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Abstract
A collision-free path planning method is proposed based on learning from demonstration (LfD) to address the
challenges of cumbersome manual teaching operations caused by complex action of yarn storage, variable mech-
anism positions, and limited workspace in preform weaving. First, by utilizing extreme learning machines (ELM)
to autonomously learn the teaching data of yarn storage, the mapping relationship between the starting and ending
points and the teaching path points is constructed to obtain the imitation path with similar storage actions under the
starting and ending points of the new task. Second, an improved rapidly expanding random trees (IRRT) method
with adaptive direction and step size is proposed to expand path points with high quality. Finally, taking the spat-
ical guidance point of imitation path as the target direction of IRRT, the expansion direction is biased toward the
imitation path to obtain a collision-free path that meets the action yarn storage. The results of different yarn stor-
age examples show that the ELM-IRRT method can plan the yarn storage path within 2s–5s when the position of
the mechanism changes in narrow spaces, avoiding tedious manual operations that program the robot movements,
which is feasible and effective.

1. Introduction
The growing demand for high-performance fiber reinforcements in various industries has increased the
need for automated weaving equipment, such as in aerospace, shipbuilding, and automotive [1, 2]. As
a result, robots are gradually being integrated into preform weaving, replacing manual operations of
yarn storage. This shift toward automation not only significantly improves efficiency but also reduces
labor costs and ensures product consistency [3]. However, path planning is crucial to fully utilize robot
technology. Selecting an appropriate path planning method based on the object being processed and the
application scenarios is key to enhancing production quality and efficiency.

The robot must move from its starting point to the ending point without encountering any obstacles
to ensure safe path planning. To achieve this, researchers have developed various algorithms suited for
different environments, which can be categorized into four types based on their implementation prin-
ciples. The first type includes graph search methods like the Dijkstra algorithm [4, 5], A∗ algorithm
[6], and D∗ algorithm [7]. The second type is local planning methods like the artificial potential field
method [8, 9] and eplastic bands [10]. The fourth type refers to intelligent optimization methods, which
include particle swarm optimization algorithm [11, 12], ant colony algorithm [13], genetic algorithm
[14], and reinforcement learning [15]. Finally, the forth type consists of random sampling methods,
such as the probabilistic roadmaps (PRM) algorithm [16, 17] and the rapidly expanding random trees
(RRT) algorithm [18–20]. The first three types of methods can be widely applied to mobile robots in
two-dimensional planes, but they are difficult to be applied to path planning in the joint space for robots
with high degrees of freedom. The basic RRT algorithm and its variants, such as RRT∗ [21] and Bi-RRT
[22], are tree structure algorithms based on random sampling, which are widely used in motion planning
C© The Author(s), 2024. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574724000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000146
https://orcid.org/0009-0006-8583-9164
mailto:mz@dhu.edu.cn
https://doi.org/10.1017/S0263574724000146


1154 Zhuo Meng et al.

for multidegree-of-freedom robots. However, the RRT algorithm has drawbacks such as strong random-
ness, long planning time, and poor path smoothness. Researchers have made improvements to the RRT
algorithm to enhance its rapid expansion capability. One of these enhancements involved modifying the
extension direction by adding the vector sum of random gravity and target gravity [23]. This alteration
increased the probability of reaching the target point, leading to faster convergence and reduced compu-
tational time. Nevertheless, using a fixed gravity coefficient would lead to a higher planning failure rate
when dealing with complex obstacles. Some works focused on improving the step size by introducing
an adaptive step size RRT algorithm [24], which calculated the maximum allowable step size for each
iteration in the joint space under the constraint that the maximum distance of each link’s movement is
always less than the minimum obstacle width, thereby improving the accuracy of obstacle avoidance.
Based on this, this paper introduces an Improved rapidly expanding random trees (IRRT) approach with
adaptive direction and step size to enhance the planning performance of robots in challenging weaving
environments with complex obstacles.

With the rise of complex application environments for robots, tasks like polishing [25], welding
[26], and playing table tennis [27] have become more difficult, requiring improved path planning. To
address this, researchers have explored learning from demonstration (LfD) methods that can learn task
actions and skill features from manual demonstrations. One such method is the dynamic motion prim-
itives (DMP) based on nonlinear dynamic systems [28, 29]. However, DMP requires precise models
and struggles to account for uncertainty in teaching results. To account for uncertainties in teaching
results, researchers have put forth the Gaussian mixture model (GMM) method [30, 31]. However, this
approach requires extensive teaching data. As a result, researchers have developed and enhanced these
methods. In literature [32], a motion model was created using DMP, and GMM was utilized to estimate
the nonlinear function of the motion model, allowing for the extraction of more skill features in robot
motion. In addition, the neural network is a common method for LfD, which includes the multilayer
neural network method [33], radial basis function neural network [34], and extreme learning machines
(ELM) [35]. Among them, the ELM, a single hidden layer neural network algorithm [36], is particularly
advantageous as it can learn faster while maintaining accuracy with limited teaching data. Therefore,
ELM is utilized in this paper to learn the action of yarn storage.

Paths containing action features can be obtained using LfD; however, changes in the application
environment may lead to robots colliding with surrounding objects. To address this issue, literature [37]
employed a manual teaching approach that involved wearing a magnetic tracker to enable humanoid
robots to learn action features. The RRT∗ planning algorithm was then utilized to bias tree growth toward
the teaching path. Unfortunately, the method was not suitable for industrial robots. The case discussed in
this paper pertains to large-scale weaving equipment with varying mechanism positions and numerous
robots. These robots operate with flexible yarn, necessitating high levels of motion. Given the com-
plexity of the manual teaching process, the ELM-IRRT path planning method is proposed to meet the
requirements of yarn storage motion and prevent collisions. By providing the corresponding starting and
ending points based on the position of mechanism, a path that satisfies the yarn storage motion require-
ments can be rapidly planned, which significantly reduces the need for laborious manual teaching and
provides a good solution to path planning for robots in preform weaving.

2. The robots for preform weaving
As shown in Fig. 1, the weaving system consists of a circumferential array of 16 basic weaving units.
One end of the yarn is fixed to the basic weaving unit, and the other end is fixed to the weaving point of
the mandrel.

The basic weaving unit is shown in Fig. 2, and the end of the robot is equipped with electric grippers
for gripping yarn. As a result, there will be 16 robots working closely together, and multirobot path
planning has been proposed in our previous work [3]. The main task of the robot is to store the sorted
yarn in the yarn storage mechanism 2 and the yarn winding mechanism 5 to form a yarn opening. The
robot model is ABB-IRB2600ID, and its D-H parameters are shown in Table I.
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Figure 1. The model of the weaving system (1-Mandrel; 2-Yarns; 3-The workplace of robots; 4-Basic
weaving unit).

Figure 2. The simplified basic unit of the weaving system (1- yarn fixing unit; 2- yarn storage mech-
anism; 3- support rod; 4- robot; 5- yarn winding mechanism; 6- vertical sliding guide; 7- horizontal
sliding guide; 8- obstacle mechanism).

Facing the challenge of meeting requirements using manual teaching, it is crucial to research a path
planning method that works well for weaving robots. Considering the characteristics of the weaving
system, the objectives and challenges of path planning are as follows:

1. The planned path must meet the requirements of yarn storage movements. The action of storing
yarn by robots is complex, and each mechanism has its own unique storage path. Fig. 3 displays
how the robot places yarn into the yarn storage mechanism 2 and the yarn winding mechanism
5, respectively. The curve shows the path of the robot storing yarn, and the arrow shows the
direction of movement. Successful yarn storage can only be achieved by employing actions like
lifting, avoiding obstacles, storing, and stretching.

2. The planned path should adapt to changes in the position of the mechanism. With the continu-
ous weaving of the preform, the yarn storage mechanism 2 and the yarn winding mechanism 5
move along the guide rail according to a certain law. The winding mechanism 5 will move along
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Table I. D-H parameter of robotic arm.

Linkages Length of linkages Twist angles Offset of linkages Initial value Angel range
i ai-1(mm) αi-1(◦) di(mm) θ i(◦) (◦)
1 0 0 0 0 −180 ∼ 180
2 150 −90 0 −90 −95 ∼ 155
3 0.9 0 0 0 −180 ∼ 75
4 150 −90 938 0 −175 ∼ 75
5 0 90 0 −180 −120 ∼ 120
6 0 90 0 0 −400 ∼ 400

Figure 3. Yarn storage process for two mechanisms. (a) Yarn storage process for yarn storage
mechanism 2, (b) yarn storage process for yarn winding mechanism 5.

the vertical sliding guide rail 6, which changes the Z value; the support rod 3 moves along the
horizontal sliding guide rail 7, driving the change of Y value of the yarn storage mechanism 2
and the yarn winding mechanism 5.

3. The planned path cannot collide with surrounding institutions. It is frequent to collide with sur-
rounding storage mechanisms during path planning due to the narrow workspace of the robot,
which increases the difficulty of path planning.

3. ELM-IRRT path planning method
According to the path planning requirements of the weaving robot, the path planning method, namely
ELM-IRRT, is proposed as shown in Fig. 4, which is composed of the teaching and learning phase
and the expansion phase. The LfD phase employs ELM to establish a mapping relationship between the
starting and ending points and path points, allowing for the learning of various paths of yarn storage. The
starting and ending points of current task are input into the mapping relationship to obtain an imitation
path with similar yarn storage action.

In the second expansion phase, the spatial guidance points can be extracted from imitation path, which
are used to guide the expansion of the path in joint space (6-dimensional space for the weaving robot).
The IRRT method with adaptive direction and step size is proposed to realize path planning in joint
space. The expansion direction of the tree nodes is biased toward the spatial guide points to maintain a
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Figure 4. The principle of the ELM-IRRT path planning method.

similar path shape. At the same time, based on the obstacle avoidance ability of IRRT, each node in the
three-dimensional space does not collide with obstacles, and each linkage of the robot does not collide
with obstacles. Finally, the collision-free path satisfying the yarn storage action is obtained in the form
of robot joint data.

3.1. The LfD phase
3.1.1. Task demonstration and data collection
In the task demonstration, the yarn storage paths of the two mechanisms at different starting points
(Xstart, Ystart, Zstart) and ending points (Xend, Yend, Zend) are taught. Each path is composed of a sequence
of path points (xi, yi, zi). Collect teaching data for storing yarn process in yarn storage mechanism 2
and yarn winding mechanism 5. First, B-spline interpolation is used to convert the sparse path points
into rich training data due to the sparsity of teaching path points. Second, split the coordinate values
according to the coordinate direction and normalize them to obtain the coordinate sequences tx, ty, and
tz for the directions x, y, and z, respectively. Finally, the training samples Dx = {X, tx}, Dy = {Y , ty} and
Dz = {Z, tz} for each coordinate are composed, where X, Y , and Z are the sets of starting and ending
points in the x, y, and z directions, respectively.

3.1.2. Network model training by ELM
ELM has high learning accuracy and less network training time, and its output is that

tzj = o =
L∑

i=1

βifi

(
Zj

) =
L∑

i=1

βig
(
WT

i Zj + bi

)
, j = 1, . . . , N (1)
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Figure 5. Training framework of ELM.

In Eq. (1), L represents the number of hidden nodes, N represents the number of training samples,
and g(x) represents the activation function. Wi = [wi,1, wi,2] is the weight vector connecting the ith hidden
node and the input node, βi = [βi,1, βi,2, . . . , βi,m] is the weight vector connecting the ith hidden node
and the output node, and bi is the deviation of hidden layer. The values of Wi and bi are randomly given
during the training process, and the minimum square method is used to minimize the error of the output
result

min
(
HβT − T

)
(2)

H(W, Z, b) =
⎡
⎣ g

(
wT

1 Z1 + b1

)
. . . g

(
wT

LZ1 + bL

)
. . . . . . . . .

g
(
wT

1 ZN + b1

)
. . . g

(
wT

LZN + bL

)
⎤
⎦ ∈ RN×L (3)

In Eq. (2), H is the hidden layer output matrix, β is obtained from β̂T = H†T where H† is the Moore–
Penrose generalized inverse matrix of matrix H.

The ELM network model is trained by training samples Dx = {X, tx}, Dy = {Y , ty}, and Dz = {Z, tz} to
obtain the mapping relationships of fx : X → tx, fy : Y → ty, and fz : Z → tz. The training framework of
ELM is shown in Fig. 5. X remains unchanged since there is no guide rail in the x direction, fx = tx;
the independent variable of fy is Yend since the starting point of the system path is located at the vertical
centerline of yarn fixing unit 1; and the independent variables of fz are Zstart and Zend.

3.1.3. The output of imitation path
According to the position of the mechanism on the vertical sliding guide rail 6 or horizontal sliding
guide rail 7, input the starting point (xstart, ystart, zstart) and ending point (xend, yend, zend) into the mapping
relationship to obtain the imitation path (t′x, t′y, t′z) that resembles the yarn storage actions in the teaching
path.

3.2. Expansion phase
3.2.1. Collision detection
In order to accurately describe the robot and obstacle models, three envelope types of capsule, sphere,
and cuboid are used to envelop the basic weaving unit. The algebraic method in literature [38] can be
used to quickly realize the collision detection between capsule and capsule, capsule and sphere, and
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Figure 6. Convex multilateral body converted from cylinder and sphere transformation.

sphere and sphere. However, the collision detection between cuboid and capsule and between cuboid
and sphere is more complicated. In such cases, the capsule and sphere need to be converted into convex
multilateral bodies, and then GJK algorithm [39] can be used to detect the collision. The capsule body
can be regarded as a combination of cylinder and hemisphere, as shown in Fig. 6. Similarly, the sphere is
a combination of two hemispheres, and the outer tangential support point of the cylinder and hemisphere
is the vertex of the convex multilateral body.

A circumscribed prism with n edges is created on a cylinder with a radius of rc. The coordinates of
the support points of the cylinder are expressed as

cCij = Ai + rc

cos θ

[
cos(2(j − 1) θ) , sin(2(j − 1) θ) , 0

]
, i = 1, 2; j = 1, 2, . . . , n (4)

In Eq. (4), θ = π/n. For a sphere with radius rs, the vertices of outer tangent polygon for m parallel
circles are taken as the support points of the sphere, which are expressed as

sSij = Oi + ri

cos θ

[
cos(2(j − 1) θ) , sin(2(j − 1) θ) , 0

]
, i = 1, 2, . . . , m; j = 1, 2, . . . , n (5)

In Eq. (5), Oi = [0, 0, hi] , hi = i
m+1

rs, and ri =
√

r2
s − h2

i . In order to detect the collision, a conversion
process is carried out on the coordinates from {Oc} to {Ob} and {Os} to {Ob}, obtaining the support points
bCij and bSij. The GJK algorithm is then utilized for the collision detection of cuboid and sphere.

A detection queue is formed by the envelope of all obstacles. The method for collision detection is
chosen based on the type of envelope to detect collision with each linkage of the robot individually.
If there is any collision between the envelope of obstacle and the envelope of robot linkage, it will be
flagged as a collision. Fig. 7 illustrates the basic weaving unit enveloped by capsule, sphere, and cube
envelope.

3.2.2. IRRT algorithm
The RRT algorithm is a path planning method based on random sampling. The classic RRT algorithm
first constructs a tree with the root node as the starting point in the joint space. Then a random point
qrand is generated in the joint space, and the node qnear closest to qrand is found through traversing the tree.
As the parent node, qnear expand a step along the qrand direction to generate a new node qnew. Finally, the
each link position of the robot in qnew is calculated to detect the collision. If the collision occurs, the
point is discarded, otherwise, qnew is added to the tree. If the distance between qnew and qgoal is less than
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Figure 7. The basic weaving unit enveloped by capsule, sphere, and cube envelope.

Figure 8. Schematic diagram of IRRT.

the set threshold, the path expansion is successful. The above process is repeated until the expansion is
successful or the number of iterations is exceeded.

The expansion process of the basic RRT algorithm is time consuming to converge to the target point
in high-dimensional space. In addition, the step length of the joint space movement requires repeated
trial and error processes. For this reason, as shown in Fig. 8, an improved RRT algorithm with adaptive
direction and step size, namely the IRRT algorithm, is proposed to improve path quality.

(1) Adaptive direction.
The adaptive direction aims to synthesize the expansion direction according to the target gravitational

vector and the random gravitational vector. The directions of the target gravitational vector and the ran-
dom gravitational vector are determined by the target point and the random sampling point, respectively.
The gravitational force of qgoal is defined as Fgoal, and the gravitational force of qrand is defined as Frand.
The expansion direction is defined as

n = Frand

(
qrand − qnear

‖qrand − qnear‖
)

+ Fgoal

(
qorient − qnear

‖qorient − qnear‖
)

(6)
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Taking the expansion failures number Nfailed of its parent node as the independent variable, the new
functions of Frand and Fgoal are defined as

Frand = e
Nfailed

2 − 1, Fgoal = e−
Nfailed

2 (7)

The initial value of Nfailed is zero, and Nfailed is accumulated once when a collision is detected during
expansion or the joint value exceeds the joint range. It can be seen from Eq. (7) that n is toward the
target point and the new point directly is expanded toward the target point when Nfailed = 0. The greater
the number of Nfailed, the greater the value of Frand, and the smaller the value of Fgoal. Then the overall
expansion direction tends to be more random. The new point after expansion is

qnew = qnear + stepsize
n

‖n‖ (8)

In Eq. (8), stepsize represents the step size of expansion, and its value is calculated by the adaptive
step size method.

(2) Adaptive step size.
According to the current expansion direction and joint values, the adaptive step size of the joint

space is obtained to ensure that the maximum movement distance of each joint is less than the minimum
obstacle width. The Jacobian matrix reflects the influence of small changes in joint angles on the speed
of the end effector in the form of

v = [wx,wy,wz,vx,vy,vz]
T = J(q)q̇ (9)

In Eq. (9), J(q) represents the geometric Jacobian matrix, and v represents the spatial velocity com-
posed of angular velocity w and linear velocity v. Set J(q) = [Jw(q), Jv(q)]T , then the linear velocity of
the i − th joint can be expressed as

ṗi = [vxi,vyi,vzi]
T = Jvi(q̇i) , i = 1, 2, . . . , 6 (10)

In Eq. (10), ṗi represents the linear velocity of the ith joint, q̇i = [θ̇1, . . . , θ̇i]T ∈ Ri×1, and Jvi(q) ∈ R3×i

represents the linear velocity Jacobian matrix that regards ith joint as terminal joint, which is related to
the rotation angle of the first i joint.

After obtaining the n by Eq. (6), the maximum step length in this direction is found: set nj =
max (|n1, . . . , ni|) where j is the maximum subscript. Assume that each joint reaches a new point at
the same time, that is, θ̇1 : θ̇2 : . . . : θ̇i = n1 : n2 : . . . : ni, then q̇i = [ n1

nj
, n2

nj
, . . . , ni

nj
]T θ̇j is substituted into

Eq. (10). Multiply both sides by �t to get that

�pi = Jvi(qi)

[
n1

nj

,
n2

nj

, . . . ,
ni

nj

]T

�θj (11)

In order to simplify the expression, let �pi = Ai�θj. It can be seen that Ai is related to the expansion
direction n and the rotation angle of the first i joint. Use the compatibility of the norm ‖Ax‖ ≤ ‖A‖ ‖x‖
to get that

‖�pi‖ ≤ ‖Ai‖
∥∥�θj

∥∥ (12)

Since ‖�pi‖2 =
√

�p2
ix + �p2

iy + �p2
iz represents the distance that ith linkage moves in Cartesian

space, the 2 norm is selected for the Eq. (12). Suppose the width of the smallest obstacle in the working
space is ∇, that is, the maximum value on the right side of Eq. (12) is ∇. We can get that∥∥�pi,max

∥∥
2
≤ max‖Ai‖2

∥∥�θj

∥∥
2
= ∇ (13)

�θj =
∥∥�θj

∥∥
2
= ∇

max‖Ai‖2

(14)
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Figure 9. Schematic diagram of path point expansion.

From Eq. (14), the maximum expansion step in the n direction is calculated as

Stepsize = �θj

nj

(15)

The distance of movement of the linkage of the robot is less than the width of the minimum obstacle
under the step size.

3.2.3. Expansion of path points
The imitation path obtained in section 3.1 cannot guarantee that each joint of robot does not collide with
the surrounding mechanism in the narrow space. Therefore, the path point expansion method is designed
based on the advantage of fast expansion without collision in IRRT. Regarding the spatial guidance points
of imitation path as theguidance for IRRT, the path shape of the yarn storage is obtained by expending
along the guiding path when there is no collision. The expansion angle is adjusted continuously to ensure
that each linkage of the robot does not collide with surrounding mechanisms when there is collision.
The principle of path points expansion is shown in Fig. 9.

(1) After inserting m path points uniformly between the imitation path points, the initial pose and
end pose are interpolated and the inverse kinematics of the robot is solved. The obtained joint data
Orient{i} = [q1, q2, . . . , q6] are used as the spatial guidance points for the expansion point where i =
1, 2, . . . , m. The spatial guidance point is the instantaneous target point of IRRT, which leads IRRT to
expand along the imitation path.

(2) Random sampling is conducted within the angle range of the robot to obtain sampling point qrand

and a random number is generated between 0 and 1. If the random number is less than 0.9, the index iclosest

of the guidance point closest to the end of the expansion tree is found and qorient = Orient{iclosest + 1} is
regarded as the target point qgoal for this expansion. The node qnear closest to qgoal is defined as the parent
node; otherwise, the node qnear closest to qrand is defined as the parent node. The index iclosest of the
guidance point closest to the qnear is calculated, and qorient = Orient{iclosest + 1} is used as the target point
qgoal of this expansion.

(3) IRRT algorithm is used to calculate the expansion direction and step size, and the new node qnew

is calculated.
(4) Collision detection is carried out at the angle of qnew. If there is a collision or joint is out of range,

Nfailed = Nfailed + 1, and return step (2). Otherwise, qnew is expanded on the parent node qnear (to speed
up the convergence speed, this paper defines that when the Nfailed >50 for this parent node, it will not
generate a new node).

(5) The distance between qnew and qend is calculated. If it is less than the threshold, the path expansion is
successful. Otherwise, steps (2)–(5) will be repeated until the maximum number of iterations is reached.
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Figure 10. Schematic diagram of smooth path.

Sharp path points reduce the stability of the robot movement and a smooth path is required. The
principle of smooth path is shown in Fig. 10. Suppose that pi+1 is a sharp point when ∠pi+1pipi+2 > 30◦

and pi+1 is deleted if there are no obstacles between pi and pi+2. p1p2p3p4p5p6 is an unsmoothed path.
∠p2p1p3 > 30◦, p2 is a sharp point. Since there is no obstacle between p1 and p3, p2 is deleted; ∠p5p4p6 >

30◦ and p5 is a sharp point. Since there is no obstacle between p4 and p6, p5 is reserved. The smoothed
path is p1p3p4p5p6. Based on this, a smooth path method is designed.

(1) The distance between point pi and point pi+1 is record as di,i+1. The initial value of i is 1, and
di,i+1, di,i+2, di+1,i+2 is calculated.

(2) Determine whether pi+1 is a sharp point. If di,i+2 + δ < di+1,i+2 + di,i+1, pi+1 is a sharp point, and
m points are inserted uniformly between pi and pi+2 for collision detection, and then enter step (3).
Otherwise, pi+1 is not a sharp point, and let i = i + 1, steps (1) and (2) are repeated. Among them,
δ = 2(∇ − ∇ cos 30◦), where ∇ is the width of the minimum obstacle, and m = ceil

(
di, i+2

∇

)
where ceil is

a round-up function.
(3) If there is no collision, delete the point i + 1. Otherwise, let i = i + 1 and repeat the process of

(1) (2) (3).

4. Experiments and result analysis
4.1. LfD phase evaluation
To verify the effectiveness of the imitation paths obtained during the LfD phase, 12 paths with different
starting and ending points were obtained by teaching the yarn storage path that mechanism 2 and the
yarn winding mechanism 5 at different positions. Eight paths are randomly selected as the training set,
and 4 paths are selected as the testing set. The number of hidden nodes is set to 1000, and the activation
function is set to sigmoid function to train the network models in x, y, and z directions, respectively.
After that, different starting and ending points were input to the trained model. The weaving system
has no guide rail in the x direction, that is, the starting and ending points are fixed in the x direction.
This means that fx has no independent variable, and the imitation path is the same as tx of teaching
path; the path always starts at the vertical center line of yarn fixing unit 1, fixing the starting point in
the y direction. Therefore, Yend is the independent variable for fy; The z direction has variable starting
and ending points, with Zstart and Zstart as the independent variables for fz. Fig 11(a) shows the imitation
results of the trained network model in y direction with different inputs of Yend, which is observed in
the xoy plane. Fig. 11(b) shows the imitation results of the trained network model in z direction with
different inputs of Zstart and Zend, which is observed in the xoz plane. Fig. 12(a) and 12(b) show the three-
dimensional imitation paths of the yarn storage process of the yarn storage mechanism 2 and the yarn
winding mechanism 5, respectively. From Figs. 11 and 12, it can be seen that the shape of the imitation
path is consistent with the shape of the teaching path. Even if the starting and ending points that do
not appear in the input teaching data are input, similar imitation paths can be obtained, indicating the
effectiveness of the imitation path.

To demonstrate the reliability of the imitation path, the same starting and ending points as the test set
are input into the network model to obtain the corresponding imitation path. The similarity between the
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Figure 11. Result of learning from demonstration. (a) Imitated result of y-direction; (b) imitated result
of z-direction.

Figure 12. The path of imitation in 3D space. (a) Paths of imitation for yarn storage mechanism 2; (b)
path of imitation for yarn winding mechanism 5.

imitation path and the test set path is quantitatively analyzed of using the sweep error area (SEA) defined
in ref. [40], where SEA is the area enclosed by the imitation path and the test set path. The smaller the
area, the closer the imitation path and the test set path are. The SEA function is expressed as

E = 1

N

N∑
n=1

m−1∑
i=1

A(p(i) , p(i + 1) , pdemo(i) , pdemo(i + 1)) (16)

In Eq. (16), A(p(i), p(i + 1), pdemo(i), pdemo(i + 1)) represents the area of a quadrilateral surrounded by
four points p(i), p(i + 1), pdemo(i) andpdemo(i + 1).
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Table II. Performance of imitation path.

Time (sec) SEA (cm2)
Average value 0.075 2.617
Range value 0.063–0.297 2.518–2.681

Figure 13. Comparison of planning results of three algorithms. (a) IRRT; (b) target gravity RRT; (c)
GO-RRT. The blue line represents the planned path, and the dots represent the locations of the nodes of
the random tree mapped in cartesian space.

The performance of imitation path is shown in Table II. It can be seen from Table II that the corre-
sponding imitation path is obtained in a relatively short time, and the mean value of SEA is 2.617 cm2.
In other words, the area enclosed by the imitation path and the path of test set is small, indicating that
the imitation path is close to the test set path so the simulated path has reliability.

4.2. IRRT algorithm evaluation
To verify the effectiveness of IRRT for obstacle avoidance, the performance of IRRT, Target-Gravity-
RRT [23] and GO-RRT [41] were compared in the same starting point, endpoint, and obstacle
environment. The step size of Target-Gravity-RRT and GO-RRT are set to 0.07 rad and the minimum
obstacle width is equal to the diameter of the sphere 0.07m. It is defined that the number of iterations
exceeds 500 or the number of expansion failures exceeds 100 as a planning failure. Fig. 13 shows the
path planning results of the three algorithms. The nodes of Target-Gravity-RRT are unevenly distributed,
and the distance between nodes near the endpoint of sharply increases in GO-RRT. Compared to Target-
Gravity-RRT and GO-RRT, the adaptive step size feature of IRRT makes the distribution of path points
more uniform.

To further demonstrate the advantages of adaptive step size, the displacement of each linkage of robot
is compared with adaptive step size and fixed step size of 0.07 rad. It can be seen from Fig. 14 that the
displacement of the link changes sharply when expansion with a fixed step size so that the displacement
of the linkage-6 and the end effector sometimes exceeds ∇; the corresponding step size is solved based
on the current joint value and expansion direction when expanding with adaptive step size, which makes
the displacement of each link of the robot does not exceed ∇ and ensures the uniformity of path points.

The experiment is repeated 100 times for the three algorithms, and the performance of algorithms is
shown in Table III. Target-Gravity-RRT and GO RRT have both 0.06 rad and 0.07 rad step size�q. The
maximum link displacement ‖�pmax‖2 exceeds the minimum obstacle width ∇ under the two step size.
Although ‖�pmax‖2 of 0.06 rad step size is smaller than that of 0.07 rad step size, the number of iterations
and planning time of 0.06 rad step size significantly increase. Therefore, Target-Gravity-RRT and GO-
RRT need to repeatedly adjust the step size based on the obstacle width to obtain reasonable planning
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Figure 14. The comparison between fix step size and adaptive step size. (a) Fixed step size; (b) adaptive
step size.

results. The adaptive step size of IRRT ensures that the maximum linkage displacement ‖�pmax‖2 does
not exceed the minimum obstacle width ∇ with fewer iterations and shorter planning time. Especially in
multiobstacle environments, a relationship between the expansion direction and the number of collisions
is constructed in IRRT, forming an adaptive direction and improving the avoidance ability for expansion
direction toward obstacles. Compared to Target-Gravity-RRT and GO-RRT algorithms, IRRT has a
higher planning success rate.

4.3. Expansion phase evaluation
Guided by the spatial guide points of imitation path obtained in the LfD phase, the expansion phase of
ELM-IRRT utilizes the expansion ability of IRRT to generate paths that match the path shape and are
collision-free in the joint space. To verify the validity of the ELM-IRRT method in the expansion phase,
the method is applied to the planar map shown in Fig. 15. The map has complex terrain containing many
obstacles, large obstacles, and narrow gaps, and even some guidance points are located in obstacles,
which brings challenges to path planning. Fig. 15(a) and Fig. 15(b) show the path planning results under
two kind of guidance ways, respectively. The expansion direction of the tree nodes moves forward along
the guide point. When large obstacles are encountered, nodes can gradually bypass the obstacles based
on the expansion ability of the proposed method. At the same time, in the case that the guide point does
not correctly cross the narrow gap, the proposed method can still find the correct exit through the narrow
gap, avoid getting trapped in the local area, and finally successfully reach the end point. Therefore, the
proposed method is validity.

To further verify the validity in high-dimensional space planning, the ELM-IRRT method is applied
to a 7-DOF planar linkage robot with redundant degrees of freedom, where each link is 2.5 units long.
The tree nodes expressed as the rotation angles of each joint are expanded in high-dimensional space.
As shown in Fig. 16(a), six sets of joint configures are given as spatial guidance points to guide the robot
to move in an environment with two circular obstacles, and the path planning results of the proposed
method are shown in Fig. 16(b). In the case of collision between the linkage position configured by
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Table III. The comparison of algorithm performance.

Number of Planning Success
�q ∇ ‖�pmax‖2 iterations time rate

Algorithms (rad) (m) (m) (time) (sec) (%)
Target gravity RRT 0.060 0.070 0.083 ± 0.012 51.112 ± 9.113 2.311 ± 1.342 91.125
Target gravity RRT 0.070 0.070 0.097 ± 0.011 44.634 ± 8.675 2.101 ± 1.325 93.348
GO-RRT 0.060 0.070 0.074 ± 0.003 51.824 ± 12.836 2.151 ± 0.968 82.673
GO-RRT 0.070 0.070 0.082 ± 0.008 47.422 ± 9.469 1.892 ± 0.630 80.101
IRRT – 0.070 0.070 ± 0.001 44.801 ± 12.220 1.967 ± 1.011 99.253

Start End

Start

End

Start

End

Start End

(a)

(b)
)

Figure 15. Path planning results in two-dimensional space under two kinds of guidance way. Green
points represent guide points, green dotted lines represent the guidance way formed by guide points,
blue points represent generated tree nodes, and red lines represent the final planned path.

the guidance point and the obstacle, each linkage of the robot still bypassed the large obstacle, and the
moving distance of each linkage did not exceed the size of the minimum obstacle to reached the target
position. Therefore, the proposed method can obtain the joint data of the robot that conforms to the
desired action, which is valid in the path planning of the high degree of freedom robot.

4.4. An application example of path planning for a weaving robot
To test the ELM-IRRT path planning method, the weaving system is modeled in SolidWorks, teach-
ing data is collected in Robot Studio, and the path planning strategy is programmed in MATLAB.
The simulation test was run on a computer with a 2.3 GHz main frequency and 16 GB of memory.
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Configure 1

Configure 2

Configure 3

Configure 4

Configure 5

Configure 6

Barrier

Barrier

(a) (b)

Figure 16. Path planning results of 7-DOF planar linkage robot. The black rings represent obstacles,
and lines with different color represent robot with different joint configure.

Figure 17. Path planning results under different scenes. (a) Scene A; (b) Scene B; (c) Scene C; (d)
Scene D.

The ELM-IRRT method was validated for various yarn storage processes, and the experimental results
are shown in Fig. 17.

Fig. 17(a) shows the scene where the robot stores the yarn in the yarn storage mechanism 2. At this
time, the LfD phase obtains an imitation path that does not collide with the surrounding mechanism.
Since the path point does not collide with the surrounding mechanism, the path point expands directly
to the target point in the expansion stage. This results in the imitation path being almost identical to
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Table IV. Efficiency of path planning in different scenes.

ELM-IRRT Manual teaching
Time of Time of Time of Total Label Test Total
imitate expand smooth time points run time

Scene path (sec) path (sec) path (sec) (sec) (min) (min) (min)
A 0.249 ± 0.012 1.216 ± 0.253 0.002 ± 0.001 1.467 ± 0.266
B 0.250 ± 0.017 3.893 ± 0.950 0.097 ± 0.039 4.240 ± 1.006
C 0.249 ± 0.026 1.753 ± 0.296 0.052 ± 0.026 2.054 ± 0.348 5 ± 2 2 ± 1 7 ± 3
D 0.247 ± 0.011 1.796 ± 0.341 0.062 ± 0.012 2.105 ± 0.364

the expansion path. In order to verify the obstacle avoidance ability in a complex obstacle environment,
two obstacles are artificially added to the guidance point. The path planned by ELM-IRRT is shown
in Fig. 17(b). Since ELM-IRRT has the advantage of adaptive direction, the relationship between the
extended direction and the number of collisions is constructed, avoiding the collision between the robot
connecting rod and complex obstacles.

Fig. 17(c) shows the scene where the robot stores the yarn into the winding mechanism 5. At this time,
the LfD phase obtains an imitation path of collision with the surrounding mechanism. The collision-free
path obtained in the expansion stage has some sharp points, and the path that is smooth and does not
collide with the surrounding mechanism is obtained. Fig. 17(d) illustrates the yarn winding mechanism
5 moving 0.2 m along the vertical guide rail 6 and 0.1 m along the horizontal guide rail 7. Despite
the movement of the mechanism position, the path planned by the ELM-IRRT effectively meets the
operation requirements of yarn storage while avoiding collision with the barriers.

The experiment is repeated 30 times for the above yarn storage process, and the planning efficiency is
shown in Table IV. The total time of path planning using ELM-IRRT method is within 2s–5s, while the
time of traditional manual teaching path needs to be about 10 min. The path planning efficiency of using
ELM-IRRT method for different yarn storage processes is much higher than that of manual teaching,
further indicating that ELM-IRRT method has practical advantages on path planning of large weaving
systems.

5. Conclusion
Aiming at the path planning problem for robots in preform weaving, an ELM-IRRT path planning
method is proposed. The main conclusions are as follows:

1. During the LfD phase of ELM-IRRT, ELM is used to autonomously learn the mapping relation-
ship between the starting point, ending point, and path points. This process results in obtaining
an imitation path with yarn storage action similar with the teaching path under different starting
and ending points. The spatial guidance points of the imitation path are extracted to characterize
the shape of the yarn storage process.

2. During the expansion phase of ELM-IRRT, the expansion direction of the tree node is inclined to
the spatial guidance point of the imitation path, and each linkage of robot are guaranteed not to
collide with obstacles in the moving process. Consequently, collision-free path with ideal shape
was obtained in the joint space.

3. Based on the LfD and expansion phase, the path planned by the ELM-IRRT method not only
meets the action requirements of yarn storage but also avoids the collision between the robot
and the surrounding mechanisms. The proposed method can generate an ideal path within 2s–
5s, avoiding the tedious manual teaching path, which is the practical and the feasible for path
planning of the preform weaving robot.
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