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1. Introduction

Analogues of the Krein-Milman theorem for order-convexity have been
studied by several authors. Franklin [2] has proved a set-theoretic result, while
Baker [1] has proved the theorem for posets with the Frink interval topology.
We prove two Krein-Milman results on a large class of posets, with the open-
interval topology, one for the original order and one for the associated preorder.
This class of posets includes all pogroups. Cellular-internity defined in R" by
Miller [3] leads to another notion of convexity, cell-convexity. We generalize
the definition of cell-convexity to abelian I-groups and prove a Krein-Milman
theorem in terms of it for divisible abelian I-groups.

2. Preliminaries

Let (X, <) be a poset. By taking the family of sets {x: x > a}, {y: y < b}
where a, be X as a subbase we define the open-interval topology % on X. Denote
the set {x: a < x < b} for a < b by (a, b).

We say a <X b if x> b implies that x > a, and if y <a implies that
y < b [4]. Then (X, <) is a preordered set; < is called the associated preorder
and a = b, b > ¢ implies that a > ¢ (also a > b, b = ¢ implies that a > ¢). Also
% is T, if and only if (X,=<{) is a poset [4]. ,For example if X = R" define
(x4, ", X%,) >0tomean x; > 0fori = 1,2, ... n, then % is just the usual euclidean
topology and (x,---,x,) =0 if x;, 2 0 for i = 1,2,.--,n. In fact in a Banach
lattice (B, < ') with strong unit if we define x > 0 to mean x is a strong unit then
% is homeomorphic with the metric topology and < = £’ [5]. We will denote
the closure of S < X in % by S™¥ or S~ if the latter does not cause confusion.

If S € X wesay Sis <-convex (-convex)ifa,beSa < x £ blaxxx<b)
implies that xeS. We say aeS is a =-extreme (<-extreme) point
of Sif x<a=<y(x<a<y) with x,yeS implies that a =x or a=y
(a<Xx or a}>y). We denote the =<-extreme (=<{-extreme) points of S by
E(S) (e(S)). It is clear that x € E(S) (xee(S)) if and only if x is a maximal or
a minimal element of (S, £) ((S, <)). The =-convex hull of S, denoted by
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C(S), is the smallest <-convex set containing S. Similarly we define the <-
convex hull, ¢(S). It is easily seen that C(S) and ¢(S) do in fact exist and also
C(S) = {x: a £ x £ b for some a, b &S}, with a similar formula for ¢(S). We
note that ¢(S) = E(s) and C(S) € ¢(S).

We shall need one or other of the following conditions:

(«) Foralla,beX (y < aimplies y < b) if and only if (b < x implies a < x)

(B) a < bimplies that a < x for all xe {z: z > b}~

and that y<bforallye{z:z<a}".
There exist posets satisfying neither (&) nor (8), however each pogroup satisfies
both. We note that our condition (a) is the same as condition (X) in [4].

Let (Y, <) be a preordered set. By taking the sets {y: y > a}, {y: y < b}
where a,beY as a subbase we define the Frink interval topology # on Y.
Baker [1] proved his results using the topology # on a poset.

In the context of solving a class of functional equations Miller [3] defined
cellular internity in R"; the concept of cell-convexity follows immediately from it.
We generalize the definition to abelian I-groups. Let (G, <) be an abelian I-group.
Denote {x:x 3> 0} by G* and for a,beG* write a ~ b if there exist positive
integers m and n such that a X mb and b < na. If ae G* write a® for the set
{x:x ~ a}. Call the sets x° for x e G* archimedean classes and denote the
family of archimedean classes by &/ [5]. We define two partial orders, < and
<, on /. We say a® < b° if a < nb for some positive integer n; and a° < b°
if na < b for all integers n.We write [abc] if a < b=<c and if (c—b)° = (b—a)°.
We say S < G is cell-convex if a,beS and [axb] implies that xe S. We say
aeS is a cell-extreme point of S if [xay] with x, ye S implies that a = x or
a = y. We denote the cell-extreme points of S by &(S). The intersection of all
cell-convex sets containing S is itself cell-convex and is the smallest such set;
it is called the cell-convex hull of S, denoted by %(S).

The open-interval topology on (G, <) is discrete if (G, <) is not fully or-
dered. So to obtain a suitable topology on G we consider compatible tight Riesz
orders (abbreviated CTROs) on (G, <) [5]. A tight Riesz group (H,<) is a
directed abelian pogroup which satisfies the following interpolation property:
if ay, a,, by, b, € H such that a; < b, for i,j = 1,2 then there exists ¢ € H such that
a;<c<b;forij=1,2. ACTRO on (G,<) is a non-trivial partial order <
making (G, £) a tight Riesz group with < as its associated order. Each CTRO
gives rise to an open-intrval topology which is Hausdorff. If < is a CTRO with
topology % and a < b then (a,b) * = {x: axx<b}. Also the family of sets
{( — a,a): a> 0} forms a base of neighbourhoods at 0 and < is isolated. Also
e(S) < &(S) and €(S) < ¢(S) for all S = G.

We quote one result on CTROs from [5].

LeMMA 1 [5]. There is a one-one correspondence between CTROs on
(G, <) and sets J with the properties:
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(i) 7 is a proper dual ideal of (,<X)

(ii) if a°€.7 then there exist b°, c°e T such thata = b+ ¢

(iii) if x° < y° for all y°€ J then x = 0.
In fact the set of archimedean classes of the strictly positive elements of a CTRO
satisfies (i)-(iii) and vice versa.

It can be shown that every divisible abelian I-group has at least one CTRO [5].

3. The <-convex and <{-convex cases

THEOREM 1. Let K be compact in (X, £, %) then
() CE(K) = C(K) if (X, £) satisfies () or (B)
(ii) ce(K) = oK) if (X, =) satisfies (a) or if (X, <) is dense and satisfies (B)

PROOF. Franklin [2] has shown that to prove (i) it is sufficient to prove
that for each aeK, (K N {x:x = a}, <) has a maximal element and
that (K N{x:x < a}, <) has a minimal element. Let C be a chain in
(K N {x:x 2 a}, £), we want to show that C is bounded above in
(KN{x:x z a}, £). C is a net with itself as indexing set so by the definition
of % there exists be K such that #-lim C = b, we may also assume that C has no
largest element. If x > b then {y: y < x} is a neighbourhood of b so ¢< x for all
ceC. So if (&) holds then b = ¢ for all ceC. So in fact b > ¢ for all ce C and
beK N{x:x = a}. Now suppose instead that () holds. If ¢ eC there exists
c,€C such that ¢ < ¢, and so be {x: x > ¢;} . Hence by (8) b > ¢ for all ceC.
Hence (i) follows by applying Zorn’s lemma and a dual argument for
KnNn{x:x < a}.

Franklin’s result can be shown to be true also for preordered sets. Let aeK
and let D be a chain in (K N {x:x}>a}, <), so there exists feK such that
#-limD = f. If x > fthen x > d for alld € D. So if (&) holds then f = d for all D.
Now suppose that (X, <) is dense and (f) holds. Let deD, if y < d then for
some zeX y<z<d.So fe{x: x>z}~ and by (f) y < f. So x > f implies that
x >d, and y < d implies that y < f. Hence f 2= d for all d e D. Hence (ii) follows.

Baker [1] proved that if K is convex and compact in (Y, <, %) where
(Y, £) is a poset then CE(K) = K. We restate his result, and for completeness
prove it. ’

LemMA 2 (Baker). Let (Y, <) be a preordered set and let K be compact
in (Y, £,%) then CE(K) = C(K).

ProoOF. Let ae K and let C be a chain in (K N {x:x = a}, <). Then the
family of & -closed sets {y:y = ¢}, ceC, has the finite intersection property.
So by the compactness of K there exists b = ¢ for all c eC, and beK. The rest
of the proof follows the method used above.

We now show that the first part of Theorem 1 (ii) can alternatively be proved
using Lemma 2.
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LemMma 3. If (X, £, %) satisfies (&) then % is at least as strong as F for
(X, X); hence if K is U-compact then ce(K) = c¢(K).

PrOOF. We shall show that S = {x:x > a} is Z-closed for each aeX.
Let {y,} be a net in S with #-limit b. If ¢ > b then ¢ > y, for some « so ¢ > a.
Since («) holds we conclude that b = a so that S is %-closed. Hence % is at least
as strong as the Frink interval topology on (X, ). So if K is #-compact then
it is &F-compact. The rest follows by Lemma 2.

The class of posets satisfying (o) and (f) is quite large as is made clear now.

Lemma 4. If (X, <) is a pogroup then it satisfies (o) and (B).

ProOF. Now y <a implies y <b means that a — p<b for all p> 0;
and b < x implies a < x means that b + p > a for all p> 0. So () is satisfied
since these are equivalent.

If a<b and xe{z:z> b}~ then {y: y <b—a+ x} is a neighbourhood
of x. So for some ¢, b<c<b—a+x, hence a < x. The dual follows easily
and so (f) is satisfied.

We note that (X, + ) need not be abelian.

ExampLE. There exists a lattice satisfying neither (x) nor (f). Consider
the lattice consisting of the elements a; < a, < a; < a, < as and b such that
a; < b < as, and b not comparable with a,, a; and a,. Then x > b implies that
x > a, but y < a, does not imply that y < b (for example a; < a, and a5 < b).
Also a, < asand a e {x:x > a3}, s0 be {x: x> a3}~ buta, «b.

4. The cell-convex case

LemMA 5. Let (G, <) be a divisible abelian l-group, with a CTRO,
<, K a compact cell-convex subset of (G, £, %) and 0, acK N G*. Then
a® < p° forall p>0.

PrOOF. Let L = {x:x = ra for 0 £ r £ 1, and r rational}.

By cell-convexity of K we have L < K, so L™ is compact. Let p > 0 and
cover L™ by the family of sets (x — p, x + p) where x e L”. Then by compactness
there exist 0 < ry, ¥, < 1, r{  r,, and some xe L™ such that x — p <ra,
r,a < x + p. Also for some r;, — p < x — rsa < p, since xeL™. So
—2p < (r; —ry)a, (r, —riy)a <2p. Since at Ieast one of r, —ry, r, —r; is
non-zero we have a°® < p°

COROLLARY 1. For the above a, the set {x: x° 2= a®} is the strictly positive
cone of a CTRO.

PRrOOF. Properties (i) and (ii) of Lemma 1 are easily proved. If y° < a®
then certainly y°® < p®forall p>0,s0y = 0.
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Denote this CTRO by % , and the open-interval topology of (G, % ) by %,.
COROLLARY 2. The topology #, is at least as strong as %.

Proor. It will be sufficient to prove that if p > 0 then {x: — p <x < p} is
a neighbourhood of 0 in %,. There exists a positive integer m such that p/2 > a/m,
since p® 3= a®. So (a/m) < p since < is isolated. If ( —a/m) < y <(a/m) then
certainly (—a/m)<y<(a/m), so —p<y < p. Hence %, is at least as strong
as %.

THEOREM 2. Let (G, <) be a divisible abelian Il-group, £ a CTRO on
(G, X), K a compact cell-convex subset of (G, <, %) then

[¢e(K)]™ = K.

Proor. Let xeK then by Theorem 1 (ii) and Lemma 4 there exist a,
b e e(K) such that b < x < a. We may assume without loss of generality that
b=0.

Now {y: 0 <y <a} < %e(K), since a® < y° < a®and a® < (a — »)° < a°,
s0 [0 y a]. By Lemma 5 Corollary 2

{220z a} = {y: 0S5y Sa} ¥ {y:0< y Sa} Y [%e(K)] 7,

hence xe[%e(K)]™; so K < [#e(K)]~. The rest is obvious since e(K) < K,
K is cell-convex, and % is Hausdorff.

COROLLARY. With the hypotheses as above [$6(K)]™ = K.
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