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Summary

Animal mass mortality events (MMEs) will increase with weather and climate extremes. MMEs
can add significant stress to ecosystems through extraordinary nutrient pulses or contribute to
potential disease transmission risks. Given their efficient removal of carrion biomass from land-
scapes, we argue here for the potential of scavenger guilds to be a key nature-based solution to
mitigating MME effects. However, we caution that scavenger guilds alone will not be a silver
bullet. It is critical for further research to identify how the composition of scavenger guilds and
the magnitude of MMEs will determine when scavengers will buffer the impacts of such events
on ecosystems and when intervention might be required. Some MMEs are too large for scav-
engers to remove efficiently, and there is a risk of MMEs subsidizing pest species, altering
nutrient cycling or leading to disease spread. Prioritizing native scavenger taxa in conservation
management policies may help to boost ecosystem resilience through preserving their key
ecological services. This should be part of a multi-pronged approach to MME mitigation that
combines scavenger conservation with practices such as carcass dispersal or removal when
exceeding a threshold quantity. Policymakers are urged to identify such thresholds and to
recognize both the insects and the vertebrate scavengers that could act as allies for mitigating
the emerging problem of climate-driven MMEs.

An emerging global problem of mass mortalities

Mass mortality events (MMEs) involve the rare, sudden death of large numbers of animals (Fey
et al. 2015). They affect all age groups in a population and so differ from natural events such as
seasonal migration (Subalusky et al. 2017) or mass emergence events (Yang 2004), and they are
increasingly attributed to extreme climate- and weather-related phenomena (Seneviratne et al.
2021) such as droughts, floods or wildfires and cause mortality via heat stress, asphyxiation,
disease or starvation (Fey et al. 2015). In our view, MMEs represent an emerging but overlooked
problem that extends beyond species conservation into ecosystem functioning, and our aim in
this paper is to highlight the potential of scavenger guilds to be a key nature-based solution to
mitigating the effects of MMEs.

In the last decade, many MMEs have occurred across a global range of biomes and animal
taxa (Fig. 1), and the proximate causes of death are mostly linked to climate and weather
extremes (Table 1). MMEs range in magnitude from a few hundred elephants in Botswana
(Wang et al. 2021) or reindeer in Norway (Hansen et al. 2014) through to many millions of
mussels in the English Channel (Seuront et al. 2019) and perhaps billions of mammals and birds
following Australia’s catastrophic megafires in 2019/2020 (Dickman et al. 2020). The resulting
quantities of carcass biomass throughMMEs are therefore staggering (e.g., 700million tonnes in
a single event; Fey et al. 2015). As the magnitude of climate variability worsens and extreme
weather events increase in frequency and intensity (Field et al. 2012, Seneviratne et al.
2021), the world will probably witness more frequent and severe MMEs (Fey et al. 2015,
Lamberti et al. 2020).

MMEs can affect ecosystem equilibria through rapid and large shifts in numbers of the
affected species, but they also cause changes to species interactions and energy flows through
food webs (Fey et al. 2019, Lamberti et al. 2020). In nature, background inputs of carrion are
continuously provided by countless species of animals across a large body-size spectrum that die
from natural causes such as predation and disease (Barton et al. 2019a). Regular inputs of animal
carcasses are important for maintaining the ecological and evolutionary processes that enhance
biodiversity (DeVault et al. 2003, Barton et al. 2013, Benbow et al. 2019), and they contribute to
the dynamics of ecosystem productivity, structure and function through, for example, scav-
enging by well-adapted species (Wilson & Wolkovich 2011, Subalusky et al. 2017, Barton
et al. 2019a). But MMEs are a risk to ecological equilibria and human well-being where such
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events are not the result of millennia of evolution and adaptation
(Oro et al. 2013, Fey et al. 2015, 2019, Lamberti et al. 2020) and
where scavenging food webs have become severely altered due
to landscape modification or direct persecution by humans
(Pain et al. 2003, Ogada et al. 2016, Sebastian-Gonzalez et al.
2020). For example, increasing occurrences of MMEs could lead
to nutrient pollution in soils or waterways, subsidies of pest species
populations or promote disease transmission among wildlife.
Among the most frequently threatened scavengers, vultures and
top predators are functionally dominant species that are able to
rapidly consume large amounts of carrion in some ecosystems
(Supplementary Table S1, available online). Accordingly, their
removal from those ecosystems could result in dysfunctional scav-
enger guilds and lead to longer carcass persistence in landscapes
(Cunningham et al. 2018, Hill et al. 2018). This has also been
demonstrated in Asia and Africa, where vultures have undergone
significant declines (Pain et al. 2003, Sebastian-Gonzalez et al.
2020). An overlooked but ubiquitous group of scavengers is made
up of blowflies (Calliphoridae), which can also contribute signifi-
cantly to carrion removal (Barton & Evans 2017, Lashley et al.
2018). The absence of dominant scavenger groups may lead to
altered pathways of nutrient flow or elevated risks of disease trans-
mission to wildlife, livestock or people (Ogada et al. 2012, O’Bryan
et al. 2020, Sanderson &Alexander 2020, Barbier 2021, Bloom et al.
2021). Thus, conserving scavenger communities should be consid-
ered as part of the solution to mitigating the effects of MMEs on
both ecosystems and human well-being.

Native scavenger guilds as a nature-based solution to
mitigating MMEs

Although scavengers cannot prevent MMEs from occurring, they
can help buffer ecosystems against the impacts ofMMEs on species
interactions and nutrient flows through their consumption and

dispersal of carrion biomass. A diverse range of scavenger species
contribute to carcass consumption and removal from landscapes
(Mateo-Tomás et al. 2017, Anderson et al. 2019, Sebastian-
Gonzalez et al. 2020). Vertebrate scavengers include a range of
mammalian, bird and reptile taxa (DeVault et al. 2003, Mateo-
Tomás et al. 2015, Selva et al. 2019), as well as invertebrates such
as flies, beetles and ants (Anderson et al. 2019, Barton & Bump
2019). These different taxa combine to form scavenging guilds that
are unique to different biogeographical regions, land uses and
habitat types (Anderson et al. 2019, Beasley et al. 2019,
Sebastian-Gonzalez et al. 2019, Selva et al. 2019). Where data
are available for carrion consumption, they show that removal
of carcasses can be up to 100% for some scavenger species and
groups (Table S1). However, consumption rates are still poorly
understood for many taxa and locations, and increasing knowledge
in this regard is critical to improving our understanding of the
extent to which scavengers can assist with MME mitigation.
Consumption capacity (as quantities per unit time or proportions
of carcasses visited or biomass consumed) is particularly well
known for keystone and native scavengers such as vultures, which
dominate carcass consumption in many ecosystems across Asia,
Africa and Europe (e.g., Mateo-Tomás et al. 2017, Gutierrez-
Canovas et al. 2020, Buechley et al. 2022). Large native predators
such as eagles, lions, wolves and bears are also able to rapidly
consume large quantities of carrion in some African, European
and North American ecosystems (Wilmers et al. 2003, Mateo-
Tomás et al. 2017). The contributions of many less dominant
species, including ‘meso-scavengers’ such as foxes, corvids and
suids, may also be important in some contexts (Beasley et al.
2019, O’Bryan et al. 2019).

Despite the impressive quantity of carrion that many scav-
engers can consume (Table S1) in a few hours or days (e.g.,
>15 kg/day for Gyps vultures in Mediterranean and African
ecosystems; Mateo-Tomás et al. 2017), there could be a threshold

Fig. 1. Selected animalmassmortality events (MMEs) showcasing links to extremes in weather that have occurred acrossmultiple biomes and animal taxa, involving hundreds to
billions of individuals over periods of days to weeks. Examples are numbered 1–14 with details provided in Table 1.
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Table 1. Details of example mass mortality events (MMEs) as illustrated in Fig. 1 and grouped by cause of death and link to climate change.

Example
number

Taxa Proximate cause of
death

Link to climate change Number/
quantity

Year Location Source Supporting
literature

10 African elephant
(Loxodonta africana)

Toxicosis due to
cyanobacteria

Opportunistic pathogens already present in
the environment or animal population can
trigger MMEs when subjected to certain
weather conditions, which weaken the
host’s immune system and promote
bacterial proliferation

350 2020 Botswana Wang et al. (2021) Robinson et al.
(2019), O’Bryan
et al. (2020),
Young et al.
(2020)

9 Reef fish (multiple
genera)

Bacterial infection
(Streptoccoccus iniae)

427 2016–2017 Israel Genin et al. (2020)

4 Saiga antelope (Cornu
antelopis)

Bacterial septicaemia
(Pasteurella multocida)

200 2015 Kazakhstan Kock et al. (2018)

12 Baleen whale
(Balaenoptera borealis)

Algal bloom HABs are increasing in frequency due to
climate change. Observed trends in HABs
are attributed partly to the effects of ocean
warming, marine heatwaves, oxygen loss,
eutrophication and pollution

343 2015 Chile Haussermann et al.
(2017)

Paerl and Paul
(2012), Ho et al.
(2019), Gobler
(2020)

13 Fish (multiple genera) 200 tons 2015 Uruguay Reguera and Bresnan
(2015)

2 Mussels (Mytilus edulis) Heat stress Heatwaves are occurring more frequently
and more intensely due to climate change.
Animal physiological constraints are
pushed to the limit by sudden temperature
shocks such as heatwaves.

Millions 2018 English Channel Seuront et al. (2019) Ratnayake
et al. (2019),
Goss et al.
(2020),
Schwingshackl
et al. (2021)

5 Microbats (Chaerephon
plicatus, Taphozous
theobaldi)

500þ 2016 Cambodia Pruvot et al. (2019)

6 Flying foxes (Pteropus
spp.)

72,175 2019–2020 Australia Mo et al. (2021)

11 Adélie penguin
(Pygoscelis adeliae)

Sea ice cover loss Ice cover (extent and duration) is affected
by rising temperatures, changes in
precipitation and freed icebergs

18,000 2017 Antarctica Ropert-Coudert et al.
(2018)

Smith and
Barber (2007),
Tamura et al.
(2012)

8 Multiple vertebrate
classes

Wildfires Climate change increases the frequency
and intensity of heatwaves, which create
ideal conditions for large-scale wildfires

Billions 2019–2020 Australia Dickman et al. (2020) Mazdiyasni and
AghaKouchak
(2015), Williams
et al. (2019),
Goss et al.
(2020)

7 Fish (multiple genera) Anoxia due to drought
conditions

Heatwaves and droughts create anoxic
conditions that trigger fish kills

Millions 2018–2019 Australia Normile (2019),
Jackson and Head
(2020)

Ratnayake
et al. (2019),
Schwingshackl
et al. (2021)

3 Reindeer (Rangifer
tarandus)

Starvation Rain on snow leads to thick ice preventing
foraging and grazing

50,000 2020 Yamal Peninsula,
Russia

Siberian Times (2021) Hansen et al.
(2014), Forbes
et al. (2016)

1 Common guillemot
(Uria aalge)

Severe high-wind conditions contribute to
the death of seabirds as they cannot feed
as often as they need to

54,982 2013–2014 Spain, France Louzao et al. (2019) Roberts et al.
(2019), Till
et al. (2019)

14 Cassin’s auklet
(Ptychoramphus
aleuticus)
Common guillemot
(U. aalge)

Increases in water temperature affect lower
trophic levels such as prey fish and
plankton. Marine heatwaves can also
promote HABs, which further impact food
webs

72,000 2014–2016 USA, Canada Jones et al. (2018),
Piatt et al. (2020)

HAB = harmful algal bloom.
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over which scavengers will be overwhelmed and cannot assist with
the rapid consumption and dispersal of carrion resulting from
MMEs without further affecting ecosystem integrity (Oro et al.
2013). In these instances, additional intervention (e.g., disposing
of carcasses via burial, burning or composting) may be required
to reduce the impacts of MMEs on altered species interactions, pest
species, nutrient pollution or disease risk. It is important to recog-
nize this limitation, but research is needed to develop our knowl-
edge regarding the ecological functions of scavenger guilds in
different ecosystems and their capacity to consume very large
and irregular influxes of carrion biomass, as well as other ecological
and evolutionary consequences of such consumption (e.g., popu-
lation and community alterations; Oro et al. 2013).

Dominant scavenger species play an important role in the rapid
consumption of large quantities of carrion across ecosystems
(Mateo-Tomás et al. 2017, Buechley et al. 2022), but it is the
combined effect of the entire scavenger guild that often results
in the complete recycling of carcass biomass and will be important
to their response to MMEs. Research has identified behavioural
plasticity among social vultures (black vultures, Coragyps atratus)
that resulted in higher consumption rates when presented
with larger carrion inputs (Baruzzi et al. 2022). Furthermore,
the rapid development times and voracious appetite of blowflies
(Calliphoridae; Barton et al. 2019b) suggest that they also have
the capacity to rapidly colonize and consume excess carrion
biomass (Lashley et al. 2018). Yet scavenger guildsmay also include
pest or invasive species that opportunistically consume carrion,
such as wasps (Vespula germanica) or pigs (Sus scrofa) in south-
east Australia (Spencer et al. 2021), or rats (Rattus sp.) and dogs
(Canis familiaris) where vultures (Gyps sp.) have been extirpated
in Southeast Asia (Pain et al. 2003). These pest species have been
shown to alter species interactions at carcasses or change disease
transmission risk, respectively. Thus, although scavenger guilds
are a part of the solution to mitigating MMEs through the rapid
consumption and dispersal of carrion, consideration must be given
to those vertebrate and invertebrate scavengers that are able to
maintain ecosystem resilience after climate-driven MMEs.

How can scavengers be incorporated into climate
change mitigation strategies?

The UNEP Adaptation Gap Report 2020 (United Nations
Environment Programme 2021) stresses the importance of identi-
fying ecosystem-based solutions to mitigating the effects of climate
change on people and nature. This should extend to the conserva-
tion and management of scavengers and scavenging food webs in
order to boost ecosystem resilience to shocks and pressures stem-
ming from MMEs. We suggest that this can be achieved in three
ways: (1) improving knowledge of the roles of different vertebrate
and invertebrate scavengers as providers of nutrient cycling
services across ecosystems; (2) the protection and conservation
of extant scavenger species known to be dominant carrion
consumers and the reintroduction of locally extinct ones; and
(3) planning mitigation actions to assist scavenger communities
that are not able to deal with MMEs, particularly in vulnerable
ecosystems already experiencing multiple threatening processes
(Tulloch et al. 2016).

Globally, there is also a need for greater awareness ofMMEs and
their link to extreme weather and climate events, as well as raised
awareness of scavengers as ecosystem service providers (Mateo-
Tomás et al. 2017, Olea et al. 2019). Such knowledge should be inte-
grated into international policies and agreements dealing with

climate change, but also with the conservation and management
of biodiversity in general and of scavengers in particular
(Mateo-Tomas & Olea 2018). For example, the action plan for
vultures in Africa and Europe (Botha et al. 2017) highlights the
potential impacts of climate change on these species but does
not mention vultures as potential key actors for resilient ecosys-
tems through rapid carcass consumption over large areas
(Ogada et al. 2012, Mateo-Tomás et al. 2017).

At regional and local scales, conservation management plans
should include concrete actions for handling MMEs, acknowl-
edging the key role that scavengers could play as providers of both
supporting and regulating ecosystem services in this regard.
Assessments of the status and health of ecosystems for adaptation
to global change should include the assessment of scavenger biodi-
versity and the identification of dominant scavenger species, their
conservation status and their contribution to carcass removal.

We also emphasize that species conservation is biased towards
vertebrates (Clark &May 2002), but equal emphasis on both verte-
brate and invertebrate scavenger guilds (Olea et al. 2019) should be
promoted in conservation policy to encourage resilience to pertur-
bations resulting from MMEs.

In light of the recently started United Nations Decade on
Ecosystem Restoration (www.decadeonrestoration.org), conserva-
tion actions should also consider reintroductions of previously
extirpated scavengers that clearly play a major role in carrion
consumption and removal from landscapes. Scavengers should
be part of a multi-pronged approach to MME mitigation that
combines their conservation with practices such as carcass
dispersal or removal when exceeding a threshold quantity.
Scavengers may not be a silver bullet to solve all problems associ-
ated with MMEs, but it is important to recognize that they are one
of the few nature-based solutions available to mitigate the effects of
mass mortalities on ecosystems and human well-being.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0376892922000388.
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