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Abstract
Let x𝑛×𝑛 be an 𝑛 × 𝑛 matrix of variables, and let F[x𝑛×𝑛] be the polynomial ring in these variables over a field F.
We study the ideal 𝐼𝑛 ⊆ F[x𝑛×𝑛] generated by all row and column variable sums and all products of two variables
drawn from the same row or column. We show that the quotient F[x𝑛×𝑛]/𝐼𝑛 admits a standard monomial basis
determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of
F[x𝑛×𝑛]/𝐼𝑛 is the generating function of permutations in𝔖𝑛 by the length of their longest increasing subsequence.
Along the way, we describe a ‘shadow junta’ basis of the vector space of k-local permutation statistics. We also
calculate the structure of F[x𝑛×𝑛]/𝐼𝑛 as a graded 𝔖𝑛 ×𝔖𝑛-module.
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1. Introduction

Let x be a finite set of variables, and let F[x] be the polynomial ring in these variables over a field F. If
𝐼 ⊆ F[x] is a homogeneous ideal, the quotient ring F[x]/𝐼 has the structure of a graded vector space.
The Hilbert series of F[x]/𝐼 is the graded dimension of the vector space, viz.

Hilb(F[x]/𝐼; 𝑞) :=
∑
𝑑≥0

dimF (F[x]/𝐼)𝑑 · 𝑞𝑑 . (1.1)

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2024.75 Published online by Cambridge University Press

doi:10.1017/fms.2024.75
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2024.75&domain=pdf
https://doi.org/10.1017/fms.2024.75


2 B. Rhoades

Macaulay [13] characterized the polynomials 𝑎0 + 𝑎1 · 𝑞 + · · · + 𝑎𝑑 · 𝑞
𝑑 with positive integer coefficients

which arise as the Hilbert series of a graded quotient of the form F[x]/𝐼. Following the exposition of
Stanley [19, Thm. 1.3], for positive integers a and i, there is a unique representation 𝑎 =

(𝑏𝑖
𝑖

)
+
(𝑏𝑖−1
𝑖−1

)
+· · ·+(𝑏 𝑗

𝑗

)
, where 𝑏𝑖 > 𝑏𝑖−1 > · · · > 𝑏 𝑗 ≥ 𝑗 ≥ 1. Let 𝑎 〈𝑖〉 :=

(𝑏𝑖+1
𝑖+1

)
+ · · · +

(𝑏 𝑗+1
𝑗+1

)
. Then 𝑎0 +𝑎1 · 𝑞+ · · · +𝑎𝑑 · 𝑞

𝑑

is the Hilbert series of some graded quotient F[x]/𝐼 if and only if 𝑎𝑖+1 ≤ 𝑎 〈𝑖+1〉
𝑖 for 0 ≤ 𝑖 ≤ 𝑑 − 1.

In this paper, we show that a generating function arising from increasing subsequences of permuta-
tions is the Hilbert series of a natural graded ring. Write𝔖𝑛 for the symmetric group on [𝑛] := {1, . . . , 𝑛}.
If 𝑤 ∈ 𝔖𝑛 is a permutation, an increasing subsequence in w is a set of positions 1 ≤ 𝑖1 < · · · < 𝑖𝑘 ≤ 𝑛
whose images under w satisfy 𝑤(𝑖1) < · · · < 𝑤(𝑖𝑘 ). The integer k is the length of this increasing
subsequence. We write

lis(𝑤) := max{𝑘 : 𝑤 has an increasing subsequence of length 𝑘} (1.2)

for the length of the longest increasing subsequence of w and

𝑎𝑛,𝑘 := |{𝑤 ∈ 𝔖𝑛 : lis(𝑤) = 𝑘}| (1.3)

for the number of permutations in 𝔖𝑛 whose longest increasing subsequence has length k. For any
positive integer n, the sequence (𝑎𝑛,1, 𝑎𝑛,2, . . . , 𝑎𝑛,𝑛) was conjectured by Chen [4, Conj. 1.1] to be
log-concave, that is, 𝑎2

𝑛,𝑖 ≥ 𝑎𝑛,𝑖−1 · 𝑎𝑛,𝑖+1 for all 1 < 𝑖 < 𝑛. When 𝑛 = 4, this sequence reads
(𝑎4,1, 𝑎4,2, 𝑎4,3, 𝑎4,4) = (1, 13, 9, 1).

The following ideal 𝐼𝑛 is our object of study. Despite the simplicity of its generating set, it will turn
out to have deep connections to the combinatorics of increasing subsequences.

Definition 1.1. Let x𝑛×𝑛 be an 𝑛 × 𝑛 matrix of variables (𝑥𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛, and consider the polynomial ring
F[x𝑛×𝑛] over these variables. Let 𝐼𝑛 ⊆ F[x𝑛×𝑛] be the ideal generated by

◦ any product 𝑥𝑖, 𝑗 · 𝑥𝑖, 𝑗′ for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 , 𝑗 ′ ≤ 𝑛 of variables in the same row,
◦ any product 𝑥𝑖, 𝑗 · 𝑥𝑖′, 𝑗 for 1 ≤ 𝑖, 𝑖′ ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛 of variables in the same column,
◦ any row sum 𝑥𝑖,1 + · · · + 𝑥𝑖,𝑛 for 1 ≤ 𝑖 ≤ 𝑛, and
◦ and column sum 𝑥1, 𝑗 + · · · + 𝑥𝑛, 𝑗 for 1 ≤ 𝑗 ≤ 𝑛.

The ideal 𝐼𝑛 ⊆ F[x𝑛×𝑛] is homogeneous, so F[x𝑛×𝑛]/𝐼𝑛 is a graded F-algebra. The natural action
of the group 𝔖𝑛 ×𝔖𝑛 on the variable matrix x𝑛×𝑛 given by independent row and column permutation
induces an action on F[x𝑛×𝑛] which stabilizes 𝐼𝑛 so that F[x𝑛×𝑛]/𝐼𝑛 is a graded 𝔖𝑛 ×𝔖𝑛-module.

When 𝑛 = 1, we have 𝐼1 = (𝑥1,1) ⊆ F[x1×1] so that F[x1×1]/𝐼1 = F. When 𝑛 = 2, the ideal
𝐼2 ⊆ F[x2×2] has generators

𝑥2
1,1, 𝑥2

1,2, 𝑥2
2,1, 𝑥2

2,2, 𝑥1,1𝑥1,2, 𝑥1,1𝑥2,1, 𝑥1,2𝑥2,2, 𝑥2,1𝑥2,2,

𝑥1,1 + 𝑥1,2, 𝑥1,1 + 𝑥2,1, 𝑥1,2 + 𝑥2,2, 𝑥2,1 + 𝑥2,2,

and it is not hard to check that F[x2×2]/𝐼2 has Hilbert series 1+ 𝑞 and that the set of monomials {1, 𝑥1,2}
descends to a basis.

We prove (Corollary 3.13) that the Hilbert series of F[x𝑛×𝑛]/𝐼𝑛 is given by

Hilb(F[x𝑛×𝑛]/𝐼𝑛; 𝑞) = 𝑎𝑛,𝑛 + 𝑎𝑛,𝑛−1 · 𝑞 + 𝑎𝑛,𝑛−2 · 𝑞
2 + · · · + 𝑎𝑛,1 · 𝑞

𝑛−1 (1.4)

so that the (reversal of the) generating function for permutations in𝔖𝑛 by longest increasing subsequence
is the Hilbert series of F[x𝑛×𝑛]/𝐼𝑛. In particular, the polynomial 𝑎𝑛,𝑛 + 𝑎𝑛,𝑛−1 · 𝑞 + · · · + 𝑎𝑛,1 · 𝑞𝑛−1

satisfies Macaulay’s criterion, a fact which seems difficult to prove directly from the combinatorics of
increasing subsequences. Taking 𝑞 → 1, the ungraded vector space F[x𝑛×𝑛]/𝐼𝑛 has dimension

dim F[x𝑛×𝑛]/𝐼𝑛 = 𝑛!. (1.5)
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We will attach (Definition 3.9) a monomial 𝔰(𝑤) in the variables 𝑥𝑖, 𝑗 to any permutation 𝑤 ∈ 𝔖𝑛 such
that

deg𝔰(𝑤) = 𝑛 − lis(𝑤) (1.6)

and prove (Theorem 3.12) that

{𝔰(𝑤) : 𝑤 ∈ 𝔖𝑛} (1.7)

descends to a vector space basis of F[x𝑛×𝑛]/𝐼𝑛. In fact, this will be the standard monomial basis of
F[x𝑛×𝑛]/𝐼𝑛 with respect to a ‘Toeplitz term order’ <Top (Definition 3.8). The notation 𝔰 refers to the use
of Viennot’s shadow line formulation [20] of the Schensted correspondence in the definition of 𝔰(𝑤).
Our results may be interpreted as the ideal 𝐼𝑛 ⊆ F[x𝑛×𝑛] together with the term order <Top ‘seeing’ the
Viennot shadow line construction.

When the field F has characteristic zero or characteristic 𝑝 > 𝑛, we characterize the structure of
F[x𝑛×𝑛]/𝐼𝑛 as an ungraded (Corollary 4.1) and graded (Theorem 4.2) module over the product group
𝔖𝑛 ×𝔖𝑛. The module structure of F[x𝑛×𝑛]/𝐼𝑛 relates to a family of𝔖𝑛-characters considered by Novak
and the author [14] in a strengthening of Chen’s log-concavity conjecture.

For 1 ≤ 𝑘 ≤ 𝑛, define a character 𝛼𝑛,𝑘 : 𝔖𝑛 → F by the rule

𝛼𝑛,𝑘 :=
∑
𝜆 
 𝑛
𝜆1 = 𝑘

𝑓 𝜆 · 𝜒𝜆, (1.8)

where the sum is over partitions of n whose first row has length k. Here, 𝜒𝜆 : 𝔖𝑛 → F is the irreducible
character of 𝔖𝑛 attached to the partition 𝜆 and 𝑓 𝜆 = 𝜒𝜆 (𝑒) is the dimension of the irreducible 𝔖𝑛-
module attached to 𝜆. We have 𝛼𝑛,𝑘 (𝑒) = 𝑎𝑛,𝑘 , so the sequence (𝛼𝑛,1, . . . , 𝛼𝑛,𝑛) of class functions is a
representation-theoretic refinement of the sequence (𝑎𝑛,1, . . . , 𝑎𝑛,𝑛) appearing in Chen’s conjecture.

Novak and the author conjectured [14, Conj. 2] the the difference 𝛼𝑛,𝑘 ∗ 𝛼𝑛,𝑘 − 𝛼𝑛,𝑘−1 ∗ 𝛼𝑛,𝑘+1 is a
genuine (rather than merely virtual) character of 𝔖𝑛 for all 1 < 𝑘 < 𝑛, where ∗ denotes the Kronecker
product of class functions on𝔖𝑛. Since 𝛼𝑛,𝑘 (𝑒) = 𝑎𝑛,𝑘 , this would imply Chen’s conjecture. One way to
prove this stronger conjecture would be to describe an𝔖𝑛-module which has 𝛼𝑛,𝑘 ∗𝛼𝑛,𝑘 −𝛼𝑛,𝑘−1∗𝛼𝑛,𝑘+1
as its character. We prove (Corollary 4.3) that 𝛼𝑛,𝑘 is the character of the degree 𝑛−𝑘 piece of the quotient
F[x𝑛×𝑛]/𝐼𝑛, restricted from the product 𝔖𝑛 ×𝔖𝑛 to either factor of 𝔖𝑛. To the author’s knowledge, this
is the simplest explicit module with character 𝛼𝑛,𝑘 . We hope that this representation-theoretic model for
𝛼𝑛,𝑘 can give new insight on the Novak–Rhoades conjecture. In fact, it appears that a stronger equivariant
log-concavity result holds without restriction from 𝔖𝑛 ×𝔖𝑛 to one of its factors; see Conjecture 4.4.

Our results have application to permutation statistics. For 𝑘 ≥ 0, a statistic 𝑓 : 𝔖𝑛 → F is k-local
[5, 10] if f is an F-linear combination of indicator statistics which detect whether a permutation w carries
a given list of k positions onto another given list of k values. The locality of a permutation statistic
is a measure of its complexity; for example, the 0-local statistics are precisely the constant functions
𝔖𝑛 → F. While the vector space of k-local statistics is defined via a spanning set, finding an explicit
basis for this vector space was an open problem in [10]. Our Gröbner-theoretic methods yield (Theorem
3.16) a solution to this problem.

To prove our results, we apply the method of orbit harmonics to the locus 𝑃𝑛 ⊆ F𝑛×𝑛 of permutation
matrices inside the affine space F𝑛×𝑛 of 𝑛 × 𝑛 matrices over F. Orbit harmonics is a general method
of transforming finite point loci 𝑍 ⊆ F𝑁 into graded quotients F[x𝑁 ]/gr I(𝑍) of the polynomial ring
F[x𝑁 ]. This method dates back to at least the work of Kostant [11] and has been used to study modules
arising in Macdonald theory [7, 8, 9], understand cyclic sieving results [15], and interpret Donaldson–
Thomas invariants of symmetric quivers as orbit enumerations in the lattice points of break divisor
polytopes [16].

https://doi.org/10.1017/fms.2024.75 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.75


4 B. Rhoades

The rest of the paper is organized as follows. In Section 2, we give background material on Gröbner
bases, orbit harmonics and the Schensted correspondence. In Section 3, we use Viennot’s shadow line
interpretation of the Schensted correspondence to find a monomial basis of F[x𝑛×𝑛]/𝐼𝑛 indexed by
permutations in𝔖𝑛. We also give a basis for the space of k-local permutation statistics. In Section 4, we
describe the structure of F[x𝑛×𝑛]/𝐼𝑛 as a module over the product group𝔖𝑛×𝔖𝑛. We close in Section 5
with directions for future research.

2. Background

2.1. Gröbner theory

Let x = (𝑥1, . . . , 𝑥𝑁 ) be a finite list of variables, and let F[x𝑁 ] be the polynomial ring in these variables
over a field F. A total order < on the monomials in F[x𝑁 ] is a term order if

◦ we have 1 ≤ 𝑚 for all monomials m, and
◦ if 𝑚1, 𝑚2, 𝑚3 are monomials with 𝑚1 ≤ 𝑚2, then 𝑚1𝑚3 ≤ 𝑚2𝑚3.

If 𝑓 ∈ F[x𝑁 ] is a nonzero polynomial and < is a term order, write in< ( 𝑓 ) for the largest monomial with
respect to < which appears with nonzero coefficient in f.

Let 𝐼 ⊆ F[x𝑁 ] be an ideal, and let < be a term order. The initial ideal in< (𝐼) ⊆ F[x𝑁 ] associated to
I is given by

in< (𝐼) := 〈in< ( 𝑓 ) : 𝑓 ∈ 𝐼, 𝑓 ≠ 0〉 ⊆ F[x𝑁 ] . (2.1)

In other words, the ideal in< (𝐼) is generated by the <-leading monomials of all nonzero polynomials in
I. A subset 𝐺 = {𝑔1, . . . , 𝑔𝑟 } ⊆ 𝐼 is a Gröbner basis of I if

in< (𝐼) = 〈in< (𝑔1), . . . , in< (𝑔𝑟 )〉. (2.2)

If 𝐺 = {𝑔1, . . . , 𝑔𝑟 } is a Gröbner basis of I, it follows that 𝐼 = 〈𝑔1, . . . , 𝑔𝑟 〉.
Given an ideal 𝐼 ⊆ F[x𝑁 ] and a term order <, a monomial m in the variables x𝑁 is a standard

monomial if 𝑚 ≠ in< ( 𝑓 ) for any nonzero 𝑓 ∈ 𝐼. It is known that the family of cosets

{𝑚 + 𝐼 : 𝑚 a standard monomial} (2.3)

descends to a vector space basis of F[x𝑁 ]/𝐼. This is referred to as the standard monomial basis.

2.2. Orbit harmonics

Let 𝑍 ⊆ F𝑁 be a finite locus of points, and consider the ideal

I(𝑍) := { 𝑓 ∈ F[x𝑁 ] : 𝑓 (z) = 0 for all z ∈ 𝑍} (2.4)

of polynomials in F[x𝑁 ] which vanish on Z. The ideal I(𝑍) is usually not homogeneous. Since Z is
finite, we have an identification

F[𝑍] � F[x𝑁 ]/I(𝑍) (2.5)

of the vector space F[𝑍] of functions 𝑍 → F and the typically ungraded quotient space F[x𝑁 ]/I(𝑍).
Given a nonzero polynomial 𝑓 ∈ F[x𝑁 ], let 𝜏( 𝑓 ) be the highest degree homogeneous component of

f. That is, if 𝑓 = 𝑓𝑑 + · · · + 𝑓1 + 𝑓0 where 𝑓𝑖 is homogeneous of degree i and 𝑓𝑑 ≠ 0, we have 𝜏( 𝑓 ) = 𝑓𝑑 .
If 𝐼 ⊆ F[x𝑁 ] is an ideal, the associated graded ideal is

gr 𝐼 := 〈𝜏( 𝑓 ) : 𝑓 ∈ 𝐼, 𝑓 ≠ 0〉. (2.6)
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In other words, the ideal gr 𝐼 is generated by the top homogeneous components of all nonzero polynomials
in I. The associated graded ideal gr 𝐼 ⊆ F[x𝑁 ] is homogeneous by construction.

Returning to the setting of our finite locus 𝑍 ⊆ F𝑁 , we may extend the chain (2.5) of ungraded
F-vector space isomorphisms

F[𝑍] � F[x𝑁 ]/I(𝑍) � F[x𝑁 ]/gr I(𝑍), (2.7)

where the last quotient F[x𝑁 ]/gr I(𝑍) has the additional structure of a graded F-vector space.
When the locus Z possesses symmetry, more can be said. Let 𝐺 ⊆ 𝐺𝐿𝑁 (F) be a finite matrix group,

and assume that the group algebra F[𝐺] is semisimple. Equivalently, this means that |𝐺 | ≠ 0 in F.
The natural action of G on F𝑁 induces an action on F[x𝑁 ] by linear substitutions. If Z is stable under
the action of G, the isomorphisms (2.7) hold in the category of F[𝐺]-modules, and the last quotient
F[x𝑁 ]/gr I(𝑍) has the additional structure of a graded F[𝐺]-module.

2.3. The Schensted correspondence

Given 𝑛 ≥ 0, a partition of n is a weakly decreasing sequence 𝜆 = (𝜆1 ≥ · · · ≥ 𝜆𝑘 ) of positive integers
which satisfy 𝜆1 + · · · + 𝜆𝑘 = 𝑛. We write 𝜆 
 𝑛 to indicate that 𝜆 is a partition of n. We identify a
partition 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) with its (English) Young diagram consisting of 𝜆𝑖 left-justified boxes in row i.

Let 𝜆 
 𝑛 be a partition. A tableau of shape 𝜆 is an assignment 𝑇 : 𝜆 → {1, 2, . . . } of positive
integers to the boxes of 𝜆. A standard tableau of shape 𝜆 is a bijective filling 𝑇 : 𝜆 → [𝑛] of the boxes
of 𝜆 with 1, 2, . . . , 𝑛 which is increasing across rows and down columns. We display, from left to right,
the Young diagram of 𝜆 = (4, 2, 2) 
 8, a standard tableau of shape 𝜆 and two tableaux of shape 𝜆 which
are not standard.

1 2 5 8
3 4
6 7

1 4 3 7
5 6
2 8

1 3 7 12
4 5
9 10

Although the above tableau 𝑇 : 𝜆 → {1, 2, . . . } on the far right is not standard, it is an injective
filling which is (strictly) increasing across rows and down columns. We call a tableau satisfying these
conditions a partial standard tableau.

The famous Schensted correspondence [18] is a bijection

𝔖𝑛
∼

−−−−−−→
⊔
𝜆
𝑛

{(𝑃,𝑄) : 𝑃,𝑄 ∈ SYT(𝜆)} (2.8)

which sends a permutation 𝑤 ∈ 𝔖𝑛 to a pair (𝑃(𝑤), 𝑄(𝑤)) of standard tableaux with the same n-box
shape. The Schensted correspondence is most commonly defined using an insertion algorithm (see, e.g.,
[17] for details). We will not need the insertion formulation of the Schensted bijection, but an equivalent
‘geometric’ formulation due to Viennot [20] recalled in the next section will be crucial in our work.
Schensted proved that his bijection relates to increasing subsequences as follows.
Theorem 2.1. (Schensted [18, Thm. 1]). Let 𝑤 ∈ 𝔖𝑛, and suppose that 𝑤 ↦→ (𝑃(𝑤), 𝑄(𝑤)) under the
Schensted bijection where 𝑃(𝑤) and 𝑄(𝑤) have shape 𝜆 
 𝑛. The first part 𝜆1 of the partition 𝜆 is the
length of the longest increasing subsequence of w.

2.4. 𝔖𝑛-representation theory

Let F be a field in which 𝑛 ≠ 0 so that the group algebra F[𝔖𝑛] is semisimple. There is a one-to-one
correspondence between partitions of n and irreducible representations of 𝔖𝑛 over F. If 𝜆 
 𝑛 is a
partition, we write 𝑉𝜆 for the corresponding irreducible module, 𝜒𝜆 : 𝔖𝑛 → F for its character, and
𝑓 𝜆 := dim𝑉𝜆 for its dimension. The number 𝑓 𝜆 counts standard tableaux of shape 𝜆.
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6 B. Rhoades

The vector space Class(𝔖𝑛, F) of F-valued class functions on 𝔖𝑛 has basis {𝜒𝜆 : 𝜆 
 𝑛} given by
irreducible characters. The Kronecker product ∗ on Class(𝔖𝑛, F) is defined by

(𝜑 ∗ 𝜓) (𝑤) := 𝜑(𝑤) · 𝜓(𝑤) (2.9)

for any 𝜑, 𝜓 ∈ Class(𝔖𝑛, F) and 𝑤 ∈ 𝔖𝑛. If𝑉1 and𝑉2 are𝔖𝑛-modules, their vector space tensor product
𝑉1 ⊗ 𝑉2 carries a diagonal action of 𝔖𝑛 by the rule 𝑤 · (𝑣1 ⊗ 𝑣2) := (𝑤 · 𝑣1) ⊗ (𝑤 · 𝑣2). The characters
𝜒𝑉1 , 𝜒𝑉2 , 𝜒𝑉1⊗𝑉2 : 𝔖𝑛 → F of these modules are related by 𝜒𝑉1⊗𝑉2 = 𝜒𝑉1 ∗ 𝜒𝑉2 .

3. Hilbert series and standard monomial basis

3.1. The injection relations

In order to analyze the quotients F[x𝑛×𝑛]/𝐼𝑛, we start by exhibiting strategic elements of the ideal 𝐼𝑛.
Given two subsets 𝑆, 𝑇 ⊆ [𝑛], define elements 𝑎𝑆,𝑇 , 𝑏𝑆,𝑇 ∈ F[x𝑛×𝑛] by

𝑎𝑆,𝑇 :=
∑

𝑓 :𝑆↩→𝑇

(∏
𝑖∈𝑆

𝑥𝑖, 𝑓 (𝑖)

)
and 𝑏𝑆,𝑇 :=

∑
𝑓 :𝑆↩→𝑇

(∏
𝑖∈𝑆

𝑥 𝑓 (𝑖) ,𝑖

)
, (3.1)

where both sums are over injective functions 𝑓 : 𝑆 ↩→ 𝑇 . For example, if 𝑆 = {2, 4} and 𝑇 = {1, 3, 4},
we have

𝑎𝑆,𝑇 = 𝑥2,1𝑥4,3 + 𝑥2,1𝑥4,4 + 𝑥2,3𝑥4,1 + 𝑥2,3𝑥4,4 + 𝑥2,4𝑥4,1 + 𝑥2,4𝑥4,3,

𝑏𝑆,𝑇 = 𝑥1,2𝑥3,4 + 𝑥1,2𝑥4,4 + 𝑥3,2𝑥1,4 + 𝑥3,2𝑥4,4 + 𝑥4,2𝑥1,4 + 𝑥4,2𝑥3,4.

In general, the polynomials 𝑎𝑆,𝑇 and 𝑏𝑆,𝑇 are obtained from one another by transposing the matrix x𝑛×𝑛
of variables. We have 𝑎𝑆,𝑇 = 𝑏𝑆,𝑇 = 0 whenever |𝑆 | > |𝑇 |.

Since the product of any two variables in the same row or column of x𝑛×𝑛 is a generator of 𝐼𝑛, we
have the congruences

𝑎𝑆,𝑇 ≡
∏
𝑖∈𝑆

(∑
𝑗∈𝑇

𝑥𝑖, 𝑗

)
mod 𝐼𝑛 and 𝑏𝑆,𝑇 ≡

∏
𝑖∈𝑆

(∑
𝑗∈𝑇

𝑥 𝑗 ,𝑖

)
mod 𝐼𝑛 (3.2)

modulo 𝐼𝑛. In other words, as far as the quotient F[x𝑛×𝑛]/𝐼𝑛 is concerned, we could have defined 𝑎𝑆,𝑇
and 𝑏𝑆,𝑇 using all functions 𝑆 → 𝑇 , not just injections. Our first lemma states that 𝑎𝑆,𝑇 and 𝑏𝑆,𝑇 are
members of 𝐼𝑛 provided that |𝑆 | + |𝑇 | > 𝑛.

Lemma 3.1. Let 𝑆, 𝑇 ⊆ [𝑛] be subsets. If |𝑆 | + |𝑇 | > 𝑛, we have 𝑎𝑆,𝑇 , 𝑏𝑆,𝑇 ∈ 𝐼𝑛.

Proof. The polynomial 𝑏𝑆,𝑇 is obtained from 𝑎𝑆,𝑇 by transposing the matrix x𝑛×𝑛 of variables, an
operation under which 𝐼𝑛 is stable. As such, it suffices to prove the lemma for 𝑎𝑆,𝑇 . Furthermore, by the
congruences (3.2) it suffices to prove the lemma when |𝑆 | + |𝑇 | = 𝑛 + 1. Finally, since 𝐼𝑛 is stable under
the action of the product group 𝔖𝑛 ×𝔖𝑛 on the rows and columns of x𝑛×𝑛, it is enough to consider the
case where 𝑆 = [𝑠] and 𝑇 = [𝑡] for 𝑠 + 𝑡 = 𝑛 + 1.

We argue by increasing induction on s (and decreasing induction on t). If 𝑠 = 1, then 𝑡 = 𝑛 and
𝑎𝑆,𝑇 = 𝑥1,1 + 𝑥1,2 + · · · + 𝑥1,𝑛 is a generator of the ideal 𝐼𝑛. If 𝑠 > 1, we have

𝑎𝑆,𝑇 ≡

𝑠∏
𝑖=1

	
�
𝑡∑
𝑗=1

𝑥𝑖, 𝑗
�� = (𝑥1,1 + 𝑥1,2 + · · · + 𝑥1,𝑡 ) ×

⎡⎢⎢⎢⎢⎣
𝑠∏
𝑖=2

	
�
𝑡+1∑
𝑗=1

𝑥𝑖, 𝑗
��
⎤⎥⎥⎥⎥⎦ − E, (3.3)
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where the congruence modulo 𝐼𝑛 follows from Equation (3.2), the expression [ · · · ] in square brackets
lies in 𝐼𝑛 by induction and the ‘error term’ E is given by

E = (𝑥1,1 + 𝑥1,2 + · · · + 𝑥1,𝑡 ) ×
∑

∅≠𝑆′ ⊆{2,...,𝑠}

	
�
∏
𝑖′ ∈𝑆′

𝑥𝑖′,𝑡+1 ×
∏

𝑖∈{2,...,𝑠}−𝑆′

(𝑥𝑖,1 + · · · + 𝑥𝑖,𝑡 )
��. (3.4)

It suffices to show that E ∈ 𝐼𝑛. When the |𝑆′ | > 1 and 𝑖′1, 𝑖
′
2 ∈ 𝑆′ are distinct, the corresponding summand

in E contains the product 𝑥𝑖′1 ,𝑡+1 · 𝑥𝑖′2 ,𝑡+1 and so lies in 𝐼𝑛. We conclude that

E ≡ (𝑥1,1 + 𝑥1,2 + · · · + 𝑥1,𝑡 ) ×

𝑠∑
𝑖0=2

(
𝑥𝑖0 ,𝑡+1 ×

𝑖≠𝑖0∏
2≤𝑖≤𝑠

(𝑥𝑖,1 + · · · + 𝑥𝑖,𝑡 )

)
(3.5)

modulo 𝐼𝑛. Applying the congruences (3.2) and the defining relations of 𝐼𝑛, we arrive at

E ≡ ±(𝑥1,𝑡+1 + 𝑥1,𝑡+2 + · · · + 𝑥1,𝑛) ×

𝑠∑
𝑖0=2

(
𝑥𝑖0 ,𝑡+1 ×

𝑖≠𝑖0∏
2≤𝑖≤𝑠

(𝑥𝑖,𝑡+2 + 𝑥𝑖,𝑡+3 · · · + 𝑥𝑖,𝑛)

)
. (3.6)

The sum (𝑥𝑖,𝑡+2 + 𝑥𝑖,𝑡+3 · · · + 𝑥𝑖,𝑛) contains 𝑛− 𝑡 − 1 = 𝑛− (𝑛 + 1− 𝑠) − 1 = 𝑠 − 2 terms. The pigeonhole
principle implies that every term in the expansion of the right-hand side of the congruence (3.6) will
contain a product of variables 𝑥𝑖, 𝑗 · 𝑥𝑖′, 𝑗 for some 𝑖 ≠ 𝑖′ so that E ∈ 𝐼𝑛. We conclude that 𝑎𝑆,𝑇 ∈ 𝐼𝑛, and
the lemma is proven. �

3.2. Shadow sets

We represent a permutation 𝑤 = [𝑤(1), . . . , 𝑤(𝑛)] ∈ 𝔖𝑛 with its graph, that is, the collection of points
{(𝑖, 𝑤(𝑖)) : 1 ≤ 𝑖 ≤ 𝑛} on the grid [𝑛] × [𝑛]. For example, the permutation 𝑤 = [4, 1, 8, 5, 3, 6, 2, 7] ∈
𝔖8 is given below in bullets.

Viennot used [20] the graph of a permutation w to obtain its image (𝑃(𝑤), 𝑄(𝑤)) under the Schen-
sted correspondence as follows. Shine a flashlight northeast from the origin (0,0). Each bullet in the
permutation casts a shadow to its northeast. The boundary of the shaded region is the first shadow line;
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8 B. Rhoades

in our example, it is as follows.

•

•

•

•

•

•

•

•

Removing the points on the first shadow line and repeating this procedure, we obtain the second shadow
line. Iterating, we obtain the third shadow line, the fourth shadow line and so on. In our example, the
shadow lines are shown below.

Let 𝑤 ∈ 𝔖𝑛 and suppose that the shadow lines of w are given by 𝐿1, . . . , 𝐿𝑟 from southwest to
northeast. Viennot proved [20] that if 𝑤 ↦→ (𝑃(𝑤), 𝑄(𝑤)) under the Schensted correspondence, then
the y-coordinates of the infinite horizontal rays in 𝐿1, . . . , 𝐿𝑟 form the first row of 𝑃(𝑤) and the x-
coordinates of the infinite vertical rays of 𝐿1, . . . , 𝐿𝑟 form the first row of 𝑄(𝑤). In our example, the
first row of 𝑃(𝑤) is 1 2 6 7 while the first row of𝑄(𝑤) is 1 3 6 8 . In particular, the common
length of the first row of 𝑃(𝑤) and 𝑄(𝑤) is the number of shadow lines. The northeast corners of the
shadow lines played an important role in Viennot’s work and will for us as well.

Definition 3.2. The shadow set S (𝑤) of a permutation 𝑤 ∈ 𝔖𝑛 is the collection of points (𝑖, 𝑗) in the
grid [𝑛] × [𝑛] which lie at the northeast corner of a shadow line of w.

In our example, the points in the shadow set S (𝑤) = {(2, 4), (4, 8), (5, 5), (7, 3)} are drawn in red.
For any permutation 𝑤 ∈ 𝔖𝑛, the shadow set S (𝑤) contains at most one point in any row or column.
Such subsets of the square grid have a name.

Definition 3.3. A subset R ⊆ [𝑛] × [𝑛] is a (nonattacking) rook placement if R contains at most one
point in any row or column.

Rook placements are also known as ‘partial permutations’. Importantly, the Viennot shadow line
construction may be performed on an arbitrary rook placement, not just on the graph of a permutation.

Although every permutation shadow set is a rook placement, not every rook placement is the shadow
set of a permutation. For example, shadow sets contain no points in row 1 or column 1. In Lemma 3.6
below, we give a combinatorial criterion for deciding whether a rook placement is a shadow set.
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Returning to our permutation 𝑤 ∈ 𝔖𝑛, we may iterate the shadow line construction on the shadow
set S (𝑤). In our 𝑛 = 8 example, this yields the shadow lines.

Viennot proved that the horizontal and vertical rays of these ‘iterated’ shadow lines give the second rows
of 𝑃(𝑤) and𝑄(𝑤), respectively. In our example, the second row of 𝑃(𝑤) is 3 5 and the second row of
𝑄(𝑤) is 2 4 . These iterated shadow lines produce an iterated shadow set S (S (𝑤)) whose points are
drawn in blue. Repeating this procedure in our example yields the iterated shadow sets and shadow lines

and we conclude that the tableaux 𝑃(𝑤) and 𝑄(𝑤) are given by

1 2 6 7
3 5
4
8 and

1 3 6 8
2 4
5
7 ,

respectively.
Theorem 3.4. (Viennot [20]). The shadow line procedure described above computes the image
(𝑃(𝑤), 𝑄(𝑤)) of a permutation 𝑤 ∈ 𝔖𝑛 under the Schensted correspondence.

For our purposes, we may take Theorem 3.4 as the definition of the Schensted correspondence.
Combining Theorem 3.4 with Schensted’s Theorem 2.1 yields the following result immediately.
Lemma 3.5. Let 𝑤 ∈ 𝔖𝑛. The size |S (𝑤) | of the shadow set of w is given by

|S (𝑤) | = 𝑛 − lis(𝑤). (3.7)

We close this subsection with a combinatorial criterion for deciding when a rook placement R is
the shadow set of some permutation 𝑤 ∈ 𝔖𝑛. We use the fact that the shadow line construction may be
applied to R. This will yield a pair (𝑃,𝑄) of partial standard tableaux with the same shape such that
the y-coordinates of R are the entries in P and the x-coordinates in R are the entries in Q.
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Lemma 3.6. Let R ⊆ [𝑛] × [𝑛] be a rook placement, and apply the shadow line construction to R. Let
𝐿1, . . . , 𝐿𝑟 be the shadow lines so obtained. Define two length n sequences 𝑥1𝑥2 . . . 𝑥𝑛 and 𝑦1𝑦2 . . . 𝑦𝑛
over the alphabet {1, 0,−1} by

𝑥𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if one of the lines 𝐿1, . . . , 𝐿𝑟 has a vertical ray at 𝑥 = 𝑖,

−1 if the vertical line 𝑥 = 𝑖 does not meet R,

0 otherwise.
(3.8)

and

𝑦𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if one of the lines 𝐿1, . . . , 𝐿𝑟 has a horizontal ray at 𝑦 = 𝑖,

−1 if the horizontal line 𝑦 = 𝑖 does not meet R,

0 otherwise.
(3.9)

Then R = S (𝑤) is the shadow set of some permutation 𝑤 ∈ 𝔖𝑛 if and only if for all 1 ≤ 𝑖 ≤ 𝑛 we have
𝑥1 + 𝑥2 + · · · + 𝑥𝑖 ≤ 0 and 𝑦1 + 𝑦2 + · · · + 𝑦𝑖 ≤ 0.

Proof. Suppose R = S (𝑤) is the shadow set of a permutation 𝑤 ∈ 𝔖𝑛. If 𝑤 ↦→ (𝑃(𝑤), 𝑄(𝑤)) under
the Schensted correspondence, the horizontal rays of 𝐿1, . . . , 𝐿𝑟 give the second row of 𝑃(𝑤) and the
vertical rays of 𝐿1, . . . , 𝐿𝑟 give the second row of 𝑄(𝑤). The y-coordinates which do not appear in R
give the first row of 𝑃(𝑤) and the x-coordinates which do not appear in R give the first row of 𝑄(𝑤).
Since 𝑃(𝑤) and 𝑄(𝑤) are standard, all prefix sums of the sequences 𝑥1𝑥2 . . . 𝑥𝑛 and 𝑦1𝑦2 . . . 𝑦𝑛 are
nonpositive.

Now, assume that all prefix sums of 𝑥1𝑥2 . . . 𝑥𝑛 and 𝑦1𝑦2 . . . 𝑦𝑛 are nonpositive. We may apply
Viennot’s construction to the set R to get a pair (𝑃′, 𝑄 ′) of partial standard tableaux where the entries
of 𝑃′ are the y-coordinates in R and the entries of 𝑄 ′ are the x-coordinates in R. By the assumption on
prefixes, the tableaux P and Q obtained by adding a first row to P and Q consisting of those y-coordinates
and x-coordinates which do not appear in R (respectively) are both standard. If we let 𝑤 ∈ 𝔖𝑛 be the
unique permutation such that 𝑤 ↦→ (𝑃,𝑄), Viennot’s Theorem 3.4 implies that S (𝑤) = R. �

An example may help in understanding Lemma 3.6 and its proof. Let 𝑛 = 8, and let R be the rook
placement

S = {(2, 8), (3, 7), (5, 3), (6, 5), (7, 6)}

of size 5. Applying the Viennot shadow line construction to R yields

where the sequences 𝑥1𝑥2 . . . 𝑥8 and 𝑦1𝑦2 · · · 𝑦8 in {1, 0,−1} are shown horizontally and vertically,
respectively. A +1 in a given row (or column) corresponds to an infinite ray of a shadow line, a 0
corresponds to a shadow line segment which is not an infinite ray, and a −1 corresponds to that row (or
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column) not containing an element of R. We have 𝑥1 + 𝑥2 + · · · + 𝑥7 = 1 > 0, so by Lemma 3.6 the
set R is not the shadow set of a permutation in 𝔖8. Indeed, applying Schensted insertion to the rook
placement R yields the pair of tableaux 𝑃′ and 𝑄 ′ given by

3 5 6
7
8 and

2 6 7
3
5

(respectively), and adding the row 1 4 8 corresponding to the positions of the −1’s in the sequence
𝑥1𝑥2 . . . 𝑥8 to the top row of 𝑄 ′ would not yield a standard tableau.

3.3. Shadow monomials and spanning

Our next task is to convert the combinatorics of the previous subsection into a spanning set for the
quotient ring F[x𝑛×𝑛]/𝐼𝑛. Given any set S ⊆ [𝑛] × [𝑛] of grid points, let 𝑚(S) = ∏

(𝑖, 𝑗) ∈S 𝑥𝑖, 𝑗 be the
corresponding squarefree monomial in F[x𝑛×𝑛].

Lemma 3.7. The family of monomials 𝑚(R) corresponding to rook placements R ⊆ [𝑛] × [𝑛] descends
to a spanning set of F[x𝑛×𝑛]/𝐼𝑛.

Proof. This is immediate from the fact that generating set of 𝐼𝑛 contains all squares 𝑥2
𝑖, 𝑗 of variables

and all products of two variables in a given row or column. �

The spanning set of Lemma 3.7 is far from a basis. In order to extract a basis from this spanning set,
we introduce a strategic term order. Recall that the lexicographical order on monomials in an ordered
set of variables 𝑦1 > 𝑦2 > · · · > 𝑦𝑁 is given by 𝑦𝑎1

1 · · · 𝑦𝑎𝑁

𝑁 < 𝑦𝑏1
1 · · · 𝑦𝑏𝑁

𝑁 if there exists 1 ≤ 𝑗 ≤ 𝑁
with 𝑎𝑖 = 𝑏𝑖 for 𝑖 < 𝑗 and 𝑎 𝑗 < 𝑏 𝑗 .

Definition 3.8. The Toeplitz term order <Top on monomials in F[x𝑛×𝑛] is the lexicographical term order
with respect to the order on variables given by

𝑥1,1 > 𝑥2,1 > 𝑥1,2 > 𝑥3,1 > 𝑥2,2 > 𝑥1,3 > · · · > 𝑥𝑛,𝑛−1 > 𝑥𝑛−1,𝑛 > 𝑥𝑛,𝑛 . (3.10)

Roughly speaking, the Toeplitz term order weights a variable 𝑥𝑎,𝑏 heavier than 𝑥𝑐,𝑑 whenever
𝑎 + 𝑏 < 𝑐 + 𝑑 and then breaks ties lexicographically. In fact, this tie breaking process among variables
𝑥𝑖, 𝑗 with 𝑖 + 𝑗 constant will be irrelevant for the arguments that follow; all that is important is the relative
weight of the variables 𝑥𝑖, 𝑗 for which 𝑖 + 𝑗 differs. The word ‘Toeplitz’ comes from Toeplitz matrices
(which are constant along diagonals). Since all of the relations we apply will be homogeneous, we could
have also defined <Top by ordering by total degree first and then using the lexicographical order with
respect to the indicated variable order to break ties.

Definition 3.9. Let 𝑤 ∈ 𝔖𝑛. The shadow monomial 𝔰(𝑤) ∈ F[x𝑛×𝑛]/𝐼𝑛 is the squarefree monomial
corresponding to the shadow set of w. In symbols, we have 𝔰(𝑤) = 𝑚(S (𝑤)).

For example, if 𝑤 = [4, 1, 8, 5, 3, 6, 2, 7] ∈ 𝔖8 we have S (𝑤) = {(2, 4), (4, 8), (5, 5), (7, 3)} so that
𝔰(𝑤) = 𝑥2,4 · 𝑥4,8 · 𝑥5,5 · 𝑥7,3. Our next lemma shows that the shadow monomials of permutations span
the quotient ring F[x𝑛×𝑛]/𝐼𝑛. The key tools in its proof are the relations in F[x𝑛×𝑛]/𝐼𝑛 coming from
Lemma 3.1 and the characterization (Lemma 3.6) of when a rook placement monomial 𝑚(R) is the
shadow monomial 𝔰(𝑤) of a permutation 𝑤 ∈ 𝔖𝑛. To begin, we record the <Top-leading terms of the
elements of 𝐼𝑛 appearing in Lemma 3.1.

Observation 3.10. Let 𝑆 = {𝑠1 < · · · < 𝑠𝑝} and𝑇 = {𝑡1 < · · · < 𝑡𝑞} be subsets of [𝑛] with 𝑝 ≤ 𝑞. Then

in<Top (𝑎𝑆,𝑇 ) = 𝑥𝑠1 ,𝑡1𝑥𝑠2 ,𝑡2 · · · 𝑥𝑠𝑝 ,𝑡𝑝 and in<Top (𝑏𝑆,𝑇 ) = 𝑥𝑡1 ,𝑠1𝑥𝑡2 ,𝑠2 · · · 𝑥𝑡𝑝 ,𝑠𝑝 . (3.11)
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12 B. Rhoades

In other words, the leading monomials of 𝑎𝑆,𝑇 and 𝑏𝑆,𝑇 correspond to the injection 𝑆 ↩→ 𝑇 which
assigns the elements of S to the smallest |𝑆 | elements of T in an order-preserving fashion. If 𝑆 = {2, 4}
and 𝑇 = {1, 4, 5}, then 𝑎𝑆,𝑇 given by

𝑎𝑆,𝑇 = 𝑥2,1𝑥4,4 + 𝑥2,4𝑥4,1 + 𝑥2,1𝑥4,5 + 𝑥2,5𝑥4,1 + 𝑥2,4𝑥4,5 + 𝑥2,5𝑥4,4

with its <Top-leading term underlined. We have all the pieces we need to prove our spanning result.

Lemma 3.11. The shadow monomials {𝔰(𝑤) : 𝑤 ∈ 𝔖𝑛} descend to a spanning set of the quotient ring
F[x𝑛×𝑛]/𝐼𝑛.

Proof. Let R ⊆ [𝑛] × [𝑛] be a rook placement. By Lemma 3.7, it suffices to show that 𝑚(R) lies in the
span of {𝔰(𝑤) : 𝑤 ∈ 𝔖𝑛} modulo 𝐼𝑛. If R = S (𝑤) for some permutation 𝑤 ∈ 𝔖𝑛, then 𝑚(R) = 𝔰(𝑤)
and this is clear, so assume that R ≠ S (𝑤) for all 𝑤 ∈ 𝔖𝑛.

Apply Viennot’s shadow line construction to the rook placement R. Let 𝐿1, . . . , 𝐿𝑟 be the shadow
lines so obtained, ordered from southwest to northeast, and let 𝑥1𝑥2 . . . 𝑥𝑛 and 𝑦1𝑦2 . . . 𝑦𝑛 be the
sequences appearing in the statement of Lemma 3.6. Since R is not the shadow set of a permutation,
Lemma 3.6 implies that at least one of the sequences 𝑥1𝑥2 . . . 𝑥𝑛 and 𝑦1𝑦2 . . . 𝑦𝑛 has a prefix with a
strictly positive sum. We assume that 𝑥1𝑥2 . . . 𝑥𝑛 has a prefix with strictly positive sum; the case of
𝑦1𝑦2 . . . 𝑦𝑛 is similar.

Choose 1 ≤ 𝑎 ≤ 𝑛 minimal such that 𝑥1 + 𝑥2 + · · · + 𝑥𝑎 > 0. By the minimality of a, we have 𝑥𝑎 = 1
so that 𝑥 = 𝑎 is the vertical ray of one of the shadow lines 𝐿𝑝 for some 1 ≤ 𝑝 ≤ 𝑟 . We define a size p
subset {(𝑖1, 𝑗1), . . . , (𝑖𝑝 , 𝑗𝑝)} ⊆ R as follows. Starting at the vertical ray of 𝐿𝑝 , let (𝑖𝑝 , 𝑗𝑝) be the first
element of R encountered by marching south (in particular, we have 𝑖𝑝 = 𝑎). Now, march west from
(𝑖𝑝 , 𝑗𝑝) until one encounters a vertical segment of the shadow line 𝐿𝑝−1. March south along this segment
until one reaches a point (𝑖𝑝−1, 𝑗𝑝−1) ∈ R. Now, march west from (𝑖𝑝−1, 𝑗𝑝−1) until one encounters a
vertical segment of the shadow line 𝐿𝑝−2. March south along this segment until one reaches a point
(𝑖𝑝−2, 𝑗𝑝−2) ∈ R. Continuing this process, we arrive at a subset {(𝑖1, 𝑗1), . . . , (𝑖𝑝 , 𝑗𝑝)} ⊆ R such that

◦ the point (𝑖𝑞 , 𝑗𝑞) lies on the shadow line 𝐿𝑞 for each 1 ≤ 𝑞 ≤ 𝑝,
◦ we have 𝑖1 < · · · < 𝑖𝑝 , and
◦ we have 𝑗1 < · · · < 𝑗𝑝 .

Let R′ := R − {(𝑖1, 𝑗1), . . . , (𝑖𝑝 , 𝑗𝑝)} be the complement of {(𝑖1, 𝑗1), . . . , (𝑖𝑝 , 𝑗𝑝)} in R.
An example may help in understanding these constructions. Let 𝑛 = 11 and consider the rook

placement R ⊆ [11] × [11] given by

R = {(2, 9), (3, 8), (4, 3), (6, 2), (7, 6), (8, 7), (9, 5), (11, 11)}.

The sequence (𝑥1, 𝑥2, . . . , 𝑥11) is given by

(𝑥1, 𝑥2, . . . , 𝑥11) = (−1, 1, 0, 0,−1, 0, 1, 1, 0,−1, 1);

the figure below shows the shadow lines of R. By Lemma 3.6, the rook placement R is not the shadow
set of a permutation in 𝔖8 because

𝑥1 + 𝑥2 + · · · + 𝑥8 = 1 > 0.

Furthermore, the prefix 𝑥1𝑥2 . . . 𝑥8 is the shortest positive sum prefix of the word 𝑥1𝑥2 . . . 𝑥11. We
conclude that 𝑎 = 8. Our marching procedure on the shadow line diagram of R is shown in dashed and

https://doi.org/10.1017/fms.2024.75 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.75


Forum of Mathematics, Sigma 13

blue as follows.

We conclude that (𝑖1, 𝑗1) = (4, 3), (𝑖2, 𝑗2) = (7, 6) and (𝑖3, 𝑗3) = (8, 7). Furthermore, we have the set

R′ = R − {(𝑖1, 𝑗1), (𝑖2, 𝑗2), (𝑖3, 𝑗3)} = {(2, 9), (3, 8), (6, 2), (9, 5), (11, 11)}

of rooks in R which are not visited by the dashed blue line.
Consider the squarefree monomial 𝑚(R′) corresponding to the rooks in R′ ⊆ R which are not

reached by our marching procedure. The ideal 𝑚(R′) · F[x𝑛×𝑛]/𝐼𝑛 generated by 𝑚(R′) in the ring
F[x𝑛×𝑛]/𝐼𝑛 admits a morphism from a smaller quotient of the same form. More precisely, let �̄� := 𝑛−|R′ |,
and let x̄ be the �̄� × �̄� matrix of variables

x̄ = {𝑥𝑖, 𝑗 : neither the vertical line 𝑥 = 𝑖 nor the horizontal line 𝑦 = 𝑗 meet the set R′}. (3.12)

In our example above, the matrix x̄ consists of the variables 𝑥𝑖, 𝑗 indexed by 𝑖 ∈ {1, 4, 5, 7, 8, 10} and
𝑗 ∈ {1, 3, 4, 6, 7, 10}. Let F[x̄] be the polynomial ring over the variables in x̄, and let 𝐼 ⊆ F[x̄] be the
natural copy of the ideal 𝐼�̄� in the square variable matrix x̄. The map

𝜑 : F[x̄]/𝐼 −→ 𝑚(R′) · F[x𝑛×𝑛]/𝐼𝑛 (3.13)

induced by 𝑓 ↦→ 𝑚(R′) · 𝑓 is easily seen to be a (well-defined) homomorphism of F[x̄]-modules; one
simply checks that for any generator 𝑔 ∈ F[x̄] of 𝐼, we have 𝑚(R′) · 𝑔 ∈ 𝐼𝑛. We consider the sets

𝑇 := {𝑖1 < 𝑖2 < · · · < 𝑖𝑝 < 𝑖𝑝 + 1 < 𝑖𝑝 + 2 < · · · < 𝑛} − {𝑖 : (𝑖, 𝑗) ∈ R′ for some 𝑗} (3.14)

and

𝑆 := { 𝑗1 < 𝑗2 < · · · < 𝑗𝑝}. (3.15)

In our example, we have 𝑇 = {4, 7, 8, 10} and 𝑆 = {3, 6, 7}.
By the definitions of S and T, the polynomial 𝑏𝑆,𝑇 ∈ F[x̄] does not involve any of the variables

which share a row or column with a rook (𝑖, 𝑗) ∈ R′ which is not visited by our marching procedure.
Since 𝑖𝑝 = 𝑎 and we have the prefix inequality 𝑥1 + 𝑥2 + · · · + 𝑥𝑎 > 0, we have |𝑆 | + |𝑇 | > �̄�. Lemma 3.1
applies to give

𝑏𝑆,𝑇 ∈ 𝐼 . (3.16)
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Since the map 𝜑 of Equation (3.13) is a homomorphism of F[x̄]-modules we obtain

𝜑(𝑏𝑆,𝑇 ) = 𝑚(R′) · 𝑏𝑆,𝑇 ∈ 𝐼𝑛. (3.17)

Observation 3.10 implies that the Toeplitz-leading term of 𝑚(R′) · 𝑏𝑆,𝑇 is 𝑚(R), so the membership
(3.17) yields

𝑚(R) ≡ Σ mod 𝐼𝑛, (3.18)

where Σ is a F-linear combination of monomials which are <Top 𝑚(R). By induction on the Toeplitz
order, the lemma is proven. �

Lemma 3.11 (and its proof) give a Gröbner basis for the ideal 𝐼𝑛 ⊆ F[x𝑛×𝑛] with respect to the
Toeplitz order which consists of

◦ any product of two variables in x𝑛×𝑛 which lie in the same row or column, and
◦ in the notation of the proof of Lemma 3.11 and polynomial of the form 𝑚(R′) · 𝑏𝑆,𝑇 for a rook

placement R ⊆ [𝑛] × [𝑛] which is not the shadow set of a permutation 𝑤 ∈ 𝔖𝑛 for which some prefix
of the word 𝑥1𝑥2 . . . 𝑥𝑛 is positive, and the image of 𝑚(R′) · 𝑏𝑆,𝑇 under the involution F[x𝑛×𝑛] which
interchanges 𝑥𝑖, 𝑗 and 𝑥 𝑗 ,𝑖 .

This Gröbner basis is far from minimal. We leave the computation of a minimal (or reduced) Gröbner
basis of 𝐼𝑛 as an open problem.

3.4. Standard monomial basis and Hilbert series

Lemma 3.11 bounds the quotient ring F[x𝑛×𝑛]/𝐼𝑛 from above by giving an F-linear spanning set. In this
subsection, we use orbit harmonics to bound this quotient from below.

Let F𝑛×𝑛 be the affine space of 𝑛× 𝑛 matrices over F with coordinate ring F[x𝑛×𝑛]. Write 𝑃𝑛 ⊆ F𝑛×𝑛

for the locus of permutation matrices. That is, the set 𝑃𝑛 consists of 0,1-matrices with a unique 1 in each
row and column. The vanishing ideal I(𝑃𝑛) ⊆ F[x𝑛×𝑛] of the permutation matrix locus is generated by

◦ 𝑥2
𝑖, 𝑗 − 𝑥𝑖, 𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

◦ 𝑥𝑖, 𝑗 · 𝑥𝑖′, 𝑗 for all 1 ≤ 𝑖 < 𝑖′ ≤ 𝑛 and 𝑖 ≤ 𝑗 ≤ 𝑛,
◦ 𝑥𝑖, 𝑗 · 𝑥𝑖, 𝑗′ for all 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 < 𝑗 ′ ≤ 𝑛,
◦ 𝑥𝑖,1 + · · · + 𝑥𝑖,𝑛 − 1 for all 1 ≤ 𝑖 ≤ 𝑛, and
◦ 𝑥1, 𝑗 + · · · + 𝑥𝑛, 𝑗 − 1 for all 1 ≤ 𝑗 ≤ 𝑛.

Indeed, the generators in the first bullet point come from the (𝑖, 𝑗)-entry of a permutation matrix being
0 or 1, the generators in the second and third bullet points come from products of distinct entries in a
row or column of a permutation matrix vanishing, and the generators in the fourth and fifth bullet points
come from the row and columns summing to 1. Comparing these generators with Definition 1.1, we get
the containment

𝐼𝑛 ⊆ gr I(𝑃𝑛). (3.19)

Although the highest degree components 𝜏(𝑔1), . . . , 𝜏(𝑔𝑟 ) of a generating set {𝑔1, . . . , 𝑔𝑟 } of an ideal
I are in general insufficient to generate gr 𝐼, in our case the containment (3.19) is an equality.

Theorem 3.12. We have the equality of ideals 𝐼𝑛 = gr I(𝑃𝑛) of F[x𝑛×𝑛]. Furthermore, the set {𝔰(𝑤) :
𝑤 ∈ 𝔖𝑛} of shadow monomials of permutations in 𝔖𝑛 descends to a basis of F[x𝑛×𝑛]/𝐼𝑛. This is the
standard monomial basis of F[x𝑛×𝑛]/𝐼𝑛 with respect to the Toeplitz term order <Top.

Standard monomial bases of quotient rings F[x]/𝐼 can be unpredictable, even for nicely presented
ideals I. However, Theorem 3.12 informally suggests that the Toeplitz term order <Top and the ho-
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mogeneous ideal 𝐼𝑛 ‘know’ the Viennot shadow line incarnation of the Schensted correspondence
𝑤 ↦→ (𝑃(𝑤), 𝑄(𝑤)).

Proof. The chain (2.7) of F-vector space isomorphisms coming from orbit harmonics reads

F[𝑃𝑛] � F[x𝑛×𝑛]/I(𝑃𝑛) � F[x𝑛×𝑛]/gr I(𝑃𝑛). (3.20)

Lemma 3.11 and the containment (3.19) of ideals yield the chain of (in)equalities

𝑛! = |𝑃𝑛 | = dim F[x𝑛×𝑛]/gr I(𝑃𝑛) ≤ dim F[x𝑛×𝑛]/𝐼𝑛 ≤ 𝑛! (3.21)

which forces 𝐼𝑛 = gr I(𝑃𝑛) and dim F[x𝑛×𝑛]/𝐼𝑛 = 𝑛!. Another application of Lemma 3.11 shows that
the spanning set {𝔰(𝑤) : 𝑤 ∈ 𝔖𝑛} of F[x𝑛×𝑛]/𝐼𝑛 is in fact a basis. The proof of Lemma 3.11 shows
that {𝔰(𝑤) : 𝑤 ∈ 𝔖𝑛} is the standard monomial basis of F[x𝑛×𝑛]/𝐼𝑛 with respect to <Top. �

As a corollary, we get our promised relationship between the Hilbert series of F[x𝑛×𝑛]/𝐼𝑛 and longest
increasing subsequences in permutations.

Corollary 3.13. Let 𝑎𝑛,𝑘 be the number of permutations in 𝔖𝑛 whose longest increasing sequence has
length k. The quotient ring F[x𝑛×𝑛]/𝐼𝑛 has Hilbert series

Hilb(F[x𝑛×𝑛]/𝐼𝑛; 𝑞) = 𝑎𝑛,𝑛 + 𝑎𝑛,𝑛−1 · 𝑞 + · · · + 𝑎𝑛,1 · 𝑞
𝑛−1. (3.22)

Proof. Combine Lemma 3.5 and Theorem 3.12. �

3.5. Local permutation statistics

Corollary 3.13 gives the structure of F[x𝑛×𝑛]/𝐼𝑛 as a graded vector space. Our next goal is the structure
of this quotient as a graded 𝔖𝑛 ×𝔖𝑛 module (at least when 𝑛! ≠ 0 in F). Our calculation of the module
structure of F[x𝑛×𝑛]/𝐼𝑛 will make crucial use of a notion of complexity on permutation statistics due to
Hamaker and the author [10] called ‘locality’.

A permutation statistic (with values in the field F) is a function 𝑓 : 𝔖𝑛 → F. The study of permutation
statistics is an important subfield of combinatorics. Examples include the exceedance, inversion, and
peak numbers given by

exc(𝑤) := |{1 ≤ 𝑖 ≤ 𝑛 : 𝑤(𝑖) > 𝑖}| (3.23)
inv(𝑤) := |{1 ≤ 𝑖 < 𝑗 ≤ 𝑛 : 𝑤(𝑖) > 𝑤( 𝑗)}| (3.24)

peak(𝑤) := |{1 < 𝑖 < 𝑛 : 𝑤(𝑖 − 1) < 𝑤(𝑖) > 𝑤(𝑖 + 1)}|. (3.25)

Following [10], we define a notion of locality for permutation statistics as follows. If R ⊆ [𝑛] × [𝑛]
is a rook placement and 𝑤 ∈ 𝔖𝑛 is a permutation, we say that w extends R if we have the containment
of sets R ⊆ {(𝑖, 𝑤(𝑖)) : 1 ≤ 𝑖 ≤ 𝑛}. Given a rook placement R ⊆ [𝑛] × [𝑛], let 1R : 𝔖𝑛 → F be the
indicator permutation statistic

1R (𝑤) =

{
1 if 𝑤 extends R,

0 otherwise,
(3.26)

which detects whether w extends R. A permutation statistic 𝑓 : 𝔖𝑛 → F is k-local if there exist field
elements 𝑐R ∈ F such that

𝑓 =
∑

|R | = 𝑘

𝑐R · 1R (3.27)

as functions 𝔖𝑛 → F where the sum is over all rook placements R ⊆ [𝑛] × [𝑛] with k rooks.
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Remark 3.14. A k-local statistic 𝑓 : 𝔖𝑛 → F is also known to have ‘degree at most k’ elsewhere in the
literature, for example, [5]. We avoid this terminology to guard against confusion with the degree of a
character.

Roughly speaking, the locality of a permutation statistic bounds its complexity. The only 0-local
statistics are constant functions 𝔖𝑛 → F. The statistic exc is 1-local, the statistic inv is 2-local, and the
statistic peak is 3-local. Following Hamaker and the author [10], we consider the F-vector space

Loc𝑘 (𝔖𝑛, F) := { 𝑓 : 𝔖𝑛 → F : 𝑓 is 𝑘-local} (3.28)

of k-local statistics on 𝔖𝑛. It is not hard to see that any k-local statistic is also (𝑘 + 1)-local so that
Loc𝑘 (𝔖𝑛, F) ⊆ Loc𝑘+1(𝔖𝑛, F). Furthermore, any permutation statistic 𝔖𝑛 → F is (𝑛 − 1)-local. The
vector spaces Loc𝑘 (𝔖𝑛, F) will play an important role in the module structure of F[x𝑛×𝑛]/𝐼𝑛 (Theorem
4.2); for now we use shadow monomials to solve an open problem from [10] about the spaces Loc𝑘 (𝔖𝑛, F)
themselves.

By definition, the set {1R : |R| = 𝑘} of indicator statistics corresponding to rook placements
R ⊆ [𝑛] × [𝑛] of size k is a spanning set of Loc𝑘 (𝔖𝑛, F), but this spanning set is almost always linearly
dependent. In [10, Cor. 4.7] it is proven that when F = R is the field of real numbers, the dimension of
Loc𝑘 (𝔖𝑛, F) equals to the number 𝑎𝑛,𝑛−𝑘 + · · · + 𝑎𝑛,𝑛−1 + 𝑎𝑛,𝑛 of permutations in 𝔖𝑛 which have an
increasing subsequence of length at least 𝑛− 𝑘 . The methods of [10] apply whenever F has characteristic
0 or characteristic 𝑝 > 𝑛; we will see (Theorem 3.16) that this is true over any field.

The paper [10] did not give an explicit basis of the space of k-local statistics consisting of statistics
of the form 1R; we solve this problem in Theorem 3.16 below. Although the members 1R of our basis
for Loc𝑘 (𝔖𝑛, F) can correspond to rook placements with |R| < 𝑘 in general, we will obtain a nested
family of bases for the chain of vector spaces Loc0(𝔖𝑛, F) ⊆ Loc1(𝔖𝑛, F) ⊆ · · · ⊆ Loc𝑛−1 (𝔖𝑛, F). To
achieve these goals, we recall a standard fact about associated graded ideals.

Let x be a finite set of variables, and consider the polynomial ring F[x] over these variables. Given
𝑑 ≥ 0 and a graded F-algebra A, let 𝐴≤𝑑 ⊆ 𝐴 be the subspace of elements of degree at most d. We have
a filtration F[x]≤0 ⊆ F[x]≤1 ⊆ F[x]≤2 ⊆ · · · of F[x] by finite-dimensional subspaces.

Lemma 3.15. Let 𝐼 ⊆ F[x] be an ideal, and let gr 𝐼 ⊆ F[x] be the associated graded ideal of I. Fix
an integer 𝑑 ≥ 0, and let B ⊆ F[x]≤𝑑 be a family of homogeneous polynomials of degree at most d.
Suppose that B descends to a basis of the vector space (F[x]/gr 𝐼)≤𝑑 . Then B descends to a basis of the
vector space F[x]≤𝑑/(𝐼 ∩ F[x]≤𝑑).

Lemma 3.15 is the heart of the orbit harmonics isomorphisms (2.7). We include its straightforward
proof for completeness.

Proof. If B were not linearly independent modulo 𝐼 ∩ F[x]≤𝑑 , there would exist scalars 𝑐𝑏 ∈ F not
all zero and an element 𝑔 ∈ 𝐼 with deg(𝑔) ≤ 𝑑 such that

∑
𝑏∈B 𝑐𝑏 · 𝑏 = 𝑔. Since the elements of B

are homogeneous, taking the highest degree component of both sides of this equation would result in a
linear dependence of B modulo gr 𝐼, a contradiction.

If B did not span F[x]≤𝑑/(𝐼 ∩ F[x]≤𝑑), there would be some homogeneous polynomial ℎ ∈ F[x]≤𝑑
such that g does not lie in the span of B modulo 𝐼 ∩ F[x]≤𝑑 . Choose such an h with deg(ℎ) minimal.
There exist scalars 𝑐𝑏 ∈ F such that

∑
𝑏∈B 𝑐𝑏 · 𝑏 = ℎ + 𝜏(𝑔) for some 𝑔 ∈ 𝐼 with deg(𝑔) = deg(ℎ)

(so that in particular 𝑔 ∈ 𝐼 ∩ F[x]≤𝑑), where 𝜏(𝑔) is the highest degree component of g. Discarding
redundant terms if necessary, we may assume that 𝑐𝑏 = 0 whenever deg(𝑏) ≠ deg(ℎ). We conclude that
ℎ+𝑔−

∑
𝑏∈B 𝑐𝑏 ·𝑏 has degree < deg(ℎ), so by our choice of h there exist 𝑐′𝑏 ∈ F and 𝑔′ ∈ 𝐼∩F[x]≤𝑑 with∑

𝑏∈B
𝑐′𝑏 · 𝑏 = ℎ + 𝑔 −

∑
𝑏∈B

𝑐𝑏 · 𝑏 + 𝑔′

so that ℎ =
∑

𝑏∈B (𝑐
′
𝑏 − 𝑐𝑏) · 𝑏 − (𝑔′ + 𝑔) lies in the span of B modulo 𝐼 ∩ F[x]≤𝑑 , a contradiction. �
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An application of Lemma 3.15 gives a basis of the vector space Loc𝑘 (𝔖𝑛, F).

Theorem 3.16. The vector space Loc𝑘 (𝔖𝑛, F) of k-local statistics 𝔖𝑛 → F has basis

{1S (𝑤) : 𝑤 ∈ 𝔖𝑛, lis(𝑤) ≥ 𝑛 − 𝑘} (3.29)

given by indicator functions of shadow sets of permutations in 𝔖𝑛 which contain an increasing subse-
quence of length 𝑛 − 𝑘 .

Other authors (see, e.g., [5]) refer to the functions 1R as juntas. So Theorem 3.16 describes a basis
of shadow juntas.

Proof. For ℓ ≤ 𝑘 , any ℓ-local permutation statistic is also k-local, so the indicator functions in question
are members of Loc𝑘 (𝔖𝑛, F) by Lemma 3.5. Identifying𝔖𝑛 = 𝑃𝑛 with the locus of permutation matrices
in F𝑛×𝑛, the indicator function 1R corresponding to a rook placement R ⊆ [𝑛] × [𝑛] is represented by
the degree |R| monomial 𝑚(R) ∈ F[x𝑛×𝑛]. It follows that we have an isomorphism

Loc𝑘 (𝔖𝑛, F) � F[x𝑛×𝑛]≤𝑘/(I(𝑃𝑛) ∩ F[x𝑛×𝑛]≤𝑘 ) (3.30)

of F-vector spaces given by 1R ↦→ 𝑚(R) + (I(𝑃𝑛) ∩ F[x𝑛×𝑛]≤𝑘 ). Write

B = {𝔰(𝑤) : 𝑤 ∈ 𝔖𝑛 has an increasing subsequence of length at least 𝑛 − 𝑘} ⊆ F[x𝑛×𝑛] (3.31)

for the set of monomials representing the indicator functions in the statement. Theorem 3.12 implies
that B descends to a basis for the F-vector space (F[x𝑛×𝑛]/gr I(𝑃𝑛))≤𝑘 . An application of Lemma 3.15
shows that B also descends to a basis for F[x𝑛×𝑛]≤𝑘/(I(𝑃𝑛) ∩ F[x𝑛×𝑛]≤𝑘 ), and the isomorphism (3.30)
completes the proof. �

The nested shadow junta bases of Loc0 (𝔖3, F) ⊂ Loc1(𝔖3, F) ⊂ Loc2 (𝔖3, F) are as follows.

It may be interesting to find a basis of Loc𝑘 (𝔖𝑛, F) drawn from the spanning set {1R : |R| = 𝑘}. By
Theorem 3.12, the above monomials also form a vector space basis of F[x3×3]/𝐼3.

The results we have proven so far hold when the field F is replaced by a commutative ring R. More
precisely, we have an ideal 𝐼𝑅𝑛 ⊆ 𝑅[x𝑛×𝑛] with the same generating set as in Definition 1.1.

◦ The proofs of Lemmas 3.1 and 3.11 goes through to show that the shadow monomials {𝔰(𝑤) : 𝑤 ∈

𝔖𝑛} span 𝑅[x𝑛×𝑛]/𝐼𝑅𝑛 over R. Here, we use the fact that the coefficients in the polynomials 𝑎𝑆,𝑇 , 𝑏𝑆,𝑇
appearing in Lemma 3.1 are all ±1.

◦ When 𝑅 = Z, a linear dependence of {𝔰(𝑤) : 𝑤 ∈ 𝔖𝑛} modulo 𝐼Z𝑛 would induce a linear dependence
modulo 𝐼Q𝑛 . By Theorem 3.12, {𝔰(𝑤) : 𝑤 ∈ 𝔖𝑛} descends to a Z-basis of Z[x𝑛×𝑛]/𝐼Z𝑛 .

◦ Since 𝑅[x𝑛×𝑛]/𝐼𝑅𝑛 = 𝑅⊗ZZ[x𝑛×𝑛]/𝐼Z𝑛 , the set {𝔰(𝑤) : 𝑤 ∈ 𝔖𝑛} descends to a R-basis of 𝑅[x𝑛×𝑛]/𝐼𝑅𝑛
for any R. The proof of Lemma 3.15 holds over R, so the shadow juntas {1S (𝑤) : 𝑤 ∈ 𝔖𝑛, lis(𝑤) ≥
𝑛 − 𝑘} form an R-basis of Loc𝑘 (𝔖𝑛, 𝑅).

4. Module structure

As explained in the introduction, the self-product 𝔖𝑛 ×𝔖𝑛 of the rank n symmetric group acts on
the matrix x𝑛×𝑛 of variables by independent row and column permutation. This induces an action of
𝔖𝑛 ×𝔖𝑛 on 𝐼𝑛 and endows F[x𝑛×𝑛]/𝐼𝑛 with the structure of a graded 𝔖𝑛 ×𝔖𝑛-module. The purpose
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of this section is to study this action. To do so, for the remainder of the section we made the following
assumption on the characteristic of F.

Assumption. The field F either has characteristic zero or has characteristic 𝑝 > 𝑛.

This assumption guarantees that the group algebras F[𝔖𝑛] and F[𝔖𝑛 ×𝔖𝑛] are semisimple. We may
immediately describe the ungraded 𝔖𝑛 ×𝔖𝑛-structure of F[x𝑛×𝑛]/𝐼𝑛.

Corollary 4.1. Let 𝔖𝑛 ×𝔖𝑛 act on the locus 𝑃𝑛 ⊆ F𝑛×𝑛 by independent row and column permutation.
We have an isomorphism F[𝑃𝑛] � F[x𝑛×𝑛]/𝐼𝑛 of ungraded 𝔖𝑛 ×𝔖𝑛-modules.

Corollary 4.1 may be given as a decomposition into 𝔖𝑛 ×𝔖𝑛 irreducibles as follows. If 𝜆 
 𝑛 is a
partition of n, recall that 𝑉𝜆 denotes the corresponding irreducible 𝔖𝑛-module. Irreducible representa-
tions of the product group𝔖𝑛 ×𝔖𝑛 are given by tensor products 𝑉𝜆 ⊗𝑉 𝜇 for ordered pairs of partitions
(𝜆, 𝜇) of n. Corollary 4.1 asserts that F[x𝑛×𝑛]/𝐼𝑛 �

⊕
𝜆
𝑛 𝑉

𝜆 ⊗ 𝑉𝜆 as ungraded 𝔖𝑛 ×𝔖𝑛-modules.

Proof. By Theorem 3.12, we have an isomorphism and an equality

F[𝑃𝑛] � F[x𝑛×𝑛]/gr I(𝑃𝑛) = F[x𝑛×𝑛]/𝐼𝑛 (4.1)

of ungraded F-vector spaces. By our assumption on the characteristic of F, these upgrade to an isomor-
phism and an equality of ungraded F[𝔖𝑛 ×𝔖𝑛]-modules. �

We enhance Corollary 4.1 by describing the graded module structure of F[x𝑛×𝑛]/𝐼𝑛. As suggested
by Corollary 3.13, the graded refinement of the isomorphism F[x𝑛×𝑛]/𝐼𝑛 �𝔖𝑛×𝔖𝑛

⊕
𝜆
𝑛 𝑉

𝜆 ⊗ 𝑉𝜆 is
obtained by focusing on the length of the first row of 𝜆.

Theorem 4.2. For any 𝑘 ≥ 0, the degree k piece of F[x𝑛×𝑛]/𝐼𝑛 has 𝔖𝑛 ×𝔖𝑛-module structure

(F[x𝑛×𝑛]/𝐼𝑛)𝑘 �
⊕
𝜆 
 𝑛

𝜆1 = 𝑛−𝑘

𝑉𝜆 ⊗ 𝑉𝜆. (4.2)

Proof. If W is any 𝔖𝑛-module over F, the vector space EndF(𝑊) of F-linear maps 𝜑 : 𝑊 → 𝑊 is a
𝔖𝑛 ×𝔖𝑛-module via

((𝑢, 𝑣) · 𝜑) (𝑤) := 𝑢 · 𝜑(𝑣−1 · 𝑤) for all 𝑢, 𝑣 ∈ 𝔖𝑛, 𝜑 ∈ EndF (𝑊), 𝑤 ∈ 𝑊. (4.3)

We have EndF (𝑊) � 𝑊 ⊗𝑊∗, and since 𝔖𝑛-modules are self-dual, we have

EndF (𝑊) � 𝑊 ⊗𝑊 (4.4)

as 𝔖𝑛 ×𝔖𝑛-modules.
The group algebra F[𝔖𝑛] is naturally a 𝔖𝑛 ×𝔖𝑛-module under left and right multiplication. Since

F[𝔖𝑛] is semisimple, the Artin–Wedderburn theorem gives an isomorphism of F-algebras

Ψ : F[𝔖𝑛]
∼
−−→

⊕
𝜆 
 𝑛

EndF (𝑉𝜆). (4.5)

Given 𝑎 ∈ F[𝔖𝑛], the 𝜆𝑡ℎ component of Ψ(𝑎) acts on 𝑉𝜆 by the F-linear map Ψ(𝑎) : 𝑣 ↦→ 𝑎 · 𝑣.
Returning to the statement of the theorem, since F[𝔖𝑛] is semisimple, by induction on k it suffices

to establish the isomorphism

(F[x𝑛×𝑛]/𝐼𝑛)≤𝑘 �
⊕
𝜆 
 𝑛

𝜆1 ≥ 𝑛−𝑘

EndF (𝑉𝜆) (4.6)
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in the category of ungraded𝔖𝑛×𝔖𝑛-modules. To this end, Theorem 3.12 gives rise to the identifications

F[𝔖𝑛] = F[𝑃𝑛] � F[x𝑛×𝑛]/I(𝑃𝑛) � F[x𝑛×𝑛]/gr I(𝑃𝑛) = F[x𝑛×𝑛]/𝐼𝑛 (4.7)

of ungraded 𝔖𝑛 ×𝔖𝑛-modules. Let 𝐿𝑘 be the image of F[x𝑛×𝑛]≤𝑘 in F[x𝑛×𝑛]/I(𝑃𝑛), i.e.

𝐿𝑘 := Image(F[x𝑛×𝑛]≤𝑘 ↩→ F[x𝑛×𝑛] � F[x𝑛×𝑛]/I(𝑃𝑛)). (4.8)

Lemma 3.15 implies that

𝐿𝑘 = spanF{𝑚(R) + I(𝑃𝑛) : R a rook placement with |R| ≤ 𝑘}. (4.9)

As explained in the proof of Theorem 3.16, under the correspondence F[𝔖𝑛] = F[𝑃𝑛] � F[x𝑛×𝑛]/I(𝑃𝑛)

we have the identification

Loc𝑘 (𝔖𝑛, F) = 𝐿𝑘 (4.10)

with the𝔖𝑛×𝔖𝑛-module of k-local statistics𝔖𝑛 → F. Lemma 3.15 and the chain (4.7) of isomorphisms
give rise to the further identification

Loc𝑘 (𝔖𝑛, F) = 𝐿𝑘 � (F[x𝑛×𝑛]/𝐼𝑛)≤𝑘 (4.11)

of 𝔖𝑛 ×𝔖𝑛-modules.
By the last paragraph, we are reduced to establishing the isomorphism

Loc𝑘 (𝔖𝑛, F) �
⊕
𝜆 
 𝑛

𝜆1 ≥ 𝑛−𝑘

EndF (𝑉𝜆) (4.12)

of ungraded 𝔖𝑛 ×𝔖𝑛-modules. Embed 𝔖𝑛−𝑘 ⊆ 𝔖𝑛 by acting on the first 𝑛 − 𝑘 letters, let

𝜂𝑛−𝑘 :=
∑

𝑤 ∈𝔖𝑛−𝑘

𝑤 ∈ F[𝔖𝑛] (4.13)

be the group algebra element which symmetrizes over these letters, and let 𝐽𝑘 ⊆ F[𝔖𝑛] be the two-
sided ideal generated by 𝜂𝑛−𝑘 . The correspondence between functions 𝑓 : 𝔖𝑛 → F and group algebra
elements

∑
𝑤 ∈𝔖𝑛

𝑓 (𝑤) · 𝑤 gives rise to an identification

Loc𝑘 (𝔖𝑛, F) = 𝐽𝑘 (4.14)

of ungraded 𝔖𝑛 ×𝔖𝑛-modules. Indeed, the group algebra element 𝜂𝑛−𝑘 ∈ F[𝔖𝑛] corresponds to the
indicator permutation statistic 1R : 𝔖𝑛 → F indexed by the rook placement

R = {(𝑛 − 𝑘 + 1, 𝑛 − 𝑘 + 1), . . . , (𝑛 − 1, 𝑛 − 1), (𝑛, 𝑛)}.

Multiplying 𝜂𝑛−𝑘 on the left and right by permutations of 𝔖𝑛 corresponds to interchanging rows and
columns in the rook placement R0; any rook placement with k rooks may be obtained in this way.

Thanks to the identification (4.14), we are reduced to showing

𝐽𝑘 �
⊕
𝜆 
 𝑛

𝜆1 ≥ 𝑛−𝑘

EndF (𝑉𝜆) (4.15)
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as 𝔖𝑛 ×𝔖𝑛-modules. The image Ψ(𝐽𝑘 ) of the ideal 𝐽𝑘 ⊆ F[𝔖𝑛] under the Artin–Wedderburn iso-
morphism (4.5) is an ideal in the direct sum

⊕
𝜆
𝑛 EndF(𝑉𝜆) of matrix rings. Since each summand

EndF(𝑉𝜆) is simple, there is a set 𝑃(𝑘) of partitions of n such that

Ψ(𝐽𝑘 ) =
⊕

𝜆 ∈ 𝑃 (𝑘)

EndF (𝑉𝜆). (4.16)

The definitions of Ψ and 𝐽𝑘 imply that

𝑃(𝑘) = {𝜆 
 𝑛 : 𝜂𝑛−𝑘 · 𝑉
𝜆 ≠ 0}. (4.17)

It remains to show that 𝑃(𝑘) = {𝜆 
 𝑛 : 𝜆1 ≥ 𝑛 − 𝑘}. To this end, observe that for any 𝔖𝑛-module
W, the image 𝜂𝑛−𝑘 ·𝑊 may be characterized as the trivial component

𝜂𝑛−𝑘 ·𝑊 =
(
Res𝔖𝑛

𝔖𝑛−𝑘
𝑊

) triv
(4.18)

of the restriction of W from 𝔖𝑛 to 𝔖𝑛−𝑘 . In particular, for 𝜆 
 𝑛 we have

𝜆 ∈ 𝑃(𝑘) ⇔
(
Res𝔖𝑛

𝔖𝑛−𝑘
𝑉𝜆

) triv
≠ 0. (4.19)

By the branching rule for symmetric group representations (see, e.g., [17, Thm. 2.8.3]), the restriction
Res𝔖𝑛

𝔖𝑛−𝑘
𝑉𝜆 has a nonzero trivial component if and only if 𝜆1 ≥ 𝑛 − 𝑘 . This proves the isomorphism

(4.12) and the theorem. �

The ring F[x𝑛×𝑛] carries a natural involution 𝜎 : 𝑥𝑖, 𝑗 ↦→ 𝑥 𝑗 ,𝑖 which transposes the matrix x𝑛×𝑛 of
variables. This induces a homogeneous involution on the quotient ring F[x𝑛×𝑛]/𝐼𝑛, also denoted 𝜎. The
proof technique of Theorem 4.2 applies to show that in the isomorphism

(F[x𝑛×𝑛]/𝐼𝑛)𝑘 �
⊕
𝜆 
 𝑛

𝜆1 = 𝑛−𝑘

𝑉𝜆 ⊗ 𝑉𝜆 (4.20)

of𝔖𝑛 ×𝔖𝑛-modules, the action of 𝜎 on the left-hand side intertwines with the automorphism (𝑤, 𝑢) ↦→
(𝑢, 𝑤) of the group 𝔖𝑛 ×𝔖𝑛.

Recall from the introduction that 𝛼𝑛,𝑘 is the character of𝔖𝑛 given by 𝛼𝑛,𝑘 =
∑

𝜆1=𝑘 𝑓 𝜆 · 𝜒𝜆, where the
sum is over partitions 𝜆 
 𝑛 whose first row has length k. As an immediate application of Theorem 4.2,
we get an explicit 𝔖𝑛-module with character 𝛼𝑛,𝑘 .

Corollary 4.3. The class function 𝛼𝑛,𝑘 : 𝔖𝑛 → F is the character of the restriction of the degree 𝑛 − 𝑘
part of F[x𝑛×𝑛]/𝐼𝑛 to either factor of 𝔖𝑛 ×𝔖𝑛. In symbols, we have

𝛼𝑛,𝑘 = Res𝔖𝑛×𝔖𝑛

𝔖𝑛×1
(
𝜒(F[x𝑛×𝑛 ]/𝐼𝑛)𝑛−𝑘

)
= Res𝔖𝑛×𝔖𝑛

1×𝔖𝑛

(
𝜒(F[x𝑛×𝑛 ]/𝐼𝑛)𝑛−𝑘

)
, (4.21)

where 𝜒𝑉 : 𝔖𝑛 ×𝔖𝑛 → F denotes the character of an F[𝔖𝑛 ×𝔖𝑛]-module V.

The space (F[x𝑛×𝑛]/𝐼𝑛)𝑛−𝑘 is the cleanest representation-theoretic model for 𝛼𝑛,𝑘 known to the
author. There is another model for 𝛼𝑛,𝑘 involving quotient spaces. For any d, we have an action of 𝔖𝑛

on Loc𝑑 (𝔖𝑛, F) given by (𝑤 · 𝑓 ) (𝑣) := 𝑓 (𝑤−1𝑣) for 𝑤, 𝑣 ∈ 𝔖𝑛 and 𝑓 ∈ Loc𝑑 (𝔖𝑛, F). The isomorphism
(4.12) implies that the sum 𝛼𝑛,𝑘 + 𝛼𝑛,𝑘+1 + · · · + 𝛼𝑛,𝑛 is the character of Loc𝑛−𝑘 (𝔖𝑛, F). Therefore, the
quotient module Loc𝑛−𝑘 (𝔖𝑛, F)/Loc𝑛−𝑘−1 (𝔖𝑛, F) has character 𝛼𝑛,𝑘 .

Sums of the characters 𝛼𝑛,𝑘 also arise in the context of Schur–Weyl duality. Let F = C, let 𝑉 = C𝑑 ,
and let 𝑉 ⊗𝑛 = 𝑉 ⊗ · · · ⊗ 𝑉 be the n-fold tensor power of V. The vector space 𝑉 ⊗𝑛 carries a diagonal
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action of 𝐺𝐿(𝑉), viz.

𝑔 · (𝑣1 ⊗ · · · ⊗ 𝑣𝑛) := (𝑔 · 𝑣1) ⊗ · · · ⊗ (𝑔 · 𝑣𝑛) (𝑔 ∈ 𝐺𝐿(𝑉), 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉). (4.22)

Let End𝐺𝐿 (𝑉 ) (𝑉
⊗𝑛) be the algebra of linear maps 𝜑 : 𝑉 ⊗𝑛 → 𝑉 ⊗𝑛 which commute with the action of

𝐺𝐿(𝑉). We have an algebra homomorphism Φ : C[𝔖𝑛] → End𝐺𝐿 (𝑉 ) (𝑉
⊗𝑛) induced by

Φ(𝑤) · (𝑣1 ⊗ · · · ⊗ 𝑣𝑛) := 𝑣𝑤−1 (1) ⊗ · · · ⊗ 𝑣𝑤−1 (𝑛) (𝑤 ∈ 𝔖𝑛, 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉). (4.23)

Schur–Weyl duality asserts that the homomorphism Φ is surjective, but when 𝑑 < 𝑛, the kernel of Φ is
nonzero. In fact, the character of the 𝔖𝑛-module End𝐺𝐿 (𝑉 ) (𝑉

⊗𝑛) is given by

𝜒End𝐺𝐿 (𝑉 ) (𝑉 ⊗𝑛) = sign ⊗ (𝛼𝑛,1 + 𝛼𝑛,2 + · · · + 𝛼𝑛,𝑑), (4.24)

where sign is the degree 1 sign character. In other words, we have 𝜒End𝐺𝐿 (𝑉 ) (𝑉 ⊗𝑛) =
∑

𝜆′1≤𝑑
𝑓 𝜆 · 𝜒𝜆

where the sum is over partitions 𝜆 
 𝑛 whose first column has length at most d. By Corollary 4.3, we
have an isomorphism of 𝔖𝑛-modules

End𝐺𝐿 (𝑉 ) (𝑉
⊗𝑛) �𝔖𝑛 sign ⊗

⊕
𝑘 ≥ 𝑛−𝑑

(C[x𝑛×𝑛]/𝐼𝑛)𝑘 . (4.25)

It may be interesting to give a formula for this isomorphism.
By Corollary 4.3, finding an explicit family of linear injections

(F[x𝑛×𝑛]/𝐼𝑛)𝑑−1 ⊗ (F[x𝑛×𝑛]/𝐼𝑛)𝑑+1 ↩→ (F[x𝑛×𝑛]/𝐼𝑛)𝑑 ⊗ (F[x𝑛×𝑛]/𝐼𝑛)𝑑 (0 < 𝑑 < 𝑛 − 1) (4.26)

which commute with either the row or column action of 𝔖𝑛 on x𝑛×𝑛 would prove the Novak–Rhoades
conjecture [14] and imply Chen’s conjecture [4]. In fact, computations suggest that such an injection
can be found which commutes with both row and column permutation.

Conjecture 4.4. Given any degree 𝑑 ≥ 0, let 𝔖𝑛 ×𝔖𝑛 act on (F[x𝑛×𝑛]/𝐼𝑛)𝑑 by independent row and
column permutation. For all 0 < 𝑑 < 𝑛 − 1, there exists a linear injection

𝜑 : (F[x𝑛×𝑛]/𝐼𝑛)𝑑−1 ⊗ (F[x𝑛×𝑛]/𝐼𝑛)𝑑+1 ↩→ (F[x𝑛×𝑛]/𝐼𝑛)𝑑 ⊗ (F[x𝑛×𝑛]/𝐼𝑛)𝑑

which commutes with the diagonal action of 𝔖𝑛 ×𝔖𝑛 defined by

(𝑤, 𝑣) · ( 𝑓 ⊗ 𝑔) := ((𝑤, 𝑣) · 𝑓 ) ⊗ ((𝑤, 𝑣) · 𝑔)

for (𝑤, 𝑣) ∈ 𝔖𝑛 ×𝔖𝑛 and 𝑓 , 𝑔 ∈ F[x𝑛×𝑛]/𝐼𝑛.

Conjecture 4.4 would imply both the Novak–Rhoades conjecture [14] and Chen’s conjecture [4]. The
existence of a map 𝜑 as in Conjecture 4.4 has been checked for 𝑛 ≤ 15.

5. Conclusion

This paper established a connection between the algebra of F[x𝑛×𝑛]/𝐼𝑛 and the combinatorics of 𝔖𝑛.
It may be interesting to find analogous results for other combinatorial structures. As motivation, Bóna,
Lackner, and Sagan [3] conjectured that the sequence (𝑖𝑛,1, . . . , 𝑖𝑛,𝑘 ) given by

𝑖𝑛,𝑘 = |{𝑤 ∈ 𝔖𝑛 : lis(𝑤) = 𝑘, 𝑤2 = 1}| (5.1)

which counts involutions in 𝔖𝑛 with longest increasing subsequence of length k is log-concave. Novak
and the author made (unpublished) the stronger conjecture [14] that the sequence (𝜄𝑛,1, . . . , 𝜄𝑛,𝑛) of
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characters

𝜄𝑛,𝑘 :=
∑
𝜆 
 𝑛
𝜆1 = 𝑘

𝜒𝜆 (5.2)

is log-concave with respect to the Kronecker product (where a class function is ‘nonnegative’ if it is
a genuine character). On the commutative algebra side, adding the differences 𝑥𝑖, 𝑗 − 𝑥 𝑗 ,𝑖 to the ideal
𝐼𝑛 ⊆ F[x𝑛×𝑛] gives a candidate quotient ring which could be used to study these conjectures.

A key tool for understanding the structure of F[x𝑛×𝑛]/𝐼𝑛 was the orbit harmonics method applied to
the locus 𝑃𝑛 ⊆ F𝑛×𝑛 of permutation matrices; it was proven that 𝐼𝑛 = gr I(𝑃𝑛). It may be interesting to
compute gr I(𝑀𝑛) for other matrix loci 𝑀𝑛 ⊆ F𝑛×𝑛. Four suggestions in this direction are as follows.
1. The set 𝑀𝑛 = I𝑛 of symmetric permutation matrices corresponding to involutions in 𝔖𝑛. The ideal

gr I(I𝑛) could have application to the Bóna-Lackner–Sagan conjecture [3] and the Kronecker log-
concavity of the character sequence (𝜄𝑛,1, . . . , 𝜄𝑛,𝑛).

2. The set 𝑀𝑛 = 𝐺 of elements of a complex reflection group. The Hilbert series of F[x𝑛×𝑛]/gr I(𝐺)

should be generating functions for a ‘longest increasing subsequence’ statistic on G.1
3. The set 𝑀𝑛 = 𝐴𝑛 of 𝑛× 𝑛 alternating sign matrices. A standard monomial basis of F[x𝑛×𝑛]/gr I(𝐴𝑛)

could give a clues about a Schensted correspondence for ASMs.
It may also be interesting to consider loci of rectangular 𝑚 × 𝑛 matrices for which 𝑚 ≠ 𝑛. For example,
fixing sequences 𝜆 = (𝜆1, . . . , 𝜆𝑛) and 𝜇 = (𝜇1, . . . , 𝜇𝑛), one could consider the contingency table
locus of Z≥0-matrices with column sums 𝜆 and row sums 𝜇. Fulton’s matrix-ball construction [6]
generalizes Viennot shadow lines from permutation matrices to contingency tables; perhaps the matrix-
ball construction is also related to standard monomial theory.

The genesis of this paper was an email from Pierre Briaud and Morten Øygarden to the author
regarding a problem in cryptography. We close by describing this problem and its relationship to our
work.

Let q be a prime power, and let F𝑞 be the finite field with q elements. Given a known matrix A ∈ F𝑚×𝑛
𝑞

and a known vector v ∈ F𝑛𝑞 , the permuted kernel problem (PKP) [1, Def. 1] seeks to recover an unknown
permutation 𝑤 ∈ 𝔖𝑛 of the coordinates of v which lies in the right kernel of A. The parameters 𝑞, 𝑚,
and n are chosen so that 𝑛! ≈ 𝑞𝑚, and there exists a unique such 𝑤 ∈ 𝔖𝑛 with high probability. The PKP
amounts to solving a polynomial system in the 𝑛2 variables x𝑛×𝑛 over the field F𝑞 consisting of
1. the polynomials which express x𝑛×𝑛 as a permutation matrix, and
2. the m polynomials coming from the vector equation A · x𝑛×𝑛 · v = 0.
In cryptography, one wants to know the difficulty in solving this system using Gröbner methods.2 This
paper analyzed the system of polynomials coming from (1) alone; we hope that this will lead to a better
understanding of the more cryptographically relevant system (1) ∪ (2). The Hilbert series of a quotient
similar to that by (1) ∪ (2) was studied by Briaud and Øygarden in [2] when the linear system analogous
to (2) is sufficiently generic.
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1While this paper was under review, M. J. Liu [12] solved this problem for the wreath product groups 𝐺 = Z𝑟 �𝔖𝑛.
2In cryptography, one also often works over fields of low characteristic, including characteristic 2. This is one reason why we

remained as agnostic as possible about our choice of field.
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