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The shallow-water equations are widely used to model interactions between horizontal
shear flows and (rotating) gravity waves in thin planetary atmospheres. Their extension
to allow for interactions with magnetic fields – the equations of shallow-water
magnetohydrodynamics (SWMHD) – is often used to model waves and instabilities in
thin stratified layers in stellar and planetary atmospheres, in the perfectly conducting
limit. Here we consider how magnetic diffusion should be added to the equations of
SWMHD. This is crucial for an accurate balance between advection and diffusion in
the induction equation, and hence for modelling instabilities and turbulence. For the
straightforward choice of Laplacian diffusion, we explain how fundamental mathematical
and physical inconsistencies arise in the equations of SWMHD, and show that unphysical
dynamo action can result. We then derive a physically consistent magnetic diffusion
term by performing an asymptotic analysis of the three-dimensional equations of
magnetohydrodynamics in the thin-layer limit, giving the resulting diffusion term
explicitly in both planar and spherical coordinates. We show how this magnetic diffusion
term, which allows for a horizontally varying diffusivity, is consistent with the standard
shallow-water solenoidal constraint, and leads to negative semidefinite Ohmic dissipation.
We also establish a basic type of antidynamo theorem.

Key words: shallow-water flows, dynamo theory

1. Introduction
The shallow-water equations are widely used as an idealised model of stratified fluid
dynamics in a thin layer, as generically occurs in planetary atmospheres and oceans (e.g.
Zeitlin 2018). In their simplest incarnation with no bottom topography, the equations
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describe the motion of an inviscid fluid of constant density occupying 0< z < h(x, t),
beneath an overlying quiescent fluid of negligible density; here x is the horizontal position,
and z is an upwards vertical coordinate. When the fluid depth h(x, t) is much smaller than
the horizontal length scale of the flow, the hydrostatic approximation can be made, and
solutions exist with the horizontal flow u independent of z (e.g. Gill 1982). This leads to
the coupled equations

∂t u + u · ∇u = −g∇h + F, (1.1)
∂t h + ∇ · (hu)= 0, (1.2)

where g is the acceleration due to gravity, and F is any z-independent forcing or
dissipation. There is an obvious extension including background rotation, as in the
equations originally derived by Laplace (1776). Although the shallow-water equations
have direct applications to barotropic flow in the ocean, they are often used with a reduced
gravity g′ to model upper oceanic flows above a deep quiescent layer of larger density,
or as a quasi-two-dimensional (x, t) idealisation of three-dimensional (x, z, t) baroclinic
dynamics in a continuously stratified flow, perhaps using the idea of equivalent depth (e.g.
Gill 1982; Zeitlin 2018).

For numerical solutions of the shallow-water equations in a strongly nonlinear regime,
a scale-selective dissipation term is usually included in F. An obvious choice is to set
F = ν∇2u in (1.1), where ∇2 is the horizontal Laplacian operator. But this choice is
undesirable: it does not lead to negative definite energy dissipation, and it violates angular
momentum conservation (Gent 1993; Schär & Smith 1993; Shchepetkin & O’Brien 1996;
Ochoa et al. 2011). Two approaches have been used to generate alternative forms of
the dissipation that are consistent with the fundamental physical principle that it be the
divergence of a symmetric tensor (Batchelor 1967). In the first approach, Shchepetkin &
O’Brien (1996) and Gilbert et al. (2014) set

Fi = 1
h

∂

∂x j
(hσi j ), σi j = ν

(
∂ui

∂x j
+ ∂u j

∂xi
− ςδi j

∂uk

∂xk

)
, (1.3)

for some parameter ς , building on the study of Schär & Smith (1993) with ς = 1. The
factors of h and the symmetric form of σi j ensure conservation of angular momentum,
and Gilbert et al. (2014) proved negative semidefinite energy dissipation provided ς � 1.
However, this approach does not uniquely determine a value of ς . The second approach is
to develop an asymptotic reduction of the full three-dimensional Navier–Stokes equations
as ε→ 0 (Marche 2007), where ε is the aspect ratio of the flow (i.e. a characteristic
depth divided by a horizontal length scale). The leading-order momentum balance is
then ∂2u/∂z2 = 0; however, applying zero tangential stress at the top and bottom of the
fluid layer, the leading-order flow u is undetermined and independent of z, consistent
with the standard shallow-water hypothesis. At the next order as ε→ 0, the shallow-water
equations (1.1)–(1.2) emerge with a viscous term involving horizontal derivatives of the
leading-order flow u. Indeed, the viscous term that emerges is simply (1.3) with ς = −2.

These modelling strategies can be extended to thin stratified layers with
magnetic fields, as often occur in planetary and stellar atmospheres and interiors.
Motivated by considerations of the solar tachocline, the equations of shallow-water
magnetohydrodynamics (SWMHD) were introduced by Gilman (2000). For an inviscid
and perfectly conducting fluid, he showed that the extension of the system (1.1)–(1.2) is

∂t u + u · ∇u = b · ∇b − g∇h + F, (1.4)
∂t b + u · ∇b = b · ∇u, (1.5)
∂t h + ∇ · (hu)= 0, (1.6)
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where b(x, t) is the horizontal magnetic field (measured in units of the Alfvén
speed), which, like u(x, t), can be taken to be independent of z. Then integrating the
three-dimensional solenoidal condition across the fluid layer gives

∇ · (hb)= 0, (1.7)

upon assuming that the free surface is composed of magnetic field lines, and that there
is no normal (i.e. vertical) field at the flat bottom. As shown by Dellar (2002), (1.4)–(1.6)
may be cast in a conservative form for the variables hu, hb and h. In this form (see below),
it is immediately clear that (1.7) is consistent with (1.5) and (1.6); that is, if ∇ · (hb)= 0
holds initially, then it will remain so. The equations of SWMHD have been used to model
waves and instabilities in various geophysical and astrophysical settings (e.g. Schecter
et al. 2001; Gilman & Dikpati 2002; Zaqarashvili et al. 2008; Hunter 2015; Mak et al.
2016; Márquez Artavia et al. 2017), although, since none of these settings involve a free
surface, either g in (1.4) should be interpreted as a reduced gravity g′ (Gilman 2000), or
the layer depth should be interpreted as an equivalent depth, as in Mak et al. (2016).

Just as the hydrodynamic shallow-water equations have been extended to include a
diffusive term to account for viscosity, it is natural to ask how the equations of SWMHD
can be extended to include a diffusive term to account for finite conductivity. Indeed, the
means by which magnetic (Ohmic) diffusion is implemented is arguably more important
than how viscous diffusion is implemented, because (1.4) could involve balances between
any combination of advection, pressure gradients, the Lorentz force and possibly Coriolis
terms, with viscous diffusion playing a minor role. However, the extended shallow-water
induction equation would involve only advection and diffusion, and so the consequences
of implementing either of these terms erroneously could be serious. In particular, one
might be concerned how the form of a magnetic diffusion term influences dynamo action
in SWMHD.

To be precise, we introduce a dissipative term d(x, t) in (1.5), as

∂t b + u · ∇b = b · ∇u + d (1.8)

or, equivalently, as

∂t (hb)= ∇ × (u × hb)+ hd, (1.9)

using (1.6). When d = 0, (1.9) is in the form given by Hunter (2015), and can be reduced
to equation (18c) of Dellar (2002). When d �= 0, it provides an immediate constraint on
the form of d, since taking the divergence of (1.9) and using (1.7) gives

∇ · (hd)= 0. (1.10)

A second constraint can be derived by considering the domain-integrated energy equation

dE

dt
=

∫
hu · F dS +

∫
hb · d dS, with E = 1

2 h(u2 + b2)+ 1
2 gh2, (1.11)

where dS is the two-dimensional area element, and we have taken the boundary energy
fluxes to vanish, which is guaranteed for appropriate lateral boundary conditions, or for an
unbounded flow with |u| → 0 and |b| → 0 as |x| → ∞. We require the Ohmic dissipation
to be negative semidefinite, i.e. ∫

hb · d dS � 0. (1.12)
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As noted by Mak (2013), for the straightforward choice d = η∇2b one cannot prove that
either (1.10) or (1.12) is satisfied. The former failure is particularly significant: setting
d = η∇2b introduces a fundamental inconsistency in the SWMHD formulation, since
the constraint (1.7) is not satisfied. This simple diffusion was used in the numerical
simulations of SWMHD by Lillo et al. (2005), whose results should be treated with
caution: in particular, the SWMHD dynamo action they reported could be unphysical.

What forms of d are consistent with (1.10) and (1.12)? Some first steps in this direction
were taken by Mak (2013), who noted that d = ηh−1∇2(hb) satisfies (1.10), but also that
(1.12) will not be satisfied, in general. One can do better by considering the form

d = −1
h

∇ × [ηh p∇ × (hq b)], (1.13)

for some p and q, and where η may vary horizontally. By construction, this automatically
satisfies (1.10). Then, again assuming that the lateral boundary fluxes vanish (e.g. by |b| →
0 as |x| → ∞), the Ohmic dissipation∫

hb · d dS = −
∫
ηh p(∇ × b) · (∇ × hq b) dS. (1.14)

Thus (1.12) is certainly satisfied when q = 0. Just as in the case of the viscous diffusion
ansatz (1.3), which satisfies the necessary physical constraints when ς � 1, we now have
a magnetic diffusion ansatz (1.13) that satisfies the necessary physical constraints when
q = 0 with p arbitrary. If η has dimensions of L2 T−1 (i.e. it is a diffusivity), then we
would need to take p = 1 on dimensional grounds, giving

d = −1
h

∇ × (ηh∇ × b) . (1.15)

So, starting from the ansatz (1.13), we have argued for a plausible form (1.15) for d. Our
main aims here are to show that (1.15) can also be derived systematically by an asymptotic
analysis of the three-dimensional induction equation, and to explore some implications of
this form for the equations of SWMHD, particularly with dynamo action in mind.

We start, in § 2, by returning to the straightforward choice d = η∇2b, and investigating
the possibility of SWMHD dynamo action. This straightforward choice was adopted by
Lillo et al. (2005), who considered the SWMHD evolution of forced helical turbulent
flows. Here, in order to isolate and understand more clearly any dynamo action in
the SWMHD system, we consider the simpler case of the shallow-water analogue of
the circularly polarised (CP) flow of Galloway & Proctor (1992) – a flow that has
received considerable attention in dynamo studies. Using numerical simulations, we show
that SWMHD dynamo action is indeed possible for a range of η. Furthermore, we
are able to make comparison with the corresponding magnetohydrodynamical dynamo
resulting from the Galloway & Proctor (1992) flow. Whether or not the SWMHD
dynamo action is physically realistic is another matter. In § 3, we return to the full
three-dimensional induction equation with a three-dimensional Laplacian diffusion, and
perform an asymptotic analysis for a thin fluid layer with appropriate conditions on the
magnetic field at the free surface and bottom. The ideas here are analogous to those
used by Marche (2007) to derive a physically consistent viscous diffusion term for
the hydrodynamic shallow-water equations. The outcome of our calculation is a set of
equations for SWMHD with an expression for d that is consistent with both the shallow-
water solenoidal constraint (1.10) and the requirement of negative semidefinite Ohmic
dissipation (1.12). In § 3.2, we set out some properties of the magnetic diffusion term
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in more detail, and establish a simple type of antidynamo theorem, thus confirming that
the SWMHD dynamo action reported in § 2 is spurious, and arises solely owing to the
choice d = η∇2b. In § 3.3, we revisit the Galloway–Proctor flow numerically, but now
with the correct form of the magnetic diffusion; in stark contrast to the exponential growth
of magnetic energy with d = η∇2b, the magnetic energy now decays exponentially. In § 4,
we give detailed expressions for the components of the physically consistent magnetic
diffusion term in spherical geometry, given the importance of this for astrophysical
applications. We conclude in § 5.

2. Shallow-water ‘dynamo action’
As discussed in the introduction, one might be tempted to include magnetic diffusion
in the SWMHD induction equation simply through the addition of an η∇2b term, thus
mimicking the diffusion term in the full induction equation. This is the form adopted
by Lillo et al. (2005), who considered, as a basic state flow, a highly time-dependent
hydrodynamical shallow-water flow driven by a large-scale helical forcing. They then
showed that the introduction of a weak seed field leads to the growth and subsequent
saturation of magnetic energy. It is though hard to draw any detailed conclusions about this
particular SWMHD dynamo, since the values of the key parameters, the fluid and magnetic
Reynolds numbers, are not provided. In this section, therefore, we look in more detail at the
evolution of the magnetic field under the assumption that the magnetic diffusion takes the
form η∇2b. Incompressible, two-dimensional planar flows cannot support dynamo action
(Zeldovich 1957). Thus, to exhibit dynamo action in the SWMHD equations requires flows
with a possibly appreciable variation in height; attaining numerical stability is then not
straightforward, but is more readily achieved for unsteady flows. To make contact with
classical investigations of dynamo action in incompressible fluids, we shall therefore
consider an unsteady, forced shallow-water flow related to a particular incompressible
flow widely used in dynamo studies. In § 2.1 we describe briefly the kinematic dynamo
properties resulting from solution of the full (three-dimensional) induction equation; in
§ 2.2 we describe the kinematic properties of what might be regarded as the analogous
SWMHD dynamo.

2.1. Classical dynamo action driven by a two-dimensional flow
The kinematic dynamo problem – in which the flow is prescribed and the field evolves
solely under the induction equation – is simplified by considering two-dimensional flows
– i.e. flows that are invariant in one Cartesian direction. For such flows, as we shall see
presently, it is possible to draw an analogy with shallow-water ‘dynamo action’. If the
velocity is incompressible, it may be expressed as

ũ = ∇̃ × (ψ ẑ)+w ẑ, (2.1)

where ψ andw are functions of x , y and t . Here we use a tilde to denote three-dimensional
vector fields; unless otherwise stated, unadorned quantities represent vector fields with
components only in the (x, y)-plane, as in § 1. Likewise we have ∇ = x̂∂x + ŷ∂y as the
planar operator and ∇̃ = x̂∂x + ŷ∂y + ẑ∂z in three dimensions.

A widely studied example of the form (2.1) is the unsteady flow introduced by Galloway
& Proctor (1992), in their study of fast dynamo action, with

ψ =w= A(cos (x + cos t)+ sin (y + sin t)). (2.2)
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Figure 1. Contour plots on a plane z = constant of the long-term kinematic solutions for (a) b̃ · ẑ and (b) j̃ · ẑ,
for the flow (2.2), with A = 1.5, η̂−1 = 100 and wavenumber k = 0.61. The values are normalised such that
max|b̃ · ẑ| = 1. The calculation was performed with 256 Fourier modes in each direction.

We note that the vorticity is parallel to the velocity: the flow is said to be Beltrami, or
maximally helical. For incompressible flows, the induction equation, in dimensionless
form, may be written as

∂ b̃
∂t

+ ũ · ∇̃b̃ = b̃ · ∇̃ũ + η̂∇̃2 b̃, (2.3)

where η̂ is the (constant) dimensionless magnetic diffusivity, which is inversely
proportional to the magnetic Reynolds number Rm. In the kinematic regime, for flows
that are independent of z, the magnetic field may be expressed in the form

b̃(x, y, z, t)= b̂(x, y, t) exp(ikz). (2.4)

For a given wavenumber k, therefore, the problem involves only two spatial dimensions,
x and y. The induction equation (2.3) is solved numerically as an initial value problem,
using a pseudospectral spatial representation in conjunction with second-order exponential
time differencing with Runge–Kutta time stepping (scheme ETD2RK from Cox &
Matthews (2002)). After any initial transient, the magnetic field grows or decays, with
an accompanying oscillation, with growth rate s. For the particular case of A = 1.5 and
η̂−1 = 100, the mode of maximum growth rate has wavenumber k = 0.61 and dynamo
growth rate s = 0.38. Contours of the z-components of the magnetic field and the electric
current ( j̃ = ∇̃ × b̃) are shown in figure 1, highlighting their fine-scale structure.

2.2. Shallow-water Galloway–Proctor dynamo
For comparison, we now address the kinematic evolution of the magnetic field in a forced,
dissipative shallow-water system. We solve, numerically, (1.4) with the addition of forcing
and viscous terms to the right-hand side but excluding the Lorentz force, (1.5) with the
addition of a magnetic diffusion term to the right-hand side, and (1.6). As discussed above,
we are here exploring the implications of expressing the magnetic diffusion term as a
Laplacian. For simplicity, and also because it is widely adopted in shallow-water studies,
we choose chiefly to employ a two-dimensional Laplacian operator also for the viscous
diffusion. Since our focus in this paper is on the evolution of the magnetic field, we do not
anticipate that the particular choice of diffusion for the velocity will be a critical factor. We
shall, however, briefly address the case when the viscous dissipation takes the form (1.3),
with ς = −2.
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We thus first consider the equations

∂t u + u · ∇u = −g∇h + P + ν∇2u, (2.5)

∂t b + u · ∇b = b · ∇u + η∇2b, (2.6)

∂t h + ∇ · (hu)= 0, (2.7)

where P denotes the forcing term and ν and η denote the (constant) kinematic viscosity
and magnetic diffusivity. In dimensionless form, on scaling velocities and horizontal
lengths with representative values U and L , and fluid depth with the undisturbed depth
H , these may be written as

∂t u + u · ∇u = −F−2∇h + P + ν̂∇2u, (2.8)

∂t b + u · ∇b = b · ∇u + η̂∇2b, (2.9)

∂t h + ∇ · (hu)= 0, (2.10)

where F = U/
√

gH is the Froude number, ν̂ = ν/U L and η̂= η/U L are scaled
diffusivities (inversely proportional to the Reynolds number Re and magnetic Reynolds
number Rm, respectively), and P is now the dimensionless forcing.

To draw an analogy with the dynamo described in § 2.1, we suppose that the system
is forced by the horizontal projection of the body force that in an incompressible fluid
would (at least for sufficiently small fluid Reynolds number) lead to the Galloway–Proctor
flow (2.2). Since the flow is incompressible and maximally helical (thus with ũ · ∇̃ũ =
1
2∇̃ũ2), it is driven by the forcing P̃ = (∂t − ν̂∇̃2)ũ (see e.g. Cattaneo & Hughes 1996).
Thus, for the shallow-water system, we adopt the forcing P = (Px , Py)= (P̃x , P̃y) using
the horizontal components of P̃ given by

P̃x = A((− cos t sin(sin t)+ ν̂ cos(sin t)) cos y − (cos t cos(sin t)+ ν̂ sin(sin t)) sin y),
(2.11a)

P̃y = A((− sin t cos(cos t)+ ν̂ sin(cos t)) cos x + (sin t sin(cos t)+ ν̂ cos(cos t)) sin x).
(2.11b)

Starting from an initial condition of uniform depth h (≡ 1), zero velocity and zero
magnetic field, (2.8) and (2.10) are first evolved in time, on a 2π × 2π domain, until a
stationary, purely hydrodynamic state is attained. As an illustrative example, we again
consider the specific case of A = 1.5, for comparison with the Galloway–Proctor dynamo
discussed in § 2.1, and take F = √

2/3, ν̂ = 0.1. We again employ a pseudospectral
Fourier representation with ETD2RK time stepping, now with 512 Fourier modes in
each direction. The flow evolves to a periodic state, with 〈h2〉1/2 = 1.19, 〈u2〉 = 2.09,
〈hu2〉 = 1.89, where angle brackets denote an average over x , y and t . Snapshots of the
z-component of the vorticity, q, say, and the height h in the hydrodynamic stationary state
are shown in figure 2.

To explore the kinematic evolution of the magnetic field, we introduce a seed field of
zero mean into the hydrodynamic flow and solve (2.8)–(2.10). The long-time behaviour
is characterised by exponential (and oscillatory) growth or decay. Figure 3 shows the
exponential growth of magnetic energy versus time for a range of values of η̂−1; note
that the dependence of the growth rate on η̂ is non-monotonic. As a comparison with the
Galloway–Proctor dynamo described in § 2.1, the dynamo growth rate (half the growth rate
of the magnetic energy) for η̂−1 = 10 is given by s = 0.11, and for η̂−1 = 100, s = 0.022.
Snapshots of the z-components of the electric current and the vorticity for the case of
η̂−1 = 10 are shown in figure 4. As noted above, with Laplacian diffusion for the magnetic
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Figure 2. Snapshots of contours of (a) q and (b) h, in the stationary shallow-water hydrodynamic state
resulting from the forcing (2.11) with A = 1.5, F = √

2/3, ν̂ = 0.1.
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Figure 3. Long-term kinematic evolution of 〈hb2〉 for the hydrodynamic flow resulting from the forcing (2.11)
with A = 1.5, F = √

2/3, ν̂ = 0.1, with Laplacian viscosity and with Laplacian diffusion for the magnetic field.
The different curves are for (a) η̂−1 = 5, (b) η̂−1 = 10, (c) η̂−1 = 20, (d) η̂−1 = 100.
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Figure 4. Snapshots of contours of the (exponentially growing) (a) j̃ · ẑ and (b) q , for the kinematic field
evolution driven by the stationary hydrodynamic flow resulting from the forcing (2.11) with A = 1.5, F =√

2/3, ν̂ = 0.1, η̂= 0.1, and with Laplacian diffusion for the magnetic field. In (a), the values have been
normalised; the values themselves are immaterial in a kinematic field evolution.
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Figure 5. Long-term kinematic evolution of 〈hb2〉 for the hydrodynamic flow resulting from the forcing (2.11)
with A = 1.5, F = √

2/3, ν̂ = 0.05, and with viscous diffusion given by (1.3), with ς = −2. In (a) η̂−1 = 30;
in (b) η̂−1 = 50.

field, the constraint ∇ · (hb)= 0 is not satisfied; thus, for the shallow-water dynamos
shown in figure 3, ∇ · (hb) grows exponentially in time.

To confirm our belief that shallow-water dynamo action is not dependent on the precise
form of viscous dissipation adopted – particularly since the motions are driven by an
arbitrary forcing – but is a consequence of the combination of the height and induction
equations, we have also explored the magnetic field evolution when the flow is again
driven by the forcing (2.11), but now with the dissipative term given by (1.3), with ς = −2.
Figure 5 shows the magnetic energy, plotted logarithmically, versus time for ν̂ = 0.05 and
for the two cases of η̂−1 = 30 and η̂−1 = 50. The magnetic energy, which is oscillatory,
exhibits clear exponential growth, again demonstrating shallow-water dynamo action.

Figures 3 and 5 are indeed reminiscent of plots of kinematic dynamo action, showing
the exponential amplification of an infinitesimally weak magnetic field. This shallow-
water dynamo is, however, a very different beast to its classical counterpart, as can be
seen by comparison of the induction equations (2.3) and (2.9). In (2.3), b̃ is solenoidal
and magnetic field growth depends crucially on the field being three-dimensional; if
k = 0, then, by a Cartesian analogue of Cowling’s theorem forbidding dynamo-generated
axisymmetric fields (Cowling 1933), the magnetic energy can only decay. By contrast,
in (2.9), b = (bx , by) is not solenoidal and has no z-dependence; the means of field
amplification is clearly therefore very different in the two cases. Whereas the term ∇̃2 b̃
in (2.3) is always dissipative, there is no such guarantee for the corresponding term in
(2.9). Can field growth thus be attributed exclusively to the form of the ‘dissipative’ term
adopted in (2.9)? It is clearly important therefore to establish precisely what form this term
should take, and then to understand its implications. This is our next aim.

3. Asymptotic reduction of the three-dimensional induction equation
In this section, we derive a physically consistent magnetic diffusion term for SWMHD,
by performing an asymptotic analysis of the full three-dimensional diffusive induction
equation as the aspect ratio ε→ 0. Even though we need not consider the hydrodynamic
aspects of the flow in detail, it is useful to sketch how the corresponding hydrodynamic
analysis as ε→ 0 leads to a physically consistent viscous diffusion term in the
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shallow-water equations (Marche 2007); also see the analysis of Levermore & Sammartino
(2001) for a closely related system under the rigid-lid approximation. The hydrodynamic
analysis has three key requirements, namely that (i) there is zero tangential stress at the
free surface; (ii) there is zero tangential stress at the bottom; (iii) the Reynolds number Re
(based on the horizontal length scale) is of order unity as ε→ 0. Requirements (ii) and (iii)
are generally inappropriate for oceanic flows, where there will be no slip at the bottom, and
Re � 1. However, requirements (i) and (ii) are essential for the leading-order horizontal
momentum balance ∂2u/∂z2 = 0 to have a non-trivial solution that is independent of z
(required for a shallow-water-like outcome), whilst requirement (iii) ensures that a viscous
diffusion term appears at the next order (in the physically desirable form (1.3), with
ς = −2), alongside the standard terms of the shallow-water momentum equation. Even
though the analysis only formally holds for Re of order unity as ε→ 0, this is really just
a convenient way of generating a physically consistent diffusion term, and in practice one
might still deploy it in numerical simulations at high Re.

Here we adopt a similar philosophy for the problem of magnetic diffusion in SWMHD.
We will thus need boundary conditions on the magnetic field that allow the leading-order
equations to have a non-trivial solution that is independent of z, and assume that the
magnetic Reynolds number Rm is of order unity, even though we might eventually deploy
the resulting magnetic diffusion term in numerical simulations at high Rm.

3.1. Derivation of the magnetic diffusion term
Without approximation, the induction equation for an incompressible flow, the diffusion
term and solenoidal condition may be written as

∂t b̃ + ũ · ∇̃b̃ − b̃ · ∇̃ũ = d̃, (3.1)

d̃ = −∇̃ × (η∇̃ × b̃), (3.2)

∇̃ · b̃ = 0, (3.3)

where, as in § 2, we use a tilde to denote three-dimensional vector fields and operators.
We allow a spatially dependent magnetic diffusivity, but take this to be independent of the
vertical coordinate, i.e. η= η(x, y). Equations (3.1)–(3.3) are to be solved in a plane layer
of fluid, 0 � z � h(x, y, t).

The boundary conditions on b̃ at z = 0 and z = h(x, y, t) depend upon the assumed form
of b̃ and the electric field Ẽ outside the fluid layer. We assume a perfectly conducting
exterior with zero magnetic field, in which case b̃ = 0 and Ẽ = 0 for both z < 0 and
z > h(x, y, t). The boundary conditions then follow upon integrating ∇̃ · b̃ = 0 over a
pillbox sitting along the boundary, and applying Faraday’s Law to a thin rectangular
contour straddling the boundary. At z = 0, the result is standard: ẑ · b̃ and ẑ × Ẽ both
vanish, where ẑ is a unit vector in the vertical. However, the calculation is more subtle at
z = h(x, y, t), since the integrals must be performed in a frame moving with the interface.
Denoting values in this moving frame with primes, and using square brackets to denote a
change across the interface, we obtain

[ñ · b̃
′] = 0, [ñ × Ẽ

′] = 0, (3.4)

where ñ is any vector normal to the interface (e.g. Roberts 1967). From Ohm’s law, we can
write Ẽ

′ = η∇̃ × b̃
′ − ũ′ × b̃

′
, and since ũ′ · ñ = 0 (the frame moves with the interface),

(3.4) implies

[ñ · b̃
′] = 0, ηñ × [∇̃ × b̃

′
] = (ñ · b̃

′
) [ũ′]. (3.5)
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But b̃
′ = b̃ (it is frame independent), and, for a perfectly conducting exterior with zero

magnetic field, (3.5) reduces to ñ · b̃ = 0 and ηñ × (∇̃ × b̃)= 0 at the interface. These are
just standard conditions of zero normal field and zero tangential current (the latter can also
be demonstrated by integrating (3.1) across the interface and using the Reynolds transport
theorem). When η �= 0, we thus solve (3.1)–(3.3) subject to

ẑ · b̃ = 0, ẑ × (∇̃ × b̃)= 0 on z = 0, (3.6)
ñ · b̃ = 0, ñ × (∇̃ × b̃)= 0 on z = h(x, y, t). (3.7)

We now consider the shallow-water limit: after an appropriate rescaling based on a fluid
depth scale H and horizontal length scale L with H/L = ε� 1, the fluid is confined in
the layer with 0 � z � h(x, y, t), where h is the original layer depth scaled by H . The
three-dimensional flow ũ and magnetic field b̃ (both scaled by a representative speed U )
and gradient operator ∇̃ take the form

ũ = u + εw ẑ, b̃ = b + εc ẑ, ∇̃ = ∇ + ε−1 ẑ ∂z . (3.8)

Here, as before, u, b and ∇ are the horizontal components of the flow, field and gradient
operator, whilst εw, εc and ε−1∂z are the vertical components. We take the (surface)
normal vector field as

ñ = −ε∇h + ẑ. (3.9)

Note that u, b, w and c depend on all of (x, y, z, t) at the outset. When we expand in
powers of ε, it will be the leading-order horizontal terms u0 and b0 that are z-independent
and which will constitute the fields governed by the SWMHD system.

The three-dimensional induction equation (3.1) and solenoidal condition (3.3) become

(∂t + u · ∇ +w ∂z) b̃ = (b · ∇ + c ∂z) ũ + d̃, (3.10)
∇ · b + ∂zc = 0, (3.11)

where, in (3.10), time has been scaled by the advective time scale L/U , and d̃ is the
scaled version of the magnetic diffusion term (3.2). This can be expressed in terms of b
and c by using (3.8) to write

∇̃ × b̃ = (∇ + ε−1 ẑ∂z)× (b + εc ẑ)= ε−1 ẑ × ∂z b + ∇ × b + ε∇c × ẑ, (3.12)
=⇒ d̃ = ε−2η̂ ∂2

z b − ε−1 ẑ∇ · (η̂∂z b)− ∇ × (
η̂∇ × b

) − η̂∂z∇c + ε ẑ∇ · (η̂∇c), (3.13)

where η̂(x, y)= η/U L is the scaled magnetic diffusivity, as in (2.9). Since the first, third
and fourth terms on the right-hand side of (3.13) are horizontal whilst the second and fifth
terms are vertical, we can split (3.10) into its horizontal and vertical components:

(∂t + u · ∇ +w∂z) b = (b · ∇ + c∂z) u + ε−2η̂ ∂2
z b − ∇ × (

η̂∇ × b
) − η̂∂z∇c, (3.14)

(∂t + u · ∇ +w∂z) c = (b · ∇ + c∂z) w− ε−2∇ · (η̂∂z b)+ ∇ · (η̂∇c). (3.15)

We turn now to the boundary conditions (3.6) and (3.7), the scaled versions of which
are

c = 0 on z = 0, (3.16)
−∂z b + ε2∇c = 0 on z = 0, (3.17)

c − b · ∇h = 0 on z = h(x, y, t), (3.18)
−∂z b − ε ẑ∇h · ∂z b + ε2∇c − ε2∇h × (∇ × b)+ ε3 ẑ∇h · ∇c = 0 on z = h(x, y, t),

(3.19)
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using (3.9). Equation (3.19) can also be split into horizontal and vertical components:

∂z b = ε2(∇c − ∇h × (∇ × b)) on z = h(x, y, t), (3.20)
∇h · (∂z b − ε2∇c)= 0 on z = h(x, y, t). (3.21)

All the above is exact, albeit rescaled. We now consider the shallow-water limit, i.e.
ε→ 0. Although η̂ could, in principle, be chosen to depend upon ε as this limit is taken,
the natural way for second-order horizontal derivatives in the diffusion term to enter into a
shallow-water-like balance of (3.14) is with η̂ independent of ε. We thus consider the limit
ε→ 0, with η̂ of order unity (or equivalently Rm of order unity). The governing equations
are (3.14)–(3.15), with boundary conditions (3.16)–(3.18) and (3.20)–(3.21). Noting that
the small parameter in this system is ε2 rather than ε1, we introduce expansions

b = b0 + ε2b1 + · · · , c = c0 + ε2c1 + · · · . (3.22)

The hydrodynamic expansions are well known to occur in the same way, i.e. u =
u0 + ε2u1 + · · · and h = h0 + ε2h1 + · · · . As is standard in shallow-water systems, the
hydrodynamic equations (which we do not give here) may be satisfied by taking

∂zu0 = 0, (3.23)

so that incompressibility implies

w0 = −z∇ · u0, (3.24)

having applied ũ · ẑ = 0 at z = 0. Then the kinematic condition at z = h implies

∂t h0 + ∇ · (h0u0)= 0. (3.25)

Introducing expansions of the form (3.22) into the horizontal induction equation (3.14),
the leading-order terms yield 0 = η̂∂2

z b0. Since ∂z b0 = 0 at z = 0 by (3.17) and at z = h by
(3.20), it follows that

∂z b0 = 0 for all z. (3.26)

That is, the leading-order horizontal field b0 = b0(x, y, t) is independent of z, as is the
case for u0 from (3.23). Then, from (3.11), which implies ∂zc0 = −∇ · b0, and (3.16),
which implies c0 = 0 on z = 0, we obtain

c0 = −z∇ · b0. (3.27)

Since (3.18) implies c0 = b0 · ∇h0 on z = h0, combining with (3.27) yields the appropriate
divergence free condition for magnetic field,

∇ · (h0b0)= 0. (3.28)

At order ε0, (3.14) yields

(∂t + u0 · ∇) b0 = b0 · ∇u0 + η̂∂2
z b1 − ∇ × (

η̂∇ × b0
) − η̂∂z∇c0, (3.29)

where we have also used (3.23). There are two distinct ways to proceed at this point. The
first approach is to integrate (3.29) over the layer depth to obtain

h0 (∂t + u0 · ∇) b0 = h0b0 · ∇u0 − h0∇ × (
η̂∇ × b0

) + η̂[∂z b1 − ∇c0]h0
z=0 . (3.30)

The terms in the square bracket can be evaluated using the O(ε2) terms of (3.17) and
(3.20), which are

∂z b1 = ∇c0 at z = 0, (3.31)
∂z b1 = ∇c0 − ∇h0 × (∇ × b0) at z = h0. (3.32)
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Substituting in (3.30) and combining terms gives

(∂t + u0 · ∇) b0 = b0 · ∇u0 − h−1
0 ∇ × (η̂h0∇ × b0). (3.33)

This is the key result and goal of this paper, namely the induction equation governing the
leading-order horizontal fields b0(x, y, t), u0(x, y, t) and h0(x, y, t) as ε→ 0, with η̂ of
order unity. Dropping the zero subscript and returning to unscaled variables, this provides
the shallow-water form of the induction equation, namely

∂t b + u · ∇b = b · ∇u + d, (3.34)

with the physically consistent diffusion term

d = −h−1∇ × (ηh∇ × b), (3.35)

as in (1.15).
The second approach to deriving (3.33) from (3.29) is to recognise that there is a hidden

consistency requirement in the above analysis. This can be made explicit by noting that,
with the exception of η̂∂2

z b1, all terms of (3.29) have already been found to be independent
of z. It follows that ∂2

z b1 must also be independent of z, so that ∂z b1 is linear in z. Using
(3.31) and (3.32) it follows that

∂z b1 = ∇c0|z=0 (1 − z/h0)+ [∇c0|z=h0 − ∇h0 × (∇ × b0)] (z/h0), (3.36)

and so

∂2
z b1 = h−1

0 [∇c0]h0
z=0 − h−1

0 ∇h0 × (∇ × b0)= ∂z∇c0 − h−1
0 ∇h0 × (∇ × b0) , (3.37)

since c0 is also linear in z from (3.27). It is then easily checked that substituting (3.37) into
(3.29) once more gives (3.33).

Finally, we also need to verify that the vertical component of the induction equation, i.e.
(3.15), is satisfied to the same degree of approximation. On substituting expansions of the
form (3.22), the leading-order, O(ε−2), term of (3.15) is zero as b0 is independent of z. At
the next order in ε, we find

(∂t + u0 · ∇ +w0∂z) c0 = (b0 · ∇ + c0∂z) w0 − ∇ · (η̂∂z b1)+ ∇ · (η̂∇c0). (3.38)

We will omit the details, but it can be checked that this equation is satisfied identically.
This can be done by taking the divergence of (3.29), using (3.24) and (3.27), and noting
that the combination ∂z b1 − ∇c0 is linear in z with (3.31) holding.

3.2. Properties of the magnetic diffusion term
Having established, from the thin layer approximation to the full three-dimensional system,
that a physically consistent diffusion term is (3.35) for the shallow-water induction
equation written in the form (3.34), we now check that evolving quantities such as the
magnetic energy and magnetic flux have the properties we would expect. Since we have
confirmed the magnetic diffusion in the form of (1.15), or (1.13) with p = 1, q = 0, the
solenoidal condition ∇ · (hb)= 0 is preserved in time, while for magnetic energy we have

dEM

dt
≡ d

dt

∫
1
2 hb2 dS =

∫
hb · (∇u) · b dS −

∫
ηh(∇ × b)2 dS. (3.39)

Here we adopt the boundary conditions that there is no normal component of u or b, and no
tangential component of the current η∇ × b to any curve bounding the region containing
fluid in the (x, y)-plane (exterior perfect conductor). So, in agreement with (1.14), the
Ohmic dissipation term is negative semidefinite, as desired.
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The diffusion term may be expanded to see its structure; it is convenient to add a term
that is zero (from (1.7)) and take η constant to write

η−1d = ∇[h−1∇ · (hb)] − h−1∇ × (h∇ × b) (3.40)

= ∇2b + ∇(b · h−1∇h)+ (∇ × b)× h−1∇h, (3.41)
which, in components with b = bx x̂ + by ŷ, amounts to

η−1dx = ∇2bx + h−1(∂x h ∂x + ∂yh ∂y)bx + ∂x (h
−1∂x h)bx + ∂x (h

−1∂yh)by, (3.42)

η−1dy = ∇2by + h−1(∂x h ∂x + ∂yh ∂y)by + ∂y(h
−1∂x h)bx + ∂y(h

−1∂yh)by . (3.43)
We have the usual Laplacian terms plus coupling of the components through the height
field.

A more compact formulation is to use the divergence-free condition (1.7) to introduce a
flux function A for the magnetic field, defined by

hb = ∇ × (A ẑ)= (∂y A,−∂x A, 0), (3.44)

and having the physical meaning that the difference in A between two points in the plane
is the amount of horizontal magnetic flux trapped under the surface z = h between those
points, or more strictly vertical posts penetrating the thin layer of fluid at those points.
The flux function may then be taken (in an appropriate gauge) to satisfy the advection–
diffusion equation

∂t A + u · ∇A = −ηh ẑ · ∇ × [h−1∇ × (A ẑ)], (3.45)

whose curl is (3.34) with (3.35). This may be written as

∂t A + (u + ηh−1∇h) · ∇A = η∇2 A, (3.46)

showing that the effect of the shallow-water geometry is to modify the advection velocity u
by a diffusion-dependent term. In the plane, the equation (3.45) for A is straightforwardly

∂t A + u · ∇A = η(∇2 A − h−1∂x h ∂x A − h−1∂yh ∂y A) (3.47)

in Cartesian coordinates, or

∂t A + u · ∇A = η(∇2 A − h−1∂r h ∂r A − h−1r−2∂θh ∂θ A) (3.48)

in polar coordinates.
From the structure of (3.46), it is clear that the maximum value of A in a domain

cannot increase in time, nor the minimum value decrease. Thus the flux between any two
points is bounded by the difference between the maximum and minimum of A at time
t = 0. This precludes a growing magnetic eigenfunction in a steady flow u, or one taking
a Floquet form for a time-periodic flow u. This straightforward antidynamo argument
assumes suitable boundary conditions – for example, that A is constant and independent
of time on any component of the boundary so that the normal magnetic field is zero there.
A more formal antidynamo theorem, showing that A → 0 and b → 0 in a suitable norm
for general classes of flows, would be desirable and remains a topic for future study.

3.3. Magnetic field evolution with the correct magnetic diffusion term
Having shown in § 2.2 how it is possible to have kinematic exponential field growth under
a flow driven by the forcing (2.11) with a Laplacian diffusion in the induction equation, it
behoves us to consider the evolution of the magnetic field, under the same flow, but with
the diffusion term (3.35). Figure 6 shows the long-term evolution of the magnetic energy,
assuming Laplacian viscosity, for the same values of η̂ as shown in figure 3. The numerical
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Figure 6. Long-term kinematic evolution of 〈hb2〉 for the hydrodynamic flow resulting from the forcing (2.11)
with A = 1.5, F = √

2/3, ν̂ = 0.1, with Laplacian viscosity and with the diffusion term (3.35) for the magnetic
field. The different curves are for (a) η̂−1 = 5, (b) η̂−1 = 10, (c) η̂−1 = 15, (d) η̂−1 = 20.
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Figure 7. Snapshots of contours of (a) A and (b) j̃ · ẑ, for the kinematic field evolution driven by the stationary
hydrodynamic flow resulting from the forcing (2.11) with A = 1.5, F = √

2/3, ν̂ = 0.1, η̂= 0.1, with Laplacian
viscosity and with diffusion for the magnetic field given by (3.35). The plots are normalised such that
max|A| = 1.

method and resolution are the same as employed in § 2.2. The contrast between figure 3 and
figure 6 is marked. With Laplacian diffusion for the magnetic field, the magnetic energy
is exponentially growing; by contrast, with the diffusion term (3.35), the magnetic energy
decays exponentially. As might be expected, the decay rate increases monotonically with η̂.
Snapshots of the long-term (decaying) forms of the flux function A and the z-component
of the electric current are shown in figure 7.

4. Spherical geometry
Many astrophysical applications involve flow on a sphere, and so here we consider briefly
the form of the equations and the magnetic diffusion term in this geometry. We take the
flow and field to be defined on a unit sphere S given by r = 1 in spherical polar coordinates
(r, θ, φ). The fluid occupies a thin layer bounded by r = 1 and r = 1 + εh(θ, φ, t) with
ε� 1 as usual. The flow and field are given by u(θ, φ, t) and b(θ, φ, t), with the
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radial component and dependence on radius removed from consideration. We will derive
the equations here using a general formulation, as we need to establish notation and
appropriate spherical operators, but the reader may wish instead to read the discussion
in Gilman & Dikpati (2002), which gives the SWMHD system in the form of (4.4)–(4.6)
with (4.1), or (4.10)–(4.14).

Here we first set up the equations for a flow and field on a general surface S embedded
in ordinary three-dimensional space, following the approach of Il’in (1991); see this paper
and Gilbert et al. (2014) for more detail. We let n be a unit vector field normal to the
surface S, which is extended just off the surface in such a way that ∇ × n = 0. In this
section we will use ∇ as the usual operator in the full three-dimensional space rather than
∇̃ as earlier, and use n in preference to ñ. Given a scalar field χ and a vector field u defined
on the surface S (in other words vectors u(θ, φ) that are everywhere tangent to S), we set

curls χ = ∇ × (χn)= −n × ∇χ, curlv u = n · ∇ × u = −∇ · (n × u), (4.1)

and we also write grad χ and div u for the gradient of χ and the divergence of u
taken within the surface. Note that the layer thickness here is not being considered; the
geometrical set-up is on the purely two-dimensional surface S. With these two operators,
the Laplacian is defined on scalar functions by

∇2χ = −curlv curls χ. (4.2)

The key result of Il’in (1991) we use is that the projection, say π , of the u · ∇u term on
the surface S is given by

π(u · ∇u)= −u × n curlv u + grad 1
2 u2. (4.3)

Within this framework, the equations for SWMHD on S take the form

∂t u − u × n curlv u + b × n curlv b + grad 1
2 (u

2 − b2)+ g grad h = F, (4.4)

∂t b − curls(n · u × b)− b div u + u div b = d, (4.5)

∂t h + div(hu)= 0, div(hb)= 0, (4.6)

with the viscous diffusion term F and magnetic diffusion term d.
In spherical geometry, with n = r̂ on the unit sphere and u = uθ θ̂ + uφφ̂, we have

grad χ = ∂θχ θ̂ + s−1∂φχ φ̂, div u = s−1∂θ (suθ )+ s−1∂φuφ, (4.7)

curls χ = s−1∂φχ θ̂ − ∂θχ φ̂, curlv u = s−1∂θ (suφ)− s−1∂φuθ , (4.8)

π(u · ∇u)=[(uθ ∂θ+s−1uφ∂φ)uθ − s−1cuφuφ]θ̂ + [(uθ ∂θ + s−1uφ∂φ)uφ + s−1cuθuφ]φ̂,
(4.9)

where we abbreviate s = sin θ , c = cos θ . We can use these expressions in (4.4)–(4.6) to
write down the shallow-water equations as in Gilman & Dikpati (2002), or expand out all
the terms to obtain

∂t uθ + u · ∇uθ − s−1cuφuφ − b · ∇bθ + s−1cbφbφ + g∂θh = Fθ , (4.10)

∂t uφ + u · ∇uφ + s−1cuθuφ − b · ∇bφ − s−1cbθbφ + s−1g∂φh = Fφ, (4.11)

∂t bθ + u · ∇bθ − b · ∇uθ = dθ , (4.12)

∂t bφ + u · ∇bφ + s−1cuφbθ − b · ∇uφ − s−1cbφuθ = dφ, (4.13)

∂t h + s−1∂θ (shuθ )+ s−1∂φ(huφ)= 0, s−1∂θ (shbθ )+ s−1∂φ(hbφ)= 0, (4.14)

with u · ∇ = uθ ∂θ + s−1uφ∂φ and similarly for b · ∇.
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We now consider the magnetic diffusion term d; the viscous diffusion term F is set out
in Gilbert et al. (2014). The appropriate generalisation of (3.35) is

d = −h−1 curls(ηh curlv b). (4.15)

After integration by parts, the magnetic energy equation, analogous to (3.39), is given by

dEM

dt
≡ d

dt

∫
1
2 hb2 dS

=
∫ [

b · curls(hn · u × b)+ 1
2 b2 div(hu)

]
dS −

∫
ηh(curlv b)2 dS, (4.16)

with the dissipative term correctly taking a negative semidefinite form.
For a vector potential defined on the surface by

hb = curls A, (4.17)

the corresponding A equation is

∂t A + u · ∇A = −ηh curlv(h−1 curls A)= η[∇2 A + h−1n · grad h × curls A] (4.18)

using the scalar Laplacian defined in (4.2). This amounts to

∂t A + u · ∇A = η[∇2 A − h−1(∂θh ∂θ A + s−2∂φh ∂φA)], (4.19)

where the Laplacian on the sphere is as usual given by

∇2χ = ∂2
θ χ + s−1∂θχ + s−2∂2

φχ. (4.20)

For the components of diffusion of the magnetic field in spherical geometry, taking η
constant, we add a term that is zero to d in (4.15) to write

η−1d = grad[h−1 div(hb)] − h−1 curls(h curlv b), (4.21)

which amounts to

η−1d=
{
∂θ [h−1s−1∂θ (shbθ )+h−1s−1∂φ(hbφ)] − h−1s−1∂φ[hs−1∂θ (sbφ)− hs−1∂φbθ ]

}
θ̂

+
{

s−1∂φ[h−1s−1∂θ (shbθ )+h−1s−1∂φ(hbφ)]+h−1∂θ [hs−1∂θ (sbφ)−hs−1∂φbθ ]
}
φ̂,

(4.22)

and then expand this to obtain

η−1dθ = ∇2bθ − 2s−2c∂φbφ − s−2bθ + h−1∂θh ∂θbθ + s−2h−1∂φh ∂φbθ

+ ∂θ (h
−1∂θh)bθ + s−1∂θ (h

−1∂φh)bφ − 2s−2c(h−1∂φh)bφ, (4.23)

η−1dφ = ∇2bφ + 2s−2c∂φbθ − s−2bφ + h−1∂θh ∂θbφ + s−2h−1∂φh ∂φbφ

+ s−1∂φ(h
−1∂θh)bθ + s−2∂φ(h

−1∂φh)bφ + s−1c(h−1∂θh)bφ; (4.24)
we observe numerous coupling terms between the magnetic and height fields.

5. Conclusions
The equations of SWMHD were introduced by Gilman (2000) as a simplified system for
modelling thin stratified fluid layers permeated by a magnetic field. They were derived
for an ideal system, namely for an inviscid and perfectly conducting fluid. However,
extending the system to allow for the dissipative processes of viscous diffusion and
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magnetic diffusion is valuable for two reasons. First, these processes exist in nature, will
modify flows, waves and instabilities at appropriate length scales, and so may need to
be quantified. Second, numerical models will generally need to incorporate dissipation,
even if simulating turbulence or complex flows at scales much larger than some nominal
dissipative scale.

The appropriate form to take for the magnetic diffusion term is not evident at the outset.
Perhaps the most natural route is to place a term d = η∇2b in the SWMHD induction
equation in line with the full equations of three-dimensional magnetohydrodynamics
(MHD), as adopted by Lillo et al. (2005). In § 2, we explored the consequences of this,
and showed that kinematic dynamo action – exponential growth of magnetic energy
– is possible in a two-dimensional planar flow inspired by the Galloway & Proctor
(1992) dynamo. However, given that the only processes present in the SWMHD induction
equation are advection (or Lie-dragging, see Schutz 1980) of the magnetic field and
magnetic diffusion, ensuring that the diffusion term represents the correct physics is
crucial. As discussed in the introduction, there are two physical constraints that must
be respected: the SWMHD solenoidal condition ∇ · (hb)= 0 in (1.10), and a negative
semidefinite Ohmic dissipation term in (1.12). Unfortunately, the straightforward choice
of a magnetic diffusion term d = η∇2b violates (1.10), and generally does not respect
(1.12) (Mak 2013). In this way, the choice d = η∇2b is both mathematically and physically
inconsistent with the underlying system, and further analysis shows that the dynamo
action of § 2 is illusory. This diffusion term redistributes magnetic energy in a way that is
unphysical; analogously, an incorrect form of the viscous diffusion term can likewise give
spurious sinks and sources of angular momentum (Gilbert et al. 2014).

One approach to introducing magnetic diffusion in SWMHD is then to take an operator
that is required only to satisfy the constraints (1.10) and (1.12). There is a wide possible
choice here; for example, a term of the form of (1.13) with any value of p but with q = 0
satisfies these constraints. More satisfactory, though, is to derive systematically an operator
with a particular choice of p from the underlying equations of three-dimensional MHD. In
§ 3, we showed how a physically consistent magnetic diffusion term can be obtained by an
asymptotic reduction of the full three-dimensional induction equation, which results from
integrating across the shallow fluid layer. The resulting SWMHD induction equation is

∂t b + u · ∇b = b · ∇u − h−1∇ × (ηh∇ × b), (5.1)

corresponding to the choice p = 1 and q = 0 in (1.13). As (5.1) is derived from the full
three-dimensional equations, it should be consistent with other physics of SWMHD; it
can also be used with a spatially varying magnetic diffusivity η(x, y). With this form of
the diffusion operator we derived a simple type of antidynamo theorem in § 3.2, which
confirms that the dynamo action found in § 2 (and in Lillo et al. 2005) is unphysical.
Further confirmation is provided by the numerical results in § 3.3. In hindsight, this
is perhaps not surprising: while all three components of magnetic field are present in
SWMHD, the vertical field is passive and not coupled back into the induction equation.
Although there can be plenty of stretching of the horizontal components of the magnetic
field in the thin layer, the resulting folding leads to fields with cancelling orientations,
and so no net growth of magnetic flux. Lacking are the vertical dependence of the field
and vertical motions that could constructively fold field lines, for example through the
stretch–fold–shear mechanism (e.g. Bayly & Childress 1988).

Even if dynamo action is not involved, it is generally not permitted (for constant η) to
use Laplacian diffusion in (5.1) because the SWMHD solenoidal constraint ∇ · (hb)= 0
will be violated as the flow evolves. However, if there is a regime in which the free surface
perturbations are small, i.e. h(x, t)= H(1 + δh′(x, t)) for some constant H with δ� 1,
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then an asymptotic reduction of (5.1) and ∇ · (hb)= 0 can be made as δ→ 0. Then, for
constant η, the leading-order dissipative term in (5.1) is simply η∇2b, and the leading-
order solenoidal constraint is ∇ · b = 0, which together allow a consistent evolution. This
now looks like two-dimensional MHD, although the coupled flow u(x, t) could still have
shallow-water effects depending upon how the asymptotic reduction is made. For example,
this would be the case for a diffusive extension of the equations of quasigeostrophic
SWMHD introduced by Zeitlin (2013), where the small parameter δ is the Rossby number,
and shallow-water effects are felt through the Rossby radius of deformation in the vorticity
equation, with both ∇ · u = 0 and ∇ · b = 0 to leading order.

To conclude, we propose that the form (5.1) of the induction equation be used in
future studies of SWMHD. Indeed, based on our analysis, (5.1), in its Cartesian form
(3.42)–(3.43) and (3.47), has already been adopted in the recent hot Jupiter simulations of
Hindle et al. (2019, 2021). Since shallow-water systems are also used for global studies
of magnetohydrodynamical waves and instabilities in spherical geometry (e.g. Gilman
& Dikpati 2002; Dikpati et al. 2003; Márquez Artavia et al. 2017), we have set out the
appropriate form of the magnetic diffusion term in (4.19) and (4.23)–(4.24) for spherical
polar coordinates.
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