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Abstract
In this manuscript, a scheme for neural-learning-enhanced Cartesian Admittance control is presented for a robotic
manipulator to deal with dynamic environments with moving remote center of motion (RCM) constraints. Although
some research has been implemented to address fixed constrained motion, the dynamic moving movement constraint
is still challenging. Indeed, the moving active RCM constraints generate uncertain disturbance on the robot tool
shaft with unknown dynamics. The neural-learning-enhanced decoupled controller with disturbance optimisation
is employed and implemented to maintain the performance under the kinematic uncertain and dynamic uncertain
generated. In addition, the admittance Cartesian control method is introduced to control the robot, providing compli-
ant behaviour to an external force in its operational space. In this proposed framework, a neural-learning-enhanced
disturbance observer is investigated to calculate the external factor operating on the end effector premised on gen-
eralised momentum in order to ensure accuracy. Finally, the experiments are implemented using a redundant robot
to validate the efficacy of the suggested approach with moving RCM constraints.

1. Introduction
Commercially available manufacturing serial robots with multiple manipulators have indeed been effec-
tively accepted and further improved in accurate automation processes for a wide range of application
areas during the last few decades. Their relatively lower cost in comparison to specialist surgical robots
has sparked greater interest in medicinal uses [1, 2], especially in minimally invasive surgery (MIS) pro-
cedures. A tiny incision inside the abdominal wall is required for these operations to facilitate the inser-
tion of a medical instrument. A robotic application of these procedures offers the possibility of improved
surgical tool control and precision while lowering patient trauma [3]. The minor incision places a limita-
tion upon the inserted robot end effector referred to as the remote center of motion (RCM) constraint [4].
While a mechanical implementation is typically deemed safer, it needs bulky, costly structures plus cal-
ibration processes, a programmable RCM regulating motion by the control algorithm is less costly and
more versatile, making it a better alternative [5, 6]. It is true that more than the surgical scenario, many
industrial applications involve the RCM. For example, a safety region convolutional neural network
(CNN) method adapted with the RCM method was implemented on Baxter robot, a seven-degrees of
freedom redundant manipulator, demonstrating the feasibility of RCM control in industrial area [7].

Although many works have been performed and implemented to maintain the movement constraints,
few works have considered a moving RCM constraint, presenting the challenge with dynamic kinematic
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Figure 1. Remote center of motion in medical application.

and dynamic disturbance. Since the moving RCM forges a dynamic kinematic obstacle, it is uncompli-
cated to make the robotic tool contact and interact with the hole, which delivers a dynamic interaction.
This makes it unlike a fixed RCM and becomes an additional complex issue. Additionally, for safer robot
operation, the moving RCM constraint must be preserved. Ortmaier et al. employed the inverse kine-
matic control to prevent any force exerted on the RCM constraint [8]. In ref. [9], a general kinematic
formalisation in joint space to address the RCM constraint was offered. A new control architecture was
put forward by Sandoval [8] for redundant robots to tackle fixed RCM constraints with Cartesian admit-
tance control [10] without taking into account the movement of the RCM. But nearly all of these works
consider only fixed movement constraints.

In recent years, more attention has been drawn to neural learning improved adaptive control meth-
ods [11–13]. The nonlinear kinematic terms were compensated by integrating a smooth function in
refs. [14, 15]. In ref. [16], an adaptive neural resistance control technique was developed for a n-link
robotic manipulator with kinematic constraints. A supplementary system was added to the controller
architecture to address the effect of the above limits.

In this work, a neural-learning boosted Cartesian admitting control system that relies on the neu-
ral approximation is suggested to improve end effector accuracy while still obeying the active RCM
requirement. This paper’s control framework includes:

1. A Cartesian admittance control is used in robotic devices to produce compliant behaviour while
considering environmental dynamics in Cartesian space.

2. A decoupled controller is employed to maintain the RCM constraints on its kinematic level.
3. An adaptive controller compensates for the uncertainty in the robotic system caused by the

shifting RCM restrictions.

Different from the previous works, this work considers a moving movement constraint and conducts
a demonstration and analysis to check its feasibility to use an adaptive approximation to compensate for
the disturbances generated by uncertain RCM point movement.

The rest of this manuscript is structured as follows. Section 2 contains the research problem and
preliminary information. Section 3 discusses control creation with neural networks in the context of
moving RCM limitations. Finally, in Section 4, the experimental data are displayed, and in Section 5,
the conclusions are formed.

1.1. Problem statement and preliminaries
1.2. Moving RCM constraints
1.2.1. Kinematics analysis
To track the trajectory from the actual Cartesian position to the target position during the robot manip-
ulation, as shown in Fig. 1, the end effector must go through the small incision P on the obstacle wall,
representing the RCM constraint, where r0 is the RCM position, r1 is the actual Cartesian position, and
r2 is the actual position of the position of joint θn−1. To respect the RCM constraint, r0 should always
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Figure 2. Moving remote center of motion due to breathing.

be on a straight line from the tooltip’s position, r1, to the position of the joint holding the tool, r2. In
most previous works, no movement was applied to this point has been frequently assumed to simplify
the complexity of the application. However, for an actual clinical operation, the patient’s abdominal
wall may not be fixed due to breathing or heart beating, as it is shown in Fig. 2. The relation can be
derived as

(r0 − r1) × (r2 − r1) = 0 (1)

Assumption 2.1: The RCM constraint position r0 ∈ R3 is known or can be detected with optical tracking.

Consider an n-degrees-of-freedom manipulator, the projection from its joint space to the Cartesian
coordinate r1 ∈ Rm of its end effector is characterised by the following nonlinear function:

r1 = f1(θ)
r2 = f2(θ)

(2)

where θ ∈ Rn can be seen as the joint angle vector. The nonlinear function f1(.) and f2(.) for serial
manipulators can be obtained through a systematic method known as the D-H convention. For excessive
manipulators, n > m. Straightforwardly, computing the time derivatives on both sides of (1) yields

ṙ1 = J1(θ)ω

ṙ2 = J2(θ)ω
(3)

where ṙ1 = dr1/dt, ṙ2 = dr2/dt, J1(θ) = ∂f1(θ)/∂θ , J2(θ) = ∂f2(θ)/∂θ , and ω = θ̇ = dθ/dt.

1.2.2. Dynamic modelling
Fe is the outside force created through the physical contact [17, 18] of the RCM constraint and the robot
tool shaft, which maybe be modelled using a mass-damping-spring model:

MPP̈ + HP
(
P, Ṗ

)
Ṗ + GP(P) = Fe (4)

where MP, HP, GP are the inertia, damping and stiffness matrices of the obstacle wall around the RCM
constraint, Fe ∈ R3 is the outside force from the physical contact, and P is the actual contact point
between the surgical tool shaft and the obstacle. Fe can be decomposed into two components FeX ∈ R3

and FeN ∈ R3 [19], where FeX is the projected outside force on the tooltip in the task space, and FeN is
the external force acting on the corresponding null space of the tooltip.

Assumption 2.2: The time-varying external force Fe(t) ∈ R3 from physical interaction between the
robot tool shaft and the obstacle wall is continuous in terms of time and constrained by a constant β as
follows:

∃β ∈ R, ‖ Fe(t) ‖≤ β, ∀t ≥ 0 (5)

1.3. Robot modelling
The dynamic model of the n degrees of freedom (DoFs) serial manipulator in the Lagrangian formulation
can be expressed as [20]

M(θ) θ̈ + C
(
θ ,θ̇

)
θ̇ + g(θ) − τ e = τC (6)
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where θ ∈ Rn is the joint vector, M(θ) ∈ Rn×n is the positive definite, symmetric and bounded inertia
matrix in the robot joint space, C(θ ,θ̇) ∈ Rn×n is a matrix which represents the effects for Coriolis and
centrifugal and g(θ) ∈ Rn is the vector for gravity torques. The torque vectors τ C ∈ Rn and τ e ∈ Rn, respec-
tively, symbol the control torques [21] and the outside disturbance torque vectors [22, 23]. For simplicity,
it is presumed that the surgical robotic system is different from any pseudoinverse and singularity of the
Jacobian matrix, J1(θ) ∈ Rm×n, in existence.

Since for Cartesian admittance control, the task space expresses the expected behaviour of the serial
robot, and the generalised formulation can be written as [19, 24, 25]

Mrr̈ + Hr(r, ṙ) ṙ + J−T
1 (θ) g(θ) − FeT = FC (7)

where r = r1 ∈ Rm is the vector of the task space coordinates,

Mr(r) = J−T
1 M(θ)J−1

1 , (8)

Hr(r, ṙ) = J−T
1

[
C

(
θ ,θ̇

) − M(θ) J−1
1 J̇

]
J−1, (9)

FeT = J−Tτ e. (10)

The matrix Mr(r) ∈ Rm×m is the Cartesian inertia matrix, Hr(r,ṙ) ∈ Rm×m is the Coriolis and centrifugal
force effects in the task space and FeT ∈ Rm is the external force in the task space, which is bounded by β.

∃β ∈ R, ‖ FeT ‖≤ β, ∀t ≥ 0 (11)

Property 2.1: The Cartesian inertia matrix, Mr(r), as defined in (8), positive and symmetric, and it
is also bounded as

λ1‖ A ‖≤ ATMr(r)A ≤ λ2 ‖ A ‖, ∀A, r ∈ Rm (12)

where λ1 and λ2 are positive constants, and A is assumed as non-singular matrix.

Property 2.2: The Cartesian matrix, Hr(r, ṙ), and the time derivative of the Cartesian inertia matrix,
Mr(r), fulfill the criterion:

AT [
Ṁr(r) − 2Hr(r, ṙ)

]
A = 0, ∀A, θ , θ̇ ∈ Rn (13)

where A is assumed as a non-singular matrix.

1.4. Cartesian admittance control
In some applications in which the objective is to control the end effector to follow a path in free-
space, position control methods are appropriate. Nevertheless, in some instances with a rigid interaction
between the environment and the end effector, a large force will be generated and compromise the safety
of the operation. This could be avoided by putting in place a compliant controller on the robot. Among
the most commonly used compliant control approaches, Cartesian admittance control is an efficient
mechanical admittance method [26], featuring damping, stiffness and mass terms:

Fext = Md r̈e + Dd ṙe + Kdre (14)

where re = r1c − r1d, Md, Dd and Kd are the symmetric and positive definite matrices of the desired iner-
tia, damping and stiffness, respectively. r1d ∈ Rm is the desired trajectory, and r1c ∈ Rm is the desired
trajectory determined by the external force Fext on the end effector. It can be seen that r1c = r1d when
there is no external interaction on the end effector, that is, Fext = 0. Meanwhile, when Fext 
= 0 indicates
external interaction on the end effector, the desired trajectory will be modified as a new trajectory that
can be seen as the adaptation relation between the external force and the target admittance model in [27].
As it is shown in Fig. 3, the proposed framework is constructed with a decoupled control and adaptive
approximation layer.
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Figure 3. The proposed control architecture.

1.5. Null-space projection and decoupling control
By specifying the joint angular velocity in the joint space and the end effector velocity in the
workspace:

ṙ1 = J1(θ) θ̇ (15)

where ṙ1 ∈ R3 is the real Cartesian velocity for the end effector, and J(θ ) ∈ R3×n is the Jacobian matrix
from the base to the end effector. To drive the end effector (r1 ∈ R3) to reach the desired position (r1d ∈
R3), the task control torque, τ T, can be defined as

τ T = JT
1 (Kr1r̃1 − Dr1ṙ1) (16)

where J(θ) ∈ R3×n is the Jacobian matrix from the base to the end effector, r̃1 = r1d − r1(θ) ∈ R3×n, Kr1 ∈
R3×3 is the diagonal stiffness matrix and Dr1 ∈ R3×3 is the diagonal damping matrix.

Because the number of the degrees of freedom is larger than three, the redundant serial robot can be
employed to complete additional tasks by the null-space controller (τN ∈ Rn), which can be specified as

τN = (I − JT
1 (θ)J1(θ )+

M)τ T2 (17)

where τ T2 ∈ Rn−3 serves as the torque to complete the additional assignment with redundant degrees,
J(θ )+

M is the inertia-weighted pseudoinverse matrix [24] defined as

J(θ )+
M = (J1(θ )M(θ )−1J1(θ )T)−1J1(θ )M(θ)−1 (18)

1.6. Adaptive neural approximation
The neural approximation has been well known to be adopted for the approximation of the uncertain
disturbances [28], and here introduces a kind of feedforward neural web which is constructed with three
general layers, that is, the hidden layer, the input layer and the output layer. Regarding the minimum
MSE, it attains a globally optimised solution to the adjustable weights. The inputs variables (Z1, . . . Zm)
are distributed from the input layer to the hidden layer. The hidden layer consists of N neurons, and each
neuron computes the Euclidean distance between the inputs and the centres. Every neuron from the
hidden layer employs a radial basis function ξ as its nonlinear activation function. In this paper [20], the
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Gaussian function is depicted as the most commonly used activation function in the RBFNN algorithm.
The hidden layer conducts a nonlinear transform of the input, the output layer serves as a mixture of the
weighted hidden layer outputs that calculates the approximated output variable (y1, . . . , yj). The output
of RBFNN (y1, . . . , yj) is computed as

yi =
N∑

k=1

ωkiξi, i = 1, 2, . . . , j (19)

where yi is the ith output, ωki is the connection weight from the kth hidden unit to the ith output unit and
j is the dimension of the outputs.

The approximation is employed in this study to correct for the Cartesian position mistake. As a result,
the input Z is picked with the Cartesian position r. The uncertain disturbance �(r,ṙ) is represented as

�(r,ṙ) = � · ξ(r,ṙ) + ε (20)

where ε is the smallest approximation error of RBFNN algorithm, � = [ω1, ω2, . . . , ωl]T is the best
constant weight matrix of neural web, l is the number of nodes used in neural networks and ξ (r,ṙ) =
[ξ1, ξ2, . . . , ξl] is Gaussian function matrix. According to the RBFNN approximation theory, the
approximation error has an upper bound ε∗, i.e. |ε| ≤ ε∗, with a positive constant ε∗ > 0.

The Gaussian function matrix employed in the RBFNN algorithm is specified as below:

ξi(Z) = exp

[−(Z − ci)T(Z − ci)

b2
i

]
(21)

Whereas ci is the central point of receptive field, bi appears as the width of the Gaussian function. In
accordance with the rule of approximation, a positive constant δ such that ‖ ξ (Z) ‖≤ δ with δ > 0 exists.

The adaptive neural web update law [28] is presented to modify the weights of neural network as:

�̇ = γ
[
Eξ

T
(r,ṙ) + ς�

]
(22)

where γ is a diagonal positive definite constant matrix that determines the update pace, E is the error
vector and ς is a neural network momentum factor matrix that can boost both training speed and accuracy
accuracy and training speed.

2. Control development and stability analysis
In this part, the neural-learning improved admittance control method with RCM constraints has been
developed, as displayed in Fig. 4. Given the required Cartesian location, the end effector of the robot
should attain r1d without breaching the RCM constraints. The desired trajectory is adapted to the interac-
tion on the end effector, while the external interaction force on the RCM constraints should not influence
the desired trajectory and its accuracy. The RCM constraint interaction, shown in Fig. 1, is regarded as
the disturbance of the system which is compensated by neural network adaption.

2.1. Remote center of motion
In order for the end effector position from the master (r1 ∈ R3) to reach the desired position (r1f ∈ R3),
an interpolation approach is formulated so to move towards the wanted location smoothly as [6]

r1d = −k0(r1 − r1f) + ṙ1 f (23)

where k0 > 0 serves as a positive coefficient. On the basis of the r1d , we can get the wanted input r1c from
the model of admittance control (14).

In accordance with the scene in Fig. 5 with a serial robot, d is the distance between the tool (for
a better understanding, the RCM constraint is increased in size.) and the RCM point (r0). The tooltip
position r1 has been controlled to trace the objective r1d in the patient’s abdomen. The value v2 represents
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Figure 4. Robots control with RCM constraints.

Figure 5. Achieving active RCM constraint with a serial robot.

the velocity for moving the wrist out of its current location r2 to its expected position r2d , where the tool
shaft traverses the RCM point r0. Thus, the wanted wrist position r2d can be acquired from (1):

r2d = r1d + r0 − r1d

‖ r0 − r1d ‖ ‖ r2 − r1 ‖ (24)

The whole control framework is shown in Fig. 6. Different from the previous studies, considering
the disturbance from the moving RCM, a neural approximation scheme is utilised in the control loop to
manage the disruption in the kinematic level, and a Cartesian Admittance control is employed to achieve
compliant interaction.

2.2. Controller development
In this part, we create a controller to trace the wanted trajectory with RCM constraints. Firstly, we define
a reference trajectory in the Cartesian space and an RCM constraint trajectory which is moving r0 in the
workspace of the robot. Then we define the related error signals, shown in Fig. 5, as follows:

er1 = r1c − r1

er2 = r2d − r2 (25)

d =‖(r0 − r1) × r2 − r1

‖ r2 − r1 ‖ ‖
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Figure 6. The overview of the control scheme.

According to the decoupled control strategy [19], the optimal torque control, τ ∗
C, can be defined as

τ ∗
C = τ dynamics + τ T + τN + ϑ + τ e (26)

τ dynamics = Ĉ(q,q̇) q̇ + ĝ(q) (27)

τ T = JT
1 (K1er1 − D1ėr1) (28)

τN = JT
2 (K2er2 − D2ėr2) (29)

where τ dynamics is the robot dynamic torque computed inside the robot motion kernel [29], Ĉ(q, q̇) and
ĝ(q) are the estimated inertia matrix, Coriolis and Centrifugal effects and gravity term in the joint space,
respectively [29]. ϑ is the estimation error of the τ dynamics, τ T is the task space control input, τ e is the
outside torque in the robot combined space. K1 is the stiffness matrix in the Cartesian space and D1 is
the damping matrix in the Cartesian space. K2 is the stiffness matrix for the wrist position control, and
D2 is its damping matrix.

According to the control aim, the reference trajectory should be only modified by external forces Fext

on the end effector in (14), and not be influenced by the force on the tool shaft Fe. Since Fext has been
considered in the design of the Cartesian admittance control model, the uncertain terms in (26), which
represent the disturbances from external force Fe and gravity compensation error, are compensated by
the adaptive approximation of artificial neural networks. Instead of approximating the disturbances in
the joint space, we propose to estimate the disturbance in the Cartesian space and introduce an adaptive
term rnn. Given the desired trajectory r1c from the Cartesian admittance control model, there is an error
between the actual position r1 and the desired position r1c due to the external force Fe on the tool shaft.

The neural network approximation gives:

r̂nn = � · ξ(r1,ṙ1) (30)

The updating law � of RBFNN is

�̇ = γ
[
er1ξ

T
(r1,ṙ1) + ς�

]
(31)

where γ is a diagonal positive definite constant matrix that determines update speed, er1 is the error
vector and ς is the neural network momentum factor matrix, which is able to boast both accuracy and
training speed.

The final control optimal term is

τ ∗
C = τ dynamics + τ ∗

T + τN (32)
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Figure 7. Fixed RCM constraint without neural learning. The desired helix trajectory and the actual
trajectory are shown.

τ ∗
T = JT

1 (K1(rc − r1) − D1ėr1) (33)

where rc = r1c + rnn is the adapted input in the task space.

3. Experimental demonstration
The control was validated by using a KUKA robot, tracking various trajectories using the developed
controller defined in (32) with the comparison of the controller developed in ref. [10]. A straight tool
with the length l = 0.22 m is attached to the robot manipulator. The RCM was set to move in a sinusoidal
way, and the RBFNN was introduced to compensate for this uncertain disturbance due to the RCM
constraints.

A 7-DOF KUKA LWR4+ robot was controlled to track the desired trajectory. The end effector was
utilised to track various trajectories starting from a non-singular home Cartesian location of the end
effector r1f ,0 to a final point r1f ,n in the robot workspace. Initially, a fixed RCM was established to validate
the decoupled control strategy and then a moving RCM was used to validate and compare the developed
neural-enhancing controller and the controller developed in [10].

3.0.1. Test of fixed RCM constraints
Firstly, the experimental setup was tested with fixed RCM constraints and various ref-
erence trajectories in its workspace. One of the experiments was shown in Fig. 7
with a helix trajectory. r1f ,0 = [−0.2285, 0.4835, 0.2095] m and r1f = r1f ,0 + [(0.025 +
0.02t) cos(8π t), (0.025 + 0.02t) sin(8π t), 0.02t] m. A fixed RCM constraint point was chosen
as r0 = [−0.2285, 0.4835, 0.2095] m. The control parameters were chosen as: k0 = 0.1, K1 =
diag[3000, 3000, 3000], D1 = diag[30, 30, 30], K2 = diag[300, 300, 300], and D2 = diag[3.5, 3.5, 3.5].

As shown in Fig. 7, the robot tool shaft needed to go through the RCM constraint point at all times
during the trajectory tracking of the end effector. The 3-D tracking trajectory was magnified to highlight
the tracking error.
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Moving RCM constraint without neural learning Moving RCM constraint with neural learning

(a) (b)

Figure 8. Moving RCM simulations when the (a) null-space and (b) RBFNN controller are implemented
for a helix trajectory.

3.0.2. Test of moving RCM constraints
Subsequently, the experimental setup was tested with moving RCM constraints and various
reference trajectories in its workspace. The experiment with a helix trajectory with increas-
ing radius was shown in Fig. 8. r1f ,0 = [−0.2285, 0.4835, 0.2095] m and r1f = r1f ,0 + [(0.025 +
0.02t) cos(8π t), (0.025 + 0.02t) sin(8π t), 0.02t] m. A moving RCM constraint point was chosen as
r0 = [−0.2285, 0.4835, 0.2095] m. Firstly, the controller developed in ref. [10] was applied to
control the end effector tracking with the parameters: k0 = 0.1, K1 = diag[3000, 3000, 3000], D1 =
diag[30, 30, 30], K2 = diag[300, 300, 300], and D2 = diag[3.5, 3.5, 3.5]. And the neural-learning-
enhanced controller was applied on the same trajectory tracking with parameters set as: k0 = 0.1, K1 =
diag[3000, 3000, 3000], D1 = diag[30, 30, 30], K2 = diag[300, 300, 300], D2 = diag[3.5, 3.5, 3.5]. Fur-
thermore, we employed 6 nodes for each input dimension of the neural network, with initial weights
�(0) = [0, 0, 0, 0, 0, 0], the learning rate γ = 0.2 and momentum ς = 0.05. The centres of the radial
basis functions were defined as ci = [−3, −1.5, 0, 1.5, 3, 3.5] and their widths as bi = [2, 2, 2, 2, 2, 2].

The performance of the controller in ref. [10] with moving RCM constraint was shown in Fig. 7, and
the performance of neural-learning-enhanced controller in (32) was shown in Fig. 7. Compared to the
3-D tracking error with the controller applied in ref. [10], the tracking error was almost eliminated by
employing the proposed neural-learning-enhanced controller.

The above Cartesian trajectory tracking error and the RCM constraint error of the helix reference
trajectory were further compared in Fig. 9. As shown in Fig. 8, the performance of Cartesian position
tracking with neural learning was much better than without neural enhancement, regardless of fixed
RCM constraints or moving RCM constraints. It, furthermore, showed a small improvement in the RCM
constraint error with neural enhancement in Fig. 8.

To validate the performance with different reference trajectories, a straight line with xEE,d = xEE,0 +
[0.013t, 0.1t, 0.0095t] m and a sine wave trajectory with xEE,d = xEE,d + [0.1t, 0.05 ∗ sin(4π t), 0] m were
designed and simulated with moving RCM constraints additionally to the more complex helix trajectory.
The sinusoidal motion of the RCM along the z-axis had an amplitude of [0.05]m with a frequency of
[5]Hz. The RMSE of the tracking error of Cartesian position and RCM constraints was computed for
each trajectory and were depicted in Table I.
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Cartesian position tracking error comparison

RCM Constraint error comparison

(a)

(b)

Figure 9. Error comparison under different situations.

3.1. Discussion
Figure 7 illustrated the performance of the trajectory tracking with a fixed RCM constraint and Fig. 8
depicted the performance of the trajectory tracking with a moving RCM constraint. It could be noticed
that the 3-D Cartesian position tracking accuracy was worse when the RCM constraint moved using
the controller without neural learning. In Fig. 9, a relatively small difference in the RCM constraints
was evidenced when using the decoupled controller without neural learning and when implementing
the RBFNN-based neural learning strategy. As for the moving RCM, in Table I, the RSME and max-
imum errors of the different simulated trajectories were summarised. As expected, the RBFNN-based
control not only eliminated the trajectory errors but also reduced the RCM errors. In Fig. 8, the RSME
errors were evidently lower when the neural approximation was employed. From the results, it could be
concluded that the neural-learning-enhanced controller had better accuracy and stability with respect to
the controller developed in ref. [10]. Hence, these results demonstrate that promising performance for
the moving movement constraints using the neural enhancing solution. The idea of using an adaptive
approximation to manage the disturbance generated by the moving RCM constraints can be useful for a
similar application scenario more than the surgical application.
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Table I. Comparison of the tracking performance between decoupled controller [10] and the neural-
learning-enhanced strategy.

Straight line Sine Helix

Null Neural Null Neural Null Neural
Trajectory RSME 0.058 0.009 0.073 0.030 0.095 0.059
Max trajectory error 4.135 2.611 4.719 1.787 5.159 2.616
RCM RSME 0.260 0.230 0.329 0.302 0.422 0.398
Max RCM error 19.131 16.951 19.759 17.709 19.199 18.55

4. Conclusion
This paper presented a neural-learning-enhanced Cartesian admittance control of the robot with mov-
ing RCM constraints, which presents nonlinear uncertain kinematic and dynamic disturbances. The
proposed control scheme integrated neural approximation-based disturbance estimation as well as admit-
tance control for a serial robot to operate with a moving RCM constraint. Furthermore, admittance
control was introduced to adapt the desired trajectory achieving compliant behaviour in its operational
space. The adaptive neural approximation solution demonstrates that the adaptive could enhance the
accuracy of the tracking tasks and decrease the Cartesian tracking errors of the constrained robot sys-
tem. Finally, experiments were validated on a serial robot with moving RCM constraints to validate
the efficacy of the presented controller. It showed improved tracking accuracy with the neural-learning-
enhanced control strategy. In the near future, we will navigate more challenging issues in a clinical
environment (e.g. soft tissue interaction, time delay and dead zone) in our proposed control solution
[30]. System stability and tracking accuracy might not be guaranteed under these situations. Full proof
of stability and robustness will be provided and validated in a real scenario. At the same time, how
to tracking the real-time movement of the RCM point is also a challenging topic. The modelling of
the RCM point between its changing trajectory and breathing time is helpful for the construction of
stable operating performance. Furthermore, experimental validations and analysis will be performed
with physical interaction on the robot’s end effector, facilitating the feasibility of the proposed neural-
learning-enhanced admittance control scheme. For future works, we will develop a real phantom with a
moving RCM generated by simulated human breathing to evaluate the proposed algorithm.
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