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1. Introduction

Analogues of the Krein-Milman theorem for order-convexity have been
studied by several authors. Franklin [2] has proved a set-theoretic result, while
Baker [1] has proved the theorem for posets with the Frink interval topology.
We prove two Krein-Milman results on a large class of posets, with the open-
interval topology, one for the original order and one for the associated preorder.
This class of posets includes all pogroups. Cellular-internity defined in R" by
Miller [3] leads to another notion of convexity, cell-convexity. We generalize
the definition of cell-convexity to abelian /-groups and prove a Krein-Milman
theorem in terms of it for divisible abelian /-groups.

2. Preliminaries

Let (X, g ) be a poset. By taking the family of sets {x: x > a}, {y: y < b}
where a, beX as a. subbase we define the open-interval topology ffl on X. Denote
the set {x: a < x < b} for a < b by (a, b).

We say a =̂  b if x > b implies that x > a, and if y < a implies that
y < b [4]. Then (X, =0 is a preordered set; =̂  is called the associated preorder
and a^b, b > c implies that a > c (also a > b, b^c implies that a > c). Also
<% is To if and only if (X,^.) is a poset [4]. ,For example if X = R" define
(xj, •••,xn) > 0 to mean xt > Ofor i = 1,2, ••-,«, then °tt is just the usual euclidean
topology and {xu •••,xn)^=0 if x, ^ 0 for i = 1,2, •••,«. In fact in a Banach
lattice (B, :S') with strong unit if we define x > 0 to mean x is a strong unit then
^ is homeomorphic with the metric topology and =̂  = :£' [5]. We will denote
the closure of S £ X in °U by S~* or S~ if the latter does not cause confusion.

If S £ X we say S is ^ -convex (^.-convex) ifa,beSa :g x ^ b(a =̂  x =̂  Z>)
implies that x e S . We say aeS is a ^-extreme (^-extreme) point
of S if x ^ a ^ y (x =̂  a ^ y) with x,yeS implies that a = x or a = y
(a =<; x or a ^s y). We denote the ^-extreme (^-extreme) points of S by
£(S) (e(S)). It is clear that xeE(S) (xee(S)) if and only if x is a maximal or
a minimal element of (S, ^ ) ((S, =^)). The ^-convex hull of S, denoted by
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C(S), is the smallest g-convex set containing S. Similarly we define the =<-
convex hull, c(S). It is easily seen that C(S) and c(S) do in fact exist and also
C(S) = {x: a = x = b for some a, b eS}, with a similar formula for c(S). We
note that e(S) £ E(s) and C(S) £ C(S).

We shall need one or other of the following conditions:
(a) For all a, b e X (y < a implies y < b) if and only if (b < x implies a < x)
(ft) a < b implies that a < x for all x e {z: z > b} ~

and that y < b for all y e{z: z < a}~.
There exist posets satisfying neither (a) nor (ft), however each pogroup satisfies
both. We note that our condition (a) is the same as condition (£) in [4].

Let (Y, < ) be a preordered set. By taking the sets {y: y > a}, {y: y < b}
where a, b e Y as a subbase we define the Frink interval topology ̂ F on Y.
Baker [1] proved his results using the topology f ona poset.

In the context of solving a class of functional equations Miller [3] defined
cellular internity in R"; the concept of cell-convexity follows immediately from it.
We generalize the definition to abelian /-groups. Let (G, < ) be an abelian /-group.
Denote [x: x !> 0} by G+ and for a,beG+ write a ~ b if there exist positive
integers m and n such that a =̂  mb and b =̂  na. If a e G+ write a0 for the set
{ x : x ~ a } . Call the sets x° for xeG+ archimedean classes and denote the
family of archimedean classes by s/ [5]. We define two partial orders, ^ and
<|, o n j / . We say a0 =< b° if a =̂  nb for some positive integer n; and a0 < b°
itna ^, b for all integers n.We write [a b c] if a ^ b =̂  c and if (c—b)° = (b — a)°.
We say S = G is cell-convex if a,beS and [axft] implies that xeS. We say
oeS is a cell-extreme point of S if [xoy] with x,yeS implies that a = x or
o = y. We denote the cell-extreme points of S by < (̂S). The intersection of all
cell-convex sets containing S is itself cell-convex and is the smallest such set;
it is called the cell-convex hull of S, denoted by #(S).

The open-interval topology on (G, ̂  ) is discrete if (G, =<[) is not fully or-
dered. So to obtain a suitable topology on G we consider compatible tight Riesz
orders (abbreviated CTROs) on (G,<) [5]. A tight Riesz group (H,^) is a
directed abelian pogroup which satisfies the following interpolation property:
if fl[, a2, bi,b2eH such that at < bj for i,j = 1,2 then there exists c e H such that
at< c < bj for i,j = 1,2. A CTRO on (G, =<[) is a non-trivial partial order _
making (G, ^ ) a tight Riesz group with ^ as its associated order. Each CTRO
gives rise to an open-intrval topology which is Hausdorff. If ^ is a CTRO with
topology °U and a < b then (a,fc)~* = {x: a = ĴC =4b}. Also the family of sets
{( — a, a): a > 0} forms a base of neighbourhoods at 0 and ^ is isolated. Also
e(S) <= «f(S) and V(S) S c(S) for all S ^ G.

We quote one result on CTROs from [5].

LEMMA 1 [5]. There is a one-one correspondence between CTROs on
(G, =O and sets ?7~ with the properties:
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(i) y is a proper dual ideal of {stf,^.)
(ii) ifa°e^~ then there exist b°, c°eJ~ such that a = b + c
(iii) (/ x° 4 y° for all y°e^~ then x = 0.

In fact the set of archimedean classes of the strictly positive elements of a CTRO
satisfies (i)-(iii) and vice versa.

It can be shown that every divisible abelian /-group has at least one CTRO [5].

3. The :2-convex and ̂ -convex cases

THEOREM 1. Let K be compact in (X, ^ , ^ ) then
(i) CE(K) = C(K) if (X, ^ ) satisfies (a) or <j3)
(ii) ce(K) = c(K) if(X, ^ ) satisfies (a) or if(X, ^ ) is dense and satisfies (/?)

PROOF. Franklin [2] has shown that to prove (i) it is sufficient to prove
that for each a e K, (K n {x: x 2: a}, :g ) has a maximal element and
that (K n{x: x ^ a}, ^ ) has a minimal element. Let C be a chain in
(K n {x: x ^ a}, g ) , we want to show that C is bounded above in
(K n {x: x ^ a}, <; ). C is a net with itself as indexing set so by the definition
of ffl there exists beK such that ^C-lim C = b, we may also assume that C has no
largest element. If x > b then {y: y < x} is a neighbourhood of b so c< x for all
c eC. So if (a) holds then b ^ c for all ceC. So in fact b > c for all ceC and
fteJCn{x:x 2; a}. Now suppose instead that (/?) holds. If ceC there exists
ct&C such that c <c^ and so fce{x: x > c j " . Hence by (/?) b> c for all ceC.
Hence (i) follows by applying Zorn's lemma and a dual argument for
X n { x : x ^ a}.

Franklin's result can be shown to be true also for preordered sets. Let aeK
and let D be a chain in (K n {x: x^a}, =^), so there exists feK such that
<%-\imD = / . I fx> /then x>dfor all deZ). So if (a) holds t h e n / > d for all D.
Now suppose that {X, ^ ) is dense and (0) holds. Let de£>, if y < d then for
some zeX y < z < d. So fe{x: x > z}~ and by (/?) j> < / . So x > / implies that
x > d, and y < d implies that y < f. Hence f^dfov all deD. Hence (ii) follows.

Baker [1] proved that if K is convex and compact in (Y, ^ , J87) where
(Y, g ) is a poset then CE(K) = K. We restate his result, and for completeness
prove it.

LEMMA 2 (Baker). Let (Y, ^ ) be a preordered set and let K be compact
in (Y,£,^) then CE(K) = C(K).

PROOF. Let aeK and let C be a chain in (K n {x: x ^ a}, ;£). Then the
family of IF -closed sets {y: y S: c}, ceC, has the finite intersection property.
So by the compactness of K there exists b ^ c for all c eC, and beK. The rest
of the proof follows the method used above.

We now show that the first part of Theorem 1 (ii) can alternatively be proved
using Lemma 2.
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LEMMA 3. / / (X, ^ , <%) satisfies (a) then ^l is at least as strong as & for
(X, < ) ; hence if K is ^-compact then ce(K) = c(K).

PROOF. We shall show that S = {x: x > a} is ^/-closed for each aeX.
Let {yx} be a net in S with ^-limit b. If c> b then c> yx for some a so c> a.
Since (a) holds we conclude that b > a so that S is ^-closed. Hence <% is at least
as strong as the Frink interval topology on (X, =<). So if K is ^-compact then
it is .^"-compact. The rest follows by Lemma 2.

The class of posets satisfying (a) and (/}) is quite large as is made clear now.

LEMMA 4. / / (X, 5S) is a pogroup then it satisfies (a) and (/?)•

PROOF. NOW y < a implies y < b means that a — p < b for all p > 0;
and b < x implies a < x means that b + p > a for all p > 0. So (a) is satisfied
since these are equivalent.

If a < b and xe{z: z > b}~ then {y: y < b — a + x} is a neighbourhood
of x. So for some c, b<c<b-a + x, hence a < x. The dual follows easily
and so (/?) is satisfied.

We note that (X, + ) need not be abelian.

EXAMPLE. There exists a lattice satisfying neither (a) nor (/?). Consider
the lattice consisting of the elements at < a2 < a3 < a4 < a5 and b such that
a t < b < a5, and b not comparable with a2, a3 and a4. Then x > b implies that
x > a4 but y < aA does not imply that y < b (for example a3 < a4 and a3 <fc b).
Also a2 < a3 and a 4 e {x: x > a3}, so be {x: x > a3}~ but a2 -fe b.

4. The cell-convex case

LEMMA 5. Let (G, =^) be a divisible abelian l-group, with a CTRO,
^ , K a compact cell-convex subset of (G, ;£, °ll) and 0, aeK n G+. T/jen
a0 < p° for all p>0.

PROOF. Let L = {x: x = ra for 0 ^ r g 1, and r rational}.
By cell-convexity of 2C we have L <= K, so L~ is compact. Let p > 0 and

cover LT by the family of sets (x — p, x + p) where x eLT. Then by compactness
there exist 0 ^ ru r2 ^ 1, r t # r2, and some x e l " such that x — p < r^a,
r2a < x + p. Also for some /-3, — p < x — r3a < p, since xeLT. So
— 2p < (rt — r3)a, (r2 — r3)a < 2p. Since at least one of rl — r3, r2 — r3 is
non-zero we have a0 ^ p°.

COROLLARY 1. For the above a, the set {x: x° ^ a0} is the strictly positive
cone of a CTRO.

PROOF. Properties (i) and (ii) of Lemma 1 are easily proved. If y° < a0

then certainly y° <| p° for all p > 0, so y = 0.

https://doi.org/10.1017/S1446788700022825 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022825


[5] Order-convexity 261

Denote this CTRO by = , and the open-interval topology of (G, = ) by °Ua.

COROLLARY 2. The topology °lta is at least as strong as °M.

PROOF. It will be sufficient to prove that if p > 0 then {x: — p < x < p} is
a neighbourhood of 0 in %u. There exists a positive integer m such that p/2 =̂ ajm,
since p° ^ a0. So (a/m) < p since g is isolated. If ( — a/m) "f y <(a/m) then
certainly ( — ajm)<,y-<(a/m), so — p < y < p. Hence °tta is at least as strong

THEOREM 2. Lei (G, =^) be a divisible abelian l-group, 5g a CTRO on
(G, =^), K a compact cell-convex subset of(G, ^ , ^) then

lVe(K)r = K.

PROOF. Let xeK then by Theorem 1 (ii) and Lemma 4 there exist a,
b ee(K) such that b ^ x =< a. We may assume without loss of generality that
b = 0.

Now {y: 0 < y < a} s Ve(K\ since a0 < j ; 0 < a0 and a0 < (a - y)° < a0,
so [0 j a]. By Lemma 5 Corollary 2

{z:0^z^a} = {y.0<y< «}"*•"£ {j>: 0 < y < a}"*s [ ^ K ) ] " * ,

hence xe\%e(Kj]~ \ so X £ ['g'e(iC)]". The rest is obvious since e(K) ^ K,
K is cell-convex, and °U is Hausdorff.

COROLLARY. With the hypotheses as above [W(X)]~ = K.
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