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A numerical study on the turbulence
characteristics in an air–water upward bubbly
pipe flow
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A high-resolution numerical simulation of an air–water turbulent upward bubbly flow in
a pipe is performed to investigate the turbulence characteristics and bubble interaction
with the wall. We consider three bubble equivalent diameters and three total bubble
volume fractions. The bulk and bubble Reynolds numbers are Rebulk = ubulkD/νw = 5300
and Rebub = (〈ubub〉 − ubulk)deq/νw = 533–1000, respectively, where ubulk is the water
bulk velocity, 〈ubub〉 is the overall bubble mean velocity, D is the pipe diameter and
νw is the water kinematic viscosity. The mean water velocity near the wall significantly
increases due to bubble interaction with the wall, and the root-mean-square water velocity
fluctuations are proportional to ψ̄(r)0.4, where ψ̄(r) is the mean bubble volume fraction.
For the cases considered, the bubble-induced turbulence suppresses the shear-induced
turbulence and becomes the dominant flow characteristic at all radial locations including
near the wall. Rising bubbles near the wall mostly bounce against the wall rather than slide
along the wall or hang around the wall without collision. Low-speed streaks observed
in the near-wall region in the absence of bubbles nearly disappear due to the bouncing
bubbles. These bouncing bubbles generate counter-rotating vortices in their wake, and
increase the skin friction by sweeping high-speed water towards the wall. We also suggest
an algebraic Reynolds-averaged Navier–Stokes model considering the interaction between
shear-induced and bubble-induced turbulence. This model provides accurate predictions
for a wide range of liquid bulk Reynolds numbers.
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1. Introduction

Wall-bounded liquid flows containing bubbles have received much attention because of
their importance in various industrial fields such as chemical reactors (Hibiki & Ishii 2002)
and nuclear plants (Krepper, Lucas & Prasser 2005). Due to the buoyancy of bubbles, the
flow characteristics of bubbly flows depend on the angle between the directions of the
buoyancy force and mean liquid flow. Among others, upward bubbly flow has been the
subject of extensive research to gain insight into the dynamics of bubbles and their impact
on various liquid flow characteristics, including turbulence, heat transfer and mixing.

The characteristics of wall-bounded upward bubbly flow in a pipe or channel are
known to significantly depend on the wall-normal distribution of bubbles such as the
core-peaking and wall-peaking bubble distributions. The former has a linear profile of
the Reynolds shear stress around the centre, while the latter has a concave profile around
the centre with a nearly uniform mean velocity except near the wall (Colin, Fabre & Kamp
2012; Dabiri, Lu & Tryggvason 2013; Du Cluzeau, Bois & Toutant 2019). Besides, the
wall-peaking bubble distribution provides a higher skin friction than that of single-phase
flow at the same liquid bulk velocity (Moursali, Marié & Bataille 1995; Liu 1997). One
of the most important factors of determining the bubble distribution is the direction of the
shear-induced lift force. Saffman (1965) showed that a spherical object travelling along the
mean flow direction in a shear flow experiences a lateral lift force towards the maximum
relative velocity to the object velocity. However, early experiments (Sekoguchi, Sato &
Honda 1974; Liu & Bankoff 1993) on upward bubbly pipe flows revealed that bubbles
larger than a critical diameter were predominantly located in the middle, which is contrary
to the result of Saffman (1965), and thus this phenomenon is called the lift force reversal.
Tomiyama et al. (2002) examined the force acting on a single bubble in a shear flow
and concluded that a modified Eötvös number, Eo = ρlgl2bub/σ , is the main parameter to
determine the direction of the lift force, where ρl is the liquid density, g is the gravitational
acceleration, lbub is the major axis of an ellipsoidal bubble and σ is the surface tension
coefficient. Dabiri et al. (2013) also suggested that the bubble deformability is a crucial
factor in determining the bubble distribution in a bubbly channel flow. Adoua, Legendre
& Magnaudet (2009) explained the mechanism of the lift force reversal on a spheroidal
bubble by observing the changes in the rotational direction of the vortices in the wake.

The turbulence characteristics of an upward bubbly pipe flow are affected by two
different fluctuations that come from the wall shear and buoyant bubbles. They are referred
to as shear-induced turbulence and bubble-induced turbulence (or pseudo-turbulence),
respectively, and the characteristics of bubble-induced turbulence have been investigated
through studies on rising gas bubbles in a stagnant liquid. Owing to bubble-induced
turbulence, the spectral densities of the liquid velocity fluctuations follow the power of
−3 slope, i.e. E( f ) ∼ f −3 and E(k) ∼ k−3 (Riboux, Risso & Legendre 2010; Roghair
et al. 2011), and the root-mean-square (r.m.s.) velocity fluctuations are proportional to
〈ψ〉0.4 (Risso & Ellingsen 2002; Riboux et al. 2010), where f is the frequency, k is the
wavenumber and 〈ψ〉 is the total bubble volume fraction. These results were examined
in the presence of background isotropic turbulence by Prakash et al. (2016) and Alméras
et al. (2017). When the background turbulence intensity is larger than a threshold value,
the velocity fluctuations change to be proportional to 〈ψ〉1.3 (Alméras et al. 2017), while
E( f ) ∼ f −3 is still maintained (Prakash et al. 2016). Riboux, Legendre & Risso (2013) and
Amoura et al. (2017) decomposed bubble-induced turbulence into the mean and fluctuating
velocity components in a reference frame moving with each bubble, and showed that
the scaling of the velocity fluctuations with 〈ψ〉0.4 was not observed, but E(k) was
proportional to k−3. Du Cluzeau et al. (2022) analysed the Reynolds stress transport
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equation of homogeneous bubbly flow with this decomposition, and showed energy
conversion from the mean to fluctuating components. Pandey, Ramadugu & Perlekar
(2020) explained that k−3 scaling of the energy spectra came from the balance among
the surface tension, kinetic energy and viscous dissipation.

Because of the characteristics of bubble-induced turbulence being distinct from those
of shear-induced turbulence, it is important to understand the interaction between them
in a wall-bounded bubbly flow. Zhang, Yokomine & Kunugi (2015) demonstrated that the
presence of a wall can inhibit bubble-induced turbulence and the existence of bubbles can
also suppress shear-induced turbulence, despite an overall enhancement in turbulence. Du
Cluzeau et al. (2019) showed that shear-induced turbulence is reduced at all wall-normal
locations in a bubbly channel flow. However, due to the difficulty in distinguishing and
comparing these two types of turbulence, our understanding of their interaction remains
limited.

For industrial applications of bubbly flow, various Reynolds-averaged Navier–Stokes
(RANS) models have been developed to account for bubble-induced turbulence. Sato,
Sadatomi & Sekoguchi (1981a) suggested an algebraic RANS model for the turbulent
viscosity νt by a linear combination of shear-induced and bubble-induced turbulence.
For one-equation (Kataoka 1995), two-equation (Kataoka & Serizawa 1989; Rzehak &
Krepper 2013; Ma et al. 2017) and Reynolds stress (Colombo & Fairweather 2015; Du
Cluzeau et al. 2019) models, bubble-induced production and dissipation terms are added to
existing single-phase RANS models (Speziale, Sarkar & Gatski 1991; Spalart & Allmaras
1992; Menter 1994). In addition to these turbulence models, force (Lucas, Krepper &
Prasser 2001, 2007) and polydispersity (Liao et al. 2015) models have been suggested
to predict the bubble distribution in the wall-normal direction. Recently, an up-scaling
approach using direct numerical simulation has been conducted for better prediction (Bois
2017; Ma et al. 2017; Du Cluzeau et al. 2019). Du Cluzeau et al. (2019) also showed
that surface tension, which was not included in most models, is the strongest force in
the wall-normal momentum budget equation. Therefore, a further investigation of surface
tension and its interaction with surrounding liquid is necessary.

Although there have been numerous studies on wall-bounded bubbly flows, a
comprehensive understanding on the effect of bubbles on liquid flow structures is
still lacking. According to different flow conditions, there exist numerous types of
bubble behaviours during a bubble–wall interaction (bouncing, sliding and oscillating
without collision), bubble–bubble interaction (drafting-kissing-tumbling and merging)
and rising without interaction (rectilinear rise, zigzagging and spiralling). To understand
the bubble–wall interaction and its effect on the near-wall coherent structures, we perform
a high-resolution numerical simulation of an air–water upward bubbly pipe flow. We
also examine how the turbulence statistics and skin friction are modified by the bubble
size and volume fraction. Finally, we suggest an algebraic RANS model considering the
interaction between bubble-induced and shear-induced turbulence from the results of the
present numerical simulation. Numerical details are given in § 2. The turbulence statistics,
bubble behaviour and near-wall vortical structures are discussed in §§ 3.1 and 3.2, followed
by conclusions in § 4.

2. Numerical details

2.1. Governing equations and numerical method
We simulate an air–water upward bubbly pipe flow in Cartesian coordinates with
an immersed boundary method (Yang & Balaras 2006). The governing equations
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for two-phase immiscible incompressible flow are the continuity and Navier–Stokes
equations:

∇ · u = 0, (2.1)

∂(ρu)
∂t

+ ∇ · (ρuu) = −Πk − ∇p + ∇[μ(∇u + ∇uT)] + (ρ − 〈ρ〉)g + σκδn + f ,

(2.2)

where u is the velocity, t is the time,Π (= dP/dx + 〈ρ〉g) is the sum of the mean pressure
gradient and weight of air–water mixture, 〈 · 〉 denotes an average in time and over the
whole computational domain, k is the unit vector in the axial (upward) direction, p is the
pressure fluctuations, g (= −gk) is the gravitational acceleration vector, σ is the surface
tension coefficient, κ is the curvature, n is the surface-normal vector on the phase interface,
δ is the delta function (1 at the phase interface and 0 otherwise) and f is the momentum
forcing to satisfy the no-slip boundary condition on the pipe wall (Yang & Balaras 2006).
Note that (2.1) and (2.2) are solved in a periodic domain in the axial direction. Here, ρ and
μ are the air–water mixture density and viscosity, respectively, defined as

ρ = ρaψ + ρw(1 − ψ), (2.3)
ρ

μ
= ρa

μa
ψ + ρw

μw
(1 − ψ), (2.4)

where ψ is the bubble volume fraction inside a numerical cell, and the subscripts a and
w denote air and water, respectively. With this formulation, the continuity of tangential
stresses at an interface is implicitly satisfied (Prosperetti 2002), and a smoother velocity
profile is obtained around the interface in our preliminary rising single-bubble simulation
than that with a volume-weighted arithmetic formulation (ρ = ρaψ + ρw(1 − ψ) and
μ = μaψ + μw(1 − ψ)).

To track the phase interface, we use a level-set method (Herrmann 2008; Kim 2011):

∂φ

∂t
+ u · ∇φ = 0, (2.5)

where φ is the level-set function which is a sign-distance function from the phase interface
having positive and negative values in water and air, respectively. We use a refined level-set
grid method (Herrmann 2008; Kim 2011), which adopts a separate refined level-set grid
in addition to the flow solver grid, to reduce numerical errors coming from the volume
and surface tension estimations. The bubble volume fraction ψ is calculated from the
analytical formula of the level-set function (van der Pijl et al. 2005; Herrmann 2008). In
this paper, r, θ and z denote the radial, azimuthal and axial directions, respectively, and x
and y denote the horizontal directions in Cartesian coordinates. The numerical methods of
solving (2.1), (2.2) and (2.5) are given in Appendix A.

We simulate both single-phase and monodispersed bubbly pipe flows. The fluids
considered are air and water at atmospheric pressure and room temperature of 20 ◦C. The
density and viscosity of air are ρa = 1.2 kg m−3 and μa = 1.8 × 10−5 N s m−2, and those
of water are ρw = 998 kg m−3 and μw = 1.0 × 10−3 N s m−2, respectively (White 1979).
The surface tension coefficient of the air–water interface is 0.07 N m and the gravitational
acceleration is g = 9.81 m s−2. The water bulk Reynolds number is fixed at Rebulk =
ρwubulkD/μw = 5300, where ubulk (= ∫

(1 − ψ)uz dV/
∫
(1 − ψ) dV = 0.132 m s−1) is

the water bulk velocity, and D (= 0.04 m) is the pipe diameter. These pipe diameter
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and water bulk velocity are the same as those in the experiment by Lee et al.
(2021). The corresponding friction Reynolds number of the single-phase pipe flow is
Reτ = ρwuτR/μw = 180 (Eggels et al. 1994), where uτ (= √

τw/ρw) is the friction
velocity, R is the pipe radius and τw is the mean wall shear stress.

Figure 1 shows a schematic diagram of the present upward bubbly flow in a vertical
pipe, grid indices for the momentum and level-set equations and grid distribution on a
horizontal plane. As shown in figure 1(c), uniform grids are distributed on the whole
domain, because small-scale flow structures are observed not only near the wall but also
around the centre due to buoyant bubbles. The horizontal computational domain sizes for
single-phase and bubbly flows are 1.0079D (x)× 1.0079D ( y) in Cartesian coordinates,
and their axial domain sizes are 7.5D and 3D, respectively. The inclusion of 0.0079D
in the horizontal domain is due to the use of an immersed boundary method. We use a
smaller axial domain size of 3D for the present bubbly flow because the flow structures
are smaller due to bubble–water interactions. We show below that this axial domain
size is still large enough to capture flow structures in the bubbly flow. The number
of grid points for the single-phase flow is 256 (x)× 256 ( y)× 384 (z). From our grid
resolution test (see § 2.2), we suggest that the numbers of grid points per bubble required
for the momentum and level-set equations are 24 and 48, respectively. Based on this
requirement, for case SM, we provide 384 × 384 × 1146 and 768 × 768 × 2292 grid
points for the momentum and level-set equations, respectively, whereas 256 × 256 × 762
and 512 × 512 × 1524 grid points are provided for other cases. The grid spacings in wall
units are x+ (= xuτ /νw) = y+ = 1.42 and z+ = 7.03 for the single-phase flow,
andx+ = y+ = z+ = 1.7–2.5 for the bubbly flows. The periodic boundary condition
is applied to the axial and horizontal directions, and the no-slip boundary condition is
satisfied on the pipe wall (immersed boundary).

Table 1 shows the cases considered in this study, where the variations of the bubble
equivalent diameter deq (= (6Vb/π)

1/3; Vb is the volume of each bubble), total bubble
volume fraction 〈ψ〉, number of bubbles Nbub, Eötvös number Eo (= ρwgd2

eq/σ ), friction
Reynolds number Reτ , bubble Reynolds number Rebub (= ρw(〈ubub〉 − ubulk)deq/μw)
and averaging time for obtaining statistics Tavg are listed for each case. Here, 〈ubub〉
is the overall mean bubble velocity averaged over all the bubbles in the computational
domain. The bubble equivalent diameters considered are deq = 2.62, 3.30 and 4.16 mm
(deq/D = 0.0655, 0.0825 and 0.1040, respectively), and the corresponding Eötvös
numbers are Eo = 0.96, 1.52 and 2.42, respectively. We also performed simulations at
higher deq values (deq/D = 0.1310 and 0.1650), but do not include their results here,
because monodispersed bubbly flow could not be achieved due to breakup induced by
turbulence.

Figure 2 shows the temporal variations of −Π to drive a constant water mass flow
rate (or a constant water bulk Reynolds number) for all cases. Since the weight of the
air–water mixture is constant in time, the behaviour of −Π essentially represents that
of the mean pressure gradient. As the equivalent bubble diameter decreases at a given
〈ψ〉 and total bubble volume fraction increases at a given deq, the mean pressure gradient
(and Reτ in table 1) increases. The mean pressure gradients of bubbly flows exhibit large
fluctuations as compared with that of the single-phase flow. These large fluctuations come
from intermittent bubble–wall interactions, which is discussed in detail in § 3.2.

2.2. Validation
The use of an immersed boundary method for the present single-phase pipe flow is
validated by comparing the turbulence statistics with those of Eggels et al. (1994) and
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Figure 1. Numerical set-up: (a) schematic diagram of an upward bubbly flow in a vertical pipe; (b) grid
systems for the momentum and level-set equations; (c) grids on a horizontal plane, computational boundary
and immersed boundary (pipe wall). In (b), indices i and j are for the momentum equations, and indices 2i and
2j are for the level-set equation. Filled circles in blue and red are the numerical cell centres for the momentum
and level-set equations, respectively.

Case deq/D 〈ψ〉 (%) Nbub Eo Reτ Rebub Tavgubulk/D

small–medium (SM) 0.0655 1.5 240 0.96 323 533 45
medium–medium (MM) 0.0825 1.5 120 1.52 285 737 59
large–medium (LM) 0.1040 1.5 60 2.42 256 1000 73
medium–low (ML) 0.0825 0.75 60 1.52 264 740 57
medium–high (MH) 0.0825 3.0 240 1.52 322 724 35

Table 1. Cases studied: bubble equivalent diameter, total bubble volume fraction, number of bubbles, Eötvös
number, friction Reynolds number, bubble Reynolds number and averaging time for obtaining statistics. Here,
the names of cases denote (relative size of deq)–(relative magnitude of 〈ψ〉), respectively. That is, (small,
medium, large) correspond to the cases of deq = (2.62, 3.30, 4.16 mm), respectively, and (low, medium,
high) represent the cases of 〈ψ〉 = (0.75 %, 1.5 %, 3.0 %), respectively. Note that small–medium–large and
low–medium–high are used in terms of relative bubble size and volume fraction among the cases considered,
and are not from absolute criteria for the bubble size and volume fraction.
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Figure 2. Temporal variations of −Π in (2.2): red, ML; black, MM; blue, MH; green, SM; violet, LM;
◦, single phase.
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Figure 3. Profiles of the (a) r.m.s. velocity fluctuations and (b) Reynolds shear stress: ——, present; –·–·–,
Eggels et al. (1994); — —, Wu & Moin (2009).

Wu & Moin (2009) at Rebulk = 5300. The present grid spacings in Cartesian coordinates
are uniform in all directions: x+ = y+ = 1.42 and z+ = 7.03. These magnitudes
are in between those used in Eggels et al. (1994) (r+ = 1.88,R+θ+ = 8.84,
z+ = 7.03) and in Wu & Moin (2009) (r+ = 0.167,R+θ+ = 2.22,z+ = 5.31) at
the wall (r = R). The present friction velocity obtained is uτ = 0.06779ubulk, and is very
similar to 0.06789ubulk (Eggels et al. 1994) and 0.06844ubulk (Wu & Moin 2009). Figure 3
shows the Reynolds normal and shear stresses, together with those from Eggels et al.
(1994) and Wu & Moin (2009). The present results agree very well with those of previous
studies.

To examine if the axial domain size of Lz = 3D is appropriate for the present bubbly
flow, the two-point correlation coefficients of the velocity fluctuations in the axial direction
are calculated and shown in figure 4 for the case of ML (lowest bubble volume fraction). As
shown, Rii’s rapidly decrease with increasing rz and approach nearly zero at rz/D = 1.5,
indicating that the current axial domain size of 3D is reasonably large. Note that, in
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single-phase pipe flow, low-speed streaks near the wall extend up to 1000 viscous wall
units (Eggels et al. 1994), and thus the axial domain size should be larger than about
6D (D+ = 360) to contain at least two streaky structures. As we discuss later, in bubbly
flow, the near-wall streaky structures are rarely found in the present bubbly flow due to
the agitation by bubbles. We also increase the axial domain size to Lz = 6D for case
ML, and provide results in figure 5 together with those for Lz = 3D. As shown, the
mean bubble volume fraction ψ̄ and the r.m.s. velocity fluctuations from two different
axial domain sizes show negligible changes, indicating that Lz = 3D is sufficiently
large. On the other hand, it was shown by Risso & Ellingsen (2002) that for a single
rising air bubble of a diameter comparable to the present one in stagnant water, the
wake behind the bubble persists over dozens of bubble diameters. Thus, a small axial
domain size may change the wake characteristics of the bubble. To see if this happens
for the present simulation, we calculate the differences between the time-averaged and
ensemble-averaged water flow variables (axial velocity and turbulent kinetic energy) for
case ML. Here, the time-averaged axial velocity and turbulent kinetic energy (ūz and 1

2 u′
iu

′
i,

respectively) are obtained using the process in (3.1) below, and the ensemble-averaged
axial velocity and turbulent kinetic energy (ũz and 1

2 ũ′′
i u′′

i (u′′
i = ui − ũi), respectively) are

obtained by averaging the instantaneous water velocity fields around bubbles located at
|r − ro| ≤ 0.5r (r = 0.0039D) for two different radial positions ro/R = 0.5 and 0.89.
The results as a function of the axial distance from the bubble centre (zo) are shown
in figure 6. As shown, both ũz − ūz and 1

2 (ũ
′′
i u′′

i − u′
iu

′
i) are positive near the wake

because the bubble velocity is greater than the water velocity, and are nearly zero
at (z − zo)/deq ≈ −2.5 ((z − zo)/D ≈ −0.21), indicating that the bubble wake quickly
disappears in turbulent bubbly flow unlike that from a single rising bubble. Therefore, the
use of Lz = 3D does not influence the bubble dynamics in turbulent bubbly flow.

For the validation of the present numerical method, we conduct simulations of a rising
air bubble with a straight path in water–glycerol mixtures considered by Raymond &
Rosant (2000), where deq = 3, 5 and 7 mm, σsol/σw = 0.91, ρsol/ρw = 1.20, 1.19, 1.17
and 1.15 and μsol/μw = 73.3, 42.2, 24.0 and 13.0 for solutions with ψw (water volume
fraction) = 18 %, 24 %, 31 % and 40 %, respectively, and the subscript ‘sol’ denotes
the solution. The computational domain size is (Lx, Ly, Lz) = (4deq, 4deq, 20deq), and
the numbers of grid points per bubble equivalent diameter are nNS = 16 and nLS = 32
for the momentum and level-set equations, respectively. Table 2 shows the variation of
the terminal velocity of air bubbles with the water volume fraction, together with the
experimental results by Raymond & Rosant (2000). As shown in this table, the present
results are in excellent agreement with the experimental ones.

We also conduct simulations of a rising air bubble in stagnant water to examine how
many grid points should be located per bubble such that bubble dynamics is correctly
represented. We choose the largest bubble (deq = 4.16 mm) among those considered in
the present study for these simulations. The grid resolutions tested for the Navier–Stokes
and level-set equations are (deq/xNS, deq/xLS) = (8, 16), (16, 32), (24, 48) and (32,
64), respectively. This bubble requires a vertical computational domain size of 100deq
to obtain a bubble path in equilibrium, which requires too much computational cost.
Therefore, we rather use a periodic computational box in all directions with a size of
(Lx, Ly, Lz) = (4deq, 4deq, 20deq). With this numerical set-up, the wake behind a bubble
affects its trajectory, and thus the bubble trajectory should be different from that obtained
in a very large domain size. However, this numerical set-up is sufficient to examine
the resolution requirement at a much lower computational cost. Figure 7 shows the
trajectories of the rising bubble for different grid resolutions. The bubble trajectory from
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Figure 4. Two-point correlation coefficients of the velocity fluctuations Rii as a function of the axial
separation distance rz (case ML): (a) r/R = 0.20; (b) r/R = 0.95.
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Figure 5. Profiles of the (a) mean bubble volume fraction and (b) r.m.s. velocity fluctuations for different
axial domain sizes (case ML): ——, Lz = 3D; - - - -, Lz = 6D.

(deq/xNS, deq/xLS) = (8, 16) is rectilinear, while others are oscillatory. The onsets of
oscillatory trajectories occur at the same vertical position (z/deq = 5.5) when the initial
bubble location is z/deq = 2, but the subsequent trajectories are different for different
grid resolutions. Due to the use of Cartesian coordinates and the relative position of
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Figure 6. Axial profiles of the differences in the time-averaged and ensemble-averaged water flow variables
near a bubble (case ML): (a) ũz − ūz (axial velocity); (b) (ũ′′

i u′′
i − u′

iu
′
i)/2 (turbulent kinetic energy); ——,

ro/R = 0.5; - - - -, ro/R = 0.89.

ψw (%) deq (mm) Eo uT (m s−1) uT (m s−1) Error (%)
(present) (Raymond & Rosant 2000)

3 1.66 0.0827 0.0937 −11.74
18 5 4.62 0.1557 0.1668 −6.65

7 9.05 0.1952 0.2065 −5.47
3 1.64 0.1175 0.1268 −7.33

24 5 4.56 0.1914 0.2056 −6.91
7 8.93 0.2227 0.2276 −2.15

31 3 1.64 0.1575 0.1563 0.77
5 4.56 0.2257 0.2331 −3.17

40 3 1.64 0.2039 0.1985 2.72

Table 2. Variation of the terminal velocity uT with the water volume fraction ψw (single rising air bubble in
water–glycerol solution). The experimental data of Raymond & Rosant (2000) are also shown for comparison.

the bubble to the grid, the same trajectory is not expected even with a larger number
of grid points. Although the trajectories are different for different grid resolutions, their
characteristics from (deq/xNS, deq/xLS) = (24, 48) and (32, 64) are very similar to
each other. For example, their dominant frequencies of oscillation, fpath

√
deq/g, obtained

from the power spectra of the bubble locations on the projected horizontal plane (x, y)
are 0.111 and 0.115, respectively, while that from (deq/xNS, deq/xLS) = (16, 32) is
0.056. This result suggests that the resolution of (24, 48) should adequately predict
the bubble behaviour in water. Figure 8 shows the temporal variations of vertical
and horizontal velocities of the rising bubble for different grid resolutions. As shown,
(deq/xNS, deq/xLS) = (8, 16) provides very different velocities from those from denser
resolutions. The results from the grid resolutions of (24, 48) and (32, 64) are very similar
to each other, and those of (16, 32) are slightly different in terms of oscillation frequency
and amplitude from those of (24, 48) and (32, 64). The time-averaged terminal velocities
from (deq/xNS, deq/xLS) = (8, 16), (16, 32), (24, 48) and (32, 64) are 1.05, 1.19, 1.21
and 1.20

√
gdeq, respectively. Therefore, for the bubble of deq = 4.16 mm, grid points

of (24, 48) per bubble for the Navier–Stokes and level-set equations, respectively, are
required for describing bubble dynamics, and grid points of (16, 32) are quite marginal.
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Figure 7. Trajectories for a rising bubble (deq = 4.16 mm) in the periodic domain with varying grid spacing:
(a) three-dimensional view; (b) top view. Blue, (deq/xNS, deq/xLS) = (8, 16); black, (16,32); green, (24,48);
red, (32,64).

For a smaller size of bubble, the corresponding bubble Reynolds number becomes
smaller and thus fewer grid points may be required. In our main simulations, we locate
(deq/xNS, deq/xLS) = (25.2, 50.3), (21.1, 42.2) and (26.6, 53.2) for deq = 2.62, 3.30
and 4.16 mm, respectively, according to this resolution study. Cano-Lozano et al. (2016)
and Innocenti et al. (2021) used a volume of fluid (VoF) method to predict the dynamics
of a single bubble and bubble swarm in still water at Rebub = O(100), respectively, and
suggested by rigorously examining the bubble path, wake dynamics and bubble shape that
a resolution of deq/xNS ≈ 100 should be required. Zhang, Ni & Magnaudet (2021, 2022)
also used the same method to predict the dynamics of a pair of bubbles rising in line
at Rebub = O(10)–O(100), and indicated that deq/xNS = 136 is required in the vicinity
of bubbles to resolve the boundary layer and wake. Unlike those studies, we examine
the turbulence characteristics of bubbly pipe flow (multiple bubbles interacting with the
wall) using a marginal number of grid points, and thus the present resolution may not be
sufficient to accurately capture small-scale motions behind the bubbles. Such a rigorous
analysis conducted by Cano-Lozano et al. (2016), Innocenti et al. (2021) and Zhang et al.
(2021, 2022) could be a formidable task for the present flow.

3. Turbulence statistics and flow structures

3.1. Turbulence statistics
Figure 9 shows the profiles of the mean bubble volume fraction in the radial direction for
five bubbly flows. Note that cases ML, MM and MH have the same deq/D (= 0.0825) but
different 〈ψ〉 values of 0.75 %, 1.5 % and 3.0 %, respectively, and cases SM, MM and LM
have the same 〈ψ〉 (= 1.5 %) but different deq/D values of 0.0655, 0.0825 and 0.1040,
respectively. Except for case LM, the four other cases exhibit radial bubble distributions
with peaks near the wall (called wall-peaking) and nearly flat profiles at the pipe centre
region. Half the averaging time (Tavg) in table 1 did not change the statistics near the
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Figure 8. Temporal variations of the vertical and horizontal velocities for a rising bubble (deq = 4.16 mm)
in the periodic domain with varying grid spacing: (a) vertical velocity; (b) horizontal velocity. Blue,
(deq/xNS, deq/xLS) = (8, 16); black, (16,32); green, (24,48); red, (32,64).

wall but showed slight changes in the centre region (not shown here). Thus, further
time averaging should provide slightly better profiles in the centre region, but requires
significant amounts of additional computational time (the same argument is applied to
the Reynolds normal stress profiles shown in figure 11). Case LM shows that the bubble
distribution increases from the centre to r/R = 0.4 and is nearly uniform at r/R = 0.4–0.8,
followed by a sharp decrease to the wall. This distribution lies between the wall-peaking
and core-peaking bubble distributions. According to Dabiri et al. (2013), the direction of
the lift force on a deformable bubble in wall-bounded upward bubbly flow depends on the
magnitude of Eo: i.e. bubbles move towards the centre for Eo > Eoc (≈2.5) and to the
wall otherwise. As shown in table 1, Eo = 2.42 (slightly smaller than Eoc) for case LM,
whereas Eo’s are much smaller than Eoc for the four other cases. Therefore, for case LM,
more bubbles move away from the wall but do not reach the centre, whereas most bubbles
move towards the wall for the four other cases. For a given 〈ψ〉 (cases SM, MM and LM),
more bubbles move to the wall with decreasing deq. On the other hand, for a given bubble
equivalent diameter (i.e. same Eo; cases ML, MM and MH), ψ̄ monotonically increases at
all r’s with increasing 〈ψ〉.

Figure 10 shows the profiles of the mean velocities of water and bubbles and relative
mean bubble velocity in the radial direction for the single-phase and bubbly flows. Here,
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Figure 9. Profiles of the mean bubble volume fraction in the radial direction. Red curve, case ML
(deq/D = 0.0825 and 〈ψ〉 = 0.75 %); solid black curve, case MM (deq/D = 0.0825 and 〈ψ〉 = 1.5 %); blue
curve, case MH (deq/D = 0.0825 and 〈ψ〉 = 3.0 %); dot-dashed curve, case SM (deq/D = 0.0655 and 〈ψ〉 =
1.5 %); dashed curve, case LM (deq/D = 0.1040 and 〈ψ〉 = 1.5 %).

the mean water and bubble velocities are obtained as

ūz(r) =

∫ T

0

∫ Lz

0

∫ 2π

0
(1 − ψ)uz dθ dz dt∫ T

0

∫ Lz

0

∫ 2π

0
(1 − ψ) dθ dz dt

, (3.1)

ūz,bub(r) = 1
T

∫ T

0

⎧⎨⎩ 1
Nbub(r, t)

Nbub(r,t)∑
i=1

1
Vbi

∫
Vbi

uz dV

⎫⎬⎭ dt, (3.2)

where T is the integration time, Lz is the axial domain size, Nbub(r, t) is the number of
bubbles whose centres of mass are located at r − 0.00625D ≤ rcm < r + 0.00625D at
time t and Vbi is the volume of corresponding bubble i. The water flows with bubbles have
higher mean shear rates near the wall than the single-phase flow because of the buoyant
bubbles located close to the wall. As the bubble concentration near the wall increases with
increasing 〈ψ〉 (ML to MH) and decreasing deq (LM to SM) (see figure 9), the mean shear
rates near and at the wall increase (see also Reτ ’s in table 1). On the other hand, the mean
water velocities of bubbly flows near the centre are lower than that of the single-phase flow
and decrease with increasing 〈ψ〉 and decreasing deq owing to the constant mass flow rate.
The magnitudes of the mean bubble velocities are greater than two times those of the mean
water velocities, and those near the centre increase with decreasing 〈ψ〉 and increasing
deq (a similar observation was made in homogeneous bubbly flows by Riboux et al.
(2010) and Roghair et al. (2011)). Hence, the relative mean bubble velocities are always
positive for the present flows because ūz,bub > ūz. At r/R < 0.8, the relative mean bubble
velocity is almost constant (indicating negligible wall effect in this radial region), and
increases slightly with decreasing 〈ψ〉. However, at r/R > 0.8, the relative mean bubble
velocity rapidly decreases because the mean bubble velocity rapidly decreases towards the
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ū z
,b

ub
/
u b

ul
k
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Figure 10. Profiles of the mean water and bubble velocities, and relative mean bubble velocity in the radial
direction: (a) mean velocities (water and bubble); (b) relative mean bubble velocity. 
, Single phase; red, case
ML; solid black, MM; blue, MH; dot-dashed, SM; dashed, LM.

wall while the mean water velocity there increases due to rising bubbles compared with
single-phase flow.

Figure 11(a–c) shows the profiles of the r.m.s. water velocity fluctuations in the radial
direction for the single-phase and bubbly flows. The bubbly flows have much higher r.m.s.
velocity fluctuations at all radial locations than those of the single-phase flow. The r.m.s.
velocity fluctuations increase with increasing 〈ψ〉 and deq. The behaviours of the r.m.s.
velocity fluctuations near the centre are similar to those of the mean bubble volume
fraction at each radial position (see figure 9): i.e. the magnitudes increase from r/R = 0
to 0.4 for case LM but are nearly uniform for the other four cases. This is because the
fluctuations induced by bubbles are closely related to the number of bubbles present. The
axial r.m.s. velocity fluctuations near the wall also show similar behaviours to those of ψ̄ ,
but their peak locations are at r/R ≈ 0.97, while the peak of ψ̄ locates at r/R = 0.85–0.9.
This phenomenon (i.e. shift of the peak locations) is discussed in detail in § 3.2. The
radial and azimuthal r.m.s. velocity fluctuations gradually increase towards the wall as
compared to the axial velocity component, because these cross-flow components are
affected by the wake behind rising bubbles but the axial component is directly influenced
by them. Since ψ̄ monotonically increases at all the radial locations with increasing 〈ψ〉
(figure 9), the increases of the r.m.s. velocity fluctuation with 〈ψ〉 can be normalized by
introducing ψ̄ . Figure 11(d) shows the r.m.s. water velocity fluctuations normalized by
ubulk and ψ̄0.4 for cases ML, MM and MH (ψ̄ = 0.75, 1.5 and 3.0, respectively, with the
same deq/D = 0.0825). Here, ψ̄0.4 comes from the studies of homogeneous bubbly flows
(Risso & Ellingsen 2002; Martínez-Mercado, Palacios-Morales & Zenit 2007; Roig & De
Tournemine 2007; Riboux et al. 2010) and laminar bubbly pipe flow (Kim, Lee & Park
2016). With this normalization, the profiles of r.m.s. velocity fluctuations for three cases
collapse well among themselves at all the radial locations.

As mentioned in § 1, turbulent bubbly flows contain both shear-induced and
bubble-induced turbulence. If the shear-induced and bubble-induced turbulence are
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Figure 11. Profiles of the r.m.s. water velocity fluctuations in the radial direction: (a) ur,rms; (b) uθ,rms;
(c) uz,rms; (d) ui,rms/(ubulkψ̄

0.4). 
, Single phase; red, case ML; solid black, MM; blue, MH; dot-dashed, SM;
dashed, LM. In (d), only the cases ML, MM and MH are shown.

assumed to be independent from each other, one may decompose the Reynolds normal
stresses u′

αu′
α as

u′
αu′
α = RSIT + RBIT , (3.3)

where RSIT and RBIT denote the Reynolds normal stresses from the shear-induced
and bubble-induced turbulence, respectively. Since RBIT ∼ ψ̄0.8 (Risso & Ellingsen
2002; Martínez-Mercado et al. 2007; Roig & De Tournemine 2007; Riboux et al.
2010; Kim et al. 2016), the results in figure 11(d) indicate that the bubble-induced
turbulence is predominant even near the wall for the present flows. Note that Lu &
Tryggvason (2008), Dabiri et al. (2013) and Du Cluzeau et al. (2019) indicated the
existence of an interaction between the shear-induced and bubble-induced turbulence
from their wall-bounded upward bubbly flows. Since their density ratios (ρbubble/ρliquid)
considered were about 100 times larger than that of the present study, their bubble-induced
turbulence was much weaker than the present one, leading to different conclusions on
the effect of the bubble-induced turbulence. The instantaneous flow structures regarding
bubble-induced turbulence are discussed later in this paper. In Appendix B, we suggest
a modified algebraic RANS model considering the interaction between shear-induced
and bubble-induced turbulence for better predictions of the mean axial velocity and wall
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Figure 12. PDFs of the axial water velocity fluctuations at r/R = 0.88 normalized by (a) ubulk and
(b) ubulkψ̄

0.4: red, case ML; black, MM; blue, MH.
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Figure 13. Profiles of the water Reynolds shear stress in the radial direction: 
, single phase; red, case ML;
solid black, MM; blue, MH; dot-dashed, SM; dashed, LM.

shear stress for a wider range of liquid bulk Reynolds numbers than those of the previous
algebraic RANS model (Sato et al. 1981a).

Figure 12 show the probability density functions (PDFs) of the axial velocity
fluctuations with normalizations with and without ψ̄0.4 at r/R = 0.88 for three different
〈ψ〉. As 〈ψ〉 increases, the peak of PDF normalized by ubulk decreases and the PDF
becomes widened. On the other hand, when normalized by ubulkψ̄

0.4, the three PDFs
collapse quite well as observed from homogeneous bubbly flows (Risso & Ellingsen 2002;
Riboux et al. 2010), again indicating that the bubble-induced turbulence is dominant for the
present bubbly flows. Similar results are observed for the azimuthal and radial velocities
and at other radial locations.

Figure 13 shows the profiles of the water Reynolds shear stress in the radial direction for
the single-phase and bubbly flows. The Reynolds shear stress near the wall is much larger
due to bubbles than that of the single-phase flow. With increasing deq (cases SM, MM
and LM), the Reynolds shear stress increases over all the radial locations except very near
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Figure 14. Profiles of the body forces in the radial direction: black lines, τβ ; red lines, τgrav ; blue lines, τsurf .

, Single phase (τβ only); dot-dashed, case SM; solid, MM; dashed, LM.

the centre where u′
ru′

z is close to zero. On the other hand, with increasing 〈ψ〉 (cases ML,
MM and MH), it increases more near the wall but does not change at the centre region
(r < 0.5R). Hence, normalization with ψ̄0.8 works only for the Reynolds normal stresses,
not for the Reynolds shear stress, again indicating that the effect of the shear-induced
turbulence is very weak for the present flows.

Figure 14 shows the profiles of the body forces in the radial direction for cases SM, MM
and LM, together with those of the single-phase flow. The axial RANS equation integrated
over the radial direction is

ρu′
ru′

z − μ
∂uz

∂r
= − r

2
Π − 1

r

∫ r

0
(ρ̄ − 〈ρ〉)gr dr + 1

r

∫ r

0
σκnzδr dr, (3.4)

where the first and second terms on the left-hand side are the Reynolds and viscous
shear stresses, respectively, and the first, second and third terms on the right-hand side
are the mean pressure gradient (τβ), gravitational force (τgrav) and surface tension (τsurf )
terms, respectively. For the single-phase flow, the sum of the Reynolds and viscous shear
stresses is proportional to r. However, for the bubbly flows, it is not linear because of
additional gravitational force and surface tension terms that have peaks near the wall.
The gravitational force term, which is closely related to the mean bubble volume fraction
in that ρ̄ − 〈ρ〉 = −(ρw − ρa)(ψ̄ − 〈ψ〉), significantly changes depending on the bubble
equivalent diameter deq, while the surface tension term changes relatively little. For case
LM, the Reynolds shear stress is much larger at the entire region except near the centre
than that of the single-phase flow (figure 13). This is because the gravitational force term
is highly positive in the entire region except near the centre and is much larger than the
negative surface tension term. As the bubble size gets smaller (from case LM to cases MM
and SM), the bubble distribution changes from flat to wall-peaking (see figure 9). Then,
the region with ρ̄(r) > 〈ρ〉 spreads from the centre to the wall, and thus the region with
negative τgrav becomes wider. On the other hand, τsurf is negative, especially near the wall
(see figure 16( f ) for explanation), and does not much change with deq. Furthermore, its
magnitude near the wall is comparable to that of the mean pressure gradient. Tanaka (2011)
and Du Cluzeau et al. (2019) also numerically observed negative surface tension near the
wall, but the underlying reason was not extensively studied. This surface tension term was
not taken into account when the profile of u′

ru′
z was obtained using (3.4) in experimental
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Figure 15. Comparison of ψ̄’s (symbols) predicted from (3.5) with those (lines) directly from the present
numerical simulations: red and squares, case ML; solid black and squares, case MM; blue and squares, case
MH; dot-dashed and circles, case SM; dashed and crosses, case LM.

studies (Wang 1986; Colin et al. 2012), as it was challenging to experimentally measure the
surface tension. Thus, the Reynolds shear stress profile obtained in those studies matched
well the experimental data except near the wall.

Equation (3.4) can be used to calculate the mean bubble volume fraction by multiplying
this equation by r, differentiating the resulting equation with respect to r and introducing
ρ̄ − 〈ρ〉 = −(ρw − ρa)(ψ̄ − 〈ψ〉):

ψ̄(r) = 〈ψ〉 + 1
(ρw − ρa)g

{
1
r
∂

∂r
(rρu′

ru′
z)− 1

r
∂

∂r

(
rμ
∂uz

∂r

)
+Π − σκnzδ

}
. (3.5)

This equation can be also directly obtained from the time-averaged Navier–Stokes
equation. Figure 15 shows a comparison of ψ̄’s from (3.5) with that directly from the
present numerical simulations for all the cases considered. As expected, two mean bubble
volume fractions calculated as a function of the radial direction agree very well for all the
cases.

3.2. Bubble behaviours and instantaneous vortical structures
Figure 16(a–c) shows the bubble trajectories for cases SM, MM and LM. Note that the
number of trajectories in each panel is ten and these trajectories are taken at different time
instants. Here, the mean major axis length of bubbles lbub(r) is obtained by calculating
the second moment of inertia of the bubbles whose centres of mass are located at
r − 0.00625D ≤ rcm < r + 0.00625D, assuming an ellipsoidal shape, for the purpose of
estimating the bubble–wall collision. As shown, when bubbles rise near the wall, they
mainly bounce against the wall rather than slide along the wall or hang around the wall
without collision. As deq decreases (from LM to SM), more bubbles frequently bounce
against the wall. Figure 16(d,e) shows how the mean radial and axial bubble velocities
change when bubbles move towards the wall and centre, respectively. Near the wall, the
radial velocity for the bubbles moving towards the wall is much higher than that moving
towards the centre, while the axial velocities for the bubbles moving to and away from the
wall are quite similar to each other. Since a bubble moves in water, its shape is deformed
into an ellipsoid such that the direction of the major axis is orthogonal to the bubble
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Figure 16. Bubble trajectories, conditional mean bubble velocities and mean surface: (a–c) bubble trajectories
for cases SM, MM and LM, respectively; (d–e) conditional mean radial and axial bubble velocities (ŭr,bub and
ŭz,bub), respectively; ( f ) surface tension. In (a–c), each trajectory is obtained at a different time, and red dashed
lines indicate the locations of r = R − lbub(r), where lbub(r) is the mean major axis length of bubbles. In (d,e),
the red and blue colours denote the mean bubble velocities moving towards the wall and centre, respectively
(dot-dashed, case SM; solid, MM; dashed, LM). In ( f ), the mean bubble shapes observed at r/R = 0.5 and
0.89 (case MM) are also shown (their aspect ratios are 1.81 and 1.52, respectively), where red and blue arrows
denote the positive and negative axial directions of the surface tension at four locations of the upper and lower
bubble surfaces, respectively, and their lengths represent the magnitudes.

movement direction owing to the drag force exerted on the bubble. Thus, near the wall,
bubbles moving to the wall are tilted in the clockwise direction, and those moving away
from the wall are tilted in the counter-clockwise direction. Since a bubble moving to the
wall has stronger radial velocity, the mean bubble shape near the wall is rotated in the
clockwise direction. Away from the wall, the radial velocities moving to and away from
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Figure 17. Mean shapes of the bubbles located at |r − ro| ≤ 0.5r (r = 0.0039D), and surrounding
mean streamlines coloured by the contours of the conditionally averaged mean axial velocity (case MM):
(a) ro/R = 0.5; (b) ro/R = 0.89.

the wall are nearly the same, and thus the major axis of the mean bubble shape is parallel
to the horizontal plane.

Figure 17 shows the mean bubble shapes located at ro/R = 0.5 and 0.89, and
surrounding mean streamlines coloured by the contours of the conditionally averaged
mean axial velocity for case MM. The mean bubble shapes are reconstructed from
their mean vertical angles and lengths of major and minor axes. Their aspect ratios and
inclination angles of the minor axis from the vertical direction are AR = 1.81 and 1.52
and θi = 0 and 6.08◦, respectively, for the bubbles located at ro/R = 0.5 and 0.89. The
conditionally averaged mean velocity ũ is obtained by averaging the instantaneous water
velocity fields around bubbles located at |r − ro| ≤ 0.5r. The distribution of the mean
streamlines around the bubble located at ro/R = 0.5 is nearly axisymmetric about the
vertical axis (this tendency is observed for the bubbles located at ro/R < 0.8). On the other
hand, the bubble located at ro/R = 0.89 and surrounding mean streamlines are asymmetric
due to the presence of the wall, as discussed above. When a bubble is located near the wall
(figure 17b), the mean streamlines are more asymmetric with respect to the major axis on
the wall side than on the centre side (in other words, more acceleration and deceleration
of the axial velocity behind and in front of the bubble on its wall side, respectively), which
significantly increases the r.m.s. axial velocity fluctuations very near the wall (figure 11c).

The distributions of the mean axial surface tension in the radial direction are shown in
figure 16( f ) for cases SM, MM and LM, together with schematic diagrams of mean bubble
shapes located at ro/R = 0.5 and 0.89. In the centre region, the axial surface tension is
close to zero because the major axis of the mean bubble shape there is nearly perpendicular
to the axial direction (like the mean bubble at ro/R = 0.5) and thus the integral of the
surface tension along the bubble surface at each radial location in this region is nearly zero.
On the other hand, when the major axis of a bubble is tilted like the mean bubble at ro/R =
0.89, the curvatures (κ) and angles between the surface-normal and axial directions (η =
cos−1(|n · k|)) vary along the bubble surface at each radial location. Then, on the left-hand
side (towards the centre) of a bubble, the upper surface has a higher κ and a smaller η than
the lower surface, resulting in surface tension in the negative axial direction. Likewise,
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Figure 18. Instantaneous vortical structures identified by the iso-surfaces of λ2 (Jeong & Hussain 1995)
coloured by the radial position: (a) single-phase flow; (b) bubbly flow (case MM). In (b), the bubble surfaces
are identified by the iso-surfaces of ψ = 0.5.

the right-hand side (towards the wall) of a bubble has surface tension in the positive
axial direction (see the magnitudes of blue and red arrows on the mean bubble shape at
ro/R = 0.89 in figure 16f ). According to this radial distribution of the surface tension
(σκnzδ), the surface tension term in (3.4), which is the integral of surface tension in the
radial direction, is nearly zero in the centre region, negative near the wall, and zero at the
wall (see figure 14).

Figure 18 shows the instantaneous vortical structures for the single-phase and bubbly
(case MM) flows, coloured by their radial position. Note that a much higher value of
|λ2| is used for the bubbly flow because bubble-induced vortices are much stronger than
shear-induced vortices. The length scales of these vortices in the bubbly flow are smaller
than those in the single-phase flow. It is noteworthy that near-wall coherent structures
observed in wall-bounded turbulent flow nearly disappear in the bubbly flow, and most
strong vortices are found in the wake behind bubbles. As bubbles are distributed over the
whole radial locations (see figure 9), the vortices are observed everywhere in the pipe.

Figure 19 shows the instantaneous vortical structures at r/R < 0.8, coloured by
the contours of the instantaneous axial vorticity for cases SM (deq/D = 0.0655 and
Rebub = 533), MM (deq/D = 0.0825 and Rebub = 737) and LM (deq/D = 0.1040 and
Rebub = 1000). Note that the region of r/R < 0.8 is chosen where the relative bubble
velocities are nearly uniform (see figure 10b). The vortices behind each bubble in figure 19
are qualitatively similar to those behind a freely rising air bubble at a similar Rebub
(Brücker 1999; De Vries, Biesheuvel & Van Wijngaarden 2002). For case SM (figure 19a),
the wake behind a bubble consists of double-threaded vortices (denoted as a dashed
ellipse) that primarily convey the axial vorticity. For case MM (figure 19b), the wake
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Figure 19. Instantaneous vortical structures (identified by λ = −400) at r/R < 0.8 coloured by the contours of
the instantaneous axial vorticity ωz: (a) deq/D = 0.0655 (SM); (b) deq/D = 0.0825 (MM); (c) deq/D = 0.1040
(LM). Here, the bubble surfaces are identified by the iso-surfaces of ψ = 0.5. Thick solid and dashed ellipses
in (a) indicate toroidal and double-threaded vortices, respectively. Below (b), one-sided hairpin vortices (‘A’
and ‘B’) in the wake of a bubble are identified for case MM.

consists of not only double-threaded vortices but also hairpin vortices (shown below panel
(b)) that carry the horizontal vorticity components as well as the axial one. Symmetric
hairpin vortices are often observed in the wake of a single bubble rising in a zigzag
trajectory (Brücker 1999). For the present flow, hairpin vortices in the wake of bubbles are
predominantly one-sided (i.e. one-legged) rather than symmetric (two-legged) because of
complex interactions among bubbles and their wake. For case LM (figure 19c), the wake
contains a bunch of double-threaded and hairpin vortices. These vortices are denser and
more irregular than those observed from case MM. A toroidal vortex is also observed
inside bubble surfaces (denoted as a solid curve in figure 19a) for all the cases considered
(see below for details).

Figure 20 shows the instantaneous wall shear stress for the single-phase and bubbly
flows (cases SM, MM and LM). Note that the mean wall shear stresses of cases SM, MM
and LM are 3.22, 2.51 and 2.02 times that of the single-phase flow, respectively (table 1).
The streaky structure of the wall shear stress observed for the single-phase flow does not
exist, but spotty structures are found in the bubbly flows. As deq increases, the spotty
structure occurs less frequently but increases in size.

Figure 21 shows the time sequence of a bubble near the wall and associated vortices
for case MM, together with the contours of the wall shear stress beneath the bubble. At
tubulk/D = 16.35, a bubble approaches the wall, and negative wall shear stress occurs
behind the bubble. When a bubble moves upward and approaches the wall, an inclined
stagnation flow is generated beneath the bubble, and a reverse flow region is formed just
under the bubble, as shown in figure 22, resulting in a negative wall shear stress region
there. Note also that a toroidal vortex is generated inside the bubble and the direction
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Figure 20. Contours of the instantaneous wall shear stress: (a) single-phase flow; (b) case SM; (c) MM;
(d) LM.

of rotation of this vortex near the wall is same as that of the velocity field under the
bubble (see figure 22). During wall–bubble collision (tubulk/D = 16.40), regions of high
wall shear stress occur beneath and behind the bubble owing to its sweeping motion
towards the wall and the wall-ward velocity induced by a pair of counter-rotating vortices
behind the bubble, respectively. This pair of vortices are generated by the interaction of
the bubble with the wall (see these vortices very near the wall from (z, r) plane view at
tubulk/D = 16.40). This pair of vortices further develops as the bubble bounces off the
wall and creates a region of longer high wall shear stress (tubulk/D = 16.50). Note that, at
this instant, the signs of counter-rotating vortices are opposite to those at tubulk/D = 16.35
(this is very different from those of bouncing counter-rotating vortices behind a bubble in
still water (Lee & Park 2017)), and the velocity induced by these vortices in the wake
pushes the bubble away from the wall. However, at tubulk/D = 16.70, the bubble moves
towards the wall again by the high shear near the wall, and generates a new pair of near-wall
counter-rotating vortices right behind the bubble, resulting in high skin friction there. Note
that a pair of long counter-rotating vortices behind the bubble are generated from the
wall-ward motion of the bubble and has opposite signs of rotation to those generated from
the interaction with the wall. Also, the region of the high wall shear stress and near-wall
vortices created during tubulk/D = 16.40–16.50 persist at tubulk/D = 16.70, although the
corresponding bubble moves away from these flow structures. These vortical structures
near the wall significantly increase the mean skin friction and r.m.s. velocity fluctuations
very near the wall (figure 11). Lu & Tryggvason (2008, 2013) numerically observed for
a density ratio of ρbubble/ρliquid = 0.1 that most bubbles slide along the channel walls
and form a cluster for wall-peaking turbulent bubbly channel flows. This difference
in bubble–wall interactions may come from very different density ratios considered.
Figure 23 shows the instantaneous vortical structure around bouncing-off bubbles for
cases SM, MM and LM. As deq increases, the vortices generated by the interaction of the
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Figure 21. Time sequence of a bubble near the wall and associated vortices coloured by the contours of the
instantaneous axial vorticity, and contours of the instantaneous wall shear stress beneath the bubble (case MM):
(a) (left) (z, r) and (right) (z, θ) plane views; (b) wall shear stress. Here, the bubble surfaces are identified by
the iso-surfaces of ψ = 0.5. In (a), red arrows represent the instantaneous bubble velocities. In (b), dotted
circles indicate the locations of the bubble projected on the wall.

bubble with the wall become stronger and more complex. Nevertheless, the most important
vortices are the pair of counter-rotating vortices that induce high-speed water flow towards
the wall and create high wall shear stress, as discussed in figure 21.

Figure 24 shows the PDFs of the directional angle (α) of the bubble velocity
vector deviated from the axial direction for the bubbles located at 0.45 < r/R <
0.50 and 0.85 < r/R < 0.90 (cases ML, MM and MH). Here, the PDF is obtained
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Wall

Wall

(a) (b)

Figure 22. A bubble approaching wall and nearby velocity field, together with a toroidal vortex inside the
bubble at tubulk/D = 16.35 (case MM): (a) top view; (b) side view. Here, the bubble surface (thin black circle)
and toroidal vortex (green colour) are identified by the iso-surfaces of ψ = 0.5 and λ2 = −1875, respectively.

20
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Figure 23. Instantaneous vortical structures (identified by λ = −400) behind a bouncing-off bubble coloured
by the contours of the instantaneous axial vorticity ωz: (a) deq/D = 0.0655 (case SM); (b) deq/D = 0.0825
(case MM); (c) deq/D = 0.1040 (case LM). Here, the bubble surfaces are identified by the iso-surfaces of
ψ = 0.5. The bubble radial locations are ro = 0.855, 0.845 and 0.849R for cases SM, MM and LM,
respectively.

as PDF(αo, θo) = N(|α − αo| ≤ α/2, |θ − θo| ≤ θ/2)/{N(0◦ ≤ α ≤ 180◦, 0◦ ≤ θ ≤
360◦)× sinααθ}, where N( · ) is the number of events, α = 1.41◦ and θ = 5.63◦.
No bubble is observed to move downward, and thus the directional angles of 0◦ ≤ α ≤
90◦ are drawn in this figure. When bubbles move homogeneously in 0◦ ≤ α ≤ 90◦,
the magnitude of the PDF is constant (= 1/(2π) = 0.159). For the bubbles located at
0.45 < r/R < 0.50 (top panels in figure 24a–c), the contours of the PDF are nearly
axisymmetric, indicating that there is no preferred horizontal movement direction and
bubbles located away from the wall are little affected by the pipe wall. However, the PDFs
have clear peaks at α ≈ 16◦, 14◦ and 10◦ for cases ML, MM and MH, respectively. That is,
as 〈ψ〉 increases, more bubbles located at 0.45 < r/R < 0.50 move at a smaller directional
angle from the vertical direction, and the PDF at α = 0◦ increases. Now, let us consider the
bubbles located at 0.85 < r/R < 0.90 where ψ̄ is high (figure 9). At this radial location
(bottom panels in figure 24a–c), the contours of the PDF are asymmetric and inclined
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Figure 24. PDFs of the directional angle of the bubble velocity vector deviated from the axial direction for the
bubbles located at 0.45 < r/R < 0.50 (top) and 0.85 < r/R < 0.90 (bottom): (a) case ML; (b) MM; (c) MH.
Here, ‘c’ and ‘w’ denote the directions towards the pipe centre and wall from a bubble location, respectively.

towards the pipe centre. The most preferred directional angles are α ≈ 9◦, 8◦ and 7◦
towards the pipe centre for cases ML, MM and MH, respectively. Note also that there are
clear second peaks of the PDF (arc-shaped contours in this figure) at α ≈ 19◦, 17◦ and 13◦
towards the wall region for cases ML, MM and MH, indicating that the wall-approaching
angle of bubbles is statistically larger than the bounce-off angle.

4. Conclusions

In the present study, we investigated the turbulence characteristics, bubble behaviour
and vortical structures in an air–water upward bubbly pipe flow at Rebulk = 5300
and Rebub = 533–1000 using a high-resolution numerical simulation. A single-phase
flow and five monodispersed bubbly flows with varying bubble equivalent diameter
(deq = 2.62, 3.30, 4.16 mm) and total bubble volume fraction (〈ψ̄〉 = 0.75 %, 1.5 %, 3.0 %)
were examined. Flat and wall-peaking bubble distributions were observed, respectively,
for the case with the largest deq (= 4.16 mm) and the other four cases. These radial bubble
distributions significantly affected the turbulence statistics of bubbly flows.

As the bubble concentration near the wall increased with increasing total bubble
volume rate and decreasing bubble equivalent diameter, the mean shear rates near and
at the wall increased significantly. The profiles of the r.m.s. velocity fluctuations of the
bubbly flows were proportional to ψ̄0.4 (ψ̄(r) is the mean bubble volume fraction),
which is a characteristic of bubble-induced turbulence as observed for homogeneous
bubbly flows by Risso & Ellingsen (2002) and Riboux et al. (2010). This result indicated
that shear-induced turbulence was suppressed in the present bubbly flows. The vortices
in the bubbly flows were smaller in size but denser and more intense than those in
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the single-phase flow. Consequently, the bubble-induced vortices were strong enough
to hinder the development of shear-induced vortices, and the velocity fluctuations
primarily exhibited the characteristics of bubble-induced turbulence. The Reynolds shear
stress was analysed considering the balance among the viscous shear stress, mean
pressure gradient, gravitational force and surface tension in the Reynolds-averaged axial
momentum equation. The Reynolds shear stress around the pipe centre mainly came from
the positive mean pressure gradient and negative gravitational force, while those near the
wall came from the positive gravitational force and negative surface tension in addition to
the positive mean pressure gradient. The positive and negative peaks of the surface tension
near the wall were caused by the stronger bubble motion towards the wall and tilted bubble
shape. Bubbles near the wall approached and bounced off the wall. After collision with
the wall, counter-rotating vortices in the wake of bubbles were generated and increased the
skin friction. As the bubble equivalent diameter increased, they became more tilted and
complicated, and induced higher water velocity to the wall.

We suggested a modified algebraic RANS model based on the interaction between
shear-induced and bubble-induced turbulence. Unlike the previous RANS model of Sato
et al. (1981a), the present one considered relative strengths of these types of turbulence.
The present model showed a better performance than the previous one at a wide range of
the water bulk Reynolds number.
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Appendix A. Numerical methods

Equations (2.1) and (2.2) are solved using a semi-implicit four-step fractional-step method:

ρ̂ − ρk−1

2αkt
= − βk

2αk
∇ · (ρk−1

f uk−1)− γk

2αk
∇ · (ρk−2

f uk−2), (A1)

ρ̂û − ρk−1uk−1

2αkt
= −Πk−1k − ∇pk−1 + 1

2
{L(μ̂, û)+ L(μk−1,uk−1)}

+ βk

2αk
N(ρk−1

f , μk−1,uk−1)+ γk

2αk
N(ρk−2

f , μk−2,uk−2)

+
{

1
2
(ρ̂ + ρk−1)− 〈ρ〉

}
g + σκk−1δk−1nk−1 + f k,

(A2)

ρ̂u∗ − ρ̂û
2αkt

= Πk−1k + ∇pk−1, (A3)

∇ ·
(

1
ρ̂
(Πkk + ∇pk)

)
= 1

2αkt
∇ · u∗, (A4)

ρ̂uk − ρ̂u∗

2αkt
= −Πkk − ∇pk, (A5)
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where

L(μ,u) = ∇ · (μ∇u)+ ∇ · D(μ∇Tu), (A6)

N(ρ, μ,u) = −∇ · (ρuu)+ ∇ · ND(μ∇Tu), (A7)

ρ̂ is the provisional density obtained by (A1), ρf (= ρaψΓ + ρw(1 − ψΓ )) is an
upwind-type flux density defined at a cell face, ψΓ is the bubble volume fraction of the
region Γ that contains fluids passing through the cell face during βkt at t = tk−1 (for
ρk−1

f ) or γkt at t = tk−2 (for ρk−2
f ), μ̂ is the viscosity calculated from (2.4) with ρ̂ and

ψ obtained by (A1) and (2.3), respectively, û and u∗ are the intermediate velocities, D(T )
and ND(T ) are the tensors consisting of diagonal and non-diagonal elements of tensor
T , respectively, and the subscript k (= 1, 2, 3) is the sub-time-step index (α1 = 4/15,
α2 = 1/15, α3 = 1/6, β1 = 8/15, β2 = 5/12, β3 = 3/4, γ1 = 0, γ2 = −17/60, γ3 =
−5/12). Here, a third-order Runge–Kutta method is applied to the convection and
non-diagonal viscous terms, and the Crank–Nicolson method is applied to the viscous
(excluding non-diagonal term) and gravitational terms. An explicit Euler method is used
for the surface tension term to achieve a discrete balance between the surface tension
and pressure gradient forces (Kim 2011). The second-order central difference method is
used for all spatial derivative terms except for the convection terms at the phase interface
cell in (A1) and (A2) where an upwind-type mass-flux method (Kim 2011; Kim &
Choi 2018) is used. These consistent temporal and spatial discretization methods adopted
for the convection terms in (A1) and (A2) ensure an accurate momentum transport,
which is crucial for the present simulation of two-phase flow with a high density ratio
(ρw/ρa ≈ 1000) (Raessi & Pitsch 2012).

A multigrid preconditioned conjugate gradient method (Tatebe 1993) is used to solve
the variable-coefficient Poisson equation (A4). Approximately 20 iterations are needed to
satisfy a convergence criterion of |∇ · u|max < 10−6, which consumes approximately 40 %
of the whole computational time. The size of the computational time step is restricted
by the conventional Courant–Friedrichs–Lewy (CFL) condition on the convective term
(CFLmax ≤ √

3) and also by the capillary time-step constraint induced by the explicit
treatment of the surface tension term (Brackbill, Kothe & Zemach 1992):

t ≤
√
(ρa + ρw)x3

min
4πσ

, (A8)

where xmin is the smallest grid size. For the present problem, the computational time
step is mostly bounded by (A8).

Equation (2.5) is solved using a third-order total variation diminishing (TVD)
Runge–Kutta method (Gottlieb & Shu 1998) and a fifth-order weighted essentially
non-oscillatory (WENO) scheme in conjunction with a local Lax–Friedrichs entropy
correction (Jiang & Peng 2000) for temporal and spatial discretizations, respectively. To
maintain the signed-distance property, the level-set function is reinitialized at every other
time step by solving the following partial differential equation (Sussman, Smereka &
Osher 1994; Peng et al. 1999):

∂φ

∂τr
+ φ√

φ2 + |∇φ|2x2
φ

(|∇φ| − 1) = 0, (A9)

where τr is the pseudo-time for the reinitialization iteration and xφ is the level-set grid
size. Equation (A9) is iteratively solved using a third-order TVD Runge–Kutta method in
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time and a fifth-order WENO scheme with a Godunov flux scheme in space. The volume
of each bubble is conserved by relocating the phase interface from

∂φ

∂τv
= φ√

φ2 + |∇φ|2x2
φ

Vb(t)− Vb(t = 0)
Vb(t = 0)

, (A10)

where τv is the pseudo-time for the volume correction iteration and Vb is the bubble
volume (Son 2001; Zhang et al. 2010). We assign a level-set function to each bubble to
avoid numerical coalescence (Coyajee & Boersma 2009). Each level-set function is solved
in the cuboid which contains a bubble and at least six grid points outside the bubble
interface. When a bubble locates very near the pipe wall, only the level-set grid points
located inside the pipe are used to solve (2.5). If a bubble penetrates the pipe wall, a
special treatment is required. However, this did not occur at all (because of the velocity
distribution very near the wall) during tubulk/D = 10 for all cases considered, and thus
such a treatment was not needed.

According to Sanada et al. (2009), bubbles in water coalesce at Rebub < 540–590.
Among the cases considered, the bubble Reynolds number of case SM (Rebub = 533 and
deq = 2.62 mm; see table 1) is within this criterion. However, the bubble volume fraction
of case SM is only 〈ψ〉 = 1.5 % and thus the possibility of bubble collisions must be
very low. Riboux et al. (2010) also indicated that bubble coalescence was not observed
in a homogeneous bubbly flow for deq = 1.6, 2.1 and 2.5 mm and 〈ψ〉 = 0.5 %–10 %.
Therefore, for all the cases considered in the present study, we expect that bubble
coalescence does not occur or little affects the flow fields even if it happens.

When bubbles approach very closely to the wall and rebound from the wall, a thin
liquid film is formed and thus resolving this thin film is required. Typically, the number
of grid points within this liquid film (for the Navier–Stokes equations) can reach one or
two during simulation. Nevertheless, the time period of having one or two grids within
thin film is very short (tubulk/D ≈ 0.03) because of the upward water flow and repulsive
force from the wall, and thus numerical errors may not be noticeably accumulated during
bubble–wall interactions. Albadawi et al. (2014) conducted numerical simulations for a
bouncing bubble from a horizontal surface with and without mesh refinement near the
wall. The results with mesh refinement (having a mesh size smaller than liquid film
thickness) were better than those without mesh refinement (mesh size was about 50 times
that of refined mesh). However, the simulation without mesh refinement still captured
the temporal variation of the bubble velocity during four rebounding periods. The use
of adaptive mesh reported recently (Innocenti et al. 2021; Yan et al. 2022) will further
improve the numerical accuracy during this time period.

Appendix B. A modified algebraic RANS model

In this appendix, we revisit the algebraic model by Sato et al. (1981a) for the predictions
of the wall shear stress and mean axial velocity profile, and suggest a revised model by
introducing the effect of the interaction between the shear-induced and bubble-induced
turbulence.

Sato et al. (1981a) provided the following equation for the mean velocity gradient in a
pipe assuming that the dispersed gas phase is void:

dūz

dr
= 1
ρw(1 − ψ̄)(νw + νt)

{
r
R

(
−τw + ρwg

R

∫ R

0
ψ̄r dr

)
− ρwg

r

∫ r

0
ψ̄r dr

}
, (B1)
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with

νt(r) = νSIT(r)+ νBIT(r), (B2)

νSIT(r) = k0νwCr

{
1 − 11

6

(
R − r

R

)
+ 4

3

(
R − r

R

)2

− 1
3

(
R − r

R

)3
}
(R+ − r+),

(B3)

νBIT(r) = 1
2

k1Crd̂eqψ̄(ubub − ubulk) ≈ 1
2

k1Crd̂eqψ̄uT , (B4)

where νw is the water kinematic viscosity, νt is the turbulent kinematic viscosity
decomposed into the shear-induced (νSIT ) and bubble-induced (νBIT ) kinematic viscosities,
Cr = (1 − exp (−(R+ − r+)/A+))2, r+ = ruτ /νw, R+ = Ruτ /νw, uτ = √

τw/ρw, A+
(= 16) is the van Driest (1956) damping factor coefficient, k0 (= 0.4) and k1 (= 1.2)
are empirical constants and d̂eq = deq for 0 ≤ r < R − deq/2 and 4(R − r)(deq − (R −
r))/deq for R − deq/2 ≤ r ≤ R. Since the relative bubble velocity, ubub − ubulk, in (B4) is
unknown a priori, the mean terminal velocity of rising bubbles (uT ) was used instead of
ubub − ubulk. For the present computations, we obtain uT from the plot of deq versus uT
in Clift, Grace & Weber (2005). Note that νSIT in (B3) is based on single-phase turbulent
pipe flow. Also, the radial distribution of ψ̄(r) has to be given a priori to solve (B1).

In §§ 3.1 and 3.2, we observed that bubble-induced turbulence hinders the development
of shear-induced turbulence when the vorticity magnitude of bubble-induced turbulence
is much larger than that of shear-induced turbulence (see figures 18 and 11). However, the
model suggested by Sato et al. (1981a) contains both characteristics irrespective of the
relative strength of both turbulence types. Therefore, the turbulent kinematic viscosity is
modified by introducing χ as follows:

νt(r) = (1 − χ)νSIT(r)+ χνBIT(r), (B5)

with

χ = exp (−k2ubulk/(ubub − ubulk)) ≈ exp (−k2ubulk/uT), (B6)

where χ is the fraction of bubble-induced turbulence (0 ≤ χ ≤ 1). The empirical
constants k1 and k2 in (B4) and (B6) are determined by an iterative method such that
the predicted wall shear stresses match those of case 2 (from present simulation) and case
14 (from an experiment by Liu (1997)). These two cases correspond to the smallest and
largest water bulk velocities investigated in the present study, respectively (see table 4).
As a result, we obtain k1 = 13.1 and k2 = 0.359, and use them for the prediction. We
note that there may be a better representation of χ by introducing more variables such as
R/deq, Rebub, Rebulk, etc. However, we do not pursue this issue further because the present
definition of χ can successfully predict the wall shear stress for the cases considered.

Table 3 shows the computational procedure to obtain the mean axial velocity and wall
shear stress using the present algebraic RANS model. The number of grid points in the
radial direction is 201, where the smallest and largest grid spacings are r/R = 0.001
at the wall (r = R) and 0.028 at the centre (r = 0), respectively. We use the trapezoidal
method for numerical integrations in Steps 4 and 5. Term Dubulk/Dτw in Step 6 is obtained
as follows. From (B1) together with ubulk = 2

∫ R
0 ūz(r)r dr/R2, one can express ubulk as a
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Turbulence characteristics in an air–water bubbly pipe flow

Step 0 Provide R, deq, ubulk, ψ̄(r) and properties of fluids.
Step 1 Assume τ 0

w.
Step 2 Compute νl

SIT (r) and νl
BIT (r) from (B3) and (B4).

Step 3 Compute νl
t (r) from (B5).

Step 4 Obtain ūl
z(r) by integrating (B1) with ūz(r = R) = 0.

Step 5 Obtain ul
bulk = 2

∫ R

0
ūl

zr dr/R2.

Step 6 Update τ l
w = τ l−1

w − ul
bulk − ubulk

Dubulk/Dτw|l .

Step 7 If |ul
bulk − ubulk|/ubulk > 10−6, go to Step 2.

Otherwise, ūz = ūl
z and τw = τ l

w.

Table 3. Iterative method to calculate the wall shear stress and mean axial velocity profile using the present
RANS model. Here, l (= 1, 2, 3, . . .) is the iteration index.

function of τw:

ubulk(τw) = − 2τw

ρwR3

∫ R

0
r
∫ r

R

r′

(1 − ψ̄(r′))(νw + νt(τw, r′))
dr′ dr

+ 2g
R4

∫ R

0
ψ̄(r′′)r′′ dr′′

∫ R

0
r
∫ r

R

r′

(1 − ψ̄(r′))(νw + νt(τw, r′))
dr′ dr

− 2g
R2

∫ R

0
r
∫ r

R

1
r′(1 − ψ̄(r′))(νw + νt(τw, r′))

∫ r′

0
ψ̄(r′′)r′′ dr′′ dr′ dr. (B7)

By taking the derivative of (B7) with respect to τw, we obtain Dubulk/Dτw as follows:

Dubulk

Dτw
= − 2

ρwR3

∫ R

0
r
∫ r

R

r′

(1 − ψ̄(r′))(νw + νt(τw, r′))
dr′ dr

+ 2τw

ρwR3

∫ R

0
r
∫ r

R

r′Dνt(τw, r′)/Dτw

(1 − ψ̄(r′))(νw + νt(τw, r′))2
dr′ dr

− 2g
R4

∫ R

0
ψ̄(r′′)r′′ dr′′

∫ R

0
r
∫ r

R

r′Dνt(τw, r′)/Dτw

(1 − ψ̄(r′))(νw + νt(τw, r′))2
dr′ dr

+ 2g
R2

∫ R

0
r
∫ r

R

Dνt(τw, r′)/Dτw

r′(1 − ψ̄(r′))(νw + νt(τw, r′))2

∫ r′

0
ψ̄(r′′)r′′ dr′′ dr′ dr, (B8)

where Dνt(τw, r′)/Dτw is obtained from (B5) as

Dνt(τw, r′)
Dτw

= (1 − χ)
DνSIT(τw, r′)

Dτw
+ χ

DνBIT(τw, r′)
Dτw

= (1 − χ)

{
1
2

+ R+ − r′+

A+
exp(−(R+ − r′+)/A+)

(1 − exp(−(R+ − r′+)/A+)

}
νSIT(τw, r′)

τw

+ χ

{
R+ − r′+

A+
exp(−(R+ − r′+)/A+)

(1 − exp(−(R+ − r′+)/A+)

}
νBIT(τw, r′)

τw
. (B9)

Table 4 shows the cases considered by the present simulation, Inoue et al. (1976), Sato
et al. (1981b), Malnes (1966) and Liu (1997) for testing the present algebraic model. The
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Case D (mm) deq (mm) 〈ψ〉 (%) Rebulk Rebub τ ∗
w (Pa) χ Remark

1 2.62 1.50 533 0.262 0.838
2 3.30 1.50 737 0.205 0.828
3 40 4.16 1.50 5300 1000 0.165 0.820 From present simulation
4 3.30 0.75 740 0.175 0.828
5 3.30 3.00 724 0.261 0.828
6 40 3.5 15 18 800 868 10.87 0.580 From Inoue et al. (1976)
7 4.4 7.1 17 500 1039 1.65 0.442
8 26 4.8 13.1 18 700 1111 2.14 0.410 From Sato et al. (1981b)
9 5.6 22.2 29 200 1280 4.43 0.295
10 4.6 17.3 39 300 1074 6.46 0.157
11 46 3 26 116 000 782 9.52 0.062 From Malnes (1966)
12 4.36 5.1 135 000 1033 10.99 0.041
13 3.09 5.7 136 000 798 11.59 0.053
14 57.2 5.61 9.5 142 000 1283 11.42 0.031 From Liu (1997)
15 4.22 10.5 143 000 1008 12.45 0.035
16 6.95 17.2 155 000 1609 11.95 0.024
17 4.54 18.0 156 000 1064 14.46 0.024

Table 4. Cases considered for the present algebraic RANS model. Parameters Rebub and τ ∗
w in this table are

from the present simulation, Inoue et al. (1976), Sato, Sadatomi & Sekoguchi (1981b), Malnes (1966) and Liu
(1997). Fraction χ is obtained by (B6).

terminal velocities (uT ) of all the cases are obtained from the plot of deq versus uT for
a bubble in pure water in Clift et al. (2005), with which the computed χ ranges from
0.024 to 0.838. Figure 25 shows the errors in the wall shear stress predicted by the present
model and that of Sato et al. (1981a) for the data available from the present simulation
and previous experiments (Malnes 1966; Inoue et al. 1976; Sato et al. 1981b; Liu 1997).
The solutions by the model of Sato et al. (1981a) diverged for cases 3 and 5, and thus
they are marked as an error of −100 % in this figure. As shown, the model by Sato et al.
(1981a) underestimates and overestimates the wall shear stresses at low and high water
bulk Reynolds numbers, respectively. This is because the model constant used in Sato et al.
(1981a) was determined based on the data at intermediate Reynolds numbers, and thus the
predictions worked well at these Reynolds numbers. However, the present model predicts
the wall shear stresses quite well for all the cases except case 6 (Inoue et al. 1976) and has
overall a better prediction capability than the model by Sato et al. (1981a). Currently, we
do not know why the prediction for case 6 is very different from the experimental result.

Figure 26 shows the mean axial water velocities predicted by the present model and
that of Sato et al. (1981a) for the present simulation and previous experimental data. For
cases 6, 8 and 11 (Rebulk = 18 800, 18 700, 116 000, respectively), the predictions of the
mean axial velocities by both the present model and that of Sato et al. (1981a) agree well
with the experimental data. However, for cases 1, 2 and 4 (Rebulk = 5300), the present
model accurately predicts the mean axial velocities, while the model of Sato et al. (1981a)
provides M-shaped velocity profiles which are very different from the simulation data.

The present algebraic model shows a better performance than the previous one at a
wide range of the water bulk Reynolds number. However, the present model still requires
the radial distribution of mean bubble volume fraction a priori, and thus the model
itself is not stand-alone. Many RANS models including one-equation, two-equation and
Reynolds stress models (Vaidheeswaran & Hibiki 2017) do not properly include the effect
of the interaction between the shear-induced and bubble-induced turbulence. Therefore,

994 A10-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.652


Turbulence characteristics in an air–water bubbly pipe flow

100

50

–50

–100
103 104 105

Rebulk

E
rr

o
r 

(%
)

106

0
Data

Present simulation

Inoue et al. (1976)

Sato et al. (1981)

Malnes (1966)

Liu (1997)

Figure 25. Error in the wall shear stress predicted by the RANS models of the present study (�) and Sato
et al. (1981b) (�). Here, the error is defined as (τw,RANS − τ ∗

w)/τ
∗
w × 100, where τ ∗

w is given in table 4.
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Figure 26. Mean axial water velocities predicted by the present model (red lines) and model by Sato et al.
(1981a) (blue lines): (a) present simulation; (b) experiments (Malnes 1966; Inoue et al. 1976; Sato et al.
1981b). Here, the lines and symbols are from the algebraic RANS models and simulation/experimental data,
respectively.

the approach adopted in the present model may be applied to a more general RANS model
to improve its prediction capability for two-phase flows.
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