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Generalizations of the

Poincare Birkhoff fixed point theorem

Walter D. Neumann

It is shown how George D. Birkhoffs proof of the Poincare

Birkhoff theorem can be modified using ideas of H. Poincare to

give a rather precise lower bound on the number of components of

the set of periodic points of the annulus. Some open problems

related to this theorem are discussed.

A twist homeomorphi sm g : A •* A of the annulus A is one which can

be lifted to a homeomorphi sm g : A -*• A of the universal cover of A ,

such that g moves the two boundary components of A in opposite

directions. The Poincare Birkhoff fixed point theorem states that an area

preserving twist homeomorphism of the annulus has at least two fixed

points. This was conjectured and proved in special cases by Poincare [&].

The existence in general of one fixed point was proved by Birkhoff in 1912

[2] (he actually claimed two fixed points there, but as he himself later

wrote, they might coincide). In 1925 he published a proof [3] which showed

the existence of two distinct fixed points. Though the veracity of this

paper has been doubted by many mathematicians and in fact the last few

years have seen quite extensive efforts to correctly prove two distinct

fixed points, Birkhoff's 1925 paper was in fact correct. In my talk at

Stanford I attempted to persuade the audience of this fact by presenting a

simplified version of Birkhoff's proof. Since this proof will appear
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376 Walter D. Neumann

elsewhere as a joint paper with Brown [4], I shall here stress some

generalizations of the Poincare Birkhoff theorem which were only briefly-

mentioned in the talk.

Poincare's original motivation for studying area preserving twist

homeomorphisms g : A -»• A was as holonomy normal to closed leaves of

certain codimension 2 foliations. In this situation a fixed point of g

determines a nearby closed leaf. This has applications to the restricted

3-body problem and elsewhere.

As Poincare himself observed, a periodic orbit of g is as useful

from this point of view as a fixed point; moreover for "most" g : A -*• A ,

some power of g is a twist homeomorphism, so one can deduce existence of

infinitely many periodic points of g in such situations. As we shall

see, this remark actually allows one to give a rather precise lower bound

on the number of components of the set of periodic orbits of g of period

exactly n . This bound is asymptotic to a constant times ip(rc) (the

Euler ip function) . If it is non-zero it thus tends to infinity. The

number of periodic points is of course n times the number of periodic

orbits .

We talk in terms of area preserving maps throughout. Birkhoff in 1925

([3]) replaces the condition "g area preserving" by "no open neighborhood

U of a boundary component of A is contained in g{U) as a non-dense

subset". Using his finer techniques to deal with this condition everything

in this article does go through under this weaker condition. Recall also

that given diffeomorphic compact surfaces M , M with volume forms

a), , Wp , there is a diffeomorphism M -*• Af_ mapping w to a constant

multiple of u ? , so the particular area we preserve is immaterial. This

is true in any dimension, see [6] and [?].

The plan of this paper is as follows. After sketching the proof of

two fixed points I describe how a simple modification also gives

information on non-discrete fixed point sets. The above mentioned result

on periodic points is also deduced from a simple observation about the

proof.

In a final section I describe some questions which I believe (as a

non-expert in this field) to be open.
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The Poincare Birkhoff theorem 377

1. Proof of the Poincare" Birkhoff theorem

We shall work in the universal cover

5 = {(x, y) f K 2 | 0 < y 5 l}

of the annulus 4 = {(x, y) € F | 1 5 a: -ij 5 2 } . As covering map

IT : S •+• <4 we take TT(X, Z/) = ((1+2/) cos 2irx, (1-W/) sin 2TT:E] . We assume

the standard area dxdy in 5 and the induced area in A .

If g : A •*• A i s an area preserving twist homeomorphi sm we can l i f t

2
i t to 5 and extend i t in a t r i v i a l fashion to F to get a map

o p
h : F -*• 1R , h\S area preserving,

h(x, y) = [x-r^iy), y) , y > 1 ,

= (x*r2(y), y] , y 2 0 ,

h(x+l, y) = h(x, y) + (l, 0) ,

where r and r ? are positive functions. If F is a fixed point of h

then so is F + (n, 0) for any n dTL . This periodic family of fixed

points projects to a single fixed point in A . We assume h. has at most

one such periodic family of fixed points and deduce a contradiction.

If P and Q are distinct points of F 2 let D(P, Q) = (Q-P)/\\Q-P\\

be the "direction from P to Q ". If a : [tQ, t ] •+ K
2 - fix(fe) is any

curve, define ind,a to be the total rotation of the direction D[P, h(P))

as P moves along the curve a , counted in turns and fractions of a turn.

That is ind,a = (1/2TT) dQ where 0(x) = arg D{P, h(P)) . For a closed

•"a

curve a , ind,a € TL .

We claim that under our given assumptions in fact ind,a = 0 for any

closed curve a . Indeed we must check this just for the boundary curve 3

of a'rectangle with vertices {(x±%, 0 ) , (x±%, l)} containing at most one

2
fixed point of h in its interior, since any closed curve in R - fix(Tz)

is homotopic to a combination of such closed curves B . But the indices

of the two horizontal segments of 3 are zero while the indices of the two
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378 Wa l t e r D. Neumann

v e r t i c a l segments c a n c e l , s ince D[P, h{P)) = 2?(P+(l, 0 ) , h{P+(l, 0))) , so

our claim fo l lows . This i s i n fact j u s t a s p e c i a l case of the Lefschetz

f ixed poin t theorem for t h e annulus.

Denote

H_ = {(*, y) | y 5 0} ,

H+ = {(x, y) | y > 0} .

We shal l construct a curve y of index % running from H to H in

2
R - fix(ft) and another of index % running from H to H in

2
F - fix(fc) . By connecting these curves in ff+ and H_ we form a closed

curve a with indLa = 1 , giving the desired contradiction.

To construct y we sha l l proceed as follows. We f i r s t give a
2 2

continuous family h : R -»-R , 0 S t 5 1 , of homeomorphisms which are

close to h and sat isfy h = h , h,(x+l, y) = h{x, y) + ( l , 0) ,

fix[h.) = fix(fc) ; and then find a simple curve 6 : F -*• R - fix(ft) such

tha t

(a) 6 i s a flew line for h , that i s 6(t+l) = h &(t) for

a l l t € TL ,

(b) 6(-°°, 0] c H ; Sir) € H+ for some r > 0 .

= I"

y = o-

FIGURE 1
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Assuming the existence of the h, and 6 , i f we set y = 61 [ -1 , r ] ,
v

it is not hard to see that ind, y is close to % and to deduce that

ind-y = %• , as desired. One way of seeing this is as follows (see [4] for

another way), ind, y is an intrinsic invariant of 6|[-1, r+l] , namely

it is the rotation of D[&(t), 6(t+l)) as * goes from -1 to r . A

continuous deformation of the curve 6|[-1, r+l] through simple curves

keeping 6(-l), 6(0), 6(r), 6(r+l) fixed does not alter this intrinsic

invariant. In this way we can deform 6|[-1, r+l] to a curve for which it

is obvious that this intrinsic invariant is close to % , whence the same

holds for ind, (y) . Now ind, (y) is defined for each t , and modulo
Hl Ht

1 its value can be read off from Z?(y(-l), ft.y(-l)) and D[y(r), h/y(r))

and is seen to remain close to % . By continuity this holds without the

modulo 1 restriction, so ind, (y) = ind, (y) is close to % . Since

evidently ind, (y) = % (mod l) , it follows that ind, (y) = % .

To construct the h, and 6 we proceed as follows. We can assume

the fixpoints of h , if any exist, lie at integer values of x . Let

W = {{x, y) | I/1* 5 x £ 3 A (mod l)} and choose e such that

||P-n(P)|| > e for h{P) £ W . Let X : R -»• R be a non-negative continuous

function which is periodic (X(x+l) = A(x)J and satisfies

X(x) = 0 for - l A £ x £ I/1* ,

0 < X(x) < e for 1/U < x < 3/k ,

and define for 0 S * 5 1 ,

Tt : R
2 - R 2 , Tt(x, y) = (x, y+*A(x)) .

Then T. is area preserving, and if we put h. = T,h , then

fix(ft ) = fix(fc) for 0 £ * £ 1 . Now if the area (calculated in the

"rolled up plane" S ^ F =R2/((x, y) = (x+1, y)) ) of h^M_) - H_ is

2 3
m , then the area of h(H ) - H is 2m , of hAS ) - H_ is Jn , and
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so on, un t i l ul t imately hAH ) must in tersect H+ . Choose P (. H with

7, p

hAp) € H+ and l e t 6 : [ -1 , 0] +R be the s t ra ight l ine segment from

"I O
h, (P) to P . Extend this to a map 6 : F -*• F by requiring

S(t+k) =hJ>(t) for all k dTL . Then 6 is a simple curve, since any

self-intersection would recur periodically along 6 and 6 has monotonic

x-component for negative t . 6 is thus the desired flow line.

To find a curve from H+ to H_ of index % we use T~ instead of

T, in the above, to give a different approximation hi to h and a flow
c X

line 6' for h' starting in H+ and having non-empty intersection with

H .

This completes our sketch of the proof of the Poincare Birkhoff

theorem.

REMARK I.I. If h has isolated fixed points then the above proof

actually shows that they cannot all have index 0 (the index of a fixed

point is ind,a for a small circle a encircling the fixed point in a

positive direction). On the other hand the Lefschetz fixed point theorem

implies that the sum of the fixed point indices is zero. Also Simon [9]

has shown that an isolated fixed point of an area preserving

2
homeomorphism in TR has index less than or equal to 1 (under suitable

additional assumptions this seems to go back to Poincare and Birkhoff).

Thus the set of fixed point indices for an area preserving twist homeo-

morphism with isolated fixed points on A is a. set \n. | i = 1, . .., r)
If

with n . S l , £ n. = 0 , £ n . > 0 . It is easy to check by examples

that any such set actually occurs. Smooth area preserving flows give

sufficient examples (see Proposition h.h) .

2. Nondiscrete fixed point sets

All that was needed to find the closed curve a of index 1 in the

above proof was the area preserving periodic auxiliary transformation
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The Poincarg Birkhoff theorem 38 1

Tt : K 2 ->R2 , 0 2 t 5 1 , satisfying \\Tt(P)-P\\ < ||h"
1(P)-P|! for all

P $ fix(fr) (whence fix^Tz) = fix(Tz) ) and satisfying H c 21 (# ) ,

T. (fl ) c H , both inclusions proper. To find such T, it suffices that
1 • • t

there be a curve connecting H and # + in ]R - fix(?j) , for we can then

define T. via an area preserving flow defined in a tubular neighborhood

of this curve (fix(fa) is closed, so such a neighborhood exists disjoint

from fix(Tz) ) . Thus the proof actually shows the stronger result:

THEOREM 2.1. If g : A -»• A is an area preserving twist homeo-

morphism then one of (a) and (b) holds:

(a) fix(g) separates the boundary components of A {that is,

the components of "dA lie in distinct components of

A - ( }

(b) fix(g) has at least 2 components; in fact it has an open

closed subset of nonzero index.

The index of an open closed subset X of fix(^) is defined as the

sum Y ind,a. where the a. are a collection of nullhomotopic closed
^ n v ^

curves in A bounding a closed neighborhood of X in A - [fix.{g)-X) ,

oriented as this boundary. More generally the same definition applies to

any closed subset X of A having a neighborhood N with

(N-X) n fix(g') = 0 . If X is invariant and contractible, then by

Simon's result (Remark l.l), it has index less than or equal to 1 . This

says a lot about possible fixed point configurations, but some questions

remain open (see Section 4 ) .

3. Periodic points

Let g : A •*• A be a homeomorphism of the annulus and h : S •*• S a

lifting of g to the strip. Denote

hn(x, o) = [xn, o) , h
n(x, i) = (*;, I) .

> as n •* ±°° .
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It is easily seen (and well known) that these limits exist and do not

depend on a; . Assume for convenience that a - b by taking g~ and

h~ instead of g and h if necessary. We call the open interval

(a, b) the "twist of h ", denoted

TWIST(Ti) = (a, b) .

The lifting h of g is only well defined up to multiplication by powers

of the covering transformation

s : S •+ S , s(x, y) = (x+1, y) .

A different lifting s h of g has twist (a+k, b+k) instead of (a, b) ,

so up to translation by integers TWIST(n) is an invariant of g . We

denote this equivalence class of intervals by

twist(g-) = [(a, b)] .

Observe that g i s a twist homeomorphism if and only i f 0 € TWIST(Tz)

for some l i f t i n g h of g ; in other words i f and only i f

twist(gr) = [(a , b)] and (a, b) n TLt 0 .

THEOREM 3 .1 . (i) Let g : A -*• A be area preserving with

twis t (g) = [(a , b)] . Then the number f(n) of periodic points of g of

period exactly n satisfies

fin) > 2wip(n; a, b)

where

cp(n; a, b) = \{q (• (na, rib) | gcd(<7, n) = l)\ .

(ii) f>(n; a, b) is asymptotic to cp(n)|i>-a| , where <p(n) is the

EuLer <p-function cp(«) = <p(«; 0, l ) .

Proof. Let h : S •*• S be a l i f t i ng of g with TWIST(fc) = (a, b) .

Then hn i s a l i f t i n g of gn and TWIST(7Z") = (na, nb) . If

q € (na, nb) n TL , then s~^hn is a l i f t i ng of g which i s a twist map

of the s t r i p , so e i ther s~^hn has inf in i te ly many fixed points or by the

proof in Section 1 i t has fixed points P and Q of positive and negative

index respectively. Let TT : S •+ A be the covering map. The orbits

0 = {gZ-n(P)} and 0 = {^TTCQ)} are d is jo in t , since they consist of
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points of positive and negative fixed point index for g respectively.

Note that every point of TT~ 0 and ir~ <?„ is fixed by s~^hn , so the

periodic orbits found this way for different values of q must be

disjoint, since no point -of • -5 is fixed by two different liftings of gH

It remains to show that if gcd(q, n) = 1 , then ir(P) and TT(Q)

have period exactly n , that is 0 and 0 each have exactly n points.

But suppose TT(P) say had period d with d a proper divisor of n ,

n = dm . Then g ir(P) = ir(P) , so srh P = P for some r , so

s hP=[sh]P=P, so q = rm is not prime to n .

(£•£,) . I am grateful to George Cooke for the following proof. Let

a l as
» = P x ••• Ps

be the prime decomposition of n . Then cp(n) can be calculated by a

counting argument as

(„) = n - y — + y -
J?-- + .. . .

Here the first term is the number of integers from 0 to n - 1 ; the

second term corresponds to removing for each i those integers divisible

by p. ; integers divisible by two primes p. and p. have then been

removed twice, so the third term replaces them; and so on. The same

counting argument gives

S i ™"|

->-na) - 2, + L ~ ••• + e'n'
i=l "i i<j i 3

= (fe-a)ip(w) + c(n) ,

where e(n) is an error term arising from the fact that the number of

multiples of p.p. • • • p7 in the interval (no., rib) is not exactly
I* 3 *

(nb-na)/p.p. ... p1 but differs by an absolute error of at most 1 .
1* 3 I

Since the error in each term of the sum is at most 1 ,

|e(n)| £ ( l + I 1 + I 1 + . . . ] = 2 S .
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Using the formula

s a . a .-l-i

»> = IT P^-PS
i=l % r >

i t i s easy to see tha t 2 /ip(w) has l imit zero as rc -> °° . Hence so does

e(n)/ip(n) , so the theorem is proved.

Using Theorem 2.1 instead of Poincare Birkhoff we get the following

minor improvement.

PROPOSITION 3.2. The above theorem applies also to the nurriber'of

components of the set Fn of periodic points of period exactly n if we

convene that a component of F which separates the boundaries of A be

counted with multiplicity n .

THEOREM 3.3. The bound in Theorem 3.1 is precise in the sense that

for any a < b and any e > 0 there exists an area preserving homeo-

morphism g : A ->• A with twist(^) = [(a , b)] such that the number fin)

of periodic points of period exactly n satisfies

2np(n; a, b) 5 f(n) 5 (l+e)2rap(n; a, b) .

We only sketch the proof. Consider the area preserving flow in A

described by the following picture in the s t r i p S (Figure 2) ; see also

Proposition k.k. Let f~:A-*-A be the homeomorphism obtained by

integrat ing th is flow a t time t = & for some small 6 # 0 and l e t

f. : A -*• A be / = / / , where f is just a rotation of A by 2nq/n

for some q prime to n • Then / has exactly two periodic orbits of

period n • We ca l l such an f a "standard example".

th(

Now let h. : S -*• S be the area preserving "shear map"

h [x, y) = [x+ay+b(l-y) , y) and let g- : A •*• A be the induced map on

annulus. The periodic points of g occur in circles parallel to the

boundaries of A . Note that g shows the bound in Proposition 3.2 to be

exact. Given a circle of periodic points of g we can break this circli

into isolated periodic points by replacing a neighborhood of it by a

"standard example".
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= 1"

I I
' x = 0 x = l/n x = 2/n a; = 3/w

FIGURE 2

It is not hard to see that we can iteratively replace circles of

periodic points by standard examples in such a way that the process

approaches a limit g which is area preserving and has a discrete set of

periodic points for each period. This process would lead to the equality

fin) = 2mpin; a, b) except that during the iterative process new circles

of periodic points appear around the isolated periodic points that are

being created and these circles must be replaced by standard examples

(actually generalized standard examples of the form

/. x /g : A *7L/m ->• A y-TLIm ) later in the procedure, giving "extra"

periodic points. If at the kth step of the iterative procedure we choose

the parameter 6 involved in the definition of the standard examples to be

of order roughly e/ST then the number of "extra" periodic points stays in

bounds and the theorem follows.

REMARK 3.4. Call two periodic points P and Q of periods p and

q "pseudo-close" if any curve a from P to Q is homotopic (relatively

endpoints) in A to the curve g^^ia) from P to Q . Clearly periodic

orbits which are close in the intuitive sense are pseudo-close. In Theorem

3.1 let pin) be the number of periodic orbits of period n which are not

pseudo-close to an orbit of lower period, counted modulo pseudo-closeness.

Then the proof of Proposition 3.2 shows with little difficulty

fin; a, b) 5 pin) 5 <p(w; c, d) ,

where a = mln[x[hiP))-xiP)) , d = max[x[hiP))-xiP)) , over all P 6 5 ,

where xiP) means x-coordinate and h is a lifting of g . This is the

same lower bound as Theorem 3.1 and Proposition 3.2 except for a factor of
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In fact Theorem 3.1 does not "see" periodic orbits which are close to

each other, so the lower bound in Theorem 3.1 is too low in general. For

example, the same construction as in the proof of Theorem 3.3 can also give

g close to the "shear transformation" g for which fin) increases

exponentially.

4. Final remarks and problems

The essential step in the proof of the Poincare Birkhoff theorem was

finding a closed null-homotopic path a of index 1 with respect to the

given homeomorphism. A natural question is whether this a can always be

chosen to be a simple curve, considered as a curve in the annulus A .

Simon's result quoted at the end of Section 1 shows that the answer is

"yes" if the fixed point set is discrete; a general answer yes would tell

one more about possible fixed point sets in general. Even better would be

a positive answer to the following conjecture - among other things it would

answer the above question, but also be a strengthening of Simon's

result.

2
CONJECTURE. Let h : X -*• F be an area preserving map from a compact

2 2
submanifold-with-boundary X c ]R to R such that

Orient dX as the boundary of X (Figure 3) . Thus

W n f±x(h) = 0 .

8X is a collection

of closed curves a. and we can define ind, dX = Y ind,a. . We conjecture
i, rt n %•

, then there exists an embedded discthat when i n i dX > 1

3^0 n fix(h) = 0 and

X c X with

FIGURE 3
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This conjecture is true if fix(7z) has finitely many components, or

if h is embeddable in an area preserving flow.

Another natural question is in how far the Poincare Birkhoff theorem

extends to other domains. The following is one possible extension.

2
Let X be the sphere S with m > 2 open discs removed and

g : X •*• X a homeomorphism mapping each component of dX onto itself and

with no fixed points on dX . Choose 2 boundary components S and S„

of X and fill in the remaining im-2) boundary components of X with

discs to get an annulus A . Then g extends to a map g' : A ->• A of the

annulus, and if g' is a twist homeomorphism of A we say that g is a

twist with respect to S and S- .

PROBLEM 4.1 . Suppose g : X -*• X is area preserving and is a twist

with respect to any pair of its boundary components. Does it then follow

that either fixig) separates some boundary components of X from others

or fixig) contains a subset of positive index (and hence has at least two

components - note that the Lefschetz fixed point theorem implies

fixig) * 0 )?

PROBLEM 4.2. More generally, can one improve the lower bound on the

number fin) of periodic points of g of period exactly n beyond just

maximizing the bound of Theorem 3.1 over all pairs of boundary components

of X ? For instance if m = 3 there exists an invariant

[a, , <2p, a_) € ]R for g such that the twist of g with respect to its

ith and jth boundary components is the pair {-a. , a.) for any

1 5 i < j S 3 . Thus optimizing Theorem 3.1 gives the lower bound 2onp{n)

with a = max|a.+a.| for fin) , yet one can show that if g is
i 3

sufficiently close to a gQ contained in an area preserving flow then

a = \a. | + |i2p| + |a_| gives a valid improvement. Is this improvement

valid in general?

One may also ask if the growth rate np(n) for fin) is in any sense

generic, or at least an open condition under suitable smoothness

conditions. It is probably much too small in general; see Remark 3.^-

This question is maybe related to understanding the following
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function. Let h : 5 •* S be a l i f t ing of the area preserving map

g : A -»• A and for P Z S put cp(P) = lim{\\hn{P)-P\\/n) as n •+• +«> . By

the ergodic theorem, <p is defined almost everywhere and is integrable.

I t can tie thought of as a map <p : A •* IR and is determined by g only up

to translation by integers since i t depends on the choice of l i f t h .

Restricted to dA i t gives the twist of g . Since <p is g-invariant,

good qualit ies of cp mirror themselves in good qualities of g . For

instance, continuity of tp would imply the existence of many invariant

neighborhoods of the boundaries of A - a s tabi l i ty result - and would be

related to the conclusion of Moser's beautiful s tabi l i ty theorem [5] . In

fact with no smoothness condition on g , ip is more often than not

constant almost everywhere by [7] and hence uninteresting, but under

suitable conditions cp is interesting (for example, the conditions of

Moser's theorem).

PROBLEM 4.3. When is <p continuous on all A ? Smooth on A 1

Otherwise nice?

Finally we remark that for homeomorphisms embeddable in area

preserving flows the answers to Problems k.l and h.2 are "yes", Problem k.3

has an easy answer, and in general most questions are answerable. This is

due to the following proposition, which is classical.

PROPOSITION 4 .4 . If X is a compact submanifold of IR2 and v an

area preserving vector field on X , tJien v = I- -^-, •»*-] for some

f : X •+• F . The flow lines of v thus follow contour lines of f , giving

a good picture of the flow.

Proof. The proposition is true locally by elementary calculus. If

one tries to piece together local candidates for / , the only obstruction

to succeeding globally is the existence of a closed curve having nonzero

total flux across i t , which contradicts area preservation, since any closed

curve divides X into two pieces.
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