p,1/q, 1/r) belonging to the interior of the convex hull of three
cubes (3,1/2 + 1/max{2,y'})?, (3 - 1/max{2,y'}, $)* and (1/2y,1 - 1/2y)?, there
exists a constant C > 0 such that

okt
5 di\1/2)4 1/q
Z Z lonord* gkl —
ez Wez Y2 g L) L&)
1/2119 l/q
< CV2Q1 1 g ‘( ( lg; k|2) ) , (2.3)
( ) Z Z 4 L'(Ry) L”(Rd)

JEZ " keZ

where C > 0 is independent of v, Q and the coefficients of P; for 1 < j < d.

Proor. Define the maximal operator o , ((f)(x) = sup,. llonar.l * f(x). We first
show that

1/q
i 2.4
(Susatns) |, @9

JEZ

1/q
(D 1otariol ) HW) < Clllxs|

JEZ

for any ¥y’ < p,q,r < co. By a change of variable and Holder’s inequality,

! d
llonar.l * f(x)] < f/ ) fs = TGO)IIO) do (@) Tr

! , d 1/y
<l fs ) M =Toor Zieoldr®) . @5)

By a change of variable again and the properties of ¢,

! . dr ) , ds
-TO) — = ~T(¢ Y(5)0))) ———————
» fx =TGN = f: N If(x = T ()0)) pTEwTpTES
1 (1) o d
<o | UeE-TE o <
@ Jo(t/2) s
1 S
<Clp)— lf(x = T ()OI ds,

¢(0) Jisisetn
which together with (2.5) implies that

1 , 17y
Thar(NE) < CIRINT. fs sup- f| V=T nY dsdo®)

N
(2.6)
Note that T'(¢~'(5)0) = (P1(s)a;(0), ..., Py(s)ay(0)). Using Minkowski’s inequality
along with (2.6) and invoking (ii) of Lemma 2.2, we get (2.4).
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We now prove (2.3) by considering the following three cases.

Case I (1 <y < c0). We get from (2.4) that

I

sup  sup  |lowar.d = gkl
k€Z te[2kv 2Gk+Dv]

(>

jez.

q ) 1/q
L'(Ra) LP(R)

. q l/q
‘Th,g,r(suP 8¢ ,k|) )
keZ L'(Ry) LP(RY)

( Z q )l/q
jEZ Lr(m(l)

for any ¥’ < p, g, r < co. On the other hand, by duality, Holder’s inequality, Fubini’s
theorem and (2.4), we have that for 1 < p, g, r < 7y, there exists a sequence of positive
functions {fj} ;¢ with [[{fjc . e er 17 1,y = 1 such that

’ (Z q )l/q
jEZ L’(‘Rd)
k1) dt
=> > lonarl * gjcx(0)| = fre(0) dL dx
REIRg Gz 2V !

JEZ

ZfRde Z|gj,§,k(x)|

ez 4 ez 2
q 1/q
(Z Zlg/,,z,kl ) (Z‘
ez kez e/ Nee®HIN g
q l/q
(Z Z|gj,§,k| )
L'(Ra)

jez" keZ
where fj;(x) = fjs(=x). Thus, the interpolation between (2.7) and (2.8) yields that
(2.3) holds for (1/p, 1/g, 1/r) belonging to the interior of the cube (1/2y, 1 — 1/2y)3.

< ClIQl sy 2.7)

sup gzl
keZ LP(RY)

2(k+ v

dt
Z lonord * gjzxl -
kv

keZ

LP(RY)

2(1<+ Iy

IA

— dt
lonard * fi (=2l - d¢ dx

q ) 1/q
L (Rq)

IN

v

Thar(fio)
o LY (RY)

IA

CV||Q||LI(S,H)‘ (2.8)

b
Lr(R4)

Case 2 (1 <y <2). By Holder’s inequality,

llonard * gjzx(x)
[h()QO)I
< f [8504(x — T V200! 4
1/2<lyl<t [yl

h 2—y QW 1/2 h YOy 1/2
([ e oy LT R oo
1/2<lyl<t [yl 1/2<lyl<t [yl

1/2 2 1/2
< ClIQ gy (T ard * g 00)' .
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It follows that

20y L dr\12e \la
(> lonard * gl —
ez Vkez V2 f Lo/ @D
Dk+1)y 1/
At q
1/2 2
< CIIQIILf(Sn_])‘(Z Zf lomer ol * 18kl 7 ) K (2.9)
G Jow rew/ o)

Note that |h*™ € Ayjo—p(Ry). Using (2.9) and (2.8) with vy, p, g, r replaced by
v/2—-7v).p/2,q9/2,r/2, respectively, we have (2.3) for (1/p, 1/g, 1/r) belonging to the
interior of the cube (% -1/y, %)3. By duality we see that (2.3) holds for (1/p, 1/g, 1/r)
belonging to the interior of the cube (%, % + 1/9")3. Interpolating these two cases, we
know that (2.3) holds for (1/p, 1/q, 1/r) belonging to the interior of the convex hull
of two cubes (3 — 1/, 3)* and (3, 3 + 1/¥")*. Note that in this case the interior of
the cubes (1/2y, 1 — 1/2y)? is contained in the interior of the convex hull of two cubes
(G-1/7.3) and 3.5 + 1/y').

Case 3 (y 2 2). Note that A, (R,) C A>(R,) for y > 2. Interpolation between cases 1
and 2 give us that (2.3) holds for (1/p, 1/¢, 1/r) belonging to the interior of the convex
hull of three cubes (1/2y, 1 — 1/2y)3, (0, %)3 and (%, 1)3. This completes the proof of
Lemma 2.3. O

The following lemma gives some useful characterizations of Triebel-Lizorkin
spaces and Besov spaces, which come from [29].

Lemma 2.4 [29].

(1) LetO<a<l,1<p<o,l<g<ooandl <r<min{p,q}. Then

. , q/r\1/q
Wlegren = (22 [ 1aanehrae) ) |
=2 R L&)
i) LetO<a<l,1<p<oo, 1<g<ocoandl <r<p. Then
(i) p q p
/4 1/q
e = (Y2 [ 1esccorae) | )"
leZ Ha LR

We end this section by presenting the following lemma, which is the heart of our
proofs.

Lemma 2.5. Let v> 1, A € N\{0} and {05, :t € R,,1 < s < A} be a family of Borel
measures on RY. We also denote by |os4| the total variation of o5, For 1 < s <A,
let 65,85 >0, My € N\{0O} and L; : R? — RM: pe linear transformations. Suppose that
@ € & and there exist py,qo > 1, 1 < ry < min{py, qo} and C,A > 0 independent of
v such that the following conditions are satisfied for 1 < s <A, t e R,, £ € R? and
{(greihicn € LY, E0(L0(02))):

@®  00,=0;
(i) [0754(&) = ()] < CAQ(D)™ |Ls(E)I;
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(iil) [o752(&)l < CAmin{1, p(t)*|Ly(E)} /"

(iv)
Skt dl‘ 1/2 qo\1/q0
(ZULEL tedeseF) ]
ez W% kez V2V Lro®D
1/21190 1/q0
< CAV'? (Z (Z Igz,:,k|2) ) '
i LO(Ry) LPO(RT)

€2 keZ
Then for @ € (0,1) and (1/p,1/q) € L1L,\{(1/po, 1/q0)}, there exists a constant C > 0
independent of A and v such that

(S ([ i) )

leZ

< CAV' 2|\ fllgraggay, (2.10)
L”(Rd) 3

where Ly L, is the line segment from Ly to Ly with L = (%, %) and Ly = (1/po, 1/q0).

Proor. For any 1 < s < A, let [; = rank(L,) < min{d, M,}. By [12, Lemma 6.1], there
are two nonsingular linear transformations H, : R® — R and G, : RY — R? such that

|Hy! G,él < |Ly(&)| < M{|H,r! G ¢, @.11)
where ¢ € R? and nf is a projection operator from R? to R». We can choose a function

¥ € CP(R) such that Y()=1for || <1/2 and Y(r) =0 for |t > 1. For 1 < s < A, we
define the family of measures {7;,};cr, by

A
7@ =70 [ | wle@Hml G ) - o 1,<§>]—[w<|¢(r>5 TG, (212)

Jj=s+1 Jj=s
Equation (2.12) together with our assumption o, = 0 implies that
A

OAr = § Tt

s=1

It follows that

(ZEZ 2,2 fn( [ ennsrenr ")) .
< Z; (2 ( [ { [ s st "))

leZ
Therefore, to prove (2.10), it suffices to show that

(S [ ([ ) )

LR

< CAV'||fllpraga, (2.13)

IeZ Lr®d)
forany 1 <s< A, a€(0,1) and (1/p, 1/q) € LiL,\{(1/po, 1/q0)}, where C > 0 is
independent of A, v.

Next we prove (2.13). Fix 0 < @ < 1. By straightforward calculations, and our
assumptions (i), (ii), (2.11) and (2.12), we obtain that for any 1 < s < A,

[Te(@)] < CAmin{1, ()*|Ly(€)], (O™ ILy(E)D P} (2.14)
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Since ¢ € §, by (ii) of Remark 1.3 we obtain that there exists B, > 1 such that
@(2t) 2 Byp(t) for all t > 0. Fix 1 <s<A. Let no € C*(R) be an even function
satisfying 0 < no(7) < 1, n9(0) = 1 and ny(z) =0 for || = 1. Set n(¢) =1 for |¢| < 1,
n&) = no((|€] = 1)/(a — 1)), where a = B;éf > 1. Then, n satisfies y|g<1(€) < n(é) <

Xie<a(€) and [0°1(&)| < cqla — )7 for e R? and @ € N4, where ¢, is independent
of a. Let a; = ¢(27%")7%. Define the sequence of functions {¢/; }xcz on R? by
Yi(€) = ;&) - n(a;'é), R
Observe that:
(@) supp(¥i) C {ax < |¢] < aar1};
(b)  supp(¢) N supp(y;) = 0 for |j — k| > 2;
(©)  Tiez ¥(é) = 1 for every & € RY\{0}.
Define the function ¥; by @\k(.f) = Y (&). It was shown in [29] that

1/2)19 1/q v‘5 /q
¥+ f, |2) ) ( Il ) H .
(,Zz; (Z k* fic Ly Z Jidlly Ra) LR

d+2
< C( )
kez LP(RY) Bv‘S
(2.15)

Since i is radial, we shall use the convention ¥ (|€]) = Y (&) for ¢ € RY. Define the
multiplier operator S ; on R? by

Sesf ) = Y| H,m! G &N F(&).
We shall prove

ksfiz Lo 2, fidllzr e - .

jez." “kez

for 1 < p,q,r < oo, where C > 0 depends only on ¢ and d. Let G;! and H;! denote
the inverse transforms of linear transformations G, and Hj, respectively. Define U
by U, = G;l(HS_1 ® Opa-i;), Where Oge-; denotes the Dirac delta function on R4,
Obviously, U, is a nonsingular linear transformation on R?. Let y = (y', y*) with
y' =1y and 2 = (41, V1,425 - - - » Ya)- One can easily check that

Sk f(x) = |Ug| ¥y ® Sgass * fU(Ux), (2.17)

where fUs(&) = |U‘Y|‘1f((U§)‘1§) and U’ denotes the transpose of Uj. It follows from
(2.15) and (2.17) that
214 )l/q P
Lr(md)

‘ (Z (Z |Sk’SfM|2) ) Lr(RY)

JEZ keZ

Lr®d)

17219 rlq
< f (DI 1w 8 = f2wi?) | ax
R JEZ" keZ ‘ L(Ra)
17219 rlq
it [ (S s sor) |V a
R L"(Rq)

jez" “kez
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-t S
Rdfl‘\- R[‘ jEZ

ol BZ,‘Sx p(d+2) U . plq
< | (ﬁ) fR J(Zuf,.,g(y)n o)

S p(d+2) lq)|p
_C( ) (Z|mgnmm)

forall 1 < p, g, r < oo, which yields (2.16).
We get by Minkowski’s inequality that

(S ([ e 2]

2119 plq
) dy' dy?

(D 1rws Jgig(-,y2>](y‘)|2)”
keZ

L'(Ra)

A

LP(RY)

leZ Lr®d)
20ty 12 \a\l/q
= Sl f f Tort Y S jpslo ) d{) )

PRSI S

20 112 \a\l/q

t

DY DN ) f e St P D) arf) |
ez ez Ra Viez V2 ! L)

Define the mixed norm || - || gz« for measurable functions on RY xRy X ZxZ xR, by

(é 2lqa(fﬁd(é fom lg(x, ¢, 1, k, ) %)1/2 d{)q)l/q

lIgllgra := .
LP(RY)

For any j € Z, let
Vis(HDOGE LK 1) 1= T %8 jop s Do-1(F)OX 2k 206010 (D).

Thus we have

(z2(].

We want to show that there exists a constant C > 0 independent of v such that

IVis(llgroao < CAVV2 £l proso g (2.19)

2(k+ 1y

(Z fzk 75 % D1 (I th)l/zd{)q)l/q

d "keZ

Lp (R‘[)

< D IViPliggs.
JEZ
(2.18)

and
IVis(Hll 22 < CAVB Y £l 22, (2.20)

where ¢ > 0 is independent of v. In fact, by interpolating between (2.19) and (2.20) we
have that for (1/p, 1/q) € L1L,\{(1/po, 1/q0)}, there exists 8 € (0, 1] such that

IVisDllggs < CAV' 2B M fll e, (2.21)
where C > 0 is independent of v. Inequality (2.21) together with (2.18) yields (2.13).
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Below we shall prove (2.19) and (2.20). For 1 < s < A, let @° be a radial function
in S(R") defined by ®*(x) = y(|x|), where x € R"s and y is as in (2.12). Define J, and
X, by

Tof(x) = f(G{(H; ®idge-)x) and X f(x)=sup  sup | Xppsf(x)l,
keZ te[zkv’z(k-f-l)v]

where
Xips f(X) = I (@p s ® Sas) # Jof)(0) and - Dy (x%) = (0(0)) D (1) 7 x"),
where x° € R%. One can easily check that

X fOl < G5! o (Mg, ® idgai) © Ji](F)(), (2.22)

where x = (%, x!) € Rl x R4, Combining (2.22) with (i) of Lemma 2.2 yields that

(Z (Z |ngl,{,k|2)l/2 ’ )l/q
L' (Ry)

l€Z " keZ
2
(DN 0 Mo @ idsn) o J)g1c00P)

leZ " keZ

< Q| fRM lev (gz:
(>

leZ

P

Lr(R9)

p
<C

q )1 lq
L'(Ry)

q

LP(RY)

12
(D 1M [(grza, a MY

keZ

) 17219 1/q
(Z |81.¢.kl ) ‘ )
keZ L'(fR,[)

forany 1 < s<Aand 1< p,q,r<oo. Define X°f =X;0X;,0---0oXpfforl <s<
A. We get from (2.23) that

q )l/q q )l/q

L'(Ra) L'(Rq)

(SIS wescar)”
keZ

leZ
forany 1 < s<Aand 1 < p,q,r < co. By the definition of X; ., and (2.12),

rlq
) dx° dx'!
L"(Ra)

p

<C (2.23)

Lr(RY)

<C
LP(RY)

172
(D tgrcal)

keZ

(>

leZ

Ly (Rd)
(2.24)

T [ =05 % (Xpysa1 © Xipsr2 00 0 Xppa f) — Ot % (Xipss © Xpisa1 © -+ 0 Xprn f)-

It follows that

D (k+1v D (k+1v

dt dt
2 2 r12
[ Ss [ e (2.25)
2kv [ 2kv t
and
D (k+ 1)y d D (k+ 1)y D (k+1)y
t dt dt
2 1 £12 2
f fros s £ 5 <2 f lors % X2 2 f lorseval = X1 )
kv t kv t kv t

(2.26)
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for any 2 < s < A. From (2.24) to (2.26) and assumption (iv), one can get

2+ Dy dt 1/2 qo\1/q0
f f ror il ) de) )
ez W Viez Y2
1/21190 1/q0
( (Z |gl,§,k|2) )
ez " keZ L0 (Ra)

for 1 < s < A. Inequality (2.27) together with (2.16) and (i) of Lemma 2.4 implies that

1721|190 1/q0
(2 22718 kst cPP) )
kez L)

leZ
LPo(RY)

I 1/q0
(Z 2 qo“”Az lg(f)”[jﬂ(‘ﬁd))

lez
< CAV'2| | fl pr000 g

LPo (R’I)

< CAV'? (2.27)

LP0(RY)

||Vj,s(f)||E§0«‘io < CAv'/?

LPo (R’[ )

<CAV'/?

which gives (2.19).
On the other hand, by (2.14), Holder’s inequality, Minkowski’s inequality, Fubini’s
theorem, Plancherel’s theorem and (ii) of Lemma 2.4,

Wihe= [ S2e([ (3]
1eZ Ra Nz, Y2V

2(k+1)1
<C Z 221(1 f f
IeZ. Ry k 7 v
<C Z 221(1 f

lezZ Ra ez
< CA*vB V| 1

D (k+1)v

dnl’2 \2
oS kst (NP ) de) v

dt
f o = 8 p st OO dx 5 dg

2(k+l)v

dr ——
f f E00P s TP dxde

2 iy (2.28)
where E s = {x € RY : p(2%=I")70s < |and Gl < B (2%~} and C, ¢ > O are
independent of v. Combining (2.28) with (l 3) ylelds (2.20) and finishes the proof of
Lemma 2.5. O

3. Proof of Theorem 1.1

In this section we shall prove Theorem 1.1. Let %, be given as in Theorem 1.1 and
onar, and |o, or,| defined as in (2.1) and (2.2), respectively. Employing the notation
in[2],let Eg={y € S" ' : |Q(O) <2}and E, = {y € S"' : 2 <|Q()| < 2"*!} for
v € N\{0}. Let N(Q) = {v e N\{0} : 0(E,) > 2™} and Q) =Q — 2ven(@) v, where
Q, = Qyg, —o(S"H™! fE Q(y)do(y'). One can easily check that

f Q') do(y) = 0
Snfl
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11151y < CllQiE,y Y € N(Q) U {0}; (3.1)
1Ml 21y < C2711QI e,y Vv € N(Q) U {0} (3.2)
o+ D20k, < ClIQILog* 121 (3.3)
veN(Q)U{0}
Mowwpf)S Y Mhoevpf(y) V(xy) eRIXR™. (34)
veN(Q)U{0}

Inequality (3.4) together with (1.9), Minkowski’s inequality and (i) of Lemma 2.4
yields that

0.0 .p 1 24 gaem)

(Z 21"“( j}: L1 Mhoowpf)dl )q)‘/q
Iz

d+m

21

17, Ratem

S
vEN(QU(0} " " [eZ Raem

IN

c

Lr (Rd+m)

qa\1/q
%1,Q,®,‘I’,p(A2’l{(f ) d{ ) )

IA

C

Lp(Rd-HH)

IN

a\1/q
c Mg, 00w EE) )

(3.5)

Lp(Re+m)

for @ € (0,1) and (p, g) € (1, 00)2.

Proor or THeEorEM 1.1. We shall prove Theorem 1.1 by considering the following two
parts.

Part 1. Letn = d and ®(y) = P(¢(ly))) @ y with P = (Py,..., P,) € («/)". There exist
N €N, some integers 0 = dy < d; <dp <--- <dy, = max<ic, deg(P;) and {a; ; : 1 <
i<n,0<j<Ni}suchthat (aij,...,a,;) #(0,...,0)forall 1 < j < N; and

N1 Nl
PLO o Pa0) = (D it Y an )
j=0 j=0

For 0 < s < N; and (x,y) € R” X R™, define the linear transformation £; : R” X R" —
R* by Ly(x,y) = (ajsXx1,- .., ansX,), Where x = (xy,...,x,). For any 0 < s < Ny, let

N S

P(t, x) = (Z al,jtdfxl ey Z an,jtdfxn).

Jj=0 Jj=0

Forre Ry, ve N(Q) U {0} and 0 < s < Ny, we denote o, by o0, and |07 | by
long,r, With Ts(y) = (Ps(e(lyD), ), Ple(lyD)). By (1.6), one can easily check that

oy, = 0. (3.6)
We also verify easily that

o (&l < CIQ sty < CIQL k- (3.7)
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By a change of variable, (3.1) and Holder’s inequality,

o (&) — o, (€

/
f | 2TEP D) _ it (uloho DD OOT
1/2<lyl<t [yl

IA

! d
scj?LJw%&@mymmmwwww{
< ClIQlL el L s (3.8)

- 1 o - Jr
oy (&l == Q,( ) HEPEO I YGN er(y Yh(r) —
" /2 Jsn-1 -

!
sawwqf
t/2

(1) ) , Yy 1/y
< C(f f Qv(y/)e—2m§~$0_,-(r,y ) do_(y/) dr )
@ Snf]

Y dr)l/y’

f Q,(y)e ZEPEDS ¥ L)) (47
Srkl

/2) @ (@~ ()= 1(r)

(1) Y a1
sc( f )
@(t/2)

(1)
ax{0,1-2/y’
<ciae = [
e(1/2)

f Qv(y/)e—Zﬂi§~7>s(r,y’) dO’(y’)
Sn—]

2 dr )min{Z,y’}/Zy’

f e PEQ (v dor(y) -
Snfl

(3.9)

A change of variable together with (3.2), Lemma 2.1 and Holder’s inequality implies

that
0 ,
xﬁ f e TR () dar(y)
g/ st
1
<J.
;!

1
. , d
= f] ff . e—27rl(7).x(47(l)h)r )—Ps(‘ﬂ(t)r,ﬁ))'fgv(yl)QV(Q) do_(y/) dO'(H) Tr
Co (G}

( Sn—1 )2

< [, mint k)" £ m 07 = O, 0)R Bl der ()

2 dr
r

2 dr
r

f e TIPOREQ () dor(y)
Sn-1

1
f e—2ﬂi(7’.\(so(t)r,y')—P\-(w(t)rﬂ))«f ﬂ‘mv(y')gv(gn do-(y') do(6)
¢ r

—1
@

S ”Q\’”i2(sn—1)|90(t)dSLs(§’ n)|_1/4ds
12
X (ffs () Ly m) - (v = O} do-(y')do-(g))
( nfl)z
< C2VNQI, (1Y Lo A%,
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which together with (3.9) and (3.1) yields that
07 €] < ClIQl1 1,y 22 ™27 MY (1) L&, )| minI2y /8
Combining this inequality with (3.7) yields that
05 E D < ClIQUs e,y mind L, (D) L€ mly ey Vo7 0h, (3.10)
On the other hand, by Lemma 2.3, (3.1) and Holder’s inequality,
1)

‘ (Z(f (Z L(vm ||0":;| * gj,g,k|2 ?)1/2 dg)q)l/q

Jje€Z Rawm “kez
( Jjez

< Co+ D',

Lr(Rd+m)

2(k+1)<v+l)

dr\1/21¢ 1/q
(% [ 1ol S) )
=7 Jorosn ! L' Rasm)
17219 1/q
(Z (Z |gj,g,k|2) )
jEZ kez, L' Ram)

for 1 <s < Njand (1/p,1/q,1/r) belonging to the interior of the convex hull of three
cubes (5,3 + 1/max{2,y'})?, (1/2 -1/ max{2,y’}, )* and (1/2y, 1 — 1/2y)*. Then by
(3.6), (3.8), (3.10), (3.11) and Lemma 2.5 we have

'(IZZ: 2lqa(j9; (f:) (0% 1 % B (PP th)l/z d{)q)l/q

< CO + D'2IQIL ) 1l paasm) (3.12)
fora € (0,1) and (1/p, 1/q) € #,. We get by Minkowski’s inequality that
2 dt)l/Z
t
0

S dr\1
k v 2
< 32| fo RER
<

k=—oc0
o dr\'?
< 1_2_T(f0 |0'Nl’t*f(x,y)|27) . (3.13)

Inequality (3.13) together with (3.3), (3.5) and (3.12) yields that

<

Ly (Rd+rn)

3.11)
Lp(Rd+m)

Ly (Rd+zn)

0

D 20 o+ fx)

k=—c0

Mg, 0wpf(X,y) = (fo

|2 0.0.%.p f1l 24 gaem)

cc ¥ |z N fo T P 2 )

vEN(QU{0}"  [eZ Lr(RE+m)
1/2
<C DL 0+ DAL Il goon)
YEN(Q)U{0}
< ClQllzgog* sl N pragasm) (3.14)

for @ € (0,1) and (1/p, 1/q) € Z,. This proves part (i) of Theorem 1.1.
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Part 2. Let ®(y) = P(e(y))y’) with P = (Py,..., P,) € (4,)*. Following from [12],
there are N, € N, some integers 0 </; <l <--- <[y, < max,¢j<q deg(P;) and
polynomials Pj. € Vi, Rj € @ with deg(R;) < max;<j<qdeg(P;) for 1 <s <N, 1<
J <d, such that

A
O = Y P + R,
s=1

where P° = (PS,...,Pfi) andR=(Ry,...,R;). Foreach s € {1,...,N,}, there is at least
one je{l,...,d} suchthatP; #0.Forj=1,...,dand 1 < s < A, write

d(s)
P;(}C) = Z bsjpxg = Z b;jixﬁ(s'l),
1BI=Ls i=1

where d(s) = dim(V,,;,). For 1 < s < N,, define the linear transformation 7 : R? x

R™ — RO by T(€,m) = (X9 V,jyéjs - s Dy b)), Where € = (&1, &). For
0 < s < N,, we define P, by

Po(x) = R(xl) + " P ().

u=1
ForreR,, ve N(Q) U {0} and 0 < s < N, we denote o, by 00,1, and |07y | by
lon.q, 1, with Ts(y) = (Ps(e(yDy"), P(e(lyl))). Obviously,

T, E ) < ClIQ sy < ClIQILie,)- (3.15)
We easily get by (1.6) that

T =0. (3.16)
By arguments similar to those for deriving (3.8) and (3.9),
T Em) =T E < ClIQIL il T (€., (3.17)

2 dr )min{Z,y'}/Zy’

(1)
= 0,1-2/y"
7,6l < CIQ e }( f

@(t/2)

f e~ 2P (ry)E Qﬂ(y') do-(y') il
Snfl r

(3.18)
By an argument similar to that for [12, Corollary 4.3] with € = (81,,)‘1 and p = 2, there

exists C > 0 such that
° N 2P (@t 21y )€ |F dry\'? I —1/81
( Qe () SN < sl 12 L@
1 1 Js
(3.19)

By a change of variable and the properties of ¢, we get from (3.2) and (3.19) that

#0 2miPy(ry' / W[ ar
f f e TPIEQ (V) do(y)| —
(/)1 s r

C,
< f ’ f efZNiP;(w(t/Z)r)")fQV(y/) a’O'(y')
1 Snfl

< C2V QI &l T (&, mI ™%

2

r
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This together with (3.1), (3.15) and (3.18) yields that
77, )] < ClIQL i,y min{1, ()" T (&, mlyminy V16ky (1) (3.20)

Using Lemma 2.3 and Holder’s inequality we obtain
D (k+D)(r+1)

1/2 q\1/q
S L Wren
jez. Y Rawm ez 2H0D ’ !
N2
(Z (Z gkl )

jez" “kez

Lr (RaHm)

q )1 /q
L' (Ram)

for 1 <s <N, and (1/p,1/q,1/r) belonging to the interior of the convex hull of three
cubes (%, % + 1/ max{2,v'}), (% -1/ max{2,y’}, %)3 and (1/2y,1 —1/2y)3. The rest
of the proof follows from (3.16), (3.17), (3.20) and (3.21), and arguments similar to
those used in deriving (3.14). This completes the proof of Theorem 1.1. O

< Cv+ 1)1/2||Q||L‘(E”) (3.21)

Lr (Rd+nz)

4. Proof of Theorem 1.2

Proor oF Teorem 1.2, Let Q € H'(S"™!) satisfy (1.6). By the well-known atomic
decomposition of Hardy space (see [6, 7]), there exist {c,} € C and H' regular atoms
{Q} such that Q =3, ¢ and Y, lci] = [|Qg1(s-1). Here each Q, satisfies the
following conditions: for some & € S"~! and ¢ € (0, 2],

supp(Q,) € S N B(e,s) where B(e,¢) = {y e R" : |y —&| < gk
19l ooty < 675

f Q(y)do(y) =0.
Sn-1
Then by Minkowski’s inequality we have

Mowwpf (o) <Y Mo owpf(6y) Y6y eRTXR™. (41)

Without loss of generality we may assume that supp(Q,) € S"~! N B(e, ¢) with 0 <
¢<l/4and e=e=(0,...,0,1). Below we give some notation, which is the same
as in [12]. In what follows, we use x = (%, x,,) with ¥ = (x,..., x,_1). Then there
are N3 € N, some integers 0 < [; <[, < --- <y, < max;gj<qs deg(P;) and polynomials
PieVy,, R;j€ <7 with deg(R;) < max;<j<gdeg(P;) for I <u <Nz, 1< j<d, such
that

N3

P(x) = ) P'(x) + R,

u=1
where P = (P}, P},...,P))and R = (R, R;,...,Ry). For j=1,...,d, denote P;f(x) =
2iBl=l, bujﬁxﬁ. For / € N and @ € N with |a| = [, we choose 1;,(-) € 97,-1 such that

|x¥ = m10(0)] < Cc* ™D for x € S" ' N Be, <).
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[20] Marcinkiewicz integrals associated to surfaces of revolution 399
Foreachu € {1,..., N3}, j€(l,....d}, we define ¢ € 1 by
QiD= Y bujgm, 5(%),
1BI=Ly
and set ¢“(%) = (¢{(X), ¢5(X), ..., q(%). Fix each u € {l,..., N3}; there are
positive integers v(u),0 < h,; < --- < Ay, ), and polynomials {W;ﬂ j=1,...,d;n=
., ()} € <7,_; such that:
1) forje{l,....d},ne{l,...,v(n)}, W}‘n(-) is homogeneous of degree h,,,;
(i) foreachne{l,...,v(u)}, there exists at least one j € {1,...,d} such that W‘.‘ #0;
(iii) forcach je{l,...,d), there is a v € R such that g(%) = %) W (%) + V"
Forue{l,...,Ns}andne{l,...,v(n)}, we define R*(x) and W"(X) by
RO =R+ > WOk A+ Y @),

usk<N 1<k<u-1

and
WHI(E) = (WD), ..., Wg, (3)).
Let M(0) =0, M(u) = ¥;_,[v(k) + 1] for 1 <u < N3, and define I'y, Ty, ..., Tpwy) by
Ch-pes) = RYC) + laft > W (- |)

1<k<6
for 1 <u<N,0<0<M@u)— M®u—1) and I'ygm(x) = D(x). Let d(u) = dim(V,,;,).
Foreachu € {1,..., N}, we write
BeN": |l =1L} :={Bu,1),...,Hu,dwu))}
Hence we can write P(x) = Zd(”) b;ﬂxﬁ(” %) where b = bujgw.s)- Denote by d(u,n)
the number of distinct elements in {w € N*~! : |@| = o } Forl1 <u<N;, 1<n<v(u)
and 1 < j <d, write
{w |l = hyy) ={o,n, 1),...,o(un,dun)),

and
d(u,n)

thn(i) _ Z Wu,j,n,s)NCW(u’mS)'
=1
For 1 < u < N3, we define Ay,..., Ay, € N by

N [dau,0) if1<6< M) - M- 1),
MWD =Y gy if 6 = M@u) — M(u - 1).

Also, we define linear transformations L; : RY — R for 1 <i < M(N3) by

(Z Wajosis- Z wu,M(ue)fj) if1<0< M) - M- 1),
Ly-n6@) =1 7} B

(Z b€ - Zbujd(u)é:l) if0=M@u)—M@wu-1).

j=1
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Fors=1,..., M(N3), we set

l(S) = lu’ o(s) = htt,0>

7(s)=; if0=s—M@u-1)€e[l, Mu) - M(u- 1)),
4hu,91uyl

I(s)=1,, o(s)=4l,(n-1),
y(s) = Y]

if s = M(u).

For 7 e R, and 0 < s < M(N3), we denote w{, by 0.0, and || by |07 0, 1 With
L'y = Cs(eyDy"), P(e(ly))). One can easily get by (1.6) that

W, = 0. 4.2)

We also easily obtain that
W & ml < C; (4.3)
W€ — O E ] < Cop) IS OILE). (4.4)

On the other hand, by a change of variable and the same argument as for [23, (3.2)],

— 1 i ET (P V4 Pl , dr
|, (&l = | — f f Qe FHETCOIYEOD dor (3 Yh(r) ~
tp t/2 NG r 0

!
P ANALS

< Cle/ "Ly (4.5)

Using Lemma 2.3 with v = 1 and Hélder’s inequality we have

, dt 172 \a\l/q
‘ f f o« geal <) e )
Rd+m keZ
1/2)19 1/q
Iz T )
jEZ keZ L' (Ram)

forall 1 < s < M(N3) and (1/p, 1/q,1/r) belonging to the interior of the convex hull
of three cubes (3, 3 + 1/ max{2,y'})*, (3 — 1/ max{2,y'}, )* and (1/2y,1 - 1/2y)°.

For 1 < s < M(N3), define the linear transformation £, : R“*"™ — R by Ly(&,n) =
$PWL(&). Then by (4.2) to (4.6) and Lemma 2.5 we have

(> 2( fR ( f i * 22O L) a)')

Lr (R“H”’)

(4.6)

Lr (Rd“")

< C|Ifl |ng‘l(Rd+m)

Iz Lo@m)

4.7)
for any @ € (0, 1) and (1/p, 1/q) € #,. By an argument similar to that for getting
(3.13),

1 C , dr\!/?
Moo, 9 < 75 fo Wi * FEDE ) 4.8)
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By (1.9), (4.1), (4.7), (4.8), (i) of Lemma 2.4 and Minkowski’s inequality, we obtain

A 00.0.9 0 f11 24 s

IA

Cc

a\1/q
S M, /)

(2 (,

leZ Ratem

£

€7, md+m

c e z’q“(
o o dn\l’2  \a\l/q
S i) ]

€7, Rasm 0
CllQl e 1)1 | praasm)

Lp (R‘H’”)

IA

c

a\1/q
M09 (80-1(f)) dd ) )

Lp (Rd+m)

IA

a\1/q
Moy (318) )

IN

Lr (Rd+;n)

IN

for @ € (0,1) and (1/p, 1/q) € Z,. This finishes the proof of Theorem 1.2. m|
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