Check for
updates

J. Appl. Probab. 61, 810-833 (2024)
doi:10.1017/jpr.2023.86

SHARP LARGE DEVIATIONS AND CONCENTRATION INEQUALITIES
FOR THE NUMBER OF DESCENTS IN A RANDOM PERMUTATION

BERNARD BERCU* **
MICHEL BONNEFONT* *** AND
ADRIEN RICHOU & *** Unjyersité de Bordeaux, Institut de Mathématiques de Bordeaux

Abstract

The goal of this paper is to go further in the analysis of the behavior of the number of
descents in a random permutation. Via two different approaches relying on a suitable
martingale decomposition or on the Irwin—Hall distribution, we prove that the num-
ber of descents satisfies a sharp large-deviation principle. A very precise concentration
inequality involving the rate function in the large-deviation principle is also provided.
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1. Introduction

Let S, be the symmetric group of permutations on the set of integers {1, ..., n} where
n > 1. A permutation 7, € S, is said to have a descent at position k € {1, ..., n— 1} if 7, (k) >
(k4 1). Denote by D,, = D, (r,) the random variable counting the number of descents of
a permutation 7, chosen uniformly at random from S,,. We clearly have D; =0 and, for all
n>2,
n—1
D, = Z L, (0> ma(k+1)) - (1.1)
k=1

A host of results are available on the asymptotic behavior of the sequence (D,,). More precisely,
we can find in [3] that, for all n > 2, E[D,] = (n — 1)/2 and Var(D,,) = (n + 1)/12. In addition,
it is possible to get a connection with the generalized Pélya urn with two colors, also known
as Friedman’s urn; see [10] and Remark 2.1. In particular, for this construction we have, by [9,
Corollary 5.2], the almost sure (a.s.) convergence

. D, 1
Iim — =— a.s. (1.2)

n—oo n 2
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On the number of descents in a random permutation 811

Following the approach of [17], see Section 3.2, it is also possible to construct a different
sequence (D,) with the same marginal distribution using a sequence of independent random
variables sharing the same uniform distribution on [0, 1]. For this construction, we directly
obtain the same almost sure convergence (1.2), as noticed in [12, Section 7.3]. Nevertheless,
the distribution of the process (D;,) does not correspond to the one investigated in Section 2.
Four different approaches have been reported in [5] to establish the asymptotic normality

D, 1 C 1
ﬁ<7—5> —>N(O, E) (1.3)

We also refer the reader to the recent contribution of [11] that relies on the method of
moments, as well as to the recent proof in [15] using a rather complicated martingale approach.
Furthermore, denote by L, the number of leaves in a random recursive tree of size n. It is well
known [19] that L, = D, + 1. Hence, it has been proven in [4] that the sequence (D, /n)
satisfies a large-deviation principle (LDP) with good rate function given by

1(x) = sup{xt — L(1)}, (1.4)
teR

where the asymptotic cumulant-generating function is of the form

L(t)=log (%) (1.5)

The purpose of this paper is to go further in the analysis of the behavior of the number of
descents by proving a sharp large-deviation principle (SLDP) for the sequence (D,). We shall
also establish a sharp concentration inequality involving the rate function I given by (1.4).

To be more precise, we propose two different approaches that lead us to an SLDP and a
concentration inequality for the sequence (D). The first one relies on a martingale approach
while the second one uses a miraculous link between the distribution of (D) and the Irwin—
Hall distribution, as pointed out in [17]. On the one hand, the second method is more direct
and simpler in establishing our results. On the other hand, the first approach is much more
general and we are strongly convinced that it can be extended to other statistics on random
permutations that share the same kind of iterative structure, such as the number of alternating
runs [3, 16] or the length of the longest alternating subsequence in a random permutation [14,
18]. Moreover, we have intentionally kept these two proof strategies in the manuscript in order
to highlight that the martingale approach is as efficient and powerful as the direct method in
terms of results.

The paper is organized as follows. Section 2 is devoted to our martingale approach which
allows us to again find a direct proof of (1.2) and (1.3) and to propose new standard results for
the sequence (D)) such as a law of iterated logarithm, a quadratic strong law, and a functional
central limit theorem. The main results of the paper are given in Section 3. We establish an
SLDP for the sequence (D) as well as a sharp concentration inequality involving the rate
function I. Three keystone lemmas are analyzed in Section 4. All the technical proofs are
postponed to Sections 5-8.

2. Our martingale approach

We start by describing precisely the construction of the sequence (D,) on a unique proba-
bility space. Let us remark that this construction can be naturally linked to generalized Pdlya
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urns; see Remark 2.1. We consider a sequence (V) of independent random variables uniformly
distributed on {1, . .., n}. Then, we set 71 = (1) and, for each n > 1, we recursively define the
permutation 1,41 as
mk) i k< Vg,
Thr1tk)=1 n+1 if  k=Vuq1, (2.1)
mpk—1) if k> V4.

By a direct recursive argument, it is clear that, for each n > 1, m,, is uniformly distributed on
Sy Moreover, as explained in [15], it follows from (1.1) and (2.1) that, for all n > 1,

n—Dy .
1 if d=1,
n
P(Dyt1 =Dp+d| Fp) =
D, + .
if d=0,
n+1
with F,, =o(Dq, ..., D,). This means that
Dn+1 = Dn + Sn—&—l s (22)

where the conditional distribution of &,4; given F, is the Bernoulli B(p,) distribution with
parameter p, = (n — D,)/(n + 1). Since E[§,+1 | ;] = pn and E[é,ir] | Fnl =pn, we deduce
from (2.2) that

ElDpt1 | Ful =E[Dy + &py1 | Ful =Dn+pn  as., (2.3)

E[D2,, | Fu] =E[(Dn +&ur1)’ | Fu] = D2 + 2puDy +pu as. (2.4)

Moreover, let (M,,) be the sequence defined for all n > 1 by

My=n(D, - " 25
n—n< n — ) ) (2.5)

We obtain from (2.3) that

—1
E[Myiy | Fo = (n+ 1)<Dn +pu — g) =+ 1>(n "_p, - )),

+1 2(n+1)
—1
=n<Dn _n 5 ):Mn a.s.,

which means that (M,,) is a locally square integrable martingale. We deduce from (2.4) that its
predictable quadratic variation is given by

n—1 n—1
(M)y = El(Mip1 —M)* | Fil =) (k=Di)(Dx +1)  as, (2.6)
k=1 k=1

The martingale decomposition (2.5) allows us to again find all the asymptotic results previously
established for the sequence (D) such as the almost sure convergence (1.2) and the asymptotic
normality (1.3). Some improvements to these standard results are as follows. To the best of our
knowledge, the quadratic strong law and the law of iterated logarithm are new.
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Proposition 2.1. We have the quadratic strong law:

1 &/Dr 1\ 1
lim 3 <—" - —> =— as. Q2.7)
n—o0 logn part k2 12

Moreover, we also have the law of iterated logarithm:

‘ n 12/p, 1 o n 12/p, 1 1
limsup [ —— — — — | =—liminf [ —— — ——)=—— a.s.
n—oo \2loglogn n 2 n—oo \ 2loglogn n 2 J12

2.8)

D, 1\* 1
lim sup " (o) =— a.s. (2.9)
n—soo \2loglogn n 2 12
Denote by D([0, oo[) the Skorokhod space of right-continuous functions with left-hand lim-

its. The functional central limit theorem extends the asymptotic normality (1.3); see a similar
result in [13] using generalized Pélya urns.

In particular,

Proposition 2.2. We have the distributional convergence in D([0, oo[)
D 1
V(2 ) 12 0) = W.120), (2.10)
lnt] 2

where (W;) is a real-valued centered Gaussian process starting at the origin with covari-
ance given, for all 0 < s < t, by E{W,W,] = s/1212. In particular, we again find the asymptotic
normality (1.3).

The proofs are postponed to Section 8.

Remark 2.1. Relation (2.2) allows us to see the sequence (D,,) as the sequence of the number
of white balls in a two-color generalized P6lya urn [10] with the following rule: at each step,
one ball is drawn at random and then replaced with an additional ball of the opposite color.

3. Main results

3.1. Sharp large deviations and concentration
Our first result concerns the SLDP for the sequence (D), which nicely extends the LDP
previously established in [4]. For any positive real number x, write {x} = [x] — x.

Theorem 3.1. For any x in ]%, 1[, we have, on the right side,

p <Dn . x> _ exp(=nl(x) — {nxjty)

n

[1+4+o(1)], 3.1
oyt 2N

where the value t, is the unique solution of L' (t;) = x and o> = L"(t,).

Our second result is devoted to an optimal concentration inequality involving the rate
function 1.

Theorem 3.2. For any x € ]% 1[ and for all n > 1, we have the concentration inequality

P(% Zx) Sp(x)exp(—nl(X) — {nx}jr) (3.2)

b
Oyl 27N
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where the prefactor can be taken as

2+n2 1 2J2+72\ 722 +4)
Pix)= |2 1+— x x T
) Vo2 +< et g ) 4

Remark 3.1. Let us denote by A, =A,(w,) the random variable counting the number of
ascents of a permutation m, € S,,. Then, it is clear that D,(m,) + A,(r,) =n — 1. Moreover,
by a symmetry argument, D,, and A,, share the same distribution. In particular, D, has the same
distribution as (n — 1) — D,,. Consequently, for all x € ]%, 1[, we have

D, +1 D
IP’( nt §l—x>=]P’<—n 2x>,
n n

which allows us to immediately extend the previous results to the left side.

Remark 3.2. One can observe from (3.1) or (3.2) that, for all ¢ > 0,

e¢]

>or(

n=1

1
" > >8><+OO.

That is the complete convergence of (D, /n) to %, which directly implies the almost sure
convergence (1.2) for any construction of the sequence (Dj,).

3.2. A more direct approach

An alternative approach to proving the SLDP and concentration inequalities for the
sequence (D,,) relies on a famous result from [17] which says that the distribution of D,, is noth-
ing other than that of the integer part of the sum S, of independent and identically distributed
random variables. More precisely, let (U,) be a sequence of independent random variables
sharing the same uniform distribution on [0, 1]. Write §,, = ZZ=1 Ui. Then we have, from
[17], that, for all k € [0, n — 1],

PD,=k)y=P(Sp] =k)=Pk<S, <k+1). (3.3)

This simply means that the distribution of D,, is that of the integer part of the the Irwin—Hall
distribution. The identity (3.3) is somewhat miraculous and it is really powerful in order to
carry out a sharp analysis of the sequence (D). Once again, we would like to emphasize
that this direct approach is only relevant for the study of (D,), while our martingale approach
is much more general. A direct proof of Theorem 3.1 is provided in Section 6, relying on
the identity (3.3). It is also possible to use this direct approach in order to establish a sharp
concentration inequality with the same shape as (3.2); see Remark 6.1.

3.3. Further considerations on concentration inequalities

We wish to compare our concentration inequality (3.2) with some classical ones. The first
one is given by the well-known Azuma—Hoeffding inequality [2]. It follows from (2.6) that the
predictable quadratic variation (M), of the martingale (M,,) satisfies (M), <s, /4 where s, =
> #_, k*. In addition, its total quadratic variation reduces to [M], = ZZ;} My — Mp)? = sp.
Consequently, we deduce from an improvement of the Azuma—Hoeffding inequality given by
[2, (3.20)] that, for any x € ]% 1[ and foralln > 1,

(=) <on (5(-3))
Pl —=x) <exp|— - = . (3.4)
n Sn 2
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We can observe that (3.2) is much sharper than (3.4) for all values of x € ]% 1[. Furthermore,
by using (3.3), we can also infer a concentration inequality by means of Chernoff’s inequality.
Indeed, for any x € |5, 1[ and for all n > 1,

k=1
<exp(—nl(x) — {nx}t,), 3.5)

which is also rougher than (3.2).

4. Three keystone lemmas

Denote by m,, the Laplace transform of D,, defined, for all € R, by
my(t) = Elexp(tD,)]. 4.1)

We can observe that m,,(¢) is finite for all # € R and all n > 1 since D,, is finite. Let us intro-
duce the generating function defined, for all # € R and for all z € C, by F(t, ) = ZZiO my (7",
where the initial value is such that, for all ¢ € R, my(t) = 1. Notice that the radius of conver-
gence, denoted RF(¢), should depend on ¢ and is positive since |m,(f)| < ¢"l!l. Moreover, we
easily have, for all |z] < R (0) =1, F(0, z) = 1/(1 — z). Our first lemma is devoted to the cal-
culation of the generating function F’; see also [4, p. 865], where a similar expression was given
without proof. We can observe that ko should be replaced by 1 — kq. Let us also remark that
the recursive equation (4.4) was already given in [10, Section 4].

Lemma 4.1. For all t € R, R (1) =1/(e' — 1). Moreover, for all t € R and for all z € C such
that |z| < RF (1),

1—e!

1 —exp((e! — Dz—1)’

Proof. 1t follows from (2.2) that, for all € R and for all n > 1,

F(t,z)=

4.2)

My 1(t) = Elexp(tDy+1)] = Elexp(tDp)Elexp(t&,41) | Full,
= E[CXP(fDn)Pnet + exp(tDyp)(1 — pp)l,
=my(t) + (&' — DE[p, exp(tDy)]. 4.3)

However, we already saw that p, = (n — D,,)/(n + 1), which implies that

1
Elp, exp(tDy)] = nf_ [n(0) = = ().

Consequently, we obtain from (4.3) that, for all 7 € R and for alln > 1,

1 ! 1— t
My 11 (1) = ( r:_nf )mn(t) + <n Jj )mi,(t)- 4.4
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We can observe that (4.4) remains true for n=0. We deduce from (4.4) that, for all
2| < RF (1),

OF (¢, 2)
9z

=m0 =) (14 Dm0

n=1 n=0

=Y+ neyma(0" + Y (1 — el (0)"
n=0 n=0

oF(t, 2)

AF(t
—F(, z)+e’za— +(1—¢ @2
Z

ot

)

where the last equality comes from the fact that |m) (¢)| < nmy,(t) allows us to apply the domi-
nated convergence theorem in order to differentiate the series in 7. Hence, we have shown that
the generating function F is the solution of the partial differential equation

oF(t, z)

(1—¢'z) +(€" =1 =F(,z2) 4.5)

aF (¢, 2)
9z

with initial value

F(t, 0)=mp(t)=1. (4.6)

We now proceed as in [8] in order to solve the partial differential equation (4.5) via the classical
method of characteristics; see, e.g., [20]. Following this method, we first associate with the
linear first-order partial differential equation (4.5) the ordinary differential system given by

dz  dr dw
l—elz e—1 w’

where w stands for the generating function F. We assume in the following that ¢ > 0, inasmuch
as the proof for r < 0 follows exactly the same lines. The equation binding w and ¢ can be easily
solved, and we obtain

w=Ci(1—e™). 4.7

The equation binding z and ¢ leads to the ordinary differential equation

dz ¢ 4
TR L
We find by the variation of constant method that
("= Dz—1=0Co. (4.8)

According to the method of characteristics, the general solution of (4.5) is obtained by coupling
(4.7) and (4.8), namely

C1=f(Cy), (4.9)
where f is a function which can be explicitly calculated from the boundary value in (4.6). We
deduce from the conjunction of (4.7), (4.8), and (4.9) that, for all # > 0 and for all z € C such
that |z| < RF (1),

Ft,2)=(1—e )f((e' — Dz —1). (4.10)
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It only remains to determine the exact value of the function f by taking into account the initial
condition (4.6). We obtain from (4.10) with z =0 and replacing —¢ by ¢ that

fO=

. 4.11
—o (4.11)

Finally, the explicit solution (4.2) clearly follows from (4.10) and (4.11). Moreover, we can
observe that the radius of convergence comes immediately from (4.2), which completes the
proof of Lemma 4.1. t

The global expression (4.2) of the generating function F allows us to deduce a sharp
expansion of the Laplace transform m,, of D,,, as follows.

Lemma 4.2. For any t #0,

1—e "\ /e —1\"
mn(t)=< ; )( ; > (14 ra(0)), (4.12)
where the remainder term ry(t) goes exponentially fast to zero as
[ra (@] < |tlel 1+ ! + 2t n l+4”2 o (4.13)
r e - — — . .
e T N2 +4n? 2

Proof. Throughout the proof, we assume that # # 0. It follows from (4.2) that F is a
meromorphic function on C with simple poles given, for all £ € Z, by
F 14 2ilm
)= ———.
2™ el —1

By a slight abuse of notation, we still denote by F' this meromorphic extension. Hereafter, for
the sake of simplicity, we consider the function F defined, for all z € C, by

F(t,z)=

F(t,2) =f((, 2), (4.14)

1—et

where the function f was previously defined in (4.11) and the function £ is given, for all

z€C, by
£t,0)=(€"—1Dz—1. (4.15)
By the same token, we also introduce the functions G and ‘H defined, for all z € C, by
G(t, 2)=g(&(1, 2)), H(t, 2) = h(E(, 2)), (4.16)
where g and h are given, for all z € C*, by
1 1
g)=—-, hz)= + —. 4.17)
Z 1—e* ¢

We can immediately observe from (4.17) that H = F — G, which means that we have sub-
tracted from F its simple pole at O to get . Given a function (¢, z) analytic in z on some
set {(t,2) e R x C, |z] §R’C(t)}, we denote by m,’,c(t) the coefficient of its Taylor series at
point (¢, 0), i.e. K(t,z) = Zf;o m,’f(t)z". Thanks to this notation, we clearly have mn]: =
mg 0+ mnH (t). Moreover, we deduce from (4.14) that

m’ (1) = mk ). (4.18)

1—et
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The first coefficient mg () can be explicitly computed by

m9 (1) = 1<el_ 1>n (4.19)
n t t * *

As a matter of fact, for all z € C such that |z| < Rg(t) =1’ — 1)L, it follows from (4.15) and

(4.16) that
1 1 1 el —1\"
g(“)z_s(r,@zr—<ef—1>z=?§< : )Z'

Consequently, as my,(f) = mf (1), we obtain from (4.18) that

mu(t) = (1 — e Ymd (1) + mlt (1) = (1 — e“Hmd (DA + (1)),
which leads via (4.19) to

1—e "\ /e —1\"
my(t) = < ; ) ( : > (1 + (),

where the remainder term r,(¢) is the ratio r,(r) = mnH(t) / mg (1). From now on, we focus our
attention on a sharp upper bound for mnH(t). The function / is meromorphic with simple poles
at the points 2im Z*. Moreover, for a given ¢ # 0, z is a pole of H if and only if (¢! — 1)z — ¢ is
a pole of h. Hence, the poles of H are given, for all £ € Z*, by

In addition, its radius of convergence R7%(7) is nothing more than the shortest distance between
0 and one of these poles. Consequently, we obtain

t 472
1+

R =10 = =
O=1fol= 1+

Furthermore, it follows from Cauchy’s inequality that, for any 0 < p(f) < R™(1),

1H(E, loo,c0, p)

H
4] < o

(4.20)

where the norm in the numerator is

(2, Jlloo,c0, o) = suplIH(z, 2|, |zl = p()}.

Since £(¢, C(0, p(1))) coincides with the circle C( —t, e’ — 1|p(¢)), we deduce from the iden-
tity H(z, 2) = h(&(t, 2)) that [|H(2, )lloo,c(0,p(1)) = 1Mlloo,C(~1,]e'—1]p(1))- Hereafter, we introduce
aradial parameter

t 4am?
,0(1305)=et_] 1+ o 4.21)

where « is a real number in the interval ]—12 /47r2, 1[. We also define the distance between the
circle C(—t, |e' — 1|p(t, «)) and the set of the poles of A,

8(t, ) =d(C(—t, |e" — 1|p(t, @), 2in Z*).
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We clearly have from the Pythagorean theorem that 8(f, @) = /12 +4n2 — /12 + 4an?. In
addition, we can easily check that

47%(1 — )
VE+ 472 + V2 +dan?’

8(t, ) =

which ensures that
272(1 — ) 47%(1 — )
— <o) < —.
V2 +4x? Vi + 4?2
It follows from the maximum principle that |||l oo,c(—1,je' = 1] p(1,a)) < I1lloo,aD(L. A, 5(1,a)) WheTE,
for L >0 and A > 0 large enough, D(L, A, 8(t, @)) = B(L, A) N Ap(8(¢, @))° is the domain
given by the intersection of the box B(L, A)={ze€C, |Re(z)| <L, |Im(z)| < A} and the
complementary set of

(4.22)

Ap(8(t, @) ={z € C, d(z, 2in Z*) < 8(t, o) with |Im(z)| > 7 }.

On the one hand we have, for all y e R, |e/tY — 1| > el — 1 and |L + iy| > L, implying that,
forall y e R,
1

h(L+1iy)| < —.
[h(L +1y)| < +L

el —1

By the same token, we also have, for all ye R, |e™ ™Y —1|>1—e L and | — L+ iy| > L,
leading, for all y € R, to

1
1—etL + L
On the other hand, we can choose A of the form A = (2k+ 1)z for a value k € N* large
enough. Then, for all x € R, exp(x + (2k + 1)ir) = — exp(x) and |x + 2k + Dinw| > 2k + D,
implying that, for all x € R,

Ih(=L +1y)| <

|h(x + 2k 4+ Dim)| <1+ (4.23)

Qk+ '

By letting L and A go to infinity, we obtain

1]l o, (1,1 = 1)p(t,0y) < Max(L, |2lloo,6D(s(2,0))
where D(8(¢, «)) is the domain D(§(¢, «)) = A, (8(¢, «))C. We clearly have from (4.17) that, for
all z € aD(8(¢, «)) with [Im(z)| > 7,

1 1
[h@D = @I+ = = f@1 + —. (4.24)
|z] T

Moreover, it follows from tedious but straightforward calculations that

inf  [1—ef|=1—e20
2€C, |z|=6(t,e)

which ensures that
1
V@I =T Saer- (4.25)
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In addition, we obtain from (4.23) that, for all z € 3D(5(¢, @)) with [Im(z)| = 7,

|h(z)| < 1+ 1. (4.26)
T

Hence, we find from (4.24), (4.25), and (4.26) that

1 1

[ S — —_
17lloo,0Dst,0)) < [~ o5t + p

We were not able to find an explicit maximum for the previous upper bound. However, it is not

hard to see that
1 1

<14 ,
T—e3ta = 51 a)

which gives us

1
h <l4+— . 4.27
IAlloo,0D@s(r.0)) <1+ -t ) (4.27)
Consequently, we deduce from (4.20), (4.21), (4.22), and (4.27) that, for all ¢ # 0 and for
alln>1,
2 e —1\"
lmy,"(2)] S( ; ) on(t, ), (4.28)
where
1 V2442 4o\ T2
onlt. )= 1+~ + > 1+ . (429)
7 27°(1 — @) t

For the sake of simplicity, let ® be the function defined, for all e]—t2 /47t2, 1[, by

D) — 1 | dam?\ ?
@=(5)(+5)

We can easily see that ® is a convex function reaching its minimum for the value

T Y. B
a=1- — -] .
472 2

Some numerical experiments show that this explicit value seems to be not far from being the
optimal value that minimizes ¢, (¢, «). By plugging « into (4.29), we obtain from (4.28) that,
forallr A0 and foralln>1,

itor< (20 (e L 22 ) (e ) T a2
M 1= t T 2T 4n? n 2

e —1\" 1 24n 42\ 7?2
<e 1+ —+ —— |1+ — . 4.30
() (1 5+ ) (1 5F) 420
Finally, (4.13) follows from (4.19) together with (4.30), which completes the proof of
Lemma 4.2. U
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We now focus our attention on a complex estimate of the Laplace transform m,, of D,, since
my, clearly extends to an analytic function on C. More precisely, our goal is to compute an
estimate of my,(¢ 4 iv) for ¢ # 0 and for v € R such that |v| < . Note that m,, is 2iz periodic.

Lemma 4.3. For any t # 0 and for all v € R such that |v| < 7,

1 — e~ (V) ety _ 1\ "
t+iv)= 1 t+1iv)), 4.31
my(t + iv) ( P )( P )( + ra(t +iv)) (4.31)
where the remainder term ry(t + 1v) is exponentially negligible and satisfies
1 Va2 (242 \"?
It +1v)] < VA2 +2( 1+ — + 7 L (4.32)
7w =) )\ 2 +n?

Moreover, for any t # 0 and for all v € R such that |v| < 1, we also have the alternative upper
bound

et —1\"
(4 v)| < |1 — e~V (T)

1 2L (1) v?
X| —=exp| - n5—5—
v P\ R
1 2V + 72 421 (1) v?
+(1+—4+———)exp| - n——7-7—"— ), 4.33
( 7 72 —4 ) p< yrz(t2+4)2>> (4.33)
where the second derivative of the asymptotic cumulant-generating function L is the positive
function given by
(e — 1)2 — 12!

(t(e' — 1))

Proof. We still assume in the following that r £ 0. We also extend F(%, z) in the complex
plane with respect to the first variable, F(¢ + iv, 7) = ZZiO my,(t + iv)Z", where the initial value
is such that mg(z + iv) = 1. Since |m,,(t + iv)| < my,(¢), the radius of convergence in z of F(z +
iv, -) is at least the one for v = 0. Moreover, the poles of F( 4 iv, -) are given, for all £ € Z, by

L//(t) _

(t+1iv) 4+ 2ilm

Foooan
e (t+iv) = elt+iv) _ 1

Consequently, for all v € R such that |v| < 7,

[t +iv|
|et+iv —1] '

RE(t+iv) =
As in the proof of Lemma 4.2, we can split F(t 4 iv, z) into two terms,
Ft+iv,2)=(1 —e )Gt +iv, 2) + H(t +1iv, 2)),
where we recall from (4.16) that, for all z € C and for all v € R such that |v| < 7,
Gt+iv, 2) =g +1iv, 2)), H(t +iv, 2) = h(E(t + v, 2)),
where g and h are given, for all z € C*, by
1

1
g)=—-, h(z) =
z 1—e?
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and the function £ is such that &( + iv, z) = (¢ — 1)z — (¢t + iv). By holomorphic extension,

we deduce from (4.19) that
1 t+iv _ 1\"
mg(t—i—iv): (e_) .

t+iv\ r+iv
Moreover, the poles of H(r + iv) are given, for all £ € Z*, by

t+i(v+2em)

H SO —
g (t+iv) = ef+iv _ |

Hence, we obtain that, for all v € R such that |v| < 7,

N R
e = Je

RM(t+iv)= =RF(r +iv).

It follows once again from Cauchy’s inequality that, for any 0 < p(z + iv) < R (t + iv),

1H(t +1v, loo,c, pt+iv)

H .
m “(t+ <
Iy (1 + )] < p(t+iv)"

, (4.34)

where the norm in the numerator is
I+ v, oo copaivy = SUPHIH +iv, ), J2] = p(2 + W),

Since the image of the' circle C(0, p(t 4+ iv)) by the application &(¢ 4 iv, -) coincides with the
circle C(—(t +iv), |e'T" — 1| p(t + iv)), we obtain from H(t + iv, z) = h(£(t + iv, 2)) that

IH@ +1v, Hloo.ci—t.p+iv)) = Il oo, (—(r-tiv), le+v— 1| p(r4ivy) -

Hereafter, since |v| < 7, we can take the radius

NI

pt+iv)=

Moreover, as in phe proof of Lemma 4.2, denote by §(z 4 iv) the distance between the circle
C(—(t+1iv), |e"™ — 1|p(t + iv))) and the set of poles of ,

8(t+1v) = d(C(—(t +iv), [T — 1|p(t + iv)), 2in Z*).

It follows from (4.35) and the Pythagorean theorem that

S(t+iv)=4/2+Qr — )2 -2+ 72

Gm — D@ — v

We can observe that

8(t +iv) = ,
V2 +Qr — )+ V2 +
which leads to ( v
w(w —|v
2 s4iv) < — vl (4.36)
V2 + 47?2
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Using (4.34) together with (4.27) and (4.36), we obtain

H . 1 1 1 1 V2 +4x2 1
|my ¢+ < |1+ —+ ; — <|1+—=+ -
T S(t+1v) /) p(t+1iv)" x  nw(r—|v]) /) plt+iv)"

Hence, we find that m,,(t +iv) = (1 — e’(’“v))m,?(t + iv)(1 4 ru(t 4 1v)), where the remainder
term r,(¢) is the ratio

mZ{(t +1iv)

rp(t+1iv) = G -
m;; (1 +1v)

that satisfies

1 /72 1 472 2 2\ /2
|rn(l‘+iv)|§\/t2+v2(1+;+ o >< ad ) . “4.37)

a(r — ) )\ 2 +n2

Hereafter, we go further in the analyses of m,(¢ 4 iv) by providing a different upper bound for
mZ"(l + iv). Our motivation is that the factor 1/(r — |v|) in (4.37) becomes very large when |v|
is close to 7. Our strategy is not to obtain the best exponent by taking the largest radius, close
to the radius of convergence. Instead, we consider a smaller radius in order to stay away from
the poles, but not too small in order to still have an exponential term with respect to mn}— (1). Let
B be the function defined, for all |v| < 7, by

py = 2050

It is clear that B is an even function, increasing on [—m, 0] and decreasing on [0, 7] with a
maximum value 8(0) = 1, and such that 8(rr) = 4/72. We replace the radius previously given

by (4.35) by the new radius
, V2 + Bn?
,O(t + IV) = W
We can observe that we only replaced 2 by ﬂ(v)v2 = 2(1 — cos(v)). As before, denote by
8(t +iv) the distance between the circle C(—(t +iv), [e'T" — 1|p(t +iv)) and the set of the
poles of &,

8(t+iv) = \/tz +Qr — ) - \/tz + B2,
As in the proof of (4.36), we obtain
72—

4 . 2
W<8(i+1\1)<2ﬂ'—<1+;>|\}|,

which ensures that

X . 1 1 1
[m*(t4+1v)| < l—l—;—{—

8(t+iv) ) p(t +iv)?’
1 2V ¥n2 |ez+iv _ 1|2 n/2
<|1+—-+ 3 5 5 .
T T —4 4+ By
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It follows from straightforward calculation that

le ™ — 12 (e — 1) 4+ 2¢/(1 —cos(v)) (' — D + &' B(v)v?

24+ B 2 + B2 2 + B2
(= 1)? 2 2e! B2
2 (;2 AR T @ - DA+ ﬂ(v)v2)>

_(e'—1)2<1_((e’—1)2—r2ef> BV )
2 (e — 1)2 2+ Bont)

Moreover, we also have from (1.5) that, for all £ £ 0,
(et _ 1)2 _ tZet
(1(e" — 1))?

In addition, by using that for |v| < 7 we have

L//(t) _

B2 . 4?2
24+ BV T 22+ 4)’

we deduce from the elementary inequality 1 — x < exp(—x) that

72 —4

M, o 1
m"+iv)| <|{1+—=+
T t

g ] 1 et+iv_1 n
m)(t+1v) = — .

a2

We also recall that

t+iv\ t41iv
We also have from straightforward calculation that

le ™ — 12 (e — 1) +2¢/(1 —cos(v)) (' — D* +e'B(v)v?

lt+iv2 2+? N 2 +v?
RGeS aNs 2e! B2
o2 242 (e — D22 +12)

@ =12 L (e — 12 —reB(v)\ V2
_t—2<< (e — 17 >t2+v2)

2«/t2+n2)<et—l)"ex ( 421" (1) v2>

_(et—1)2<1_((e’—l)z—tze’) V2 el (1 —BmN?

r (ef — 1)? 242 (@12 242

<(ef—1)2<1_<(ef—1)2—z2e’ V2 )
- 72 (ef —1)2 2472 )

since B(v) < 1. Hence, we obtain from (4.38) that

Gy oo | el —1\" 2L (t) v
|mn(t+1v)|_ﬁ T exp _nﬂ_p—gﬂ? .

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

Finally, we already saw that m,(t+iv)=(1 —e T)m¥ (t 4 iv) + m!t(z + iv)).
Consequently, (4.39) together with (4.42) clearly lead to (4.33), which achieves the

proof of Lemma 4.3.
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5. Proof of the sharp large-deviation principle

Let us start with an elementary lemma concerning the asymptotic cumulant-generating
function L defined by (1.5).

Lemma 5.1. The function L:R — R is twice differentiable and strictly convex, and its first
derivative L' : R — 10, 1[ is a bijection. In particular, for each x € 10, 1[, there exists a unique
value t, € R such that

I(x) = xt, — L(ty), 5.1

where I is the Fenchel-Legendre transform of L. The value t. is also characterized by the
relation L' (t,) = x where, for all t # 0,

-1 +1

L= e (5.2)

Moreover, for all x € ]%, 1[, ty > 0, while for all x € ]O, %[, ty < 0. In addition, for all t € R,
L"(t) > 0 as the second derivative of L is given, for all t # 0, by

(e — 1) — e’

L= -y

(5.3)

Finally, the function L can be extended to a function L : C\ 2in Z* — C satisfying, for allv € R
such that |v| <, Re(L(t +iv)) < L(t) — C(t)v2/2, where

C e L
=50,

Proof. We saw in the previous section that the calculation of the first two derivatives (5.2)
and (5.3) of L follows from straightforward calculation. Let us remark that lim,—o L'() = %
and lim,_,o L"(t) = %, which means that L can be extended as a C2 function on R. The above
computation also gives lim;_, o, L'(f) =0 and lim,_, oo L'(1) = 1.

We now focus our attention on the complex extension of L. We deduce from (4.41) and (5.3)
together with the elementary inequality In (1 — x) < —x that, forall t 20 and |v| <,

Re(z(t+ vy =tn (S <2t Lin (1 - 2 -2 ) < 1y - cio

e v)=In|— —In(1-— — —,
lt+iv] )~ 2 2+n2)~ 2

which completes the proof of Lemma 5.1. U

We continue with an elementary lemma which can be seen as a slight extension of the usual
Laplace method.

Lemma 5.2. Let us consider two real numbers a < 0 < b, and two functions f : [a, b] — C and
¢ :[a, b] — C such that, for all ) large enough, fab e MRew | £(y)| du < +o00. Assume that f is
a continuous function in 0, f(0) # 0, ¢ is a C? function in 0, ¢’ (0) =0, ¢”(0) is a real positive
number, and there exists a constant C > 0 such that Re ¢(u) > Re ¢(0) + Cu?. Then,

b
tim Vi [ e au= var L0
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Proof. First of all, we can assume without loss of generality that ¢(0) = 0. We can observe
that, for all A large enough,

b N
/a e (0) du N exp ( —Ag 7 u (5.4)

However, it follows from the assumptions on the function ¢ that

u u?
lim Agp| — | =¢"(0)—
A—+o00 A 2’

oo((5)

Consequently, according to the dominated convergence theorem, we obtain

' bV/a u +00 N Vo
AETOO " exp (—A(p(ﬁ)) du:/_oo exp <—<p (O);) du = T 5.5)

Furthermore, by using the usual Laplace method, we find that

together with

< exp(—Cu?).

b b
/ e M (F(u) - £(0)) du| < / e RO w) — O du= 071 (5.6)

Finally, (5.4), (5.5), and (5.6) allow us to conclude the proof of Lemma 5.2. [l

Proof of Theorem 3.1. We now proceed to the proof of Theorem 3.1. Our goal is to estimate,
for all x € ]% 1[, the probability

n—1
D, B B
1P><7 Zx) = Z P(D, = k).

k=[nx]

To do so, we extend the Laplace transform m,, of D,,, defined in (4.1), into an analytic function
on the complex plane. For all 7, v € R,

n—1
mn(t + IV) — E[e(l+iV)Dn] — Z e([—'riv)k]P)(Dn — k)
k=0
Therefore, for all ¢, v € R and for all k > 0,
T

1 .
P(D, =k) = e_tkz— my(t + iv)e " dy. (5.7)
T J-x

We can observe that (5.7) is also true for k > n, allowing us to recover that P(D, =k)=0.
Consequently, since |m;, (1 + iv)| < e™, it follows from Fubini’s theorem that, for all # > 0,

D 1 [T -« :
P(2za) = o [ mrin B etea 58)

k=[nx]
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In the following we choose t = t,. In particular, ¢, > 0 since x > % Then, we deduce from (5.8)

that
Dy L[ . exp(—ty[nx] —i[nx]v)
IP(? Zx) =7 /;71 my(t; + iv) [ — oGt dv=1I,, (5.9)
where the integral [,, can be separated into two parts, I, = J, + K, with
! . exp(—ty[nx] — i[nx]v)
In= Z [v|<m—ep Mt 1) 1 — e~ (+iv) dv,
1 exp(—t —i
Ky=— my(ty +iv) Xp(—tfrx] 1|'nx] 12 dv,
27 T—en<|v|<m 1 — e~ (ttiv)

where &, = n~3/4. On the one hand, we obtain from (4.12) that

1 exp(—1t,[nx])
K=o | (1) SR, g,
2 T—gp<|v|<m [1 —e |

- 2¢ep

T 27ty
< 2 exp(—nI ()1 + [rn(t)])
Tty

exp(—t([nx] — nx)) exp(=nl(x))(1 + |ra(£))),

by using (4.12), (5.1), and the fact that ¢, > 0. Consequently, (4.13) together with the definition

of g, ensure that
—nl
K,=o M ) (5.10)
Jn

It only remains to evaluate the integral J,,. We deduce from (4.31) and (5.1) that

Jn= L exp(—tx{nx} — nl(x)) exp(—ne(v))gn(v) dv, (5.11)

2z v|<mw—en
where the functions ¢ and g are given, for all |v| < &, by

. . exp(—i{nx}v) .
(V) = —(L(tx +1v) — L(1x) — ixv), gn(v) = W(l + ru(tx +1v)).

Thanks to Lemma 5.1, we have ¢(0) =0, ¢'(0) =0, and ¢”(0) = o2, which is a positive real
number. In addition, there exists a constant C > 0 such that Re ¢(v) > Cv2. Therefore, via the
extended Laplace method given by Lemma 5.2, we obtain

n 1 V2
lim Vi | exp(—ng(n)—— dv= > (5.12)
n— 00 _x ty +1v Oxlx

It follows from (4.32) that there exist positive constants ay, by, ¢y such that, for all |v| <m — ¢,

n/2
|rn(tx +1v)| < a_x<1 - bx8n) <% exp (- bx;sn) <cyexp <—%n1/4>,
&

n En

which ensures that

y oy b
| exp(—i{nx}v)(1 + ry(tx +1v)) — 1| < cxexp 1" =+ [vl.
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Then, we obtain

i 1
‘/ eXP(—”¢(V))<8n(V)1v<n—s,, - - )dV < Ay,

Iy +1v

where

T 1 b
Ay =/ exp(—nRe p(v)) - (cx exp (—fn”“) + 2|v|> dv

- |2y + 1v]

since 1jy|>7—¢, < |v|. By the standard Laplace method, lim;,_, oo /1A, =0. Consequently, we
deduce from (5.11) and (5.12) that

1
lim /nexp(ty{nx}+nl(x)J, = ——. 5.13
Jim, /i exp(tc{ns) + ICOM, = ———= (5.13)
Finally, (5.9) together with (5.10) and (5.13) clearly lead to (3.1). O

6. An alternative proof

Alternative proof of Theorem 3.1. We already saw from (3.3) that the distribution D, is
nothing other than that of the integer part of the Irwin—Hall distribution, which is the sum
Sp=U1+---4+ U, of independent and identically distributed random variables sharing the
same uniform distribution on [0, 1]. It follows from some direct calculation that, for any

relb
P(% > x> =P(S, > [nx]) = E,[exp(—1:Sn + nLE)) s, /n=xte,}]
= exp(—nl())E, [e /I g e iion], (6.1)
where E, is the expectation under the new probability P, given by

dP,

dTP = exp(txSy — nl(ty)) (6.2)
and ¢, = {nx}/n. Let
S
V, = “/_ﬁ <_” — x),
oy \ 1

and denote by f,, and ®,, the probability density function and the characteristic function of V,,
under the new probability P, respectively. Let us remark that, under P, we know that (V,,)
converges in distribution to the standard Gaussian measure. Using the Parseval identity, we
have

]En [e—ntx(sn/n—x)l{Sn/an+8n}] =/ e_GXtXﬁvl{vz(ﬁen)/gx}fn(v) dv
R
1 e_(o-xtx\/ﬁ+iv)(\/ﬁsrl/ax)
J

“ Oxlya/n + v
e—tx(nx) e—i({nxpy)/(oxy/n)

T 2nond/n Jr e+ v/ (0x/0)

@,(v)dv

D, (v) dv. (6.3)
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Recalling that L is also the logarithm of the Laplace transform of the uniform distribution in
[0, 1], we obtain from (6.2) that

S, i/nxv

o,(v) = E|:exp (Gxﬁ — p + .S, — nL(tx)>i|
. i+ iv Lt ixv
s (o1 5 ) - )

Let A be a positive constant chosen later. We can split the integral in (6.3) into two parts: we
call J,, the integral on [—Aoy./n, +Aocy+/n] and K, the integral on the complementary set. On
the one hand, as (4.41) also holds when replacing w2 by v2, which is smaller than Azaxzn, and

since L (t,) = oxz, we get, for all v € R,
2.2 2\ 1/2
- l - ol v
Tt 2+A202n

1 2 2
< - R ——— 6.4
<o (-72m7) 64

e—iltn}n)/(ox/n)
— = %1
ty + iv/(oxA/1) nON Yy <a0, )

Then, we deduce from Lebesgue’s dominated convergence theorem that

" 2 /
lim J, = / lexp <—L 0"”—) dv= Y27 (6.5)
R

n——+00 ty sz 2 ty

On the other hand, concerning K;,, since now v is large in the integral we use (4.40) to get

1 (r)% o 1)2)"/2

Tk t)% + vz/(oxzn)

i) /(o)
—®,(v
ty +iv/(0xa/1)

leading to

205 o e \"? oo
Ky <—|t:+4t; ——— ——= dv. 6.6
n= t < X + X (et" _ 1)2) O')C\/;l\/;4 (l‘)% + VZ)n/z v ( )

Moreover, for all n > 2,

/+°° 1 q </+°° v 1 4 1 1 67)
W @2 A@ 2 Y T — A @+ AT ‘
By taking A% =2 + 812’ /(e™* — 1)?, we obtain from (6.6) and (6.7) that

lim K,=0 (6.8)

n—+0o0o
exponentially fast. Finally, (6.1) together with (6.3), (6.5), and (6.8) allow us to conclude the
alternative proof of Theorem 3.1. U

Remark 6.1. We can use the previous computations to also get a new concentration inequality.
More precisely, by using the upper bound (6.4) to get an upper bound for J,, instead of a limit,
we are able to prove that

exp(—nl(x) — {nx}z)

) (6.9)
Ooxtyn/ 21N

D,
P(— zx) = 0On(®)
n
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where the prefactor can be taken as

8elx 4oty 8elr \/ﬁ
= /2 —./1 :
On(x) + @ 12 + o + (el — 1)2 21/2(n — 2)

We can observe that (6.9) is similar to (3.2). Note that the constants in (3.2) as well as in (6.9)
are not sharp. It is in fact possible to improve them by more precise cuttings in the integrals.

7. Proof of the concentration inequalities

We now proceed to prove the concentration inequalities. Recalling that x € ]%, 1[, which
implies that 7, > 0, we obtain from the equality in (5.8) that

D 1 T +o00 )
P(—" > x) - / ma(ty+1iv) Y e Mt gy
n 27 J_,
k=[nx]

T exp(—ty[nx] —i[nx]v)

1 .
= _ my(t; +1v)

27 ), 1 — e~ (xtiv) dv
< exp(=[nx]t) / T gt + 1)
= T . |1 _ e_(’x+iv)|
Consequently, we deduce from the alternative upper bound in (4.33) that
D, 1
P{—-zx)= 5 exp(—nlxty — L(ty) — {nx}t)(A(x) + B(x)), (7.1)
where
™ 1 2L (t,) v2>
Ax)= | —=exp|-ni——|dv,
W=, Jra p( 2122

1 2J/2+72\ (™ 421 (1) v*
Bx)=|14—4+ ——— / exp | -n———— ) dv.
) < 7 2_4 ) . p( "era2)”
Hereafter, we recall from (1.4) that I(x) = xt,, — L(t,) and we write axz =L"(t,). It follows from
standard Gaussian calculation that

2 2+ m?
Alx) < 5
oyt 2N L (72)
1 2/24+a2\n% /2 +4
B(X)§<1+—+ it )” Vit
T s —4 oxten/27Tn

Finally, we find from (7.1) together with (7.2) that

P(@ Zx) < PSR — )
n oyt 27N

2 +n2 1 22472\ 722 +4)
P — X 1 _ X X ,
(x) /—t% +< LR v A

which is exactly what we wanted to prove.

where
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8. Proofs of the standard results

We now focus our attention on the more standard results concerning the sequence (D)
such as the quadratic strong law, the law of iterated logarithm, and the functional central limit
theorem.

Proof of Proposition 2.1. First of all, we can observe from (2.2) and (2.5) that the martingale
(M,,) can be rewritten in the additive form M,, = ZZ;} (k 4+ 1)(&k+1 — pr). It follows from the
almost sure convergence (1.2) together with (2.6) and the classical Toeplitz lemma that the
predictable quadratic variation (M), of (M,) satisfies

M 1
lim M) =— as. (8.1)
n—oo n 12

Denote by f; the explosion coefficient associated with (,,),

(M)ni1 — (M)n _ (n —Dp)Dn + 1)

= (M),i1

We obtain from (1.2) and (8.1) that lim,,_, o nf;, = 3 a.s., which implies that f;, converges to zero
almost surely as n goes to infinity. In addition, we clearly have for all n > 1, |&,41 — pu| < 1.
Consequently, we deduce from the quadratic strong law for martingales given, e.g., by [1,
Theorem 3] that

1 " M?
lim Y hik=1 as.,
n—o0 log(M), 1 (M)

which ensures that

li — =—as. 8.2
7 60 logn ; [ZERET ®2)
However, it follows from (2.5) that
M2 (D, 1\* 1(D, 1 1
D (22 2) (222 )+ —. 8.3
n* ( n 2) + n\n 2 + 4n? ®-3)

Therefore, we obtain once again from (1.2) together with (8.2) and (8.3) that

1 /Dy 1\ 1
I ZE_C) == as,
nggologn];(k 2) 2 **

which is exactly the quadratic strong law (2.7). It only remains to prove the law of iterated log-
arithm given by (2.8). It immediately follows from the law of iterated logarithm for martingales
given, e.g., by [6, Corollary 6.4.25] that

1 172 1 172
lim sup M,, = — liminf M,=1 as.,
n—00 2(M), loglog{(M), n—oo \ 2{M), log log{(M),
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which leads via (8.1) to

1 1/2 1 172 1
li _ M, = —liminf | ———— M, =—— as. 8.4
P (2n3 log log n) 8 700 (Zn3 log log n) /12 s 84

Finally, we find from (2.5) and (8.4) that

, n 2/p, 1 . n 2/p, 1 1
limsup [ ——— — —— |=—liminf [ ——— — — = )=— as,
n—soo \2loglogn n 2 n—oo \ 2loglogn n 2 V12

which completes the proof of Proposition 2.1. O

Proof of Proposition 2.2. We now proceed to prove the functional central limit theorem
given by the distributional convergence (2.10). On the one hand, it follows from (8.1) that, for
allt >0,

tim ) = 8.5
niﬂgon—ﬂ ) L] 12 a.s. (8.5)

On the other hand, it is quite straightforward to check that (M,,) satisfies Lindeberg’s condition
given, for all # > 0 and for any ¢ > 0, by

Lnt]

) P

= Y E[AMY vy | Frm1] — 0, (8.6)
k=2

where AM, =M, — M,_1 =n(&, — pn—1)- As a matter of fact, we have, for all > 0 and for

any ¢ > 0,

Lnt] |nt]

1
) ZE[AMil{lAMkbs«/nT} |]:k*1] = ) ZE[AMZL | fk*]'
k=2 k=2

However, we already saw that, for all n > 2, | AM,,| < n. Consequently, for all # > 0 and for any

e >0,
|nt] |nt]

1 ) 1 s P
3 ZE[AMk1{|AMk|>s«/n3} | Fi1] = 1662 Zk =2
k=2 k=2

which immediately implies (8.6). Therefore, we deduce from (8.5) and (8.6) together with the
functional central limit theorem for martingales given, e.g., in [7, Theorem 2.5] that

(ML"'J 1> 0> — (B, 1>0), (8.7)
3

where (B;, t > 0) is a real-valued centered Gaussian process starting at the origin with covari-
ance given, for all 0 < s <1, by E[ByB;] = s°/12. Finally, (2.5) and (8.7) lead to (2.10) where
W, = B,/1*, which is exactly what we wanted to prove. O
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