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Abstract

Schistosomiasis remains a major neglected tropical disease that afflicts over 200 million people
globally. Schistosomes, the aetiological agent of schistosomiasis, are parasitic flatworms that
propagate between molluscan and mammalian hosts. Inside the mammalian host, schisto-
somes rapidly grow over 100-fold in size and develop into a sexually mature male or female
that thrives in the bloodstream for several decades. Recent work has identified schistosome
stem cells as the source that drives parasite transmission, reproduction and longevity.
Moreover, studies have begun to uncover molecular programmes deployed by stem cells
that are essential for tissue development and maintenance, parasite survival and immune eva-
sion. Such programmes are reminiscent of neoblast-driven development and regeneration of
planarians, the free-living flatworm relative of schistosomes. Over the last few decades,
research in planarians has employed modern functional genomic tools that significantly
enhanced our understanding of stem cell-driven animal development and regeneration. In
this review, we take a broad stroke overview of major flatworm organ systems at the cellular
and molecular levels. We summarize recent advances on genetic regulators that play critical
roles in differentiation and maintenance of flatworm cell types. Finally, we provide perspec-
tives on how investigation of basic parasite biology is critical to discovering new approaches to
battle schistosomiasis.

Introduction

Schistosomiasis is a major threat to over 200 million people globally (Steinmann et al., 2006;
Hotez et al., 2007; Colley et al., 2014; McManus et al., 2018). It is caused by the members of
the genus Schistosoma, parasitic flatworms, that switch their habitats between a definitive
mammalian host and an intermediate snail host (fig. 1). There are three main species that
infect humans: S. mansoni; S. japonicum; and S. haematobium. Specific snail hosts are infected
by a miracidium, which swims in water using its ciliated plate. Upon infection, the miracidium
loses its ciliated plate and transforms into a mother sporocyst. A mother sporocyst reproduces
asexually and gives rise to daughter sporocysts that colonize the snail tissue. Daughter sporo-
cysts can produce more daughter sporocysts and undergo embryogenesis, giving rise to hun-
dreds to thousands of cercariae that are released into the water. Cercariae stay alive in water for
up to two days, during which they swim forward and reverse using the bifurcated tail to find a
mammalian host skin. Upon skin penetration, cercariae lose their tail and the body transforms
into schistosomula. Schistosomula migrate across the skin to enter the blood vessel and follow
the circulation, first passing through the lung and later arriving at either the hepatic portal vein
(S. mansoni and S. japonicum) or the bladder venules (S. haematobium), where they initiate
blood feeding. Schistosomes rapidly grow into a male or a female that pair up and reproduce
(Basch, 1991). The paired worms lay numerous eggs, the majority of which get trapped in host
tissues (e.g. liver, spleen and bladder) that attract immune cells, causing inflammation and
granuloma formation. The rest of the eggs excreted via urine or faeces hatch in water into
miracidia to infect a snail host. Praziquantel has been used for chemotherapy for over several
decades in the past, and effectively eliminates adult schistosomes. It activates schistosomes’
transient receptor potential ion channel, causing an influx of calcium that leads to worm par-
alysis (Park et al., 2019, 2021; Le Clec’h et al, 2021). However, praziquantel is less active
against immature schistosomes, it does not prevent reinfection, and resistance has been docu-
mented, calling for new approaches to target these parasites.

One of the fascinating aspects of intramammalian stage schistosomes is their ability to
thrive inside the host vasculature for decades. In the face of hostile immune components,
schistosomes deploy mechanisms from their host-parasite interfaces (i.e. tegument (outer
skin) and digestive tract) to evade or neutralize them. For instance, the tegument forms a dou-
ble lipid bilayer, a structure uniquely found in blood flukes, shortly after the parasites penetrate
the skin (McLaren & Hockley, 1977). In addition, early studies of the tegument suggest that it
can display host glycolipids presumably to evade detection (Goldring et al., 1976, 1977; Pujol
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Fig. 1. Life cycle of Schistosoma mansoni.

& Cesari, 1993). Recently, schistosome stem cells and their
deployment throughout the parasite life cycle has been recognized
as a primary driver of transmission, homeostasis, reproduction
and immune evasion (Collins ef al, 2013, 2016; Wang et al,
2013, 2018; Collins & Collins, 2016; Wendt & Collins, 2016; Lee
et al., 2020; Li et al., 2021; Nanes Sarfati et al.,, 2021). In adults,
stem cells produce large amounts of tegument cells to constantly
replenish cells sloughed off from the host immune attacks (Collins
et al., 2016; Wendt et al., 2018). In parallel, stem cells produce
cells of the digestive tract for red blood cell processing (Wendt
et al, 2020) and blocking and degrading ingested leucocytes
(Lee et al., 2020). These studies revealed the identity and the func-
tion of tissue-specific transcriptional regulators that are crucial for
maintaining and proper functioning of the respective parasite-
host interfaces.

Genetic regulators (e.g. transcription factor, RNA-binding pro-
tein and nuclear receptor) control the expression of downstream
genes required for specific cell types that they are expressed in.
Their expressions in undifferentiated stem cells/progenitors are
in many cases required for the specification and/or maintenance
of differentiated cell types that are necessary for proper tissue
function during animal development and homeostasis. Such
developmental processes have been extensively studied in free-
living planarian flatworms over the past few decades (Reddien,
2013, 2018, 2021; Roberts-Galbraith & Newmark, 2015).
Planarians and schistosomes are distant cousins, in which they
belong to Turbellaria and Trematoda classes, respectively, that
are part of the same invertebrate animal phylum, Platyhelminthes
(platy: flat; helminth: worm) (Laumer et al, 2015; Collins, 2017).
Planarians have an extraordinary ability to regenerate missing
body parts via a population of stem cells called neoblasts
(Newmark & Sanchez Alvarado, 2002). With the advent of the
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functional and single cell genomics era, flatworm cellular hetero-
geneity and underlying intricate mechanisms have begun to
unravel. Interestingly, recent studies reveal that despite highly
divergent body plans, planarians and schistosomes share an unex-
pectedly high degree of cell type homology, with notable differ-
ences in regulator functions (Li et al., 2021; Nanes Sarfati et al.,
2021; Tarashansky et al., 2021). Understanding such similarities
and differences will help us identify parasite-specific adaptations
that can be exploited for intervention. In this review, we provide
a high-level overview of cell types and tissues in planarians and
schistosomes. In addition, we review major regulators that control
cell type specification and maintenance with an emphasis on
recent discoveries of schistosome regulators and their functions.
We anticipate that such a summary will serve as a valuable
resource to the community of schistosome researchers and
beyond. Lastly, we convey the significance of studying the basic
parasite biology that opens new avenues for translational biology.

Stem cells

Stem cells are traditionally defined as cells that can self-renew and
differentiate for a long period of time. Their ability to give rise to
different cell types defines their potency. In particular, pluripo-
tency is defined as the ability of stem cells to give rise to all the
cell types of the three germ layers (i.e. ectoderm, endoderm and
mesoderm) that consist of an entire animal. Planarian flatworms,
Schmidtea mediterranea, are free-living flatworms that contain a
population of stem cells called neoblasts that fuel animal develop-
ment, homeostasis and regeneration (Baguna et al, 1989;
Newmark & Sanchez Alvarado, 2002). They are distributed
throughout the mesenchyme with features including round
morphology, high nuclear-to-cytoplasm ratio and chromatoid
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bodies (Coward, 1974; Rouhana et al., 2014). Earlier studies using
nucleotide pulse-chase revealed that neoblasts are the only divid-
ing cells in the worm body (Newmark & Sanchez Alvarado, 2000).
Capitalizing on this aspect, subsequent studies used a combin-
ation of an irradiation time course, cell sorting and RNA interfer-
ence (RNAi) to define mRNAs enriched in neoblasts (Reddien
et al., 2005a; Eisenhoffer et al., 2008), which included proliferative
markers, such as histones, pcna (proliferating cell nuclear anti-
gen), mcm (minichromosome maintenance), p53, germ/stem
cell-associated RNA-binding proteins including vasa, argonaute,
piwi (smedwi), bruno-like and signalling molecules such as fgfr
(fibroblast-growth factor receptor). To further demonstrate the
pluripotency of neoblasts, a combination of sublethal irradiation,
clonal assay and single-cell transplantation was used. Specifically,
a single neoblast transplanted into an irradiated planarian host
was capable of forming colonies that contained progenies of all
three germ layers that subsequently regenerated an entire animal
(Wagner et al., 2011). However, not all single neoblasts were cap-
able of whole animal regeneration, indicating a functional and
molecular heterogeneity among neoblasts. To investigate the
nature of neoblast heterogeneity, single-cell transcriptomic
approach was employed, which initially revealed three classes: ¢
(sigma)-neoblasts; { (zeta)-neoblasts; and y (gamma)-neoblasts
(van Wolfswinkel et al., 2014). {-neoblasts, and 7y-neoblasts
expressed transcription factors that govern epidermal (zfp, zinc-
finger protein) and intestinal (gata4/5/6, GATA-binding factor)
lineage specification, respectively, and therefore were placed
under a lower hierarchy than c-neoblasts that did not express
lineage-specific transcription factors. However, using a signifi-
cantly higher number of cells, multiple subsequent single-cell
sequencing studies further deconstructed hierarchical and lineage
relationships among the neoblast population (Wurtzel et al., 2015,
2017; Fincher et al., 2018; Plass et al., 2018; Scimone et al., 2018;
Swapna et al., 2018; Zeng et al., 2018). In particular, Zeng et al,
discovered 12 neoblast subclusters (Nbl to Nb12) from >7000
cells, which were categorized based on the level of piwi-1 expres-
sion (Zeng et al., 2018). The three classes that were initially iden-
tified belonged to one or more subclusters from this analysis.
From one of the neoblast subclusters (Nb2) that had high expres-
sion of piwi-1, the authors identified a membrane protein
TSPAN-1 to generate an antibody against. Using the TSPAN-1
antibody, the authors purified TSPAN-1" cells and performed a
single cell transplantation into an irradiated planarian host.
Remarkably, a single TSPAN-1" cell was able to rescue the entire
animal, indicating the pluripotency of Piwi-1"¢" TSPAN-1* neo-
blasts. In addition, several other neoblast subclusters expressed
lineage-specific transcription factors. Interestingly, another recent
study that analysed the cell-cycle status of neoblasts from single
cell (sc) RNA-seq revealed that neoblast division could produce
one undifferentiated and one fate-specified (lineage-committed)
stem cells (Raz et al., 2021). These fate-specified neoblasts were
capable of dividing and forming colonies that seem to retain plur-
ipotency, suggesting a switch or reversion of their fate through cell
division. These data depart from a classical model of hierarchical
stem cell fate specification where a fate-specified progenitor
undergoes a restricted proliferation and differentiation, to a non-
hierarchical single-step model. A recent review discusses the con-
cepts of cellular plasticity that relate to transient cell states rather
than cell types (Adler & Sanchez Alvarado, 2015).

Numerous neoblast genes have been found to be essential
using a large-scale RNAi regeneration screen (Reddien et al.,
2005a; Wagner et al., 2012). These experiments involve feeding
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planarians with double-stranded RNA against candidate genes
(Sanchez Alvarado & Newmark, 1999; Newmark et al., 2003),
then cutting the treated worms to identify gene knockdowns
that display regeneration defects and/or sublethally irradiating
the worms for clonal analysis of stem cell expansion and differen-
tiation. Using such a regime, numerous regulators such as
RNA-binding proteins (e.g. smedwi (piwi) and bruli, vasa-1I)
(Reddien et al., 2005b; Guo et al., 2006), zinc finger proteins
(zfp-1) and transcription factors (e.g. p53 and soxP-1) (Wagner
et al., 2012) were found to be essential for clonal expansion and
differentiation, which led to phenotypes including animal curling,
regression, lesions, bloating and lysis. In parallel to such intrinsic
regulators, a major driver that determines neoblast fate is the sig-
nalling cues it receives from the niche. These cues include mole-
cules associated with conserved signalling pathways such as
wingless/integrated (Wnt) and bone morphogenetic protein
(BMP) that are highly expressed in muscle cells. Perturbation of
many of these signalling components led to altered neoblast cell
fate that resulted in defects in homeostasis and regeneration
(Witchley et al., 2013; Reddien, 2018).

Schistosome stem-like cells were classically described as ‘ger-
minal cells’ in sporocyst (Cort et al, 1954; Pan, 1980). They
have a round cell morphology and a high nuclear-to-cytoplasm
ratio akin to planarian neoblasts (Collins et al., 2013). Sporocyst
germinal cells extensively divide during the asexual reproduction,
giving rise to more germinal cells that undergo embryogenesis to
produce cercariae. Classical studies have shown that parasites can
be maintained from a monomiracidial infection followed by suc-
cessive serial transplantation of sporocysts into the molluscan
host, indicating that germinal cells include pluripotent cells
(Jourdane & Theron, 1980). The molecular nature of sporocyst
stem cells was first characterized by comparing the transcriptomes
of sporocysts at different timepoints, revealing a high degree of
conservation to planarian neoblast and germ cells, with an
enriched expression of cell cycle genes and RNA-binding proteins
(Wang et al., 2013). Nucleotide pulse-chase experiments revealed
germinal cell heterogeneity, with nanos-2" and nanos2™ cells pro-
liferating at different rates. Co-expression analysis using fluores-
cence in situ hybridization (FISH) suggested a potential
hierarchical relationship between nanos-2* and nanos-2~ popula-
tions, with nanos-2" cells representing more undifferentiated ger-
minal cells. To further investigate the heterogeneity, a recent study
employed single-cell RNA-seq (scRNA-seq), which revealed three
classes of sporocyst germinal cells: x (kappa, kif*/nanos-2"); &
(delta, nanos-2"/fgfrA*); and ¢ (phi, nanos-27/fgfrA™) (Wang
et al., 2018). Evidence from pulse-chase coupled with FISH placed
K-cells at the top of the hierarchy as embryonic stem cell-like cells,
8-cells that arise from k-cells to become somatic stem cells, and
¢-cells that include lineage-committed progenitors that give rise
to differentiated sporocyst tissues. During cercarial embryogen-
esis, k-cells and J-cells are packaged in the body at distinct ana-
tomical locations, with k-cells located within the germinal cell
cluster and ~five §-cells distributed across the mesenchyme: two
sets of cells laterally; and one cell in the mid-body. After
a cercaria transforms into a schistosomulum, 8-cells are the first
cells to initiate proliferation, between one to two days of entering
the mammalian host skin to produce cell types that are needed for
the transition (Lee et al., 2020). Meanwhile, k-cells begin to divide
a few days later, likely producing cells associated with germline/
reproductive development.

The intramammalian-stage schistosomes live for decades
inside the blood vessel where hostile immune components are
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in a constant surveillance, implicating their superb immune eva-
sion capacity. Furthermore, in the face of host immunity, parasites
grow and sexually mature for reproduction, laying hundreds of
eggs daily, which is the cause of the disease pathology. The cellu-
lar basis of such immune evasion and pathology has been pro-
posed to be due to the population of parasite stem cells (Collins
& Newmark, 2013; Wendt & Collins, 2016). Using irradiation
to deplete dividing cells, stem cells were discovered in the mesen-
chyme that share morphological, molecular and functional fea-
tures with planarian neoblasts and sporocyst germinal cells
(Collins et al., 2013). Subsequent single-cell studies in schistoso-
mula (Diaz Soria et al, 2020), juveniles (Wang et al., 2018;
Tarashansky et al, 2019, 2021; Li et al, 2021) and adults
(Wendt et al, 2020) suggested that stem cell heterogeneity
becomes more prominent as parasites mature. One of the new
populations that arise in the juvenile stage is € (epsilon)-cells
that express high levels of eled. eled is expressed in both germline
and somatic stem cells in juveniles and is also found in a subset of
adult stem cells. Importantly, a comparison to planarian neoblasts
revealed that e-cells are most similar to pluripotent neoblasts
expressing several transcription factors (e.g. soxP-2, unc4, pax6a
and geml) (Tarashansky et al., 2021). In addition, other juvenile
stem cell subclusters including myoD™ p-cells and p'-cells shared
homologous features with planarian muscle progenitors. A list of
major and minor subclasses of schistosome stem/progenitor cells
and their potential lineage relationships have recently been
reviewed in further detail (Nanes Sarfati et al., 2021).

Several essential regulators have been identified in schistosome
stem cells (table 1). Knockdown of vig-3 (vasa-like gene), ago2-1
(argonaute) and fgfrA (fibroblast growth factor receptor A) in
sporocysts led to a significant reduction in proliferating cells
and associated transcripts (Wang et al., 2013). Interestingly,
while vlg-3 knockdown affects both nanos-2* and nanos-2~ ger-
minal cells, ago2-1 and fgfrA knockdowns only affected nanos-2-
germinal cells, indicating functional heterogeneity of these genes
in sporocyst stem cells. Similar to sporocysts, fgfrA knockdown
in adults depleted proliferating cells in the soma, which resulted
in the downregulation of stem cell genes including h2b and
nanos-2 (Collins et al., 2013). Along with fgfrA, a few other
genes have been reported to play an important role in juvenile
and adult parasites. For instance, cbpl, CBP/p300 family protein,
is broadly expressed in stem and early progenitor cells (¢sp-27),
and plays an essential role in repressing cell death-induced over-
proliferation of stem cells that lead to organ degeneration (e.g.
oesophageal gland) followed by in vivo parasite death (Collins
& Collins, 2016). In parallel, knockdown of eled led to a loss of
nanos-2" stem cells in the soma and caused precocious differen-
tiation of germ cells (Wang et al., 2018). Together, it is becoming
increasingly clear that schistosome stem cells are heterogeneous.
Contributing to such heterogeneity are subsets of cell types (or
cell states) that express tissue-specific transcription factors that
regulate differentiation and/or maintenance of specific cell
types/tissues. Several of these studies are highlighted below in
the subsequent sections (fig. 2 and table 1).

Epidermis/tegument

Planarian epidermis has a monostratified layer of cells that form
above the basement membrane and make the outer surface of
the worm. Epidermal cells consist of differentiated ciliated and
non-ciliated cells (Rompolas et al., 2010, 2013). Early nucleotide
pulse-chase studies showed that neoblast continuously give rise
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to post-mitotic epidermal cells (Newmark & Sanchez Alvarado,
2000). Employing irradiation time-course, nucleotide pulse-chase,
cell sorting, scRNA-seq and spatiotemporal analysis of epidermal
gene expression, multiple studies shed light on cell types and
states of epidermal differentiation and identified key genetic reg-
ulators (table 2). For instance, zfp-1 and p53, defining markers of
C-neoblast, play an essential role in maintaining {-neoblasts,
which are required for the production of epidermal progenitors
(Pearson & Sanchez Alvarado, 2010; van Wolfswinkel et al.,
2014; Cheng et al., 2018). P53 appears to regulate zfp-1 expres-
sion, which in turn regulates the expression of soxP-3 and
pax-2/5/8, the two factors that control the transcription of genes
required for the secretion of epidermal vesicles (Cheng et al,
2018). Meanwhile, mex3-1 knockdown led to an expansion of
the neoblast pool at the expense of differentiation, resulting in
the loss of epidermal progenitors (Zhu et al, 2015). myb-1
appears to be important in activating the transcriptional pro-
gramme in early epidermal progenitors, and in its absence, the
late epidermal differentiation programme was precociously acti-
vated (Zhu & Pearson, 2018). egr-5, a conserved early growth
response family of acetylene (C2H2) zinc finger protein, is not
expressed in neoblasts but in early post-mitotic epidermal pro-
genitors (Tu et al., 2015). Interestingly, knockdown of egr-5 led
to misexpression of epidermal differentiation markers resulting
in a failure to produce mature epidermis and subsequent loss of
epidermal integrity and animal death.

Schistosome tegument cells are syncytial and are located
beneath the muscle layers. Tegument cells throughout the worm
body extend their cytoplasm into the tegument syncytium. The
tegument is rapidly rebuilt upon parasites entering the mamma-
lian host, forming a unique double lipid bilayer structure
(Wilson & Barnes, 1974; McLaren & Hockley, 1977; McLaren,
1980; Wilson & Jones, 2021). This process is thought to be essen-
tial for tegument function through the production of proteins and
other secreted molecules that enable immune evasion and parasite
survival (Wilson & Barnes, 1974, 1977; Skelly & Wilson, 2006). In
fact, vaccination of a murine host with TSP-1 and TSP-2, tetra-
spanin membrane proteins expressed in the tegument, provides
significant protection against schistosome infection, with >50%
reduction in worm and liver egg burdens (Tran et al, 2006).
An extensive review of the composition and function of the tegu-
ment and the remaining questions in the field has recently been
published (Wilson & Jones, 2021).

To identify genes underlying tegument formation and main-
tenance, Collins et al. first used irradiation to deplete adult stem
cells/progenitors and compared transcriptomes obtained at differ-
ent time points after irradiation (Collins et al, 2016). From this
analysis, the authors discovered that most genes that are downre-
gulated sequentially after the depletion of stem cells were those
associated with the tegument. In a subsequent study, the authors
used TSP-2 antibody to capture tegument cells from dissociated
adult worms that revealed multiple clusters of genes, which
allowed them to define the tegument progenitors and mature
tegument cells (Wendt et al, 2018). Further investigation using
nucleotide pulse-chase revealed that a large proportion of stem
cells produce tegument precursors in both adults (Collins et al.,
2016) and schistosomula/juveniles (Lee et al., 2020). Such con-
tinuous replenishment of stem cell-driven tegument cell produc-
tion likely contributes to the schistosome’s ability to evade host
immunity.

Investigating the mechanism of tegument cell production, two
C2H2 zinc finger proteins, zfp-1 and zfp-1-1, were identified
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Table 1. Genetic regulators of schistosome cell types/tissues and their roles.
Tissue type Gene name Gene description Cell types expressed Roles/RNAi phenotype Reference
stem cells fgfrA fibroblast growth factor neoblasts, eled+ neoblasts, loss of stem cell Collins et al.,
(Smp_175590) receptor A female-specific neoblasts proliferation in adults and 2013; Wang
sporocysts et al., 2013
cbp-1 CBP/p300 family protein h2b+ stem cells, tsp-2+ over proliferation due to Collins et al.,
(Smp_105910) tegument precursor cells cell death, organ 2016
degeneration
vig-3 vasa-like gene nanos-2+ sporocyst germinal loss of proliferation in Wang et al.,
(Smp_068400) cells nanos-2+ and nanos-2- 2013
cells in sporocysts
ago-2 Argonaute sporocysts: nanos-2+ loss of proliferation in Wang et al.,
(Smp_179320) proliferative cells; adults: nanos-2— cells in 2013
germinal cells, neoblasts, eled+ sporocysts
neoblasts, germline stem cells
(GSCs), S1, female-specific
neoblasts, female gametes
eled eledh, novel protein with eled+ neoblasts, GSCs, GSC loss of proliferating Wang et al.,
(Smp_041540) transmembrane and S/T progeny, S1, S1 progeny, early nanos-2 stem cells, 2018
rich domains vitellocytes, vitellocytes precocious differentiation
of male germ cells in
juveniles
tegument zfp-1 C2H2 zinc finger subset of nanos-2+ somatic slight reduction of new Wendt et al.,
(Smp_145470) domain-containing stem cells tegument cell production, 2018
protein significant loss of new gut
cell production
2fp-1-1 C2H2 zinc finger tsp-2+ tegument precursor cells complete block of new Wendt et al.,
(Smp_049580) domain-containing tegument cell production 2018
protein
gli-1 glioma-associated 7b2+ neurons, tegument cells failed female sexual Chen et al.,
(Smp_266960) oncogene, effector of (ventral, male) development and egg 2022
hedgehog signalling production
pathway
digestive tract hnf-4 hepatocyte nuclear eled+ neoblast and hnf4+ cells increase in eled+ Wendt et al.,
(Smp_174700) factor 4 (adult scRNA-seq and in situ neoblasts, impaired new 2020
hybridization) gut cell production and
digestive capacity, in vivo
parasite death
foxA forkhead box A eled+ neoblast and hnf4+ cells complete loss of Lee et al.,
(Smp_331700) (adult scRNA-seq), oesophageal gland cells, 2020
oesophageal gland and failed blockage/lysis of
neighbouring stem cells ingested leucocytes, in vivo
(fluorescence in situ parasite death
hybridization)
ftz-f nuclear hormone broad expression in adult male meg-8.3 downregulation, Romero
(Smp_328000) receptors and female head tissue degeneration, et al., 2021
loss of in vitro parasite
attachment to dish
germ cells/ ago-2 Argonaute sporocysts: nanos-2+ loss of proliferation in Wang et al.,
reproductive (Smp_179320) proliferative cells; adults: nanos-2— cells in 2013
system germinal cells, neoblasts, eled+ sporocysts
neoblasts, GSCs, S1,
female-specific neoblasts,
female gametes
eled eledh, novel protein with eled+ neoblasts, GSCs, GSC precocious differentiation Wang et al.,
(Smp_041540) transmembrane and S/T progeny, S1, S1 progeny, early of male germ cells 2018
rich domains vitellocytes, vitellocytes
VF1 nuclear receptor family vitellocyte stem cells and perturbed vitellocyte stem Wang et al.,
(Smp_248100) transcription factor, immediate progenies cell differentiation, loss of 2019
Vitellogenic Factor 1 mature vitellocytes,
reduced egg production
(Continued)

https://doi.org/10.1017/50022149X22000621 Published online by Cambridge University Press


https://doi.org/10.1017/S0022149X22000621

Table 1. (Continued.)

J. Lee

Tissue type Gene name Gene description Cell types expressed Roles/RNAi phenotype Reference
boule deleted in azoospermia subset of nanos-1+ juvenile expansion of GSCs Li et al.,
(Smp_144860) (DAZ) family GSCs (nanos-1+ or eled+) and 2021

RNA-binding protein reduction of
spermatocytes,
spermatids, and sperm
oc-1 onecut homeobox subset of nanos-1+ juvenile expansion of GSCs Li et al.,
(Smp_196950) transcription factor GSCs, primordial testes and (nanos-1+ or eled+) and 2021
vitellaria reduction of
spermatocytes, spermatids
and sperm
gli-1 glioma-associated 7b2+ neurons, tegument cells failed female sexual Chen et al.,
(Smp_266960) oncogene, effector of (ventral, male) development and egg 2022

hedgehog signalling
pathway

production

(Wendt et al., 2018). zfp-1 is highly expressed in a subset of
nanos-2" stem cells and its knockdown led to a slight reduction
in mature tegument cells while new gut cell production was sig-
nificantly impaired, implicating the role of zfp-1 in stem cell dif-
ferentiation into multiple lineages. Consistent with such findings,
zfp-1 was one of the defining markers of juvenile somatic stem
cells from single cell analysis (Wang et al., 2018). In contrast,
zfp-1-1 is not expressed in nanos-2* stem cells but is highly
expressed in early tegument precursors (fsp-2%). Accordingly,
knockdown of zfp-1-1 led to a nearly complete blockage of new
tegument cell production, indicating that zfp-1-1 is likely the mas-
ter regulator of the tegument cell lineage.

Digestive system

Planarian intestine is an epithelial tube that consists of columnar
cells that sit above the enteric muscles. Previously, ultrastructural
studies identified two major cell types of the planarian gut: pha-
gocytes; and secretory goblet cells (Ishii, 1965). To identify genes
enriched in phagocytes, planarians were fed with magnetic
dextran particles that were phagocytosed before dissociating the
animals into a single cell suspension for cell sorting and transcrip-
tome analysis (Forsthoefel et al., 2012). From this study, the
authors discovered an intestine-enriched homeodomain tran-
scription factor, nkx-2.2, that plays an important role in animal
regeneration. nkx-2.2 knockdown led to defects in neoblast
proliferation without compromising its ability to differentiate or
migrate, eventually resulting in animal death. Interestingly,
nkx-2.2 was found to be enriched in y-neoblasts, along with
other conserved endodermal regulators such as hnf4 (hepatocyte
nuclear factor 4), gata4/5/6 (GATA-binding factor), and prox-1
(prospero homeobox 1) (van Wolfswinkel et al, 2014). hnf4
and gata4/5/6 knockdown specifically affected nkx-2.2 expressing
neoblasts but not the other subclasses (i.e. 6- and {-neoblasts),
suggesting their role in the endodermal specification of neoblasts.

A recent scRNA-seq revealed a third intestinal cell type besides
phagocytes and goblet cells that localizes to the outer epithelial
layer with an unknown function (Fincher et al, 2018). Meanwhile,
laser-capture microdissection to enrich for intestinal tissues iden-
tified additional intestinal genes and cell types (Forsthoefel et al.,
2020). In this study, the authors were able to determine the iden-
tity of three cell types using specific markers, npc2 (Niemann-
Pick disease type C2 protein), ctsla (cathepsin La) and slc22a6
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(solute carrier family 22 member 6) that labelled goblet cells, pha-
gocytes and basal cells, respectively. Furthermore, npc2* goblet
cells and slc22a6" basal cells were spatially heterogeneous between
the medial (primary) and lateral (secondary and tertiary)
branches that contain distinct subsets of cells. Screening for tran-
scriptional regulators, these authors discovered that knockdown
of gli-1, a component of hedgehog signalling, perturbed the pro-
duction of new goblet cells. In contrast, RREB2, ras-responsive
element binding protein 2, was required for the maintenance
and/or survival of goblet cells. Interestingly, some starved knock-
down animals refused to intake food eventually leading to worm
lysis and death, suggesting a potential role of goblet cells in regu-
lating hunger.

The planarian digestive system also includes the pharynx, a
highly innervated muscular organ that protrudes out to seek
and ingest food. It consists of ciliated epithelium, which sits
above several muscle layers, neurons and mesenchymal cells.
Using chemical amputation-induced pharynx regeneration coupled
with comparative transcriptome analysis, a recent study identified
forkhead transcription factor, foxA, to be the master regulator of
pharyngeal regeneration (Adler et al., 2014). foxA is expressed in a
subset of neoblasts committed to pharyngeal cell production in
both Dugesia japonica (Koinuma et al., 2000) and S. mediterranea
(Adler et al., 2014; Scimone et al., 2014). foxA knockdown ani-
mals failed to regenerate all three germ layers comprising the
pharynx. Similarly, knockdown of egfr-1, an epidermal growth
factor receptor, perturbed neoblast-driven pharynx regeneration
(Fraguas et al., 2011).

One of the major parasite-host interfaces that plays an import-
ant role in immune evasion is the schistosome digestive system. In
the worm head, there is a mouth opening (oral sucker) that con-
nects to the oesophagus with surrounding cell masses in the
anterior and the posterior halves, the latter of which is a digestive
organ called the oesophageal gland. Posterior to the oesophagus
are the gut branches that are bifurcated in the anterior half of
the worm, which merge into a single branch in the posterior
half. Like planarians, schistosomes have a blind gut, and therefore,
the waste product of blood feeding, called haemozoin, is regurgi-
tated through the mouth opening (Skelly et al., 2014). The gut is
lined with an epithelial layer, often referred to as gastrodermis
(Morris, 1968). From scRNA-seq in adult worms, a subset of
eled” stem/progenitor cells were found to express hnf4 (Wendt
et al, 2020). Knockdown of hnf4 resulted in an increase in
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Fig. 2. Schematic overview of schistosome cell types and tissues. For simplicity, a male worm was used to depict the distribution of each cell type except for the

reproductive organs, in which both male and female are shown.

proliferation of eled” stem cells in a place where mature gut tissues
would normally form. The lack of new mature gut cells correlated
with the downregulation of more than 70% of gut-associated tran-
scripts and defects in digestive capability (e.g. undigested red
blood cells in the lumen and reduced protease activity in vitro),
ultimately resulting in in vivo parasite death.

The oesophageal gland has been considered as an initial site of
blood processing (Li et al., 2013) which contains thousands of cell
bodies with cytoplasm connected to the oesophageal lumen to
release secretory products. Previous ultrastructural studies have
identified damaged leucocytes within the lumen, with red blood
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cells being lysed as they pass through the oesophagus (Dike,
1971; Bogitsh & Carter, 1977; Li et al., 2013). Following the fate
of early stem cells in schistosomula, a recent study discovered
that new oesophageal gland cells are produced prior to the initi-
ation of blood feeding, suggestive of an important role that the
gland might be playing (Lee et al, 2020). Screening through
known endodermal regulators, the authors discovered a forkhead
transcription factor, foxA, that is enriched in the oesophageal
gland and its surrounding stem cells. Knockdown of foxA abol-
ished the oesophageal gland in schistosomula, juveniles and
adults. Interestingly, adult parasites lacking the oesophageal
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Table 2. Genetic regulators of planarian cell types/tissues and their roles.

J. Lee

Gene
Tissue type name Gene description Roles/RNAi phenotype Reference
epidermis p53 tumour protein p53 limit neoblast proliferation and self-renewal, Pearson & Sanchez
production of epidermal progenitors Alvarado, 2010
zfp-1 zinc finger protein 1 zeta-neoblast differentiation towards epidermal van Wolfswinkel et al.,
cell fate 2014
mex-3 RNA-binding protein specification of epithelial progenitors, limiting Zhu et al., 2015
neoblast self-renewal and promoting epidermal
differentiation
egr-5 early growth response family differentiation of post-mitotic epidermal Tu et al., 2015
progenitors
myb-1 MYB-type transcription factor early epidermal specification, spatial/temporal Zhu & Pearson, 2018
regulation of late-stage epidermal differentiation
SsoxP-3 sry-related high mobility regulates transcriptional profile of early epidermal Cheng et al., 2018
group (HMG) box progenitors related to vesicle production
pax-2/5/8 paired box transcription regulates transcriptional profile of early epidermal Cheng et al., 2018
factor progenitors related to vesicle production
foxK-1 forkhead box K regeneration of ectodermal tissues including Coronel-Cordoba et al.,
neurons and epidermis 2022
digestive system egfr-1 epidermal growth factor regeneration of all pharyngeal cell types Fraguas et al., 2011
receptor
nkx-2.2 NK2 homeobox intestinal regeneration Forsthoefel et al., 2012
foxA forkhead box A pharynx regeneration Adler et al., 2014
prox-1 Prospero homeobox 1 gamma-neoblast differentiation to intestinal van Wolfswinkel et al.,
lineage cells 2014
hnf-4 hepatocyte nuclear factor 4 gamma-neoblast differentiation to intestinal van Wolfswinkel et al.,
lineage cells 2014
gata4/5/6 GATA-binding factor gamma-neoblast differentiation to intestinal van Wolfswinkel et al.,
lineage cells 2014
gli-1 glioma-associated oncogene neoblast specification of goblet cells Forsthoefel et al., 2020
(hedgehog signalling)
RREB-2 ras-responsive element survival of goblet cells Forsthoefel et al., 2020
binding protein 2
fer1 pancreas transcription factor goblet cell differentiation or survival Forsthoefel et al., 2020
(PTF1A) one subunit alpha
lhx2b LIM homeobox 2 goblet cell differentiation or survival Forsthoefel et al., 2020
germ cells/ nanos nos, conserved RNA-binding loss of germ cell specification and maintenance Wang et al., 2007
reproductive protein
organs . ) .
NF-YB nuclear factor Y, subunit B depletion of GSCs, leading to loss of Wang et al., 2010; lyer
spermatogonia and degeneration of testes over et al., 2016a
time
dmd-1 Drosophila melanogaster loss of nanos+ male germ cells and reproductive Chong et al., 2013
domain-containing tissues
transcription factor
nhr-1 nuclear hormone receptor loss of male and female accessory reproductive Tharp et al., 2014
tissues
boule-1 DAZ family RNA-binding expansion of spermatogonia in the expense of lyer et al., 2016b
protein meiotic and post-meiotic male germ cells, loss of
differentiated oocytes
boule-2 DAZ family RNA-binding loss of male germ cells, increased apoptosis, loss lyer et al., 2016b
protein of differentiated oocytes
zfs-1 zinc finger RNA-binding complete loss of oocytes Khan & Newmark, 2022
protein
delta notch signalling ligand expansion of klfl+ female germ cell progenitors Khan & Newmark, 2022

and loss of mature oocytes
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Table 2. (Continued.)
Gene
Tissue type name Gene description Roles/RNAi phenotype Reference
notch-2 notch signalling receptor expansion of klfl+ female germ cell progenitors Khan & Newmark, 2022
and loss of mature oocytes
notch-4 notch signalling receptor loss of female germ cell progenitors and mature Khan & Newmark, 2022
oocytes
foxL forkhead box L loss of mature oocytes, no effect on klfl+ female Khan & Newmark, 2022
germ cell progenitors
klfl Kriippel-like factor-like loss of germ cell and yolk cell specification and Issigonis et al., 2022
maintenance
nervous system six-1/3 sine oculis regeneration and maintenance of planarian Pineda et al., 2000
photoreceptor neurons and pigment cup cells
eya eyes absent regeneration and maintenance of planarian Mannini et al., 2004
photoreceptor neurons and pigment cup cells
dlx distal-less homeobox optic cup regeneration Lapan & Reddien, 2011
sp6-9 specificity protein 6-9 optic cup regeneration Lapan & Reddien, 2011
foxJ1-4 forkhead box J required for ciliogenesis Vij et al., 2012
ovo ovo/shavenbaby eye regeneration Lapan & Reddien, 2012
SoxBI-1 sry-related HMG box regeneration of photoreceptor neurons Lapan & Reddien, 2012
coe collier/olfactory-1/early B cell regeneration of central nervous system (CNS), Cowles et al., 2013,
factor downregulation of several neuropeptide genes 2014
(cpp-1, npy-2, spp-18, spp-19), required for
neuropeptidergic neurons
hesl-3 hairy enhancer of split-like 3 CNS regeneration, npy-2 downregulation Cowles et al., 2013
sim simple-minded CNS regeneration, npy-2 downregulation Cowles et al., 2013
lhx1/5-1 LIM/homeobox 1/5-1 regeneration and maintenance of serotonergic Currie & Pearson, 2013
neurons
pitx pituitary homeobox regeneration and maintenance of serotonergic Marz et al., 2013
neurons
klfl Kriippel-like factor-like regeneration of cintillo+ sensory neurons Scimone et al., 2014
pax3/7 paired box 3/7 regeneration of medial neuron (DBH+) subset Scimone et al., 2014
ap-2 activating enhancer binding required for TrpA-expressing neurons Scimone et al., 2014;
protein 2 Wenemoser et al., 2012
SoxBI1-2 sry-related HMG box regeneration of sensory neuron subtypes Ross et al., 2018
foxK-1 forkhead box K regeneration of ectodermal tissues including Coronel-Cordoba et al.,
neurons and epidermis 2022
muscles myoD myoblast determination specification of body wall longitudinal fibres Scimone et al., 2017
protein 1
nkx1-1 nkl homeobox specification of body wall circular fibres Scimone et al., 2017
foxF-1 forkhead box F specification of non-body wall muscle Scimone et al., 2018
(dorsal-ventral muscle (DVM), intestinal muscle
(IM), pharynx muscle fibres)
nk4 NK homeobox specification of subsets of lateral DVM cells (mhc-2 Scimone et al., 2018
+, col4-5+, mhc-3+), gut morphogenesis
gata4/5/ GATA-binding factor pharyngeal expulsion, specification of medial DVM Scimone et al., 2018
6-2 subsets, gut morphogenesis
gata4/5/ GATA-binding factor specification of IM subsets Scimone et al., 2018
6-3
nr4A nuclear receptor 4 anterior-posterior axis patterning Li et al., 2019
excretory system egfr-5 epidermal growth factor regeneration and maintenance of flame cells Rink et al., 2011
receptor 5
(Continued)
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Table 2. (Continued.)

J. Lee

Gene
Tissue type name Gene description Roles/RNAi phenotype Reference
six1/2-2 sine oculis homeobox 1/2-2 regeneration and maintenance of protonephridial Scimone et al., 2011
cells
pou2/3 Pit-1/0ct1/2, Unc-86 2/3 regeneration and maintenance of protonephridial Scimone et al., 2011
cells
hunchback zinc finger protein regeneration and maintenance of protonephridial Scimone et al., 2011
homologous to Drosophila cells
hunchback
sall spalt-like tubule cell differentiation Scimone et al., 2011
parenchymal/ foxF-1 forkhead box F specification of cathepsin+ phagocytic cells Scimone et al., 2018
cathepsin+ cells . X
nkx-6 NK homeobox regeneration of dd_515+ parenchymal cells Fincher et al., 2018

gland were unable to block and lyse ingested leucocytes and sur-
vive inside the bloodstream, implicating an essential role of the
oesophageal gland. Strikingly, parasite death was rescued in
immunocompromised mice (e.g. Ragl ™~ and uMT "), implicat-
ing the oesophageal gland as a key organ underlying parasite
immune evasion. In addition to foxA, a few other regulators asso-
ciated with the oesophageal gland have been reported. For
instance, cbpl is broadly expressed in many cell types including
stem/progenitor cells and the oesophageal gland. Knockdown of
cbp1 led to a degeneration of multiple tissues, including apoptosis
of oesophageal gland cells, and resulted in parasite death in vivo
(Collins & Collins, 2016). Another example is a nuclear receptor,
Ftz-F1, which does not appear to be expressed in the oesophageal
gland, that binds to the upstream region of an oesophageal gland-
specific gene, meg-8.3 (microexon gene 8.3). Interestingly, Ftz-FI
and meg-8.3 knockdowns led to degeneration of head tissue and
loss of parasites’ ability to attach to the culture dish (Romero
et al., 2021), highlighting the importance of individual oesopha-
geal gland proteins in parasite homeostasis. Recent biochemical,
as well as bulk and single-cell transcriptomic studies have identi-
fied several genes enriched in the gland including multiple micro-
exon genes (megs), some of which have been implicated as
potential vaccine candidates (Figueiredo et al, 2015; Li et al.,
2015; Wilson et al., 2015; Li et al., 2018, 2020; Diaz Soria et al.,
2020; Neves et al., 2020; Wendt et al., 2020).

Germ cells and reproductive organs

S. mediterranea come in two strains: one that reproduces asexu-
ally by transverse fission; and the other that reproduces sexually.
The sexual strains are simultaneous hermaphrodites carrying
male and female germ cells and associated reproductive tissues.
Numerous testes are dorsolaterally positioned, while two ovaries
are located ventrally at the base of the brain. Yolk glands called
vitellaria are ventrally distributed across the worm and produce
yolk cells that encapsulate the fertilized embryo (i.e. ectolicithal)
before the eggs are laid. The sexual strain of S. mediterranea
has served as an excellent model to study germ cell development
and regeneration in recent decades (Issigonis & Newmark, 2019).
Pioneering work from the Newmark laboratory and others first
identified nanos, an RNA-binding protein with a crucial role in
germ cell development across metazoan (Seydoux & Braun,
2006), to be expressed in presumptive male and female germline
stem cells (GSCs), and plays an essential role in germ cell
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specification and maintenance (Sato et al., 2006; Wang et al.,
2007, 2010). Recently, a Kriippel-like factor associated with plur-
ipotency (Takahashi & Yamanaka, 2006), kif4-like (kifl), was
found to be expressed in the earliest stage of germ cell develop-
ment (Issigonis et al, 2022; Khan & Newmark, 2022). kIfl is
largely co-expressed with nanos in the earliest male and female
GSCs as well as in vitellaria and is essential for the specification
and maintenance of germ cells and yolk cells (Issigonis et al.,
2022). In addition to nanos and klfl, multiple factors have been
identified to play a role in germ cell development and mainten-
ance. For instance, NF-YB (nuclear factor Y subunit B) is
expressed in male GSCs, spermatocytes and spermatids (Wang
et al., 2010; Iyer et al., 2016a). Perturbation of NF-YB led to pro-
gressive depletion of GSCs, resulting in loss of spermatogonia and
degenerated testes over time. boule-1 and boule-2 (deleted in
azoospermia family RNA-binding proteins), are expressed in
both male and female germ cells and perform distinct roles
(Iyer et al., 2016b). boule-1 knockdown led to an expansion of
spermatogonia in the expense of meiotic and post-meiotic male
germ cells, while boule-2 knockdown resulted in a complete loss
of male germ cells, which correlates with increased apoptosis.
Meanwhile, boule-1 and boule-2 are not essential for female
GSCs’ maintenance but are required to maintain differentiated
oocytes. Recent laser-capture microdissection to enrich for repro-
ductive tissues uncovered zfs-1, a zinc finger RNA-binding pro-
tein, expressed in female germ cell progenitors, which plays an
essential role in regeneration of the entire female germ cell lineage
(Khan & Newmark, 2022).

In parallel to intrinsic factors that regulate germ cell develop-
ment, there has been a significant advancement in our under-
standing of extrinsic regulation via local and systemic cues.
Within the testes and ovaries, somatic gonadal support cells pro-
vide signals for specifying and maintaining germ cells. For
instance, dmd-1, a Drosophila melanogaster domain-containing
transcription factor, is expressed in male somatic cells and acces-
sory reproductive tissues and is required for the specification and
maintenance of nanos’ male germ cells and reproductive tissues
(Chong et al., 2013), revealing the importance of soma-germline
communication. Indeed, a recent study highlights the heterogen-
eity of somatic cell regulation within the female gonad (Khan &
Newmark, 2022). For instance, delta-3 is broadly expressed in
ovarian somatic cells whereas foxL, forkhead box transcription
factor, is enriched in somatic cells surrounding the late-stage
oocytes. In addition to delta-3, other components of notch
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signalling pathway (e.g. notch-2 and notch-4) were also enriched
in female accessory reproductive tissues (e.g. tuba and oviduct).
Interestingly, while knockdown of delta-3 and notch-2 led to an
expansion and disorganization of kifl" female germ cell progeni-
tors and loss of mature oocytes, foxL knockdown only affected
mature oocytes. Beyond the local signalling within the reproduct-
ive organs, systemic cues from neural cells also play an important
role in germ cell development. For example, pc2, a prohormone
convertase, is expressed in the cephalic ganglia, photoreceptors,
pharynx, testes and copulatory apparatus, and is required for
germ cell differentiation and maintenance (Collins et al., 2010).
PC2 processes several prohormones, including npy-8 (neuropep-
tide Y-8), which is expressed in subsets of neurons and proximally
to testes lobes, and largely phenocopies pc2 (RNAi) animals with
degenerated testes lacking mature sperm.

Unlike planarians, schistosomes are dioecious, which is a
unique feature among Platyhelminthes. Male and female worms
have respective germ cells that produce sperm and egg, as well
as associated reproductive tissues (Basch, 1991). Male testes are
found in the body anterior, and are organized in multiple lobules,
each containing undifferentiated germ cells and a mix of differen-
tiating sperm. Female ovary is positioned in the mid-body anter-
ior to where the gut branches merge. In contrast to an
unorganized mix of germ cells within a testis lobe, the ovary is
well-organized with the most undifferentiated proliferative GSCs
positioned anteriorly, while differentiated germ cells are found
in the posterior end. Vitellaria are laterally positioned throughout
the posterior half of the female and contain differentiating vitel-
locytes (classically defined as S1, S2, S3 and S4 cells) (Erasmus,
1975). S1 cells are the most undifferentiated and proliferative,
while S4 cells are fully differentiated vitellocytes (Wang &
Collins, 2016). Upon fertilization, the embryo is encapsulated
by numerous vitellocytes that form an egg that travels through
the Mehlis’ gland and ootype and is excreted from the gonopore.

Like GSCs in planarian, nanos-1 expression defines GSCs in
schistosomes. Adult scRNA-seq revealed that male and female
GSCs share a very similar expression profile which diverges sig-
nificantly as they differentiate into sperm or egg (Wendt et al.,
2020). In addition, nanos-1 is also expressed in a subset of prolif-
erative (S1) cells in vitellaria (Wang & Collins, 2016). nanos-1
expression arises in juveniles (~2-3 weeks post-infection),
which is when germ cells start to develop. Interestingly, eled, a
marker initially identified in juvenile stem/germ cells (Wang
et al., 2018) but is also found in adult stem cells (Wendt et al.,
2020), is expressed earlier than mnanos-I and are later
co-expressed, indicating that eled is both the earliest germline
and a neoblast marker.

Several functional studies have identified regulators that play
an important role in germ cell development and maintenance.
eled knockdown in juveniles causes male germ cells to preco-
ciously differentiate, leading to an accumulation of meiotic and
post-meiotic stage gametes (Wang et al., 2018). In contrast, oc-1
(onecut homeobox transcription factor) and boule, expressed in
juvenile nanos-1* GSCs in developing testes and vitellaria, are
crucial for promoting male GSC differentiation (Li et al, 2021).
In vitellaria, a nuclear receptor family Vitellogenic Factor 1 (VFI)
is expressed in proliferative S1 cells and their immediate progenies
and is required for S1 cell differentiation. VFI knockdown worms
failed to produce mature vitellocytes that resulted in decreased
egg output without affecting the ovary (Wang et al., 2019).

One of the unresolved mysteries in schistosomes’ reproductive
biology until recently was the mechanism of male-dependent
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sexual development of females (Basch, 1991). The virgin females
are significantly shorter than paired females, with premature
ovary and vitellaria containing mostly undifferentiated germ
cells and yolk cells (Wang et al., 2019). Only upon physical pair-
ing with a male, a female develops to sexual maturity and starts
laying eggs. Screening through major signalling components
that are conserved among metazoan, Chen et al. discovered
gli-1, a component of hedgehog signalling, to be a key regulator
in adult males in activating nrps (non-ribosomal peptide synthe-
tase) (Chen et al., 2022). gli-1 expression is enriched in a subset of
neurons and tegument cells on the ventral side of a male, which is
the side that contacts the female. Pairing-induced, gli-I-mediated,
nrps activation leads to the production of B-alanine tryptamine
(BATT). BATT is secreted from the male worm upon paring,
and synthesized BATT was sufficient to induce female sexual
development and egg production.

Nervous system

The planarian nervous system consists of two major domains:
cephalic ganglia which is the central nervous system; and two ven-
tral nerve cords that run parallel from anterior to posterior of a
worm (Agata et al., 1998). In accordance with its complexity,
scRNA-seq mapped the nervous system with 61 subclusters
from >11,000 cells (Fincher et al., 2018). Distinct profiles separate
the cell types that make up the brain branches and ventral nerve
cords. In addition, many of the clusters included a small subset of
cells that can be divided into ciliated and non-ciliated neurons
based on the expression of rootletin. Reflective of such great
heterogeneity, functional studies over the years have uncovered
multiple regulators that are required for maintenance and regen-
eration of specific neural subsets. For instance, hesl-3, sim and coe
are required for proper regeneration of the central nervous system
(Cowles et al., 2013, 2014). Ihx1/5-1 and pitx are required for ser-
otonergic neuron regeneration and maintenance (Currie &
Pearson, 2013; Marz et al., 2013). ap-2 (activating enhancer bind-
ing protein) is required for neurons that express TrpA (transient
receptor potential cation channel A) (Wenemoser et al., 2012;
Scimone et al., 2014), while pax3/7 regulates medial (DBH") neu-
rons. In parallel, kIf4 regulates the regeneration of cintillo™ neu-
rons (Scimone et al, 2014), while soxBI-1 controls the
regeneration of sensory neuron subtypes (Ross et al., 2018).
Planarians have two dorsolaterally positioned eyespots in the
head, each containing numerous photoreceptor neurons. Several
factors have been identified as key regulators in regeneration of
photoreceptor neurons and pigment cup cells, including six-1/3
(sine oculis), eya (eyes absent), sp6-9 (specificity protein), dlx
(distal-less homeobox), soxBl-1 and ovo (ovo/shavenbaby)
(Pineda et al., 2000; Mannini et al., 2004; Lapan & Reddien,
2011, 2012). Many of these factors are expressed in neoblasts
and early progenitors, highlighting their role in regulating the
transcriptional programme governing neural differentiation and
maintenance.

The schistosome nervous system also consists of paired ceph-
alic ganglia and ventral nerve cords that run longitudinally
through the body. Similar complexity as planarians has been
reported, with four and 30 identifiable subclusters in schistoso-
mula and adults that have enriched expression of neuroendocrine
protein 7B2 (Diaz Soria et al., 2020; Wendt et al., 2020). In schis-
tosomula, Sm-kk7, ndf (neurogenic differentiation factor), and
gnai expressions defined the subclusters while in adults, the sub-
clusters belonged to distinct structures within the nervous system,
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including the cephalic ganglia and peripheral neurons, often with
patterns of asymmetry. In addition, like planarians, multiple sub-
clusters belonged to either ciliated or non-ciliated neurons. While
several transcriptional regulators can be identified from
scRNA-seq, including ndf, their function in the development or
maintenance of specific neural subtypes remains unknown. The
only known example is gli-1, which, as described earlier, is
induced in the subsets of ventrally located neurons in males
upon pairing with a female, and induces nrps expression to release
BATT, promoting female sexual development.

Muscle cells

Coordination of muscles are important for animal movement and
feeding. Body wall muscle under the epidermis consists of fibres
that are circular, longitudinal and diagonal. Intestinal branches
and pharynx also have surrounding musculatures. Recent efforts
by Scimone et al., using scRNA-seq revealed expression profiles
of DVM (dorsal-ventral muscle), IM (intestinal muscle) and
pharynx muscle (Scimone et al., 2017, 2018). From this study, sev-
eral regulators that are crucial for muscle regeneration were discov-
ered. For instance, foxF-1 specifies all non-body wall muscles. nk4
and gata4/5/6-2 specify lateral and medial DVM, respectively. In
addition, myoD and nkxI-1 were shown to be crucial for specifying
body wall longitudinal and circular fibres.

Position control genes that provide signals for proper morpho-
genesis and development, are expressed in muscle cells in a
unique pattern throughout the body (Witchley et al, 2013;
Reddien, 2018). The most well-known are Wnt and BMP,
which are crucial for establishing anterior to posterior and dorsal
to ventral polarity axes, respectively (Reddien, 2011). For instance,
in the absence of B-catenin, a downstream effector of Wnt signal-
ling cascade that stimulates Wnt-specific genes, planarians fail to
form a posterior polarity that results in two-headed planarians
(Gurley et al, 2008; Petersen & Reddien, 2008). Conversely,
notum, an inhibitor of Wnt signalling, is expressed in a subset
of muscle cells in the head, and is essential for setting up the
anterior polarity (Petersen & Reddien, 2011). A recent article
takes a deep dive into the complex signalling cues that regulate
neoblast-driven planarian development and regeneration (Reddien,
2018).

Schistosome muscles in schistosomula, juveniles, and adults
display heterogeneity with three to eight identifiable subclusters
(Diaz Soria et al., 2020; Tarashansky et al, 2021; Wendt et al.,
2020). Adding to their heterogeneity is sex-specific muscle clus-
ters that are only found in females surrounding the ovary. Like
planarian muscles, signalling molecules such as Wnt and BMP
are highly enriched in specific parts of body muscles (e.g. wnt-2
in the anterior of the worm head). These signals likely play a cru-
cial role in providing instructional cues to stem cells during para-
site development and homeostasis. Known master regulators such
as myoD and forkhead box protein orthologous to planarian foxF
are expressed in a cluster of muscle cells (Tarashansky et al.,
2021). However, no functional role of any of the regulators have
been reported to date.

Excretory system

Excretory function is essential for maintaining osmotic balance
required for homeostasis and survival. The planarian excretory
system is organized in a filtration unit called protonephridia,
which is distributed throughout the entire worm body. Each
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protonephridia unit contains a flame cell (ciliated terminal cell),
proximal and distal epithelial tubules, collecting duct and
tubule-associated cells (McKanna, 1968a, b; Ishii, 1980; Fincher
et al., 2018). A comparison of structure and function between
protonephridia and vertebrate nephron reveals a striking hom-
ology, with distinct functional segments of proximal and distal
tubules and collecting ducts that share expression of conserved
solute carrier proteins with known functions in transportation
of specific ions (Thi-Kim Vu et al., 2015). Protonephridia com-
pletely regenerate within six days, with flame cells arising between
one and two days, followed by proximal tubule cells between two
and three, and distal tubule cells between three and four days
(Rink et al, 2011). Several regulators play an important role in
producing different cell types. For instance, egfr-5 (epidermal
growth factor receptor homolog) is expressed in flame cells and
its knockdown led to a loss of flame cells that resulted in branch-
ing defects in tubules and oedema formation in homeostatic and
regenerating worms (Rink et al., 2011). A separate study discov-
ered that hunchback is broadly expressed in the excretory tissue
while POU2/3 (Pit-1/Oct1-/2, Unc-86) and six1/2-2 (sine oculus)
are enriched in tubule and tubule-associated cells, respectively
(Scimone et al., 2011). Knockdown of each of the genes led to a
reduction in maintenance and regeneration of flame cells and
tubule/tubule-associated cells, which resulted in bloating, blistering
and worm lysis. Transcriptomic analysis of knockdown animals
revealed a significant downregulation of conserved genes associated
with ion transport, protein clearance and acid-base balance-
associated enzymes. Similarly, eya (eyes absent) knockdown ani-
mals displayed a reduction in tubule and tubule-associated cells
in blastema while flame cells were also lost in intact eya (RNAi)
animals. Meanwhile, sall (Drosophila splat) knockdown resulted
in a decreased number of tubule cells and an increased number
of tubule-associated cells, suggesting its role in directing tubule
cell fate.

In schistosomes, protonephridia are present in all stages.
Intramammalian stage protonephridia begin to develop during
cercarial embryogenesis inside the snail tissue. While a previous
ultrastructural study suggested that cercaria has six pairs of
flame cells (Dorsey et al., 2002), immunostaining with tubulin
antibodies revealed five pairs of flame cells distributed in the
body: a pair in the anterior body; a pair in the mid-body; two
pairs in the dorsal and ventral side of the posterior body; and a
pair in the anterior tail (Collins et al., 2011). As parasites mature,
protonephridia number increases and are widely distributed
throughout the body, indicating stem cell-driven protonephridia
production during parasite development. scRNA-seq identified
one cluster of ciliated flame cells that are enriched with sialidase
expression (Tarashansky et al, 2021; Wendt et al, 2020).
Interestingly, known regulators such as POU2/3 and egfr-5 are
also enriched in this cluster, indicating their potential role in pro-
duction of protonephridia cells. The exact function of such regu-
lators and the mechanism of protonephridia development in
schistosomes remains unexplored.

Other cell types

Classically, planarian parenchyma included several cell types
including neoblasts, gland cells and phagocytic cells that are not
part of any specific organs but fill up the parenchymal space
(Pedersen, 1959, 1961). Accordingly, single-cell studies identified
eight subclusters of smedwi-1" precursors and 13 differentiated
cell sub-clusters (Fincher et al, 2018). These subclusters
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represented spatially and functionally distinct cell types, including
dorsal, ventral and lateral (marginal adhesive) glands and large
cells around the pharynx. Interestingly, nkx-6, a NK homeobox
expressed in dd_515" parenchymal cells, was required to maintain
dd_515" cells. Another interesting group of cells was identified
based on the expression of cathepsin. These cells have specialized
morphology and express proteases, including Cathepsins that are
found in lysosomes. They are distributed across the worm in dif-
ferent tissues, including the brain, around the gut branches and
protonephridia, subepidermal and parenchyma space, and phar-
ynx. These cathepsin® cells also included glial subclusters, pig-
ment cells and precursors to these cells. A recent study has
shown that fluorescent proteins and bacteria can be taken up by
these cells, indicative of their phagocytic nature (Scimone et al.,
2018). Interestingly, foxF-1, which is expressed in both non-body
wall muscle cells and cathepsin® cells, is required to maintain
cathepsin™ cells. Moreover, foxF-1 knockdown worms showed a
significant reduction in fluorescent bacteria uptake in cathepsin®
cells, which correlates with the loss of phagocytic cells. In schisto-
somes, two clusters of parenchymal cells were identified from
schistosomula and adults (Diaz Soria et al., 2020; Wendt et al.,
2020), while two cathepsin™ cells and a single parenchymal cell-
type were discovered from juvenile (Tarashansky et al, 2021)
scRNA-seq. These cells display long processes that occupy the
parenchymal space and express proteases such as cathepsin B.
Interestingly, foxF-1 is enriched in both parenchymal/cathepsin®
cell clusters (Diaz Soria et al, 2020; Wendt et al, 2020;
Tarashansky et al., 2021) suggesting its putative role in the pro-
duction and/or maintenance of these cells. However, the mechan-
ism of parenchymal cell development and the role of parenchymal
cells in parasite physiology and host-parasite interaction remains
unknown.

Conclusions and perspectives

As evidenced in this review, stem cells deploy developmental
mechanisms through tissue-specific transcriptional regulators
that determine their fate. These mechanisms ensure the proper
production of specific cell types needed for tissue development
and/or maintenance. Failure to produce or maintain such cell
types could lead to an organ failure that renders parasites unfit
for survival. Building upon the biology of planarians, several
recent studies have begun to uncover tissue-specific regulatory
programmes, including tegument cell production by zfp-I-1
(Wendt et al., 2018), gut cell production by hnf4 (Wendt et al.,
2020), oesophageal gland cell production by foxA (Lee et al.,
2020), germ cell differentiation by oc-1 and boule (Li et al.,
2021) and vitellocyte production by VFI (Wang et al, 2019).
Such discoveries have significant implications in several aspects.
First, these studies enhance our understanding of the mechanism
of cell-type specification and maintenance. RNAi followed by
nucleotide pulse-chase coupled with in situ hybridization revealed
how stem cell proliferation and/or differentiation towards a spe-
cific lineage is affected in the context of parasite development
or homeostasis. While terminally differentiated tissues between
planarians and schistosomes are highly divergent in their struc-
ture and function (e.g. planarian intestine vs. schistosome gut,
pharynx vs. oesophageal gland and epidermis vs. tegument), the
identity of endodermal (i.e. hnf4 and foxA) and ectodermal (i.e.
zfp-1-1) regulators that govern respective cell type specification
are highly conserved. In contrast, despite the identity of such reg-
ulators being conserved, the mechanisms of regulator function are
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often divergent. For instance, although the expression of oc-1 and
boule in nanos-1" germ cells are conserved, their functions are
essentially the opposite, where they promote germ cell differenti-
ation in planarians but repress it in schistosomes (Li et al., 2021).
As such, exploiting the shared identity of conserved regulators, we
can discover parasite-specific adaptations that can lead to add-
itional intervention strategies. Second, transcriptome analysis of
regulator RNAi allowed the identification of specific genes that
are dysregulated. Such datasets, together with single-cell tran-
scriptomes, were instrumental in determining the molecular pro-
file of the perturbed cell types/tissues. In addition, tools to enrich
for specific tissues (e.g. cell sorting and laser-capture microdissec-
tion) allowed a deeper dive into cellular heterogeneity. For
instance, TSP-2 antibody-mediated cell dissociation followed by
transcriptome analysis identified multiple tegumental cell clusters
that are nicely corroborated in subsequent scRNA-seq studies.
Third, a combination of in vitro (e.g. movement, attachment,
feeding, pairing and death) and in vivo assays (e.g. surgical trans-
plantation) enabled the discovery of how the cell type function
relates to parasite homeostasis and survival. For example, the
effects of hnf4 and foxA knockdowns (that specifically affect the
production of gut and oesophageal gland cells, respectively)
were first tested using in vitro feeding of either red or white
blood cells. Subsequent in vivo transplantation revealed that nei-
ther parasites could survive in the host bloodstream, revealing the
essential function of gut and oesophageal gland cells. Fourth, as
seen in several examples such as transcriptional regulation of
nrps by Gli-1 and meg-8.3 by Ftz-F1, functional screen using
RNAi of downstream genes identified from gli-1 and ftz-FI
(RNAi) RNA-seq discovered essential factors that phenocopy
the regulator knockdown phenotypes (ie. failed female sexual
development in gli-1/nrps knockdowns and degenerated oesopha-
geal gland and attachment failure in ftz-F1/meg-8.3 knockdowns),
bringing mechanistic insights. Lastly, RNAi screen led to the iden-
tification of specific factors that are essential for parasite physi-
ology and/or survival (e.g. BATT, MEG-8.3). Such molecules
may have translational value as potential therapeutic or interven-
tion targets. Accordingly, a recent study employing a large-scale
RNAI screening was proven to be highly successful in identifying
druggable targets (Wang et al., 2020).

These implications logically lead us to ask several important
questions regarding future research directions. First, what are
the regulators governing other cell types that are likely to play a
vital role in parasite physiology? For instance, like planarians,
schistosome muscles, parenchyma, protonephridia and neurons
all express several conserved regulators such as myoD, foxF-1,
egfr and ndf, just to name a few. Whether these factors indeed
regulate the production and/or maintenance of respective cell
types, and how such mechanisms might differ from those of pla-
narians remains to be determined. An RNAI screen of candidate
regulators coupled with a phenotypic characterization of parasite
behaviour (e.g. motility, attachment, migration and feeding) and
physiology (e.g. bloating and lysis) would be a viable entry
point to answering this question. In addition, employing newly
emerging single-cell genomic tools such as spatial transcriptomics
would significantly enhance our understanding of the cell type
heterogeneity and identify additional regulators (Moffitt et al.,
2022). Second, what are the regulators that govern parasite devel-
opment in other life cycle stages? Most of the currently identified
regulators, other than sporocyst germinal cell regulators, are spe-
cific to intramammalian stage schistosomes. Understanding the
regulatory mechanisms of embryogenesis of miracidia and
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cercariae, and sporocyst development, could collectively contrib-
ute to our understanding of parasite biology and illuminate mul-
tiple facets of intervention strategies to disrupt parasite
transmission. A combination of known conserved regulators of
planarian embryogenesis (Davies et al., 2017), existing functional
genomics toolkits highlighted above, and recent advancements of
transgenic tools in schistosomes (Ittiprasert et al., 2019; You et al.,
2021; Hulme et al., 2022), would serve as an excellent starting
point in tackling this question. Lastly, how are such regulatory
mechanisms deployed in other parasitic flatworms? Other para-

sites within the Trematoda class include lung (e.g.
Paragonimus) and liver (e.g. Clonorchis, Opisthorchis and
Fasciola) flukes. In addition, other classes within the

Platyhelminthes phylum include parasites that belong to
Monogenea and  Cestoda. Monogenea are typically
ectoparasites that live on aquatic vertebrates while Cestoda
include tapeworms (e.g. Taenia, Echinococcus and Hymenolepis)
that have segmented body plans (i.e. proglottids). Interestingly,
recent studies have discovered neoblast-like stem cells in liver
flukes (McCusker et al., 2016) and tapeworms (Rozario et al,
2019), and have begun to explore the molecular mechanisms
governing their development and/or regeneration. Collectively,
these studies will bring insights to developing new targeting strat-
egies and contribute to the fight against countless devastating
parasitic diseases.
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