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Abstract

In this paper, the pricing of equity warrants under a class of fractional Brownian motion
models is investigated numerically. By establishing a new nonlinear partial differential
equation (PDE) system governing the price in terms of the observable stock price, we
solve the pricing system effectively by a robust implicit-explicit numerical method. This
is fundamentally different from the documented methods, which first solve the price
with respect to the firm value analytically, by assuming that the volatility of the firm
is constant, and then compute the price with respect to the stock price and estimate
the firm volatility numerically. It is shown that the proposed method is stable in the
maximum-norm sense. Furthermore, a sharp theoretical error estimate for the current
method is provided, which is also verified numerically. Numerical examples suggest that
the current method is efficient and can produce results that are, overall, closer to real
market prices than other existing approaches. A great advantage of the current method is
that it can be extended easily to price equity warrants under other complicated models.
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1. Introduction

Warrants are derivatives that give holders the right, but not the obligation, to buy or
sell the underlying at a certain date for a prescribed price. Warrants can be classified
into American and European styles with call or put features, depending on when and
how to exercise the contracts. According to the types of issuers, warrants can also
be divided into covered and equity warrants. Covered warrants are usually issued by
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financial institutions or dealers. Since this kind of warrants will not raise the number
of the firm’s stocks after the expiration date, the pricing of them is almost the same
as that of ordinary options. In contrast, equity warrants are usually issued by the listed
firms. When an equity warrant is exercised, the proceeds will be part of the firm’s
equity, which affects the value of all other claims of the firm, including its outstanding
warrants. It is this dilution effect that has made the pricing of equity warrants totally
different from that of the covered warrants. Owing to the large trading volumes of
warrants being traded around the world, it is important to ensure that the warrants,
especially the equity warrants, can be priced both accurately and efficiently.

The pricing of equity warrants can be dated back to the mid-1970s when the famous
Black–Scholes (B–S) formula was established. Black and Scholes [5] showed in their
paper that their formula can be modified for price equity warrants. Their formulation
was, however, inaccurate, because the differences between options and equity warrants,
especially the dilution effect, were totally neglected. Fortunately, in the 1980s, several
studies on the pricing of equity warrants were carried out. By noticing that the
distribution of stock returns will be changed after the equity warrant is exercised, Galai
and Schneller proposed a modified B–S model to incorporate the dilution effect [11].
Their work was further extended by a number of authors who focused on various ways
of correction for dilution (see [13, 15, 18, 21] and the references therein). In some of
the work mentioned above [13, 15], the authors required the value of the firm and its
volatility to be known in advance. This is impossible and, moreover, in the case when
there are warrants outstanding, the value of the firm is, in fact, a function of the value of
the warrant. To overcome this difficulty, Schulz and Trautmann proposed a method to
price equity warrants by using stock price and its volatility [18]. Ukhov also developed
an algorithm for the pricing of equity warrants by using observable variables [21].

Owing to the limitations of the B–S assumption on the underlying asset, a number
of authors concentrated on applying different fractional Brownian motion (FBM)
models to the finance field. They pointed out that these models are able to capture
the long-range dependence of the underlying. For example, Almani et al. introduced
a new FBM with a two-variable Hurst exponent, and found that the model is more
precisely matched to the real values of the rate of the stock price [2]. Cheng and Xu
considered the pricing of vulnerable options under a mixed FBM model with jumps[9].
By introducing an FBM to the constant elasticity of variance (CEV) model, Araneda
and Bertschinger proposed a sub-fractional CEV model and considered the pricing of
options underneath [3]. Han et al. raised a stochastic volatility model driven by both
an FBM and a standard Brownian motion (BM), and obtained an analytical solution
for the European option price [12]. For a variety of applications of FBMs in the field
of derivative pricing, interested readers can refer to [17, 23] and the references therein.

Note that, for most of the algorithms documented for the pricing of equity warrants,
the authors derived a closed-form analytical expression for the warrant prices with
respect to the firm value under the assumption that the volatility of the firm is constant.
Then, they expressed the volatility of the firm in terms of the warrant price and
stock volatility. However, from a partial differential equation (PDE) point of view,
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the warrant price satisfies a nonlinear PDE because the volatility is also a function
of the warrant price, and it cannot be expressed explicitly as a function of the firm
value. On the other hand, even if these documented methods can produce a good
approximated price under certain parameter settings, the applications of these methods
are still limited. Only if the closed-form expression of the warrant price with respect
to the firm value can be found, can the methods be applied. In most cases, however,
such an expression is difficult to derive, especially under rather complicated models.

In this paper, we consider the pricing of equity warrants under a class of FBM
models numerically. For convenience, we adopt the so-called generalized mixed
fractional Brownian motion (GMFBM) model, because this model includes most of
the FBM models as its special cases. This model was introduced by Thäle [20], and
further applied to the option pricing field by Chen et al. [7, 8]. The contribution of the
current work mainly includes both practical and theoretical aspects. Practically, unlike
most authors in the literature, we solve the warrant price in terms of the observable
stock price directly by an implicit-explicit (IMEX) finite difference method. By
comparison with the existing methods, the current method can not only produce results
that are, overall, closer to real market prices, but also very promising to be extended
to price warrants under other complicated models, under which the closed-form
expression of European option prices cannot be easily derived. Theoretically, we show
that the coefficient matrix associated with the current approach is an M-matrix, which
ensures the stability of the method in the maximum-norm sense. Most remarkably, a
sharp error estimate of the current method is obtained, which suggests that our method
is first-order convergent in both the time and spatial directions. Numerical results also
agree with the theoretical statement.

The rest of the paper is organized as follows. In Section 2, we derive the PDE
system governing the price of equity warrants under the GMFBM model in terms of
observable variables. In Section 3, we introduce the IMEX numerical method in detail
and also derive a sharp error estimate for the current method. In Section 4, numerical
experiments are conducted to test the theoretical error estimate, and useful discussions
are also provided. Concluding remarks are given in Section 5.

2. Equity warrants under the GMFBM model

In this section, the formulation of the pricing of equity warrants is considered. In
particular, a nonlinear pricing system in terms of the observable variables governing
the price of equity warrants is established. To include most of the FBM models as
special cases, the GMFBM model, which is a linear combination of a countable
number of BMs and FBMs [20], is adopted in the current work. For the completeness
of the paper, an introduction to this model is provided in Appendix A.

Consider a European equity warrant with a call feature, issued by a firm for its own
stocks. Suppose the firm has only two forms of financing, namely, N shares of stocks
and M outstanding equity warrants. Each warrant gives its holder the right but not the
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obligation to receive k shares of stocks with payment X at the expiry time T. Let w(V , t)
be the current value of each equity warrant on a firm with value V.

Under the GMFBM model, we assume that Vt, with t being the current time,
satisfies the following stochastic partial differential equation (SDE),

dVt = μVtdt + σVVt � dZt, (2.1)

where � is the so-called Wick product, μ is the expected rate of return of the firm value
and σV is the standard deviation of the firm value. There are two main reasons why
the Wick product instead of the classical It̂o theory is used in (2.1). First, the mean of
the stochastic integral defined based on the Wick product is zero, which is useful for
both theoretical development and practical applications. Second, the It̂o theory fails to
apply under the GMFBM because Vt is neither a Markov nor a semimartingale, unless
under some particular parameter settings, as pointed out in many previous studies
[4, 7, 16]. We further remark that when the Wick product is adopted, a new concept
“wickbitrage” is defined, which is, however, not identical to the concept of “arbitrage”
in the intuitive sense [4, 10]. Nevertheless, Chen and He showed in their recent work
[7] that the market modelled under the GMFBM could still be arbitrage free under
certain parameter settings (see [7] for details).

Under the assumptions specified by Xu et al. [23] for an equity warrant, except that
the firm value now follows a GMFBM rather than a mixed fractional Brownian motion
(MFBM), it can be deduced that w satisfies the PDE

∂w
∂t
+ σ2

VV2
I∑

i=1

Hiαit2Hi−1 ∂
2w
∂V2 + rV

∂w
∂V
− rw = 0. (2.2)

Considering the dilution effect, the terminal value of the price should be

w(V , T) =
1

N +Mk
max(kV − NX, 0),

as stated by Ukhov [21]. On the other hand, the boundary conditions along the
V-direction are similar to those of European call options. When the firm value becomes
extremely large, the warrant will definitely be exercised at the expiry, and its current
value should be

lim
V→∞

w(V , τ) =
kV − NXe−r(T−t)

N +Mk
.

On the contrary, when V→0, which implies that the firm has no value, we have
limV→0 w(V , t) = 0. Furthermore, by considering the dilution effect, Ukhov pointed
out in [21] that the unobservable variables, namely, V and σV , can be estimated by
observable variables through

V = Mw + NS and σV =
SσS

V(∂S/∂V)
,
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where S is the stock price of the firm and σS is its volatility. From the expressions of
V and σV , it is clear that σV is a function of w rather than a constant, and thus (2.2) is
a nonlinear PDE.

Note that, in most of the algorithms documented for the pricing of equity warrants,
the authors first derived closed-form analytical expression of w with respect to V by
assuming that σV is a constant. Then, by solving a nonlinear system, they computed
w(V , τ) using the observable S and estimated σV . However, from a PDE point of view,
the governing equation (2.2) is nonlinear and cannot be solved analytically first. This
inspires us to solve the warrant price in terms of the observable stock price directly,
which is also one of the innovations of the current work.

Now, let w̃(S, τ) = w(V , t), where τ = T − t. According to the chain rule and the
relationship among V, w and S,

∂w
∂t
= −∂w̃
∂τ

,
∂w
∂V
=
∂w̃
∂S

1
N +M(∂w̃/∂S)

,
∂2w
∂V2 =

∂2

w̃
∂S2
( ∂S
∂V

)2 1
1 + (M/N)(∂w̃/∂S)

.

Substituting the above partial derivatives into (2.2) as well as the boundary conditions
mentioned above, and dropping all the tildes for simplicity, we have the following
nonlinear PDE system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lw = 0
w(S, 0) = max(kS − X, 0)

w(0, τ) = 0
limS→∞ w(S, τ) = kS − Xe−r(T−t),

(2.3)

where Lw is defined as

Lw =
∂w
∂τ
− A(w, S, τ)

∂2w
∂S2 − B(w, S)

∂w
∂S
+ rw

with

A(w, S, τ) = σ2
SS2

I∑
i

Hiαi(T − τ)2Hi−1 1
1 + (M/N)(∂w/∂S)

and

B(w, S) = r(Mw + NS)
1

N +M(∂w/∂S)
.

According to Agliardi et al. [1], there exists a unique solution to (2.3). Moreover, the
solution w(S, τ) ∈ L2(H1(Ω), (0, T)] ∩ C0[L2(Ω), [0, T]], where Ω = [0,+∞). Finan-
cially, due to the relationship between the firm’s stocks and equity warrants, it is
reasonable to infer that the price of the equity warrant with a call feature will increase
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when the underlying stock price becomes larger. Therefore, we have A(w, S, τ) > 0
and B(w, S) > 0. It should also be remarked that, after the transformation of variables,
the dilution effect has now become the nonlinear terms contained in the governing
PDE. It is these nonlinear terms that have made the pricing of equity warrants very
difficult, even numerically. In the next section, a hybrid finite difference method will
be constructed to solve (2.3) effectively.

3. Numerical scheme

As mentioned in the last section, the PDE system governing the price of an
equity warrant is nonlinear. It is usually impossible to derive closed-form analytical
solutions to nonlinear PDE systems, and numerical approaches are preferred. There-
fore, proposing an efficient numerical method to solve for (2.3) is the aim of this
section.

3.1. The IMEX method To begin with, we truncate the domain [0,∞) into a finite
one as [0, Smax). According to Wilmott et al.’s [22] estimate that the upper bound of
the stock price is typically three or four times the strike price, it is reasonable to set
Smax = 4X/k. Similar to the pricing of option derivatives, such a truncation of the
domain will only lead to a negligible error in the computed warrant prices [14]. On the
other hand, to ensure the stability of the discrete scheme, we use uniform meshes with
P elements and Q elements on the spatial interval [0, Smax] and the time interval [0, T],
respectively. Clearly, the mesh sizes ΔS and Δτ are, respectively,

ΔS =
Smax

P
and Δτ =

T
Q

.

As mentioned previously, the current PDE system is nonlinear, and difficult to
be solved numerically. To tackle its nonlinearity, we use the implicit Euler scheme
for the time direction and approximate the coefficients of the PDE explicitly. In
addition, the upwind scheme is adopted to approximate the first-order spatial derivative
to avoid the numerical instability resulting from very small t. Now, denoting the
value on an arbitrage grid point (p, q) as Wq

p = w(pΔS, qΔt) with p = 0, 1 . . .P and
q = 0, 1 . . .Q, the finite difference system written on that particular grid point can be
summarized as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LP,QWq
p = 0, 1 ≤ p ≤ P − 1, 1 ≤ q ≤ Q − 1

W0
p = max(kpΔS − X, 0), 1 ≤ p ≤ P − 1

Wq
0 = 0, 1 ≤ q ≤ Q

Wq
P = kSmax − Xe−r(Q−q)Δτ, 1 ≤ q ≤ Q,

(3.1)
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where

LP,QWq
p =

Wq+1
p −Wq

p

Δτ
− Aq

p

Wq+1
p+1 − 2Wq+1

p +Wq+1
p−1

(ΔS)2

− Bq
p

Wq+1
p+1 −Wq+1

p

ΔS
+ rWq+1

p , (3.2)

with

Aq
p =

Nσ2
s S2

p
∑I

i=1 Hiαi(T − Δτq)2Hi−1

N +M(Wq
p+1 −Wq

p−1)/2ΔS
> 0

and

Bq
p =

r(MWq
p + NpΔS)

N +M(Wq
p+1 −Wq

p−1)/2ΔS
> 0.

We remark that, by approximating the coefficients explicitly, the discrete system (3.1)
becomes linear when solving for the warrant price for the (q + 1)th time step. Such
a linear discrete system can be solved directly step by step until the Qth time step is
reached and the desired warrant price can be obtained. In the following subsection, an
error estimation for the current method is provided.

3.2. Error estimation An error analysis is usually an indispensable part of design-
ing any robust numerical approach. In this subsection, we have managed to provide
an error estimation for the current IMEX method used to solve for the price of equity
warrants under the GMFBM model. Our proof is based on the discrete maximum
principle, which is a useful tool for estimating the computational error [6, 8]. For
simplicity, the following notations is adopted.

ΩP = {p ∈ Z | 0 ≤ p ≤ P}, ∂ΩP = {0, P},
ΩQ = {q ∈ Z | 0 ≤ q ≤ Q}, ∂ΩQ = {0},
Ω = ΩP ×ΩQ, ∂Ω = ∂ΩP × ∂ΩQ.

First, we will show, through the following lemma, that our differential operator LP,Q
defined by (3.2) satisfies a discrete maximum principle.

LEMMA 3.1. (Discrete maximum principle) Suppose that {Uq
p} are a set of discrete

values satisfying Uq
p ≥ 0 for (p, q) ∈ ∂Ω, and LP,QUq

p ≥ 0 for (p, q) ∈ Ω \ ∂Ω. Then
Uq

p ≥ 0 holds true for (p, q) ∈ Ω.

PROOF. Let R(P−1)×(P−1) be the matrix associated with the discrete operator LP,Q. For
q ∈ ΩQ \ ∂ΩQ,
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Rp,p−1 = −
Δτ

(ΔS)2 Aq
p, 2 ≤ p ≤ P − 1,

Rp,p = 1 + rΔτ +
2Δτ

(ΔS)2 Aq
p +
Δτ

ΔS
Bq

p, 1 ≤ p ≤ P − 1,

Rp,p+1 = −
Δτ

(ΔS)2 Aq
p −
Δτ

ΔS
Bq

p, 1 ≤ p ≤ P − 2.

A direct calculation shows that

Rp,p−1 + Rp,p + Rp,p+1 = 1 + rΔτ > 0.

Therefore, R(P−1)×(P−1) is diagonally dominant and has nonpositive off diagonal entries.
Hence, this matrix is an irreducible M-matrix. The result of our lemma can then be
obtained. �

Next, by using the Taylor expansion theory, the following truncation error estimate
can be obtained.

LEMMA 3.2. Let w(S, τ) be a smooth and monotonically increasing function defined
on 0 ≤ S ≤ Smax and 0 ≤ τ ≤ T. Then the estimate for the truncation error is

|LP,Qw(Sp, τq) − Lw(Sp, τq)| ≤ ˜̃C(Δτ + ΔS),

where ˜̃C is a positive constant independent of the mesh.

PROOF. First, according to the definitions of A, B, Aq
p and Bq

p, it is not difficult to show
that these are nonnegative and bounded by a constant C that is independent of the
mesh. Therefore,

|A(w(Sp, τq), Sp, τq) − Aq
p| = C1|A(w(Sp, τq), Sp, τq)Aq

p|(ΔS)2 ≤ C1C2(ΔS)2

and

|B(w(Sp, τq), Sp) − Bq
p| = C1|B(w(Sp, τq), Sp)Bq

p|(ΔS)2 ≤ C1C2(ΔS)2,

where

C1 =
1
6

M
∣∣∣∣∣∂

3w
∂S3

∣∣∣∣∣|(Sξ ,τq)| with Sξ ∈ [S(p−1), S(p+1)].

According to the Taylor expansion theory,

|LP,Qw(Sp, τq) − Lw(Sp, τq)|

≤ |A(w(Sp, τq), Sp, τq) − Aq
p| ·
∣∣∣∣∣∂

2w
∂S2

∣∣∣∣∣
(Sp,τq)

+
1
12

(ΔS)2 ∂
4w
∂S4

∣∣∣∣∣
(S1,τq)

∣∣∣∣∣
+ |B(w(Sp, τq), Sp) − Bq

p| ·
∣∣∣∣∣∂w∂S
∣∣∣∣∣
(Sp,τq)

+
1
2
ΔS
∂2w
∂S2

∣∣∣∣∣
(S2,τq)

∣∣∣∣∣
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+
1
2
Δτ

∣∣∣∣∣∂
2w
∂τ2

∣∣∣∣∣
(Sp,τ1)

∣∣∣∣∣ + |A(w(Sp, τq), Sp, τq)| ·
∣∣∣∣∣ 1
12

(ΔS)2 ∂
4w
∂S4

∣∣∣∣∣
(S1,τq)

∣∣∣∣∣
+ |B(w(Sp, τq), Sp)| ·

∣∣∣∣∣12ΔS
∂2w
∂S2

∣∣∣∣∣
(S2,τq)

∣∣∣∣∣
≤
(
4C1C̃C2 +

1
12

C̃C
)
(ΔS)2 +

1
2

C̃Δτ +
1
2

CC̃ΔS ≤ ˜̃C(ΔS + Δτ),

where

S1 ∈ [S(p−1), S(p+1)], S2 ∈ [Sp, S(p+1)], τ1 ∈ [τq, τ(q+1)],

C̃ = max
(p,q)∈Ω

{∣∣∣∣∣∂
2w
∂S2

∣∣∣∣∣,
∣∣∣∣∣∂

4w
∂S4

∣∣∣∣∣,
∣∣∣∣∣∂

2w
∂τ2

∣∣∣∣∣
}

and ˜̃C = max
{1

2
C̃, 4C1C2C̃ +

1
12

C̃C
}
. �

Now, let w(S, τ) be the solution of (2.3) and let Wq
p be the solution of (3.1). We have

the following error estimate for the current IMEX method.

THEOREM 3.3. For the current numerical method, the error estimate

|w(Sp, τq) −Wq
p | ≤ C(Δτ + ΔS),

holds true, where (p, q) ∈ Ω, and C is a constant independent of Δτ and ΔS.

PROOF. We define a function Fq
p on Ω as

Fq
p =

˜̃C
r

[2Δτ + 2ΔS] > 0.

A direct calculation shows that LP,QFq
p = 2˜̃C[Δτ + ΔS]. Therefore, for (p, q) ∈ Ω,

LP,Q[w(Sp, τq) −Wq
p − Fq

p] = LP,Q[w(Sp, τq)] − LP,Q[Fq
p]

= LP,Q[w(Sp, τq)] − L[w(Sp, τq)] − LP,Q[Fq
p]

≤ |LP,Q[w(Sp, τq)] − L[w(Sp, τq)]| − LP,Q[Fq
p]

= −˜̃C[Δτ + ΔS] < 0.

On the other hand, for (p, q) ∈ Ω,

LP,Q[w(Sp, τq) −Wq
p + Fq

p] = LP,Q[w(Sp, τq)] + LP,Q[Fq
p]

= LP,Q[w(Sp, τq)] − L[w(Sp, τq)] + LP,Q[Fq
p]

≤ −|LP,Q[w(Sp, τq)] − L[w(Sp, τq)]| + LP,Q[Fq
p]

=
˜̃C[Δτ + ΔS] ≥ 0.

Now, we consider the nodes (p, q) ∈ ∂Ω. Since the boundary conditions of the current
problem is of Dirichlet type, it is not difficult to show that, for (p, q) ∈ ∂Ω,

w(Sp, τq) −Wq
p + Fq

p > 0 and w(Sp, τq) −Wq
p − Fq

p < 0.
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Therefore, according to the discrete maximum principle established in Lemma 3.1,

max
(p,q)∈Ω

|w(Sp, τq) −Wq
p | ≤ max

(p,q)∈Ω
|Fq

p | ≤ C(Δτ + ΔS),

where C is a constant independent of the mesh. This completes the proof of the current
theorem. �

4. Numerical examples and discussions

In this section, numerical results will be provided together with some useful discus-
sions. According to the issues to be addressed, three numerical experiments regarding
the convergence, accuracy and efficiency of the current method are conducted in this
section.

Numerical experiment 1: In this numerical experiment, we investigate the error
estimate and convergence rate of the current method. The parameters used in this
example are I = 1, α1 = 1, H1 = 1/2, N = 100, M = 50, k = 1, σS = 0.75, r = 4.48%
and T − t = 3 (years).

The method we adopt to obtain the convergence rate is quite standard [8]. To obtain
the convergence rate in the τ direction, we fix the grid size in the S direction to be
fairly small, that is, ΔS = Smax/2000, and vary the number of time intervals from 40
to 640. The difference eP,Q reported in Table 1 is measured by the discrete maximum
norm associated with P uniform elements in the S direction and Q uniform elements
in the τ direction, and is defined as

eP,Q = max
(p,q)∈Ω

|Wq
p − wexact(Sp, τq)|,

where wexact refers to the approximated solution calculated with very fine grid sizes,
namely, ΔS = Smax/2000 and Δτ = T/4000. Since there is no analytical solution
available for equity warrants under the GMFBM model, wexact is adopted as the
benchmark solution in all numerical experiments in this section. The rate appearing
in this table is then calculated from

RP,Q = log2
eP,Q

eP,2Q .

From Table 1, it is clear that, for fixed sufficiently large P value, the rate is very close
to 1, indicating that our method is indeed first-order convergent in the time direction.
Similarly, when we fix the time step size to be Δτ = T/4000, and gradually increase
the grid numbers in the S direction, we find that the rate approaches 1, as shown in
Table 2. Therefore, a first-order convergence is also achieved in the spatial direction,
which agrees well with the theoretical result shown in Theorem 3.3.

Numerical experiment 2: In this example, we compare our results with those listed
in the literature. This example consists of five warrants considered in [23] from August
2005 to May 2008, with basic information shown in Table 3. The comparison of our
results (denoted by the superscript 2), the corresponding values computed with the
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TABLE 1. Convergence rate in the τ direction.

No. of grids in the τ direction eP,Q (%) Ratio

41 0.0170
81 0.0110 0.6346
161 0.0070 0.6479
321 0.0042 0.7506
641 0.0019 1.1027

TABLE 2. Convergence rate in the S direction.

No. of grids in the S direction eP,Q (%) Ratio

31 0.0125
61 0.0078 0.6904
121 0.0040 0.9607
241 0.0024 0.7194
481 0.0011 1.0824

TABLE 3. Basic information for five warrants. Note that other parameters are k = 1, r1 = 2.25% and
r2 = 4.14%, where r1 and r2 are risk-free interest rates for one and two years, respectively.

Warrant S σS(%) N (million) M (million) T − t (year) X H

Baogang 4.000 30.5 875.600 387.700 2 4.50 0.628
Shouchuang 4.750 31.3 2200.000 60.000 1 4.55 0.665
Yunhua 22.620 43.9 536.400 54.000 2 18.23 0.713
Magang 3.480 36.2 6455.300 1265.000 2 3.40 0.635
Guodian 7.430 60.9 36538.730 427.465 2 7.50 0.731

method proposed in [23] (denoted by the superscript 1) and their actual market prices
(denoted by the subscript “Act”) are displayed in Table 4. In addition, in this table, the
subscript “B–S” means that the values are determined under the B–S model, whereas
the subscript “FBM” means that the values are determined under the FBM model. Note
that both the B–S model and the FBM model are special cases of the GMFBM model.
From this table, one can clearly observe that our method produces results that are
overall closer to real warrant prices than those determined by the algorithm proposed
in [23]. Moreover, when our method is applied to the FBM model and the B–S model,
the FBM prices are overall closer to the real market prices than the corresponding
B–S prices. This not only demonstrates the reliability of the current method, but also
suggests that the FBM is a better choice than the BM to describe the evolution of the
firm value.
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TABLE 4. Comparison of the different approaches with actual market prices.

Warrant w1
B−S w1

FBM w2
B−S w2

FBM wAct

Baogang 0.626 0.885 0.740 0.833 0.874
Shouchuang 0.735 1.116 0.989 0.995 1.013
Yunhua 8.244 8.812 8.442 9.325 9.343
Magang 0.857 1.056 1.005 1.102 1.133
Guodian 2.660 3.098 2.921 3.425 3.585
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FIGURE 1. Accuracy versus efficiency.

Numerical experiment 3: In this example, we examine the efficiency of the current
method. Three FBM models are adopted, with the following parameters.

I = 1, α1 = 1, H1 = 1/2 for the B–S model,
I = 1, α1 = 1, H1 = 0.628 for the FBM model,
I = 2, α1 = 1, α2 = 0.3, H1 = 1/2, H2 = 0.88 for the MFBM model.

Other parameters are N = 100, M = 50, k = 1, σS = 0.75, r = 4.48% and T − t = 3
(years). Furthermore, the “error” in this experiment is defined as

error =
‖w(S, t) − wexact(S, t)‖2
‖wexact(S, t)‖2

.

As shown clearly in Figure 1, the accuracy measured by “error” varies inversely
with the efficiency measured by the “CPU time”. When the same level of accuracy
is required, the computational time will increase if more FBMs are involved. Most
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impressively, one can observe that, for the current method, a high computational
efficiency can be achieved while a satisfactory accuracy can still be maintained. For
example, this method can produce a result within one second with error less than
0.02%. This level of accuracy and efficiency would certainly meet the practical needs
of market practitioners.

5. Conclusion

This paper considers the numerical pricing of equity warrants under the GMFBM
model. A nonlinear PDE system governing the equity warrant price in terms of
observable variables is derived first, and then solved effectively by an IMEX finite
difference method. Compared with the documented methods for the pricing of equity
warrants, the current method is based on a more rigorous mathematical deduction and
can produce results that are overall closer to real market prices. It is also theoretically
shown that the coefficient matrix associated with the current method is an M-matrix,
which ensures its stability in the maximum-norm sense. Most remarkably, a sharp error
estimate for the current method is also provided, which suggests that the proposed
method is first-order convergent in both the time and spatial directions. Based on
the current work, at least two future research directions can be expected. First, it
is promising to be able to extend the current method to price warrants under other
complicated models, under which closed-form expressions of European options cannot
be easily derived. Second, application of the current method to the pricing of other
similar financial derivatives is also plausible.

Appendix A. The GMFBM model

According to Thäle [20], the so-called GMFBM model is formally defined as
follows.

DEFINITION A.1. A GMFBM of parameter H = (H1, . . . , HN) and α = (α1, . . . ,αN)
is a stochastic process ZH = (ZH

t )t≥0 = (ZH,α
t )t≥0 defined on some probability space

(Ω, F, P) by

ZH,α =

N∑
k=1

αkBHk (t),

where (BHk (t))t≥0 are independent FBMs of Hurst parameters Hk, for k = 1, . . . , N.

For a detailed survey on the properties of the GMFBM, we refer the reader to
[19, 20] and the references therein. For a further exploration of the properties of the
GMFBM and its application to the field of option pricing, we refer the reader to [7, 8].
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