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ABSTRACT

We establish the existence of smooth transfer for Guo—Jacquet relative trace formulae
in the p-adic case. This kind of smooth transfer is a key step towards a generalization
of Waldspurger’s result on central values of L-functions of GLs.

1. Introduction

History. The periods of automorphic forms play an important role in the study of automorphic
representations and related number theoretic problems. For example, people believe that
periods of automorphic forms can characterize the Langlands functoriality of automorphic
representations. Recently, Sakellaridis and Venkatesh [SV12] developed an ambitious program,
the so-called relative Langlands program, on this aspect. There are several powerful tools to study
periods. The theory of relative trace formula is one of them, which was first studied by Jacquet.
In [Jac86], Jacquet reproved a remarkable result of Waldspurger [Wal85] on central values of
L-functions of GLg by comparing relative trace formulae on different groups. In [Guo96], Guo
and Jacquet made a conjecture (see Conjecture 1.1) generalizing Waldspurger’s result to higher
rank cases.
To be precise, let k be a number field, and A its ring of adeles. Consider G = GLo, and
H = GL, x GL,, embedded into G diagonally, which are reductive groups over k. Let k¥’ be a
quadratic field extension of k, and 7 the quadratic character of A* /k* attached to k' by class
field theory. Let Z be the center of G. When we say a cuspidal representation w, we always mean
that 7 is irreducible and automorphic. For a cuspidal representation 7 of G(A), we consider the
linear forms ¢y and {41, on 7 defined by periods:
lu(¢) ==

o(h)dh, lay,(P) = d(h)n(h) dh,

/H(k)Z(A)\H(A) /H(k)Z(A)\H(A)

where ¢ € 7 and n(h) := n(deth). We say that 7 is H-distinguished (respectively (H,n)-
distinguished) if fgr # 0 (respectively f41, # 0). On the other hand, for a quaternion algebra D
over k containing k', let G’ = G, = GL,,(D) and H' = GL,(¥’), both viewed as reductive groups
defined over k. View H' as a subgroup of G’ in the natural way and identify the center of G’
with Z. For a cuspidal representation 7’ of G'(A), consider the linear form g on 7’ defined by

() = | b(hydh, pe .
H'(k)Z(A)\H'(A)

We say that 7" is H'-distinguished if ¢y # 0.
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Denote by X (K, k) the set of quaternion algebras D over k containing k’. For a cuspidal
representation m of G(A), denote by X (&, k; ) the subset of X (k', k) such that the Jacquet—
Langlands correspondence 7, := JL(m) of 7 exists as a cuspidal representation of Gf,(A).

Motivated by Waldspurger’s result in the case n = 1, the following conjecture was made

in [Guo96].
CONJECTURE 1.1 (Guo-Jacquet). Fix a cuspidal representation 7 of G(A).

(i) Fix a quaternion algebra D in X (K’, k; 7). Suppose that n[, is H'-distinguished. Then 7
is both H-distinguished and (H, n)-distinguished.

(ii) Suppose that n is odd and 7 is both H-distinguished and (H,n)-distinguished. Then
there exists D € X (K, k; ) such that 7, is H'-distinguished.

Moreover, when n is even, with more restriction, the direction (ii) of Conjecture 1.1 should
also hold. We refer the reader to [FM15, Conjecture 3] and [FMW13, Conjecture 1.5] for more
information.

The periods defined above can be used to study the central value L(3,mw) = L(3, ) L(3,
7 ® n) where 7y is the base change of 7 to G(Ag/). It was shown in [FJ93] that if = is both
H-distinguished and (H, n)-distinguished, then L(3, m) 0. One also expects that there exists
a relation between this L-value and the period ¢z on 7.

In [Guo96], a relative trace formula approach called Guo—Jacquet relative trace formulae
today, which is a natural extension of Jacquet’s method in [Jac86], was proposed to attack the
above conjecture. The first step, that is, the fundamental lemma for unit Hecke functions, has
also been established by [Guo96]. The smooth transfer can be viewed as the second step on
the geometric side of Guo—Jacquet relative trace formulae. Since we only focus on the smooth
transfer, which is a local issue, we will not recall the precise form of Guo—Jacquet relative trace
formulae, which is a global issue. We refer the reader to [Guo96] or [FMW13] for more details.

Very recently, Feigon et al. [FMW13] obtained some partial results on Conjecture 1.1, by using
a simple form of Guo—Jacquet trace formulae. They showed the existence of smooth transfer for
Bruhat—Schwartz functions satisfying certain specific properties. Of course, one has to show the
existence of smooth transfer for the full space of Bruhat—Schwartz functions, if one aims to prove
Conjecture 1.1 completely. Due to our result, one can remove some conditions of the results
in [FMW13], as [FMW13, Remark 6.2] states.

There is also a generalization of Waldspurger’s result in another direction: the so-called
Gan-Gross—Prasad conjecture [GGP12] and the refined version of it by Ichino and Ikeda [II10]
in the case of orthogonal groups and by Harris [Har11] in the case of unitary groups. Recently,
Zhang [Zhal4a, Zhal4b] has made a great advance towards the global Gan-Gross—Prasad
conjecture for unitary groups by using the relative trace formula developed by Jacquet and
Rallis. One of his achievements is his proof of the smooth transfer conjecture in the p-adic case
for the Jacquet—Rallis relative trace formula. His method is close to that of [Jac03]. The several
remarkable successes on the Gan—Gross—Prasad conjecture, both in local and global directions,
will shed some light on the problem considered here.

Results of this article. In this article, we establish the existence of smooth transfer in the p-adic
case for Guo—Jacquet relative trace formulae. Let us briefly explain what the smooth transfer
means. From now on, let F' be a p-adic field, which is a completion of k at a finite place. Let E
be a quadratic field extension of F' and D a quaternion algebra over F' containing E. Notice that
such quaternion algebras are parameterized by F'*/NE*, where N is the norm map from E* to
F*. When we want to emphasize the dependence of D on € € F*/NE*, we write D,. Let n be
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the quadratic character of F'* associated to E/F. We define (G,H) and (G’,H’) over F in the
same way as the global situation. Write G = G(F), H = H(F'),G' = G/(F) and H' = H'(F).

The group H x H (respectively H' x H') acts on G (respectively G’) by left and right
translations. With respect to this action, we can talk about the notion of H x H- or H' x H'-regular
semisimple (cf. §3.1) elements in G or G’ respectively. Denote by Gys and G, the set of the
regular and semisimple elements in G and G’ respectively. Then there is a natural injection
(cf. Proposition 5.1)

[Gls] = [Ghs]

from the set of H' x H'-orbits in Gl to the set of H x H-orbits in Gs. We say that z € Gis
matches y € Gl and write 2 <> y if the orbit of y goes to that of 2 under this injection. We say
that = € Gys comes from G, if there exists y € Gi, such that z <> y. If z < y, their stabilizers
denoted by (H x H), and (H' x H'), are isomorphic. Fix a Haar measure on H and a Haar
measure on (H x H), for each z € Gys. Note that 0|z ), = 1. For each f € CZ°(G), define the
orbital integral of f at x to be

Oz, f) = / f(hy ' zhg)n(det hy) dhy dhs.
(HxH)z:\HxH

We can define a transfer factor  (cf. Definition 5.7) which is a function on Gy so that x(-)O"(-, f)
only depends on the H x H-orbits in G,s. Similarly, fix a Haar measure on H’. We fix the Haar
measure on (H' x H'), for each y € Gl so that it is compatible with that on (H x H), if z < y.
For each f' € C2°(G'), define the orbital integral of f’ at y to be

Oy, f') = F/(h7 yhy) dhy dhg.

/(H’XH’)y\H/XH'
For f € C°(G) and f’ € C°(G'), we say that f and f’ are smooth transfers of each other if

O(y, f') if there exists y € G’ such that x < y,
K(@)0"(z, f) = {0 | ) otherwise. i

Denote by C2°(G)o the subspace of elements f in C2°(G) satisfying O"(x, f) = 0 for any x € G
that does not come from Gj.
Our main result is the following theorem.

THEOREM 1.1. For each f" € C°(G'), there exists f € C2°(G) that is a smooth transfer of f'.
Conversely, for each f € C2°(G)o, there exists f € C°(G') that is a smooth transfer of f.

Now we explain how to reduce the existence of smooth transfer for functions on groups to
the existence of smooth transfer for functions on symmetric spaces. This reduction is a standard
procedure.

There is an involution # on G such that H = G? is the subgroup of G fixed by 6. Let
S := G/H be the p-adic symmetric space associated to (G, H). The group H acts on S by the
conjugate action. There is a symmetrization map s : G — G*, where ¢ is the anti-involution
on G defined by 1(g) = 0(g~!) and G* is the subgroup fixed by ¢. The symmetrization map is
given by s(g) = gi(g). Via the map s, we view S as a subset of G*(F'). An element g € G is
H x H-regular semisimple if and only if x = s(g) € S is H-regular semisimple. Denote by S,s the
subset of regular semisimple elements in S. Let ¢ : C2°(G) — C2°(S) be the natural surjection
map defined by

(af) () = /H f(gh) dh
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if z = s(g). Let x = s(g) € S be regular semisimple. Then its stabilizer H, is isomorphic to
(H x H)y. We choose the same Haar measure on H as before and the Haar measure on H,

compatible with that on (H x H),. For f €C(S), define the orbital integral of f at  to be

Oz, f) = /H » F(h~'zh)n(det h) dh.

We define a transfer factor on Sy so that k(z) = k(g) if x = s(g). Then, by a routine computation,
we have

k(9)0"(g, ) = r(x)O0"(x, f)
for each f € C(G), f=qf € C°(S) and = = s(g) € Sis. Thus, the study of orbital integrals
for C3°(G) with respect to H x H-action is equivalent to that of orbital integrals for C2°(S)
with respect to H-action. Similarly, the study of orbital integrals for C2°(G’) with respect to
H' x H'-action is equivalent to that of orbital integrals for C°(S’) with respect to H'-action,
where S’ := G'/H' is the p-adic symmetric space associated to (G, H').
There is a natural injection (cf. Proposition 5.1)

[Sts] > [Shs]

from the set of H'-orbits in S), to the set of H-orbits in Sys. We say that = € Sys matches y € Sy,
and write x <> y if the orbit of y goes to that of x. Similarly, for f € C°(S) and f’ € C°(5'),
we can define the notion of smooth transfer for them (see §5.1 for more details). Then we
immediately see that Theorem 1.1 is equivalent to Theorem 5.13 which claims the existence of
smooth transfer at the level of symmetric spaces.

There is also the notion of smooth transfer at the level of Lie algebras, called the Lie algebra
version of smooth transfer. Here, for Lie algebras, we mean the tangent spaces s and s’ of
G/H and G'/H’ at the identity respectively. The notion of smooth transfer in this version is
determined by the orbital integrals with respect to adjoint actions of H and H’ on s(F) and
s'(F) respectively. We refer the reader to §5 for more details.

Our method of showing the existence of smooth transfer is mainly inspired by Zhang’s
work [Zhal4a] on the smooth transfer for the Jacquet—Rallis relative trace formula and
Waldspurger’s work [Wal97] on the endoscopic smooth transfer for Arthur’s stable trace formula.
First, we reduce Theorem 5.13 to Theorem 5.14 which claims the existence of smooth transfer at
the level of Lie algebras. Next we reduce Theorem 5.14 to Theorem 5.16 which asserts that the
Fourier transform preserves smooth transfer up to a nonzero scalar. The several reduction steps
here almost follow those of [Zhal4a]. To prove Theorem 5.16, since the absence of a suitable
partial Fourier transform, we could not adapt the inductive argument in [Zhalda, §4.4] any
more. Our approach is more close to that of [Wal97] where a global argument emerged. However,
there are still some differences between our method and that of [Wal97]. These differences are
caused by the following facts. The first fact is that

ss(F)] 2 | [l (),

c€F* /NEX

where s is the Lie algebra associated to (G = GLy, (D), H') and [s; ,((F)] (respectively [s.s(F)])
is the set of H'-(respectively H)-regular semisimple orbits. The above two sets are equal if and
only if n = 1. Even worse, the elliptic parts of the above two sets are equal if and only n is
odd. These phenomenons are unlike other cases of relative trace formulae. Now suppose that we
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are in the global setting. The second fact is that if X is a global element in s,5(k) which does
not come from s/ (k), then there exist at least two places v1, vy such that Xy does not come
from s/ (ky, ) or ss(ky,). This is unlike the case of endoscopic transfer and prevents us using the
global method to prove Theorem 8.1, which asserts that the orbital integral O7(X, f) = 0 for
X € 6,5(F) not coming from s, (F) where f € C°(s(F)) is a smooth transfer of some element
in C°(s'(F')) and f is its Fourier transform. Instead we will use a pure local argument, which is
due to the referee, to show Theorem 8.1.

To prove Theorem 5.16, we have to show the representability of the Fourier transform
of orbital integrals as distributions (see Theorem 6.1), exhibit ‘limit formulae’ for the kernel
functions (see Proposition 7.1) as Waldspurger did in [Wal95], and also prove analogues of
some results (see Proposition 7.6 and Theorem 8.4) in [Wal97]. These results, which are on
harmonic analysis on certain p-adic symmetric spaces, maybe appear in the literature for the
first time. We expect that the techniques developed in this paper should be probably generalized
to treat some other similar open questions concerning relative trace formulae for symmetric pairs.
Actually, we do successfully generalize this method to prove the existence of smooth transfer for
other relative trace formula in [Zhal5]. Here we mention some cases of symmetric pairs where
our results in §§6 and 7 should hold. Still let E be a quadratic field extension of a p-adic
field F. The first class of symmetric pairs are ‘inner forms’ of (G,H) or (G’,H’). Now let D
be a central division algebra over F. Let G = GLg,,(D) and H = GL,,,(D) x GL,,(D). Then
(G,H) is the symmetric pair considered in [Zhal5]. We can also consider the symmetric pair
(G,H) = (GL21n(D), GL,,(D®F E)), or, more generally, the symmetric pair (G, H) = (GL,,(D),
GL,,(D’)) where D is a central simple algebra over F' containing E and D’ is the centralizer of F
in D. The second class of symmetric pairs are Galois symmetric pairs. Now let H be a connected
reductive group over F', and G = Resg/p(Hpg) the Weil restriction of the base change of H to
E. Then (G, H) is called a Galois symmetric pair.

Structure of this article. In § 2, we introduce some notations and conventions that are frequently
used in the paper.

In §3, since (G,H) and (G’,H’) are symmetric pairs, we collect some basic notions and
results on symmetric pairs. In particular, we recall the analytic Luna slice theorem which plays
a pivotal role on the reduction steps of the smooth transfer.

In §4, we study our specific symmetric pairs (G, H) and (G’, H') more concretely. We give
a complete description of all the descendants of the corresponding symmetric spaces and their
Lie algebras. We also prove Propositions 4.4 and 4.8, which are about two inequalities. These
inequalities are crucial for bounding the orbital integrals later (see Theorem 6.11).

In §5, we introduce the main issue of this article, that is, the smooth transfer at the
level of symmetric spaces and its Lie algebra version. We explain why Theorem 5.16 implies
Theorem 5.13. We also prove the fundamental lemma in the Lie algebra version, which is crucial
for our global approach to prove Theorem 5.16.

In §6, to prove Theorem 5.16, we pay more effort on studying the Fourier transform of
orbital integrals. One of the most important question is to show the representability, that is,
the Fourier transform of an orbital integral considered as a distribution can be represented by
a locally integrable kernel function. We deal with this issue in this section. The representability
itself is also a fundamental question in harmonic analysis on p-adic symmetric spaces.

Section 7 is devoted to showing limit formulae for the kernel functions of the Fourier
transform, which is an analogue of [Wal95, § VIII]. We also construct certain good test functions
which are smooth transfers of each other and whose Fourier transforms are also smooth transfers
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of each other up to a scalar. This construction is an analogue of [Wal97, Proposition 8.2]. Such
test functions are used in the later construction of certain global Schwartz functions.

Finally, in §8, we finish the proof of Theorem 5.16, basing on the results of §7 and the
fundamental lemma.

2. Notations and conventions
We now introduce some notations and conventions, which are frequently used in §§3-7.

Fields. Let F be a nonarchimedean local field of characteristic 0, with finite residue field. Fix
an algebraic closure F', and denote by I'r = Gal(F/F) the absolute Galois group. We denote
by |- |F (respectively vr) the absolute value (respectively the valuation) of F', and extend them
to F in the usual way. Let O be the integer ring of F' and fix a uniformizer @ of Op. For a
finite extension field L of F, denote by Nz/r and Trz/r the norm and trace maps respectively.
Throughout this article, we fix a nontrivial additive unitary character ¢ : F — C*.

Varieties and groups. All the algebraic varieties and algebraic groups that we consider are defined
over F except in §8. We always use a bold letter to denote an algebraic group, an italic letter to
denote its F-rational points, and a Fraktur letter to denote its Lie algebra. For example, let G be
a reductive group. We write G = G(F') and denote by g the Lie algebra of G. By a subgroup of
G, we mean a closed F-subgroup. We write Ng(-) for the normalizer and Zg(+) for the centralizer
of a certain set in G, and write Z for the center of G. For an algebraic variety X, X = X(F)
is equipped with the natural topology induced from F. Thus, X is a locally compact totally
disconnected topological space. Sometimes we treat finite-dimensional vector spaces defined over
F' as algebraic varieties over F.

Heights. Let G be a reductive group and G = G(F). Following Harish-Chandra, we define a
height function || - || on G valued in R>;. If T is a sub-torus of G and 7" = T(F'), denote by
| ll7\@ the induced height function on G. The precise definitions and some important properties
of height functions are well discussed in [Kot05, § 18].

l-spaces. For a group H acting on a topological X and for a subset w C X, we denote by w’ the
set {h-x:2 €w,h € H}, and by cl(w) the closure of w in X. For an element x € X, we denote
by H, the stabilizer of x in H.

For a locally compact totally disconnected topological space X, we denote by C>°(X) the
space of locally constant and compactly supported C-valued functions, and by D(X) the space
of distributions on X. For f € C2°(X), we denote by Supp(f) its support. Suppose that H (an
¢-group) acts on X. Then H acts on C°(X) by

(h-f)(x)= f(h™'-2) where h € H,f € C°(X),z € X,
and acts on D(X) by
(h-T,f) =(T,h-f) where T € D(X), f € C(X).

For a locally constant character n : H — C*, we say that a distribution 7' € D(X) is (H,n)-
invariant if h - T = n(h)T for each h € H. We denote by D(X )" the space of (H,n)-invariant
distributions on X. If X is a finite-dimensional space and the Fourier transform f +— f on
C°(X) has already been defined, for T € D(X), we denote by T its Fourier transform, which is
a distribution on X defined by T'(f) = T(f)
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Fourier transforms. Let G be a reductive group, g its Lie algebra. Fix a nondegenerate symmetric
bilinear form (,) on g(F'), which is invariant under conjugation. For each subspace f of g(F') on
which the restriction of (,) is nondegenerate, we always equip this subspace with the self-dual
Haar measure with respect to the bi-character ¢((,)). Define the Fourier transform f f on

C(f) by
Fx) = /f FOV)((X, YY) dY:

Then f(X) = f(=X).

Weil index. At last, we recall the definition of Weil index v, associated to a quadratic space. Let
q be a nondegenerate quadratic form on a finite-dimensional vector space V over F. If L C V
is an Op-lattice, set i(L) = [, ¢¥(q(v)/2)dv and L={veV:VleLy(l) =1} It is well
known that if L C 2L, then [i(L)| = vol(L)'/2 VOl(E)i/Q, and i(L)|i(L)|~! is independent of L.

We denote by vy (g) the value i(L)|i(L)| ™!, assuming L C 2L. Recall that v,(q) is an eighth root
of unity.

3. Symmetric pairs I: general cases

In this section, we recall some basic theory and necessary results for general symmetric pairs.
We refer the reader to [AG09, RR96] for most of the contents.

3.1 Actions of reductive groups
Fix a reductive group H and an affine variety X with an action by H, both defined over F'.
Write H = H(F') and X = X(F'). Then the categorical quotient X/H of X by H exists. In fact,
X /H = Spec(O(X)H). Let 7 denote the natural maps X — X/H and X — (X/H)(F).

Let x € X. We say that z is:

— H-semisimple or H-semisimple if Hz is Zariski closed in X (or equivalently, Hx is closed
in X for the analytic topology);

— H-regular or H-regular if the stabilizer H, has minimal dimension.

We usually say semisimple or regular without mentioning H if there is no confusion. Denote by
X5 (respectively Xg) the set of regular semisimple (respectively semisimple) elements in X.

If X is an F-rational finite-dimensional representation of H, we call a point x € X nilpotent
if 0 € cl(Hz). Let N denote the set of nilpotent elements in X, which is called the null-cone of
X. Note that N = 7~ 1(7(0)).

An open subset U C X is called saturated if there exists an open subset V' C (X/H)(F') such
that U = 7= 1(V).

For z € X a semisimple element, we denote by N ﬁ(xx the normal space of Hx at x. Then
the stabilizer H, acts naturally on the vector space Nl)fxm We call (Hx,NI){(x@) the sliced
representation at x, or the descendent of (H,X) at x. Then we have the following analytic
Luna slice theorem (cf. [AG09, Theorem 2.3.17]). There exist:

— an open H-invariant neighborhood U, of Hz in X with an H-equivariant retract p : U, —

Hz;
— and an H,-equivariant embedding ¢ : p~!(z) — NI){(J: , With an open saturated image such
that ¢(z) = 0.
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Write Z, = p~!(z) and N, = NI)_](I@. We call (U, p,, Zy, N;;) an analytic Luna slice at z. Let
y € p~1(z) and 2 := 9 (y). Then we have (cf. [AG09, Corollary 2.3.19]):

- (H:I:)z = Hy§
X NV .
— NH%y ~ NH;”Z7Z as H, spaces;

— y is H-semisimple if and only if 2z is H,-semisimple.

3.2 Symmetric pairs
A symmetric pair is a triple (G, H, ) where H C G are reductive groups, and € is an involution
of G such that H = G? is the subgroup of fixed points. For a symmetric pair (G,H,0) we
define an anti-involution ¢ : G — G by ¢(g) = 0(g1). Set G* = {g € G;1(g) = g} and define a
symmetrization map

s:G— G s(g) =gulg).

By this symmetrization map we can view the symmetric space S := G/H as a subset of G*(F).
We consider the action of H x H on G by left and right translation and the action of H on G*
by conjugation.

Let 0 act by its differential on g = Lie(G). Write h = Lie(H). Thus,

h={Xcg:0(X)=X).

Put
s={Xe€g:6(X)=-X},

on which H acts by adjoint action. We also call s the Lie algebra of S for simplicity, though,
in fact 5 is not a Lie algebra. We always write X" = h™! - X = Ad(h™1)X for h € H and
X € s. There exists a G-invariant f-invariant nondegenerate symmetric bilinear form (,) on g.
In particular, g = h @ s is an orthogonal direct sum with respect to (,).

Let (G, H, 0) be a symmetric pair. Let g € G be H x H-semisimple, and = = s(g). Then the
triple (G, Hy, 0|, ) is still a symmetric pair, and we have (cf. [AG09, Proposition 7.2.1]):

— x is semisimple (both as an element of G and with respect to the H-action);
~ Hy,~(H x H)y and s, ~ NggH,H as H,-spaces, where s, is the centralizer of z in s(F).

A symmetric pair obtained in this way is called a descendant of (G, H, 6). Note that s, can be
identified with the Lie algebra of G,/H,.

Weyl integration formula. Let (G,H,0) be a symmetric pair. Denote by s,5 the regular and
semisimple locus in s with respect to the H-action. We call a torus T of G 6-split if 6(t) = ¢t~ 1
for all t € T. Fix a Cartan subspace ¢ of s, which by definition is a maximal abelian subspace of
s consisting of H-semisimple elements. We always assume that a Cartan subspace is F-rational
when we mention it. Then there is an F-rational -split torus denoted by T~ whose Lie algebra
is ¢. Denote by ¢yeg the H-regular locus in ¢. Let T be the centralizer of ¢ in H, which is a torus.
Write t = Lie(T).
For X € ¢req(F), we now introduce the factor |D*(X)|p. Consider the morphism

B:(T\H)x¢— s, (hX)—> X"
which is regular at (1, X). The Jacobian of the differential df at (1, X) is equal to

|D*(X) | = [det(ad(X): b/t @ 5/0)| .
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Denote by S; the set of roots of T~ in g(F'). For any o € S, since ¢ C s, we have f(a) = —a.
Therefore 6 interchanges the root subspaces g, and g_,. Fix a set of positive abstract roots in
Se, and choose a basis {F1, Ea, ..., E;} of root vectors for the direct sum of g, with a > 0. Set
91 = Dcs, 9o 50 that g =t S ¢ @ g1. Then over F:

~ {E1, Ea,...,E } U{0(E1),0(E2),...,0(E))} is a basis for gi;
— {El — H(El), Ey — Q(Eg), B G(Ek)} is a basis for 51 := 5N gq;
~ {E1+0(E1),E2+ 60(E2),...,Er 4+ 0(E))} is a basis for h; :=hNgy.
Under the adjoint action, elements of ¢ map h; to 1 and vice versa. There is an involution ¢ on

g1 whose +1-eigenspace is @, g and whose —1-eigenspace is @, go- Then o interchanges
s1 and by, and p commutes with ad(X) for X in ¢(F'). Thus we have

|D*(X)|r = |det(¢ 0 ad(X); h/t)[r = |det(¢ 0 ad(X); 5/¢)[ .

For a Cartan subspace ¢, let M be its normalizer in H, W, := M /T be its Weyl group. The
map

(T\H) X treg(F) —> s15(F)

obtained from § by restriction is a local isomorphism of p-adic manifolds and its image, denoted
by s, is open in s(F'). The fiber of 8 through (h, X) € (T\H) X ¢reg(F') has |[W,| elements. We
have
5IVS(F) - |_|5;sﬂ
C
where the union runs over a (finite) set of representatives ¢ for the set of H-conjugacy classes of

F-rational Cartan subspaces in s. Then, for f € C°(s(F")), we have the following Weyl integration
formula (cf. [RR96, p. 106])

— 1 5 ]’L
/5(F) F(X)dX = Z Wil D (X)\F/T\H F(X") dhdX.

treg (F)

The null-cone. Denote by N the null-cone of s(F') with respect to the H-action. Then, by [AG09,
Theorem 7.3.8], N is also the set of nilpotent elements (considered as elements in g) in s(F). It
is known that A consists of finitely many H-orbits. Denote by A, the union of all H-orbits in
N of dimension < ¢, which is closed in Ng4q.

Fix X # 0 in AV. Denote by X{! the H-orbit of Xo, and by, the centralizer of Xq in h(F).
Write 7 = dim b x,. Then X is of dimension d — r where d = dim h(F), and is open in Ny_,.

LEMMA 3.1. There exists a group homomorphism ¢ : SLy(F') — G such that

o ) () R () e

with Yy € s(F) and Dy(Xo) € H.

Proof. See [AG09, Lemma 7.1.11]. O
We write d(Xo) = d¢(§ °;), which is in h(F). Actually, we often write d = d(Xo) when there

is no confusion. For any X € s(F'), we denote by sx (respectively gx) the centralizer of X in

s(F) (respectively g(F)).
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LEMMA 3.2. We have
sy, ® [Xo, b(F)] = s(F), sx, ® [Yo,h(F)] = s(F).
Proof. We have the following decompositions (cf. [HC70, p. 73]):

gy, @ [Xo, 9(F)] = gx, @ [Yo, 9(F)] = g(F).
From the decomposition
a(F) =b(F) ®s(F),
we see that
9x, = bx, Dsxy, Oy, = hyp © Sy,
[(Xo,b(F)] Cs(F), [Xo,s(F)] Cb(F), [Yo,b(F)] Cs(F), [Yo,s(F)]Cbh(F).
Thus we have
(by, ® svy) ® ([Xo,s(F)] & [Xo, b(F)]) = h(F) & s(F),

and
(bx, ®5x,) ® ([Yo,8(F)] @ [Yo, b(F)]) = b(F) @ s(F).

Taking the s-parts of the above identities, we prove the assertions of the lemma. O

Let T be the Cartan subgroup of H with the Lie algebra F' - d(Xj). Let £ be the rational
character of I' defined by

XJ =€¢(Xo, Yy =& (y)Yo,

which is not trivial. Let 7 = dimsy;. The following lemma essentially is a variant of [HC70,
Lemma 34], and the proof is also similar to that of [HC70, Lemma 34].

LEMMA 3.3. We can choose a basis Yo = Uy,Us, ..., U, for sy, and rational characters {1, &2,
.., & of ' such that:

(i) ad(—d)U; = \Us;
(iii) U =& Y (y)Us, for all 1 < i < 7'

Set

m= ;(12,&) = £ Tr(ad(~d)l, )

4. Symmetric pairs II: specific cases

Now we focus on the symmetric pairs concerned in this article. The notations introduced here
will be used without mention from now on.
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4.1 The case (G, H)

Let G = GLg, and H = GL,, x GL,,, both defined over F'. The group H is viewed as a subgroup
of G by embedding it into G diagonally. Let € = (10” _gn) and define an involution # on G by
0(g) = ege. Then H = GY, and the Lie algebra s associated to (G, H, ) is

5(F) = {(g ‘3) A Be g[n(F)} ~ gl (F) @ gl (F).

If we identify s(F') with gl,,(F) @ gl,(F), then H acts on s(F") by

(h1,ha) - (A, B) = (h1Ahy ', ha BhTH).
Recall that we write X" = h=1 . X for h € H, X € s(F). We fix a nondegenerate symmetric
bilinear form (,) on g(F') defined by

(X,Y) =tr(XY) for X,Y € g(F).
Then (,) is both G-invariant and #-invariant.

Since H'(F,H) is trivial, we have S = S(F) where S := G/H and S := G/H. We identify

S with its image in G*(F") by the the symmetrization map s. When we want to emphasize the
index n, we write G, H,, 0,, and s,,.

Descendants. Now we describe all the H-semisimple elements x of S and s(F') and the descendants
(Hz,5;) at x. The results below also hold when F' = k is a number field.

PROPOSITION 4.1. (i) Each semisimple element x of S is H-conjugate to an element of the form
A 0 0 A-1, O 0

0 1,, 0 0 0 0
B 0 0 —1,, 0 0 0
(A, n1,m2) = A+1,, 0 0 A 0 0o |’
0 0 0 0 1,, 0
0 0 0 0 0 —1,,

with n = m + ny + ng, A € gl,,(F) being semisimple without eigenvalues +1 and unique up
to conjugation. Moreover, x(A,ny,ny) is regular if and only if ny = ny = 0 and A is regular in
gl (F).

(ii) Let x = x(A,n1,n2) in S be semisimple. Then the descendant (H,s,) is isomorphic to
the product (as a representation)

(GLm(F)A’g[m(F)A) X (Hn1’5n1> X (Hn275n2)'

Here GL,,,(F) 4 and gl,,(F') 4 are the centralizers of A in GL,,(F') and gl,,(F') respectively, and
GL,,(F)4 acts on gl,,(F)a by conjugation.

Proof. See [JR96, Proposition 4.1] or [Guo96, Proposition 1.1] for the first assertion. The second
assertion can be proved by a direct computation. O

PROPOSITION 4.2. (i) Each semisimple element X of s(F) is H-conjugate to an element of the

form
0 01, O
0 0 0 O
X(4)= A0 0 O
0 0 0 O
with A € GL,,(F') being semisimple and unique up to conjugation. Moreover, X (A) is regular if

and only if m =n and A € GL,,(F) is regular.
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(ii) Let X = X(A) in s(F) be semisimple. Then the descendant (Hx,sx) Is isomorphic to
the product (as a representation)

(GLm(F)A7g[m(F)A) X (Hn7m75nfm)-
Proof. See [JR96, Propositions 2.1 and 2.2]. O

The null-cone. Fix Xy # 0 in the null-cone N of s(F). Let (Xo,d, Yy) be an slo-triple as before.
Recall d = d(X)).

LEMMA 4.3. We have dim sy, = dimbx, = 7.

Proof. The lemma follows from Lemma 3.2 and the relation
dim bx, + dim[Xo, h(F)] = dim h(F) = dims(F). O

In [JR96, Lemma 3.1], hx, is well studied, and an upper bound for Tr(ad(d)]hxo) is given
there. By a minor modification of the discussion in [JR96, §3], we study the structure of sy;.
For our purpose, we want to compare r + m with n? + (n/2), where r = dimsy, and m =
: Tr(ad(—d)|sy, ). The following inequalities will be used in §6.3.

PropoSITION 4.4. We have the relations:

(i) r=>n;

(ii) r+m >n?+n/2.
Proof. Write Y =Y for short. Let V' =V, @ V3, where V; = F" 0 < i < 1. We identify g(F) =
Hom(V, V), h(F) = Hom(Vy, Vo) @ Hom(V7,V;) and s(F) = Hom(V;, V) @ Hom(Vp, V). Given
Y, there is a decomposition V = W1 @ Wy @ --- & Wy, where each W; is an indecomposable

F[Y]-submodule. We can choose a generator z; of W; such that z; is in either Vj or Vj. Define
deg(z;) = 0 if z; € Vp, otherwise deg(z;) = 1. Write w; = dim W;. There is an isomorphism from

5y, to some space
z= P S
1<i,j<k
Now we describe S;; precisely. An element b;; € S;; is in F[X]/(X"7) of the form:
(i) bij (X) = Zmax{wj —w;,0}<b<w; a’Z]XZ;
(i) azj = 0 when §;0; = (—1)*, where §; := (—1)d°8(z:),

We define an operator p(d) := X (d/dX) on F[X], and an endomorphism p(d) on Z by restriction.
Each S;; is an invariant subspace of p(d). Set

rii = dim Sy, mi = Tr(p(d)]s;,)
for 1 <i<k, and
rij = dim Sj; +dim Sy, my; = Tr(p(d)ls;;) + Tr(p(d)]s,;)

for 1 <7< j < k. Then

r= Zn‘z‘-i- Z Tij, M= Z”%i"‘ Z i -

1<i<k 1<i<j<k 1<i<k 1<i<j<k

The following lemma gives a complete list of r;;, 7;;, mj; and m;;. One can obtain it by the above
description and a direct computation.
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LEMMA 4.5. (i) For 1 < i < k, if w; = 2p; or 2p; + 1, we have
_ _ .2
Ty = Di, My = Py -

(ii) For 1 <i < j < k, we have the following table.

Wi, wj 51(53 mij ’I”Z‘j
w; = 2p;, w;j = 2p; 1 2pip; 2 min(p;, p;)
w; = 2p;, w; = 2p; -1 2p;p; — 2min(p;, pj) 2 min(p;, p;)
w; = 2pj,w; =2pj + Lw; <w; £l 2pip; 2p;
w; = 2p;, wj = 2p; + 1, w; > w; L 2pip; +2(pi —pj) — 1 2p; +1
w; :2pi,wj :2pj+1,wi > Wy —1 Qpipj ij—i-l
w; =2p; + 1, w; =2p; +1 1 2pipj 2 min(p;, p;)
w; = 2p; + 1, wj =2pj +1 -1 2pip; +2sup(ps,p;)  2min(p;, p;) + 2

Now we continue to prove the proposition.

(1) The first inequality of the proposition can be read off from the above list. It is not hard
to see that » = n if and only if Y?" = 0 and Y21 £ 0.

(2) For the second inequality, compare with the proof of [JR96, Lemma 3.1]. We denote by
u the number of indices ¢ such that w; is odd and §; = 1, which is equal to the number of indices
J such that w; is odd and d; = —1. Then

where w; = 2p; or 2p; + 1. Thus

2 N 2 U 1 2
n’t o =u +2+<2u+2><1zkpi>+2pi+2 > pip;.

1<i<k 1<i<j<k

On the other hand
r4+m= Z (i +mai) + Z (15 + may )

1<i<k 1<i<j<k
is determined by the data
(wla 615 w2, 527 cey W, 5/4:)

We now induct on the number of indices ¢ so that w; is even. First assume all the integers w;
are odd. Then it is not hard to see that

r4+m= Z (0 +pi) +2 Z pipj + 2 Z min(p;, p;)
1<i<k 1<i<j<k 1<i<j<k,8;8,=1

+2 ) (sup(pi,p;) + min(pi,p;) + 1)
1<i<j<k,0;6;=—1

=Y Wi+p)+2 Y pipp+2 ), min(pip)

1<i<k 1<i<j<k 1<i<j<k, 6;6;=1

+ 2u Z pi—|—2u2

1<i<k
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>2u2—|—(2u—|—1)<2 pi>+ dDi+2 D> pp;

1<i<k 1<i<k 1<i<j<k
5 N
>n® + 5
Now we can arrange the data so that wy, is even. If k = 1, then wy = 2n and r + m = n? +n
which is strictly greater than n? + n/2. By induction on the number of indices i with w; even,
we may assume that the inequality has been proved for the data (w1,d1, ..., wg_1,0k—1). By the
induction hypothesis, the contribution of the indices (i,7) with 1 < ¢ < j < k — 1 is strictly
greater than n/? + n’/2 where
n =u+ Z Di-

1<i<k

Therefore we have to show that the sum of the contributions r;; + m;i of the pairs (i, k) with
1 < k is greater than or equal to
n 2

2,
n—|—2 n

Pk

/
n 9 ‘
- 5 =D+ 5 + 2 g DiDk + 2upy.

1<i<k

The contribution of the pair (k, k) is p7 + px > p3 + pi/2. Now consider the contribution of a pair
(i, k) with i < k. It is always greater than or equal to 2p;py when w; = 2p;. When w; = 2p; + 1,
it is always greater than or equal to 2p;px + 2py (called the good case) except when wy > wj
and 0;0r = —1 (called the bad case). It contributes at least 2p;py in the bad case. However, it

does not matter when bad cases happen. Since if bad cases happen v’ times with §; = —dj, good
cases happen at least v/ times with w; such that w; = 2p; + 1 and §; = 0y, which contribute at
least 2u'pg, + > ; 2PjPk- This concludes the proof of the proposition. O

4.2 The case (G’,H’)

Let E = F(v/A) be a quadratic extension field of F', and D a quaternion algebra over F' containing
E. Let n be the quadratic character of F'* associated to E by the local class field theory. Denote
by o the nontrivial element in Gal(E/F'). Sometimes we also write  — Z instead of z — o(x).
Let G’ = GL,(D), H = GL,,(F), both viewed as reductive groups defined over F. We can write
G’ and H' in a more concrete form. There is a v € F* such that, if we denote by L., the algebra

{(g 1‘{3) LA, B¢ g[n(E)},

then G' = G'(F') = L and H' = H'(F) consists of the ones with B = 0. We will always consider

G’ and H' in such a form. Note that if v € Ng,pE”, then G’ ~ GLg,. Fix a square root ¢ of A
in E. Let € = (5%)” fr?ln)' Define an involution § on G’ by 0(g) = €'ge'~!. Then H' = G Let
g’ = Lie(G'), b’ = Lie(H'), and s’ be the Lie algebra associated to the symmetric pair (G’,H', 0)

so that ¢’ = b’ @ §'. Thus, §'(F) is the space

{(g 759) B e ME)} ~ gl (E).

If we identify s'(F) with gl,(E), then H' = GL,(E) acts on 5'(F) by h- X = hXh~!, which is
the o-twisted conjugation. We fix a nondegenerate symmetric bilinear form ( , ) on g’(F') defined
by

(X,Y) =tr(XY), XY €g(F).

By definition, it is easy to see (X,Y) € F, and (,) is both G'-invariant and #-invariant.
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Since H'(F,H’) is trivial, we have S’ = S'(F), where S’ := G'/H’ and S’ := G//H’. We
identity S’ with its image in G’*(F) by the symmetrization map s. When we want to emphasize
the index n, we write G}, H,,,0,, and s/,.

Before we continue, we recall some basic facts about the norm map in theory of base change
(cf. [ACR9)). If x € GL,(F), we write N(x) = xZ, which is called the norm of z. If z € GL,(E),
N(z) is conjugate in GL,,(F) to an element y of GL,,(F), and y is uniquely determined modulo
conjugation in GL,,(F'). We denote by N(GL,,(E)) the subset of elements y in GL, (F) satisfying
that there exists z € GL,,(E) such that y is conjugate to N(z). In fact, if y € N(GL,,(F)), there
exists x € GL,(F) such that y = zz.

Descendants. Now we describe all the H’-semisimple elements x of S’ and s'(F) and the
descendants at x. The results below also hold when F' = k is a number field.

PROPOSITION 4.6. (i) Each semisimple elements y of S’ is H'-conjugate to an element of the

form
A0 0 4B 0 0
01, 0 0 0 0
o o0 -1, 0 0 0
y(A7 ni, ’I’ZQ) = B 0 0 ? A 0 0 )
0 0 0 0 1, 0
0 O 0 0 0o -1

n2

with A € gl,,(F) being semisimple and unique up to conjugation such that A? — 1,, €
YN(GL,,(E)) and B € GL,,(E) is a matrix unique up to twisted conjugation such that
A% —1,, = yBB, AB = BA, and n = m + ny + ny. Moreover, y(A,n1,n2) is regular if and
only if ny =ng = 0 and A is regular in gl,(F).

/

(ii) Let y = y(A,n1,n2) in S’ be semisimple. Then the descendant (H,, s,

the product (as a representation)

) is isomorphic to

(GLin(E) A N GLon(E) g, gl (E) 4 N 91, (E)5) x (H. s, ) x (... ).

nyr~ny ng I ~ng

Here

GLom(E)p == {h € GL,(E) : hB = Bh},
gl (E)p = {X € gln(E) : XB = BX},

and GLy (E)p acts on gl9,(E)p by o-twisted conjugation.

Proof. See [Guo96, Proposition 1.2] for the first assertion. The second assertion can be proved
by a direct computation. O

PROPOSITION 4.7. (i) Each semisimple element Y of §'(F) is H'-conjugate to an element of the

form
0 0 B 0
0 0 0 O
YA =150 o0 o
0 0 0 O
where A € GL,,,(F') is semisimple and unique up to conjugation such that A G_WN(GLm(E)) and
B € GL,,,(F) is a matrix unique up to twisted conjugation such that A = yBB. Moreover, Y (A)

is regular if and only if A € GL,,(F) is regular.
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ii) Let Y = Y(A) in §'(F) be semisimple. Then the descendant (H:,,s,) is isomorphic to
Y9y
the product (as a representation)

(GLon(E) 3, 817, (E)B) X (Hp,_ S im)-

n—m:1:~n—m

Proof. See [Guo97, Lemma 2.1] for the first assertion. The second assertion can be proved by a
direct computation. O

The null-cone. Fix Xy # 0 in the null-cone N of §'(F). Let (Xo,d, Yp) be an sly-triple as before.
By the same proof as Lemma 4.3, we have

. / . !/
dlm SY() — dlm bX() .

Write r = dim sy, and m = %Tr(ad(—d)|5ryo). We still want to compare r + m with n? + n/2,

which is easier in this case.

PROPOSITION 4.8. We have 7 +m > n? 4+ n/2 and m’ < n? where m’ = %Tr(ad(—d)\hry ).
0

Proof. Write Yy = (S} 70A). If we change (Xj, d, Yp) to be any triple in the H'-orbit of (X, d, Yp),
the numbers 7 and m are unchanged. By [Guo97, Lemma 2.2], we can choose A to be of the
Jordan normal form. At the same time, we can also choose d to be in gl,(F'). In such a situation,
it is easy to see that there is a d-equivariant isomorphism sy~ bj.. Thus r = " and m = m/,
where 7’ = dim by, . Since gy, = by, ® sy, we have m +m’ = $(4n* — r — 1'). Thus we get

m = 1 (4n* — 2r) and r + m = n? 4+ r/2. The inequality r > 2n implies the lemma. O

5. Smooth transfer

In this section, we introduce the main object of this article: the smooth transfer between Schwartz
functions on different symmetric spaces. By several reduction steps, we explain why Theorem 5.16
implies Theorem 5.13 in details.

5.1 Definitions

Matching of orbits. We first recall the matching between semisimple orbits in symmetric spaces
S and S’, and then give the definition of matching between semisimple orbits in Lie algebras
s(F) and s'(F). These definitions of matching orbits also hold when F = k is a number field.

PROPOSITION 5.1. (i) For each semisimple element y of S’, there exists h € H(FE) such that
hyh~! belongs to S. This establishes an injection of the H'-semisimple orbits in S’ into the
H-semisimple orbits in S, which carries the orbit of y(A,ni,n9) in S’ to the orbit of x(A,ny,na)
in S.

(ii) For each semisimple element Y of 5'(F), there exists h € H(E) such that hY h~! belongs

to s(F'). This establishes an injection of the H'-semisimple orbits in s'(F) into the H-semisimple
orbits in s(F'), which carries the orbit of Y (A) in s'(F) to the orbit of X (A) in s(F).

Proof. See [Guo96, Proposition 1.3] for the first assertion. The second assertion can be proved
in the same way. O

DEFINITION 5.2. (i) We say that y € S’ (respectively Y € s. (F)) matches x € Sy (respectively
X € s54(F)) and write © <> y (respectively X < Y) if the above map sends the orbit of y
(respectively Y) to the orbit of = (respectively X).
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(ii) We say that = € Ss (respectively X € s4(F)) comes from Si (respectively s (F)) if
there exists y € S (respectively Y € s/ (F')) such that z <> y (respectively X <> Y'). We denote
by Sss0 (respectively sg(F)o) the subset of elements in Sgs (respectively s¢s(F)) coming from S
(respectively s.(F)).

Remark 5.3. Denote by Q (respectively Q') the categorical quotient S/H (respectively S'/H'),
and by q (respectively q') the categorical quotient s/H (respectively s’/H’). The maps in
Proposition 5.1 induce natural maps

Q — Q and ¢ < q.
Actually, Q is isomorphic to the affine space A", and the quotient map 7 : § — Q is given by

(é lBi)>|—>(tr/\iBC), 1=1,2,...,n.

The natural map Q" — Q is induced by

§'— 9, <g Pij)H(tvaBB), i1=1,...,n.

Similarly, ¢ is isomorphic to the affine space A", and the quotient map 7 : 5§ — q is given by

<g ‘3>n—>(tr/\iAB), i=1,2,...,n.

The natural map q' < q is induced by

s’ — q, <g 75>H(tmwgg), i=1,...,n.

Remark 5.4. A semisimple element z = x(A4,n1,n2) in S comes from S if and only if A2—1,, €
YN(GL,,(E)) where m = n — n; — na. A semisimple element X = X (A) in sg(F') comes from
sl (F) if and only if A € yN(GL,,(E)).

Ss
Remark 5.5. Suppose that = € Sss and y € Sg; match. We want to compare (H., s,) with (H,, 5 ).
It suffices to assume that x = (A4, n1,ng) and y = y(A, n1,ng). Thus, by Propositions 4.1 and 4.6,
we have

(Hxaﬁx) =~ (GLm(F)Aag[m(F)A) X (Hn175n1) X (Hn275n2)7

and

(Hé,sg/) ~ (GLy(E)A N GLym(E)B, 8lm(E)a N gl (E)B) x (H,,, ,5,,) X (H'Q,sgw)

nir~ny n

with A2 —1,, =vBB and AB = BA. By the proof of Lemma 5.26 below, we see that (GLy,(E)aN
GLym(E) B, glm(E)aNglg,(E)p) essentially is an inner form of (GLy,(F) 4, gl (F) a). The other
factors in the descendants are related in a similar manner as (H, s) and (H',s’) are. For X € s4(F)
and Y € s/ (F) such that X <> Y, by Propositions 4.2 and 4.7 and Lemma 5.26, the factors of
the descendants (Hx,sx) and (Hy,s% ) have the similar relations to the above.

Remark 5.6. It is obvious that the maps in Proposition 5.1 send regular semisimple orbits to
regular semisimple ones. We denote by Siso (respectively s,s(F')o) the subset of elements in Sy
(respectively s,5(F')) coming from S, (respectively s..(F')). Suppose that x € Sys (respectively
x € s,5(F)) and y € Si; (respectively y € s.,(F')) match. Then by the above remark, we see that
H, is an inner form of Hzl/ Since they are torus, we have

H, ~ H,,.
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Transfer factors. To state our results on smooth transfer, we need to define transfer factors for
the symmetric pair (G, H,0) and its descendants. In general, the transfer factor is defined as
follows (cf. [Zhal4a, Definition 3.2]).

DEFINITION 5.7. Let a reductive group H act on an affine variety X, both defined over F'. Let ) be
a quadratic character of H. Suppose that for all regular semisimple x € X = X(F’), the character
7 is trivial on the stabilizer H,. Then a transfer factor is a smooth function x : X3 — C* such
that k(z") = n(h)k(x) for any h € H.

DEFINITION 5.8. For convenience, we give an explicit definition of various transfer factors in our
situation as follows.

— Type (H,S): for x = (é 5
— Type (Hpm,5m): for X = (
— Type (GLin(F) 4, 8bn(F) 4
In cases (1) and (2), n is the nontrivial quadratic character on F'* associated to E, while in case

(3) n is the trivial character. In all the cases, it is easy to see that n is trivial on the stabilizers
H,.

) € S regular semisimple, define x(z) := n(det(B)).
0. 4) € 8, (F) regular semisimple, define x(X) := n(det(A)).
): we define k to be the constant function with value 1.

Smooth transfer. Now we give the definition of smooth transfer. First, we fix Haar measures on
H and H'. Notice that, for = € Sy (respectively = € s,5(F')) and y € Sl (respectively y € sl (F))
such that = < y, their stabilizers H, and H?’J are isomorphic to each other (see Remark 5.6), and
we fix such an isomorphism. Fix a Haar measure on H, for each x € Sy (respectively x € s,4(F')).
We fix a Haar measure on Hy, for each y € Si; (respectively y € s (F)) which is compatible with
that of H, if z < y.

DEFINITION 5.9. For = € S,s (respectively = € s,4(F)) and f € CX°(S) (respectively f €
C°(s(F'))), define the orbital integral of f at x to be

0"z, f) = /H et an

For y € S, (respectively y € s/ (F)) and f" € C°(S’) (respectively f' € C°(s'(F))), define the
orbital integral of f’ at y to be

Ow = [ siat)an

DEFINITION 5.10. (i) For f € C2°(S) and f' € C°(S’), we say that f and f’ are smooth transfers
of each other if for each z € Sy

0 otherwise.

/ . . ;o
K(x)O"(z, f) = {O(y, f’) if there exists y € S}, such that z < y,

We denote by C°(S)o the subspace of elements f in C°(S) satisfying O"(z, f) = 0 for any x in
Srs but not in Sy .

(ii) For f € C°(s(F)) and f' € C°(s'(F)), we say that f and f’ are smooth transfers of each
other if for each X € s.5(F)

O(Y, f') if there exists Y € s/ (F) such that X < Y,
sxonx = {7 T (F)

We denote by C°(s(F))o the subspace of elements f in C°(s(F')) satisfying that O"(X, f) =0
for any X in s5(F") but not in s5(F)p.

otherwise.
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Remark 5.11. The definition of smooth transfer depends on the Haar measures on H and H’,
but the existence of smooth transfer does not depend on them. Sometimes, we will write transfer
in place of smooth transfer for short.

Remark 5.12. For semisimple z € S and semisimple y € S’ such that x <> y, by Remark 5.5, we
can define the notion of smooth transfer between elements in C2°(s,(F')) and those in C2°(s,(F)),
determined by the orbital integrals with respect to the action of H, on s,(F), the action of H@//
on sy (F), and the transfer factor x defined as above. Similarly, for semisimple X € s(F') and
semisimple Y € s/'(F)) such that X <> Y, we can also define the notion of smooth transfer between
elements in C°(sx (F)) and those in C°(s%, (F)).

Our main theorems are as follows.

THEOREM 5.13. For each f' € C°(S’), there exists f € C2°(S) that is a smooth transfer of f'.
Conversely, for each f € C2°(S)o, there exists f' € C2°(S’) that is a smooth transfer of f.

THEOREM 5.14. For each f' € C°(s'(F)), there exists f € C2°(s(F')) that is a smooth transfer
of f'. Conversely, for each f € C(s(F))o, there exists f' € CX(s'(F)) that is a smooth
transfer of f.

In the later subsections, we will show that Theorem 5.14 implies Theorem 5.13.

LEMMA 5.15. To prove Theorem 5.14, it suffices to prove it for the case s = s, when € = 1.

Proof. Let

§(F) = {Y(B) . <g ff) .Be g[n(E)}.

Choose a representative v € F* of the nontrivial element in F'*/NE*. Let

o (F) = {Yﬂ,(B) _ (g ’%B) . Be g[n(E)}.

Identify H' with GL,,(F). Then there is a natural H'-equivariant isomorphism

j 8 (F) = 8\ (F),Y(B) = Yy(B),

which implies the lemma. O

Fourier transform. Define the Fourier transform f — f on C(s(F)) (respectively C°(s'(F)))
with respect to the fixed bilinear form (,) and the additive character 1. The following theorem
is the key point in proving the existence of smooth transfer.

THEOREM 5.16. There exists a nonzero constant ¢ € C such that if f € C°(s(F)) and f' €
C(s'(F')) are smooth transfers of each other, then f and cf' are also smooth transfers of each
other.

In the later subsections, we will prove the following main result of this section.

PROPOSITION 5.17. Theorem 5.16 implies Theorem 5.14.
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5.2 Fundamental lemma

In this subsection, we prove the following fundamental lemma (Lemma 5.18). This is an important
example of the smooth transfer and also a crucial lemma for us to prove Theorem 5.16 by using
global method.

Now assume that v = 1. Thus, G’ is isomorphic to G. Suppose that F is of odd residual
characteristic and E is unramified over F. We choose the Haar measures on H and H' so that
vol(H(Op)) = 1 and vol(H'(Op)) = 1 respectively.

Let fo € C°(s(F)) and f( € C°(s'(F)) be the characteristic functions of the standard lattices

L =gl,(OF) ® gln(OF), L' =gl,(OF)
respectively.

LEMMA 5.18. The characteristic functions fo and f{; are smooth transfers of each other.

Remark 5.19. The group version of the above fundamental lemma was proved in [Guo96]
(cf. [Guo96, Theorem]).

Proof. Let X € si5(F). It suffices to consider X of the form (%) with A € GL,(F) being
regular semisimple. Then we have

K(X)O"(X, fo) = / fo(hy ha, hy ' Ahy)n(hihs) dhy dhao
Hx (F)\H(F)

:/ fo(ha, hy 'yt Ahy)n(hy) dhy dhy.
(GLn(F) 4\ GLn (F))XGLy (F)

Let K = GL,(Op) and K’ = GL,(Og). For r = (r;;) € gl,(F), put |r| = max; j|r; ;. Then
for r,t € gl,,(F), the value f(r,t) # 0 if and only if |r| < 1,[t| < 1. Let ®4 be the characteristic
function of the set of (r,t) € GL,,(F) x GL,,(F') satisfying |r| < 1, |t| < 1 and |det(rt)|r = |det A|p.
Then ® 4 belongs to C2°(GLy,(F') x GL,,(F')) and is bi-K-invariant both for the variables r and ¢.
Let W4 be the function on GL,,(F') defined by

Walg) = / B 4(h, h=1g)n(h) dh.
GLn (F)

Then ¥4 belongs to C°(GL,(F)), and is bi-K-invariant (that is, ¥4 is a Hecke function). We

have
<00, o) = [ a9~ Ag) dy.
GLn (F) A\ GLn (F)
Y = (3 5) € sl,(F), we have
oY, f§) = / fo(h™' Bh) dh.
GLon(E)p\ GLn(E)

Let Up be the characteristic function of the set of r € GL,,(F) satisfying |r| < 1 and |detr|p =
|det B|p. Then ¥p belongs to C°(GLy,(F)), and is bi-K'-invariant. We have

OY. f}) = / U5(h™ Bh)dh.
GLU,n(E)B\ GL’” (E)

Denote by
be : H(GL,(E), K') — H(GL,(F), K)
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the base change map between the two spaces of Hecke functions. Then, in fact, it was shown
in [Guo96, Corollary 3.7] (can be read off from the proof of [Guo96, Proposition 3.7]) that ¥4 =0
if A¢ N(GL,(E)), and ¥4 = bc(¥p) if A = BB. Recall that U4 = be(Vg) implies that

Hence the lemma follows. O

5.3 Reduction steps
The main aim of this subsection is to reduce Theorem 5.13 to Theorem 5.14. The reduction steps
here are almost the same as those in [Zhal4a, §3].

Descent of orbital integrals. The following proposition essentially is [Zhal4a, Proposition 3.11],
whose proof is also valid here.

PROPOSITION 5.20. Let X be any one of S,S’ s(F) or §'(F). Let € X be semisimple and
(Us, p,, Zz, Ny) an analytic Luna slice at . Then there exists a neighborhood ¢ C ¥(p~!(z))
of 0 in N, satisfying the following properties.

— For each f € C°(X), there exists f, € C:°(N,) such that for all regular semisimple z € &
with z = ¢ (y) we have

/ FMm(h) dh = / fo(zMn(h) dh.
HN\H

H,\H,

— Conversely, for each f, € C2°(N,), there exists f in C2°(X) such that above equality holds
for any regular semisimple z € £.

Here H = H' and n =1 when X is S" or §'(F).

Reduction to local transfer. Recall that we denote by Q (respectively Q') the categorical quotient
S/H (respectively 8’/H'), and by q (respectively q') the categorical quotient s/H (respectively
s'/H'). By Remark 5.3, we always view Q' and ¢’ as closed subsets of Q and q respectively. Let
X be any one of §,8',5 or &', and Q the quotient Q, @', q or q' of X. Let Q(F),s be the regular
semisimple locus in Q(F). Since H'(F,H) = H'(F,H’) = 1, the natural map 7 : X(F) — Q(F)
is a surjection. For x € Q(F)ys, the fiber m7—!(z) consists of precisely one orbit.

DEFINITION 5.21. Let X and Q be as above. Write X = X(F') and @ = Q(F).

(i) Let ® be a function on Qs which vanishes outside a compact set of Q. For x € Q,
we say that ® is a local orbital integral around z, if there exists a neighborhood U of z and a
function f € C2°(X) such that for all y € Uys and z with 7(z) = y we have

D(y) = K(2)0"(z, f).
(ii) For f € C°(X), define a function m.(f) on Qs to be

W*(f)(m) = Ii(y)on(y, f) for x € Qus,y € W_l(x)'
Here k =1 and n = 1 when X is &’ or ¢'.
The following result is [Zhal4a, Proposition 3.8].
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PROPOSITION 5.22. Let ® be a function on Qs which vanishes outside a compact set Z of Q. If
® is a local orbital integral at each x € =, it is an orbital integral. Namely there exists f € C2°(X)
such that for all y € Qys, and z with 7(z) = y we have

D(y) = r(2)0"(z, f)-

DEFINITION 5.23. For x € Q(F) (respectively = € q(F')), we say that local transfer around z
exists, if for each f/ € C°(S") (respectively f € C°(s'(F))), there exists f € C°(S)o (respectively
f€CX(s(F))p) such that in a neighborhood U of z, the equality

7 (f) = m(f) on U N Q(F)s (respectively U N q(F)ys)

holds, and conversely for each f € C2°(S)o (respectively f € C2°(s(F))o), there exists f' € C°(S")
(respectively f' € C°(s'(F))) satisfying the above equality.

COROLLARY 5.24. To prove Theorems 5.13 and 5.14, it suffices to prove the existence of local
transfer around all elements of Q(F) and q(F).

Proof. This is a direct consequence of Proposition 5.22. O

Reduction to local transfer around zero.

LEMMA 5.25. To prove the existence of local transfer around an element z in Q(F') (respectively
q(F)), it suffices to prove the existence of smooth transfer for the sliced representations (Hy, 5;)
and (Hy,,s,) where x in Sss (respectively sss(F')) and y in S (respectively si (F)) are such that
z < yand w(x) =7(y) = 2.

Proof. This result partially follows from Proposition 5.20 and the fact that for f' € C°(S’)
(respectively C°(s'(F))) and f € C2°(S) (respectively C2°(s(F'))) the functions m.(f’) and m.(f)
are locally constant on Q(F'),s (respectively q(F)s). It remains to prove Lemma 5.29 ahead,
which shows the compatibility of the transfer factors under the semisimple descent. |

LEMMA 5.26. (i) Given semisimple A € gl,,,(F) such that A> — 1,, = YyBB, AB = BA with
B € GL,,(E), the smooth transfer exists for the sliced representations

(GLp(F)a, glm(F)a) and (GLy(E)a N GLym(E)B, gln(E)a N gl (E)B).

(ii) Given semisimple A € GL,,(F) such that A = yBB with B € GL,(E), the smooth
transfer exists for the sliced representations

(GLn(F)a, 0lm(F)a) and  (GLgm(E)B, 867 (E)B)

Proof. Firstly, we prove the second assertion. We can assume that v = 1 and A is of the form
diag(Ai, Ag, ..., Ag) such that

k
GLon(F)a = [ [ GLim, (F),
=1

where F; = F[A;] is a field and A; is in the center of GL,,,(F;). For each 1 < i < k, let L; =
E ®p F;. Since A € N(GL,,,(E)), there exists B; € GLyy,,(L;) such that A; = N(B;) for each i.
We can choose B to be diag(Bi, Bs, ..., Bi). Then GLy ,(L;)p, is an inner form of GL,,, (F;),
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and GLym(E)B = Hle GLg 1, (Li)B,. For X € gl9,(E)p, it is easy to see that X B € glym(E)p,
where .

glom(E)p={Y € gl,(E): YB=BY},
which is the Lie algebra of GLym(E)p. For X € glZ.(E)p and h € GLym(E)p, we
have h"'XhB = h~'X Bh. Therefore, timing B on right, we get a GLgy,(E)p-equivariant
isomorphism

g[?n(E)B - Q[J,m(E)B)

where GL, ,(E)p acts on gly,,(E)p by conjugation. Since the existence of smooth transfer
between GL,,(F;) and its inner forms is known, we complete the proof.

The first assertion is proved in the same way. By the above discussion, we know that the
smooth transfer holds for

(GLn(F)a2_1,,0n(F)a2_1,,) and (GLow(E)B, 8, (E)B).
We can choose some scalar A € F' so that A 4+ A € GL,,,(F). Then A + X € GL,,(F) 42_1,, and
A+ X e GLyy,(E)p. Hence
(GLU,W(E)B)AJr/\ = GLm(E)A N GLa,m(E)B
is an inner form of
(GLm(F)a2-1,,) a+x = GLin(F) 4.

The rest of the proof is the same as that of the first assertion. O

PROPOSITION 5.27. To prove the existence of local transfer around all elements of Q(F') or q(F),
it suffices to prove the existence of local transfer around zero of q(F).

Proof. By Lemma 5.25, it suffices to prove the existence of smooth transfer for the sliced
representations (H,s;) and (H,,s;) where x <> y. By Remark 5.5 and Lemma 5.26, it suffices

!/

to prove the existence of smooth transfer for (Hp,,s,,) and (H,,, s, ), that is, the existence of

local transfer around zero of q(F). O

COROLLARY 5.28. Theorem 5.14 implies Theorem 5.13.

Ezxplicit analytic Luna slices. We now describe explicit analytic Luna slices at semisimple elements
of S or s(F'). We refer the reader to [JR96, p. 76] for the discussions on s, and to [JR96, §5.2]
for the discussions on S.

First let X € s(F) be semisimple. Write s(F) = sx @ s%, where s% is the orthogonal
complement of sx in s(F") with respect to (,). Set

Z = {¢ € sx : det((ad(X + €)% # 0},

which is a nonempty open set of sx and invariant under Hx. Let Zx = {X +¢: £ € Z}. Consider

the map
¢:HxZx —s(F), (hyX+4+& — Adh(X +9),

which is everywhere submersive. Let Ux be the image of ¢, which is an open H-invariant set in
s(F). Then Zx and Ux are what we want, and ¢ is the natural map:

Vv:Zx —s5x, X+E=E.
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Next let € S be semisimple. Write = = s(g) for some g € G, where s is the symmetrization
map. Consider the map

¢ HxGyx H—> G, (h&R)— hégh'.

Let Z’ be the set of £ such that ¢ is submersive at (1, ¢, 1), which is also the set of £ in G, such
that

det([1— Ad s(£9)][g) # 0.

Let
W' ={X € s, : det(1+ X)det(1 — X) # 0},

which is an open neighborhood of 0 in s,. Consider the Cayley transform
AW — Gy, X (1-X)1+X)7,

and denote by V the image of W’ under A\. Put Z = Z' NV and W = A~}(Z). Let U, be the
image of ¢(H x Z x H) under the symmetrization map s, and Z, the image of ¢(1 x Z x 1)
under s. Then Z, and U, are what we want.

The lemma below follows from the above construction and a direct computation by choosing
x =x(A,n1,n2) and X = X(A) in a standard form. We omit the proof here.

LEMMA 5.29. Let © € S (respectively X € s(F)) be semisimple. Then we may choose an
H,-invariant (respectively H x-invariant) neighborhood of = (respectively X ) such that for any
regular semisimple y in this neighborhood, k(y) is equal to a nonzero constant times k(1(y)).

5.4 Proof of Proposition 5.17
Now we can prove Proposition 5.17 with the help of the following results.

THEOREM 5.30. Denote by N the null-cone of s(F), by N the null-cone of s'(F).

(i) Let T € D(s(F))2" be such that Supp(T) € N and Supp(T) C N. Then T = 0.

(i) Let T € D(s'(F))H’ be such that Supp(T) C N’ and Supp(T) C N’. Then T = 0.
Proof. The first assertion is proved in [JR96, Proposition 3.1] when 7 is the trivial character.

The same proof goes through for the quadratic character n. The same proof is also valid for the
second assertion, noting the relation m’ < n? in Proposition 4.8. |

The following corollary is a direct consequence of the above theorem (cf. [Zhalda,
Corollary 4.20]).

COROLLARY 5.31. (i) Let Co = [\ ker(T") where T' runs over all (H,n)-invariant distributions
on s(F). Then each f € C°(s(F)) can be written as

f=fo+ i+ fo

with fo € Cy and f; € CSO(E(F) —N),i =1,2.
(ii) Let Co = (g ker(T') where T runs over all H'-invariant distributions on s'(F'). Then each
f €CX(s'(F)) can be written as

f="fotfi+fo
with fo € Cp and f; € C°(s'(F) —Nl),i =1,2.
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Proof of Proposition 5.17. Now we assume that Theorem 5.16 is true. First we consider the
converse direction: given f € C2°(s(F'))o, we want to show its smooth transfer exists in C2°(s'(F)).
For a general element f in C2°(s(F')), we say that f € C2°(s'(F)) is a smooth transfer of f if

O(ya f/) = H(x)OW(J:?f)? T <y,

for each y € s/ (F). We can and do assume that there exists a nonzero ¢ € C such that if f’
is a smooth transfer of f € C°(s(F)), then c¢f’ is a smooth transfer of f. This assumption is
proved in Theorem 8.2. Based on this assumption, we will show the following stronger form of
Theorem 5.14: for each f € C°(s(F)), there exists f € C°(s'(F)) that is a smooth transfer
of f. We use an induction argument to show this result. Suppose that the stronger form of
Theorem 5.14 holds for C2°(s,,(F)) and C°(s],(F)) for every m < n. Thus, by Corollary 5.24 and
Lemma 5.26, for each f € C°(s(F)—N), its smooth transfer exists. Therefore, by Corollary 5.31,
it suffices to show the existence of smooth transfer for f with f € C*(s(F) — N), which is
guaranteed by the assumption.

For the other direction in Theorem 5.14 the proof is the same. O

6. Representability

For X € s,4(F), it is more convenient to consider the normalized orbital integral
1/2
(X, f) = [DXOI*0M(X. £), € C(s(F)).
Similarly, for Y € s/ (F'), we consider the normalized orbital integral
/ 1/2
I(Y, f') = |D¥ (V)[*O(Y. f), ' € CZ(S(F)).

If X < Y, it is not hard to see that |D?(X)|r = |D%(Y)|p. Hence it does not matter if we
consider the smooth transfer with respect to the normalized orbital integrals instead of the
orbital integrals introduced before. The Fourier transform of the normalized orbital integral I3
is defined to be

(X, f) = I'"(X. ]).

For Y € s/ (F), we define Ty similarly.
To prove Theorem 5.16, we first need to study the Fourier transform of orbital integrals. In
this section, we prove the following fundamental theorem on the representability of f)"( and Iy.

THEOREM 6.1. (i) For each X € s5(F), there exists a locally constant H-invariant function ?)7(

defined on s,s(F') which is locally integrable on s(F'), such that for any f € C2°(s(F')) we have

PIX,f) = / o ORI SND2a.

ii) For each X € s/ (F), there exits a locally constant H'-invariant function ix defined on
sl (F) which is locally integrable on s'(F'), such that for any f € C°(s'(F')) we have

~

= [ ot ) ay
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We also write i(X,Y) (respectively i(X,Y)) instead of /z\';((Y) (respectively ix(Y)), which
is viewed as a function on s,5(F) x s,5(F) (respectively s.,(F) x s, (F')). Then it is not hard
to see that 7(X,Y) (respectively 4(X,Y)) is locally constant on s.(F) x s.5(F) (respectively
sl (F) x sl (F)), (H,n)-invariant (respectively H'-invariant) on the first variable and H-invariant
(respectively H'-invariant) on the second variable. Our method to prove Theorem 6.1 follows that
of [HC70, HC99]. Some of our treatment also follows that of [Kot05]. We only prove the assertion
for 1 /77 . The assertion for I, x can be proved in the same way and is left to the reader.

6.1 Reduction to the elliptic case

In this subsection we reduce the question of the representability of 7  to that for elliptic elements
X € 55(F). For X € 54(F), we say that X is elliptic if its stablhzer Hy is an elliptic torus.
Thus, if X = (% ’6‘), X is elliptic if and only AB is elliptic in GL, (F) in the usual sense.

For convenience, we suppose that X € s,5(F) is of the form (g 10"). From now on, we also
suppose that X is not elliptic, or equivalently, A is not elliptic. Then there exists a proper Levi
subgroup My of GL,, such that A € My. Let Py be a proper parabolic subgroup of GL,, such
that My is a Levi component of Py. Let Uy be the unipotent subgroup of Py. Set my = Lie(Mj),
po = Lie(Pg) and up = Lie(Up). Then py = mo D ug, and gl,, = po D tip where iy is the Lie algebra
of the unipotent subgroup Uy opposite to Up.

Write 5 = s @ s, where

S {2 e o ((2 Dcen)

Identify s (respectively s~ ) with gl,,. Under this identification, let t™ C s (respectively t~ C s7)
be the subspace that corresponds to mg, nt C s (respectively n= C s7) the subspace that
corresponds to ug, nT C s (respectively n~ C s~ ) the subspace that corresponds to iy. Set
t=tt@r,n=n"dn andn=n"@dn". Then s =r@&ndn and X € v(F). Notice that v
is isomorphic to a product of s,, with > n; = n. Also notice that n* =t @®n and (tPn)t =n
under the fixed pairing (-,-) on s.

We call a subspace f of s a proper Levi subspace if f is of the form v as above for some t.

Let P = Py x Pg, which is a parabolic subgroup of H = GL, x GL,. There is a Levi
decomposition P = MU and p = m @ u, with M = My x My, U = Ug x Up, m = mg o my
and u = ug @ ug. Notice that (M, t) ~ [[(H,,, s,,) for some (H,,,s,,). We fix an open compact
subgroup K of H such that H = MUK and 7|k is trivial. Recall that we write M = M(F)
and U = U(F). Here we choose the Haar measure on H so that vol(K) = 1, and choose Haar
measures on M and U so that for any f € C°(H),

/f )dh = ///fmuk ) dm du dk.

We choose the Haar measure on Lie algebra u(F') compatible with that on U under the
exponential map, and choose Haar measures on tv(F),n(F),n(F) according to the above
identifications.

For f € C°(s(F)), we define f* € C°(¢(F)) to be

1Y) = fY +2)dz,
n(F)

- [ s
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and define f(9) € C2°(x(F)) to be

DEFINITION 6.2. Let T, be a distribution on t(F'). We define the distribution (7;) on s(F') to
be

E(T)(f) = T(fO) for f € C2(s(F)).

The above process is an analogue of parabolic induction in the usual sense (cf. [HC99, §1]
or [Kot05, §13]), and has the following similar properties. Notice that M acts on t by the adjoint
action, which is induced from the action of H on s. Denote by t.s the regular semisimple locus
of v with respect to the action of M. If Y is in 5,5(F), then it is also in v (F). If Y € vs(F), put

[DE(Y) | = |det(ad(Y); m/t @ t/0)|'/2,

where ¢ is the Cartan space of v containing Y and t is the Lie algebra of the centralizer of Y in
M. The normalized orbital integral I;?M(f’), for f' € C°(x(F)), is defined to be

D ) dm

Then I;’(’M is a distribution on t(F'). In the proposition below, we write Ig(’H instead of I to
. . . . n}M
distinguish it from Iy .

PROPOSITION 6.3. (i) Suppose that Ty is an (M, n)-invariant distribution on t(F'), then i{(T;) is
an (H,n)-invariant distribution on s(F).

(ii) We have i2(IM) = 19"
(iii) Suppose that T, is an (M,n)-invariant distribution on v(F'), which is represented by a

function ©, which is locally constant on t(F') and locally integrable on t(F'). In other words,
for any f € C°(¢(F)),

L= [ eIl a.
Trs
Then the distribution i(T:) is represented by the function

0:(Y) = (Y,
v

where Y’ runs over a finite set of representatives for the M-conjugacy classes of elements in t(F)
which are H-conjugate to Y. The function Oy is locally constant on s,s(F') and locally integrable
on s(F), and, for any f € C°(s(F)),

i (T2)(f) Z/5 " @5(Y)/$(Y)f(y)|D5(Y)|;1/2 IV

(iv) The map f ~ f() commutes with the Fourier transform, and therefore i (ﬁ) = zﬁ/(T\t)

Proof. (i) For f € C*(s(F)) and h € H, define "f € C*(s(F)) by "f(Y) = f(Y"). To prove
assertion (i), it suffices to observe the following relation: for p = mu € P and Y € v(F), we have
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o) = [ L2z [ g maz
= / fY™+2zZP)dz
n(F)

= |det(Ad(p);n)|F fFY™ 4+ Z)dz.
n(F)

It is easy to verify that
|det(Ad(p); n)|p = |det(Ad(p); w)|r = dp(p),

where dp is the modulus character of P. Therefore (Pf)*(Y) = dp(p)f*(Y™). The rest arguments
are routine.
(ii) Write T'= Hx for simplicity. For f € C°(s(F)),

. F(X™n(h) dh = /T " / / F(X™FYn(m) dk du dm

/ / f (X™)n(m) dudm.
M

a:U — n, u—u WYu—-Y

Write Y = X™. Notice that the map

is an isomorphism of algebraic varieties, whose Jacobian is

|det(0 o ad(Y);u)|p.
Also note that
|det(g 0 ad(Y);u)|p = |det(g 0 ad(Y);u @ )|}/
~ |det(o 0 ad(Y);b/t) }/2
[det(g 0 ad(Y); m/0)] />
D)
DV

Therefore

H _ vymy\ (/27 ym m m
Iy <X,f>—/T\M/ DY (X™) L2 F(X™ + Z)n(m)dZ d

— |D¥(x 1/2/ FO(X)n(m) dm

= "M(X, fO).

The assertion (iii) is a consequence of Weyl integration formula, and the assertion (iv) is
obvious. |

Let s¢ be the open subset of elliptic regular semisimple elements in s(F').

LEMMA 6.4. Suppose that ¢ € C°(sen). Then ¢ and (gg) () are identically zero for every proper
Levi subspace ¢ of s. Moreover, for any regular semisimple element X of s(F) lying in v(F'), we
have R

I'X,¢)=1"X,¢) =0.
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Proof. The vanishing of ¢ is obvious. The vanishing of (qAS)(t) is a consequence of
Proposition 6.3(iv). The vanishing of the orbital integrals follows from the first assertion and
Proposition 6.3(ii). O

Let ¢ be an elliptic Cartan subspace of s, which means that one (any) element of ¢eq(F') is
elliptic. Let T be the centralizer of ¢ in H, and Z the center of G which is also contained in 7.
Then Z\T is compact since c¢ is elliptic. Now we require that vol(Z\T) = 1 here, which does not

matter.
Let 5% = (creg(F))? and ¢ € C2°(st,). We define the distribution I, € D(s(F))H" to be

/ / fy )n(h)dY dh.
Z\H
This distribution is well defined:

d(Y™)|dY dh

/Z . / FOD)6™)]

-/ dh(/ DY) | dY \f(Yh')!-lsﬁ(Yh/h)!dh’>
o \Jer) 2\l

-/ DS(Y)!FdY< / ) |¢<Yh>|dh’dh)
o(F) (Z\H)x(Z\H)
- / READBATEES

since I(Y,|¢]) € C°(creg(F)). Here I(-, f) is the normalized orbital integral without twisting 7.
We also define the distribution I3 € D(s(F))H" to be

f—/Z\H/ FOOMyn(h) dY dh.

FONBYM) dy = / . F ey ay.

We have the relation

s(F)
Thus

/ ) an [, 1030 )= [ wQ an [ F0e0) ).

by the absolute convergence of the latter one, which shows that I 3 is well defined and I 3= f(b-
In summary, we have the following lemma.

LEMMA 6.5. Let ¢ be an elliptic Cartan subspace of s and ¢ € C2°(s,). Then f¢ =1

In the next subsection, we will reduce Theorem 6.6 to the following theorem whose proof
will be given in §§6.3 and 6.4.

THEOREM 6.6. Let ¢ be an elliptic Cartan subspace of s and ¢ € C°(st,). Then f¢ is represented
by a locally integrable function on s(F') which is locally constant on s.s(F).

6.2 Proof of Theorem 6.1
To show the representability of the Fourier transform of orbital integrals, we need the following
relative version of Howe’s finiteness theorem (Theorem 6.7). Let us introduce some notation. If
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w is a compact set in s(F), put
T ()" = {T € D(s(F))?" : Supp(T) C cl(wf)}.

Let L C s(F') be a lattice (a compact open Op-submodule). Denote by C.(s(F)/L) the space of
f € C(s(F)) which is invariant under translation by L. Let jr, : J(w)? — C.(s(F')/L)* be the
composition of the maps,

res

jr: J(W)" = D(s(F)) — Ce(s(F)/L)7,
where C.(s(F)/L)* is the vector space dual to C.(s(F)/L) and res is the restriction map. Then
Howe’s finiteness theorem is the following.

THEOREM 6.7. For any lattice L and any compact set w in s(F'), we have
dim j,(J (w)7) < +o0.

Proof. It was shown in [RR96, Theorem 6.1] that Howe’s finiteness theorem holds in a more
general setting when 1 = 1. It is not hard to check that it still holds when 1 is our quadratic
character. O

The following variant gf Howe’s theorem is often used, and we refer the reader to [Kot05,
§26] for more details. Let jr, : J(w)" — D(L) be the composition of the maps

jL: J(@)" < D(s(F)) 5 D(s(F)) =S D(L),

where F denotes the Fourier transform.
THEOREM 6.8. For any lattice L and any compact set w in s(F),
dim j7.(J (w)") < +oc.
Proof. See [Kot05, Theorem 26.3]. O

COROLLARYA6.9. LetAw be compact, and let V' be a subspace of J(w)". Let L be any lattice in
$(F). Then jr(V) = jp(cl(V)).

Proof. See [Kot05, Proposition 26.1]. O

Proof of Theorem 6.1. By Proposition 6.3, it suffices to show that fg( can be represented when
X lies in ¢reg(F) for some elliptic Cartan subspace ¢ of s. Then Theorem 6.1 follows from
Theorem 6.6, Lemma 6.10 and the fact that s(F) = Upstice L- O

LEMMA 6.10. Let X € ¢.q(F) be an elliptic element and w a compact open neighborhood of X
in creg(F). Then given a lattice L in s(F), there exists ¢ € C2°(w!?) such that f;( and I4 have
the same restriction to L.

Proof. The proof is similar as that of [Kot05, Lemma 26.5]. We first show that I3 lies in the
closure of the linear space
I,:={ly: ¢ € CSO(WH)},

which is a subspace of J(w)". It suffices to show that if I,(f) = 0 for all ¢ € C°(w!?), then
Il(f) = 0. Note that

Iy(f) = / LL(f) - IH(#) dY.
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We may shrink w so that every function ¢ € C°(w) arises as Y +— IJ(¢) for some ¢ € C2°(w).
Thus I%(f) = 0 if I5(f) = 0 for all ¢ € C°*(w™). By Corollary 6.9, we see that j,(I%) € j(L,)
for any lattice L. In other words, given a lattice L, there exists a ¢ € C2°(w'?) such that jq;( and
f¢ have the same restriction to L. O

6.3 Bounding the orbital integrals

In this subsection, we will show the boundedness of the normalized orbital integrals along a
Cartan subspace (Theorem 6.11), which is crucial for proving Theorem 6.6. We follow the same
line as the proof of [HC70, Theorem 14], where there are no Shalika germs involved.

THEOREM 6.11. (i) Let ¢ be a Cartan subspace of s and f € C>°(s(F’)). Then

sup |[I"(X, f)| < +o0.
X €Ecreg(F)

(ii) Let ¢’ be a Cartan subspace of ' and f' € C°(s'(F)). Then

sup |I(X, f)] < +oo.
X Ec{mg(F)

We will prove only the first assertion with respect to s. The second assertion can be proved
in the same way. We use inductive method to prove this theorem. In the case n = 1, our case
essentially is the Gan—Gross—Prasad conjecture for unitary groups of rank 1. Thus Theorem 6.11
follows from the discussions in [Zhalda, §4.1] (in particular, [Zhalda, Lemma 4.1]). Now we
assume that Theorem 6.11 holds for C2°(s,,,(F')) for every m < n.

LEMMA 6.12. Fix a compact set w of s(F') and a Cartan subspace ¢. Then the set of all X € ¢(F)
such that X € cl(wf) is relative compact in ¢(F).

Proof. 1t suffices to assume w is closed. Consider the closed inclusion i : (¢/W)(F) — (s/H)(F)
where W is the Weyl group of ¢, and the natural map = : §(F) — (s/H)(F). Then 7(w) and
thus i~ !(m(w)) is compact. The lemma follows from the fact that the map ¢(F) — (¢/W)(F) is
a proper map between locally compact Hausdorff spaces. O

COROLLARY 6.13. For f € C°(s(F)), I"(X, f) = 0 for X € ceg(F) lying outside a compact
subset of ¢(F).

We first prove Theorem 6.11 in the following situation.
LEMMA 6.14. Let f be in C°(s(F) — N'). Then I"(-, f) is bounded on t;eq(F).

Proof. By Lemma 6.12 and Corollary 6.13, it suffices to prove that, given Xy € ¢(F'), we can
choose a neighborhood V' of Xy in ¢(F') such that

sup |[I"(X, f)| < +oo  where V' =V N s (F).
XeVv/

When X # 0, using the descent of orbital integrals (Proposition 5.20), we reduce to considering
the orbital integrals for C2°(sx,) with respect to the action of Hx,. Since Xy # 0, (Hx,,5x,) is
of the form

(GLm (F) 4, 8l (F) ) X (Hn—m, Sn—m(F))

for some semisimple A in GL,,(F') and some integer 0 < m < n. Then the result follows from the
inductive hypothesis on n —m and the bound of the usual orbital integrals for C°(gl,,(F)a) by
the work of Harish-Chandra. When Xy = 0, since Supp(f) "N = @, we can find a neighborhood
V of Xy such that I"(X, f) =0 on V. O
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Now let s9 be the set of Y € s(F') such that there exists an open neighborhood w of Y in
s(F) so that supxe,,, () [["(X, f)| < oo for all f € C2°(s(F)) with Supp(f) C w. Since N is
closed in s(F'), Lemma 6.14 implies that s(F) — N C s9. To prove Theorem 6.11, it remains to
show that N C s9. We need some preparation below.

Fix Xy # 0 in NV. Let (Xo,d(Xo),Yo) be an sla-triple as in Lemma 3.1. Consider the map

¢ : H x sy, —> s(F), (h,U)~ (Xo+U)"

By the same discussion as that of [HC70, part VI, § 4], we see that ¢ is everywhere submersive.
Set w = ¥(H X sy,), which is an open and H-invariant subset of s(F'). Since 1 is everywhere
submersive, we have a surjective linear map

CSO(H XEYO) - Cgo(w)v ar> fo

such that
/ fa(X)p(X)dX = a(h,u)p((Xo + U)") dh dU

HXEYO

for every locally integrable function p on w.

Let ' be the Cartan subgroup of H with the Lie algebra F'-d(Xj). Please refer to Lemma 3.3
and Proposition 4.4 for the notations below. Put ¢ = {(v) and write U, = 5(7)U7_1 for U € sy,
v €I'. We have

(Xo + U = (Xo 4+ tU" )" = t(Xo + U™
For v € T and o € C°(H X sy,), define o’ € C°(H X sy, ) to be
o/ (h,U) = a(y'h,U,-1).
LEMMA 6.15. Fix vy €I’ and a € C°(H X sy, ). Then
Falt 71 X) = HF T (X)), X €w.

Proof. Choose any function a in C2°(w). We have
fat™ ' X)p(X) dX
s(F)

=12 [ fu(X)p(tX)dX
s(F)

= [ ath Up(e(Xo + U)) dhdv
H><5y0

— |¢|2n® a(h, U)p((Xo + Uy)") dh dU
F ol
H><5y0

dU,
dh dU.
F

1 [l U p(X + 0))
H><5yO
It remains to compute the Jacobian |dU,-1/dU|r. Choose a basis Uy,...,U, of sy, as in
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Lemma 3.3. Write U = 21@@ a;U;. Then

Upr =t 107 =t U]
i

=t Z ai&i(v" Ui

Hence

dU,-
U

_ —X\/2 e
= [t|F" H g /2 = [t
F

1<i<r

which implies the lemma. O

For X € ¢1oq(F), there is a unique distribution 7% on sy, such that I7(X, fo) = 7% (84) where
B (U) = / alh, Un(h)dh, o € C(H x sy,).
H
For f € C°(w), define f’ € C°(w) to be f'(X) = f(t71X). It is easy to see that
(X, f) = [P X ).
Now fix a € C°(H X sy,), and set f = fo, f' = fl,, B = B and f' = S,. Note that
n2—7’—m
f/ = ’t’%«“ fa’-
We have
B'(U) = /H a(y th,U,-)n(h)dh = n(y)B(t~'07), U € sy,.

So we obtain

n’—n - n?—r—m n?—r—m
e TIIETX ) = T, far) = RS,

or

X f) = el T T f) 4 7B - B). (1)

By Proposition 4.4, we know n% + (n/2) —r —m < 0.

Now we continue to prove Theorem 6.11. Let Xy € N and suppose Xy # 0. We want to
construct an open neighborhood wy of Xy such that I"(-, f) is bounded on ¢ee(F') as soon as
Supp(f) C wp. Recall that we denote by A, the union of all H-orbits in A/ of dimension less
than or equal to ¢, and notice that Xy € N5,,2_, and Ny,2_,, = N. Hence we can choose an open
neighborhood wy of X in w such that wy N Ny,2_, C Xéq, and can assume w; = w{{. By [HC70,
Lemma 37|, we can choose an open neighborhood U of zero in sy, such that Xo +U C w; and
(Xo +U)NXE = {Xo}.

Fix v € T such that n(y) = 1 and |t|r = |£(7)|F > 1. Choose an open neighborhood Uy of
zero in U such that =14 U tblofl CU. Put N* =N —{0}.

LEMMA 6.16. We have N* C sq.
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Proof. We induct on r = dim sy, for Xo € N*. Put wy = (X +Up)", which is an open invariant
neighborhood of Xg. Consider the surjective map

HxUy —> wy, (h,U)— (Xo+U)",
which is everywhere submersive. Consider the surjective linear map
Co(H xUy) —> CF(wo), > fa,

which is the restriction of the map CX°(H X sy,) — C°(w) as before. Let f € C°(wp) and
choose a € C°(H X Up) such that f = f,. Set 8 = Ba, 8 = Bu and f' = f! as before. Then
B—p"eCU), and 0 ¢ Supp(8 — ). Define ag(h,U) = a1 (h)(B(U)—p'(U)) for h € H,U € U,
where oy € C2°(H) and [;; a1 (h)n(h) dh = 1. For X € teq(F), we have

ITI(X’ fao) = T;?((ﬁao) = 7—;7((5 - 6/)7

and Supp(fa,) NNop2_, = ¥. Now we start the induction on r = dim sy,.
First assume that r = n. Note that r = n is the initial step. In such a case we have n? +
n/2 —r—m=—n/2 and

X ) = A )+ T - ),
by (1). Put ¢ = |t|l_pn/2 < 1. Since Supp(fa,) "N =0 (N = N5,2_,,), by Lemma 6.14, we have

a= swp |8 - B)] < +oc.
X €Ecreg(F)

Iteration gives
—dn/2 —kd/2
DX ) = "I+ Y I (8 =8, (d > 1),
1<k<d

or

"X, f) =X )+ Yl (B =B), (d=1).

1<k<d
Since limg_, 4o I"(t*X, f) = 0, we get

X, f)l<a Y &<

1<k<oo

Now assume 7 > n. Since Supp(fa,) N Nay2—, = @, by the inductive hypothesis and
Lemma 6.14, I"(X, fa,) is bounded on ¢eg(F') and so is 74 (8 — '). Applying the same argument
as the case r = n, we complete the proof of the lemma. O

Applying the same arguments as those of [HC70, part VI, § 7], we have the following lemma.
LEMMA 6.17. We have 0 € s¢.

At last, Theorem 6.11 follows from Lemmas 6.14, 6.16 and 6.17.
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6.4 Proof of Theorem 6.6
Now we continue to prove Theorem 6.6. Let ¢y be an elliptic Cartan subspace of s and ¢y €
C(s59). For simplicity, we write ¢ = ¢, and denote by © the distribution Iy, that is, for
fecx(s(F)),

o= [ [ )e("nn)ay dn

Z\H Js(F)

Our goal is to prove that the distribution © can be represented by a locally integrable function
on s(F) which is locally constant on s.(F). We follow the strategy of the proof of [HC70,
Theorem 16].

For t > 1, let Q; denote the set of all h € H such that 1 + log||h[|z\ g < t. Then Q; is a
compact set modulo Z. Let ®; denote the characteristic function of €2;. Then we have

O(f)=lim [ ®(h) [ [V)e(Y")n(h)dY dh
TTOJZ\H s(F)

—um [ foney)ay.
t—+o0 E(F)

where
0iv) = [ aut)o(x*)n(n) dn
Z\H
We will first show that lim_, o ©4(Y") exists for all Y € s,4(F), and then will give an estimation
on ©; to apply Lebesgue’s theorem.

LEMMA 6.18. Given a compact subset w of s(F'), we can choose ¢y > 0 such that
L+ log||hllz\a < co(1 + log(max{1, [D*(X)[z'}))
for h € H, X € ¢eq(F) such that X" € w.
Proof. The proof is the same as that of [Kot05, Lemma 20.3]. O

We choose a compact set w C s(F') such that Supp(¢) C w,Supp(f) C w. Fix a Cartan
subspace ¢ C s. Let T be the centralizer of ¢ in H, and A the maximal split torus in 7". Notice
that A consists of elements of the form diag(a, a) where a € Ay for some split torus Ay contained
in GL,,(F). Let w, be the set of X € ¢(F) such that X" € w for some h € H. Then w, is compact.
For X € we,h € H, set

ox (h) = H(X")n(h).
Note that ¢x has the following properties.

(i) Supp(¢x) C Cx for some subset Cx C H which is compact modulo A and ¢x (ah) = ¢x(h)
for h € H,a € A.

(ii) If P} is a proper parabolic subgroup in GL,,(F) with Levi decomposition Pj = M}U/, and
Afy C Ay where Aj is the center of M{, then

¢x(uh)du =0 for each h € H,
U/

where U’ = U/, x U/, is a unipotent subgroup of H.
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Let K{ be an open subgroup of K’ = GL,,(OF) such that [|k| = 1,n(k) =1 for all k € KJ.
Here we choose the Haar measure on H so that vol( K] x K1) = 1. Fix an open compact subgroup
K, of GL,,(F') such that

Kyc (UNK)(MnNK})(UnNK])

for any parabolic subgroup P/ = M'U’ in P(Ay), where we denote by P(Ay) the set of all parabolic
subgroups P’ = M'U’ of GL,(F) such that A is the center of M’. Set Ky = K{ x Ky C H. For
an element y € H, put Ko(y) = Ko N K{. Set

1Cxlr\er = sup [|hlp\a-
heCx

The following lemma is an analogue of [HC70, Theorem 20], and we omit the details of the proof
since it is the same as that of [HC70, Theorem 20].

LEMMA 6.19. There exists a number ¢ > 1 with the following property. Let y € H, and ) = 2
(Cx,y) be the set of h € H such that

L+log ||hllz\a < c(1 +log [|Cx ||\ g) (1 + log |ly[lm &)
Then
| oxtymdi =0
Ko(y)

unless h € Q.

Now suppose that X € c.o(F) and y € H are such that XY € w. Then X € w.. By
Lemma 6.18, there is a positive constant ¢y, only depending on w and ¢, such that

L+10g |yl < co(l + log(max{1, [D*(X)|z'}))-

Set w, = we N ¢reg (F). Then for any X € w; we can choose a subset Cx of H such that:

(1) Supp(¢x) C Cx and Cx is compact modulo A;
(2) 1+41og |Cx |l < co(1 +log(max{1,|D*(X)[5'})).
Let Qx (X € wl) be the set of h € H such that

L+ log||hll 2\ < (1 + log(max{1, [D*(X)[z'}))?,

where ¢ = ¢ - c% with ¢ as in Lemma 6.19. Let ®x denote the characteristic function of Qx.
Then we have

OuX") = [ @B () di
Z\H
- / (k) [ (X Yn(h) di dh.
Z\H K
Note that ||kh| = ||h|| for k € K;. By Lemma 6.19 we have
S XYY dk = | ¢x(ykh)dk =0,

Ky Ky

unless
L +logllk1h|| 2\ g < c(1 +log |Cx||r\g) (1 +logllyllma),
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where k; runs over a set of representatives of K;/Ko(yo) in K. Since ||kh| = ||h|| and
c(1 +log || Cxllr\m) (1 +log yllm\ar) < ec(1 + log(max{L, |D*(X)[3'}))?,
the integral le A(XYF1) = 0 unless h € Qx. Thus, if
t > c1(1 + log(max{1, [D*(X)[z'}))%,

we get

04(XY) = / (h)@x(Wn(h) [ S(X) dk dh
Z\H K1

= / Dx(h) [ H(XY*") dk dh
Z\H K

= / H(XYEM)n(h) dk dh.
Z\H JK;

Therefore lim;_, 4 O¢(XVY) exists for XY € wNss(F). By enlarging w, limy_, 4 o ©;(X) exists for
all X € s.4(F).
Now we estimate ©;(X). All the notations are the same as above. We have

o< [

2\

— [ jeexidn [ x(yah)da.
A\H

Z\A

Ox(y h)|o(X")| dh
H

Recall that ¢(X")n(h) = ¢x(h) = 0 unless h € Cx. Suppose h € Cx. We can assume log ||| <
log | Cx| and log ||y|| = log [|y|l7\ - Then ®x (y~*ah) = 0 unless y~'ah € Qx. Since

1+1log [lallzym < (1+log [[A])(1 +log ly " ahl| 2 m) (1 + log 1yl]),
we have ®x (y~lah) = 0 unless
1+log Jlall 2\ i < e2(1 + log(max{1, | D*(X)|z'}))",

where ¢y = clcg. Therefore

/ ®x(y tah)da < / da
Z\A 1-+log [lal| 2\ i <e2(1-+log(max{1L,| D*(X)| z'}))*

< es(1 + log(max{1, |D°(X)|z' 1),

where ¢z is a positive constant, independent of the choice of X € w!, and ¢ = dim Z\ A. This
shows that

©:(XY)| < e3(1 4 log(max{1, !DE(X)\F}))M/\ [(X™)| dh.
A\H
Notice that Theorem 6.11 also holds when = 1. Then we have

sup |D°(X) ;/2/ |6(X™)| dh < +o0.
Xew; A\H

Hence
10:(X¥)] < ea] D*(X)[ (1 + log(max{1, [ D°(X)[51}))

1857

https://doi.org/10.1112/50010437X15007344 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007344

C. ZHANG

for all X € ¢(F) and y € H such that X" € ' = w N s,5(F). Since there are only finitely many
nonconjugate Cartan subspaces in s, there exists a constant cs such that

10:(X)| < es]D*(X) |72 (1 + log(max{1, |D*(X)|'}))*

forall X €w' and all t > 1.
It follows from the lemma below that the function

X | D) (1 + log(max{L, [ D*(X) 1)
is locally integrable on s(F"). Then Theorem 6.6 follows from Lebesgue’s theorem.

LEMMA 6.20. There exists € > 0 such that the function |D*(X)|,° is locally integrable on c¢(F)
for any Cartan subspace ¢ of s.

Proof. See [Zhal4a, Lemma 4.3]. O

7. Local calculations

7.1 Limit formulae
In this subsection, we obtain formulae for i’(X,Y) (X,Y € s(F)) and 3(X,Y) (X,Y €
si(F)) at ‘infinity’, which are analogues of [Wal95, Proposition VIIL.1]. The proof of [Wal95,

Proposition VIIL.1] is very technical. Here we modify Waldspurger’s proof a little to make it
available in our situation.

Statement. Let ¢ be a Cartan subspace of s, and T~ the maximal #-split torus in G whose Lie
algebra is ¢. Let T be the centralizer of ¢ in H, and write t = Lie(T). For X,Y € ¢,s(F'), define
a bilinear form ¢xy on h(F')/t(F) by

QX,Y(Z7 Zl) = <[ZvX]7 [Y7 ZI]>7

where the pairing (-,-) is the same one as before. One can check that the form ¢xy is
nondegenerate and symmetric. One can also verify that ¢xy = qy,x. We write 74(X,Y) =
Y4 (qx,y) for simplicity. Recall that, by conventions, T'= T(F'), H = H(F).

Let ¢ be a Cartan subspace of §'. Similarly, we denote by T/~ the maximal -split torus in
G’ whose Lie algebra is ¢/, by T’ the centralizer of ¢’ in H’, and by t’ the Lie algebra of T’. For
X, Y € ¢1ey(F), we also define a nondegenerate, bilinear and symmetric form gx y on b'(F)/t'(F)
in the same way as above.

The following formulae depend on the choices of the Haar measures on T and H (also on T”
and H'). Here we equip H or T with the Haar measure so that the exponential map preserves
the measure in a neighborhood of 0 in h(F') or t(F). We make the similar choices for the Haar
measures on 7" and H'.

PROPOSITION 7.1. Let the notations be as above.

(i) Let X € 5;5(F) and Y € ¢yeq(F). Then there exists N € N such that if p € F* satisfying
vp(p) < —N, we have the equality

DX, Y)=r(Y) Y nh)y(ph X, Y)$((ph- X,Y)),
heT\H,h-X €c

and

X pY) =k(pY) > n(h)y(ph - X, Y))((ph- X,Y)).
heT\H,h-X c

1858

https://doi.org/10.1112/50010437X15007344 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007344

ON THE SMOOTH TRANSFER FOR GUO—JACQUET RELATIVE TRACE FORMULAE

(i) Let X € ¢/ (F) and Y € ¢!

reg

vp(p) < —N, we have the equality

(F). Then there exists N € N such that if p € F'* satisfying

WX, Y)=i(X,pY) = Y yplph- X, Y)¢((ph- X,Y)).
heT'\H',h-X ¢’

In particular, the above expression is zero if X is not conjugate to any element of ¢(F') (or

¢(F)).
Proof of Proposition 7.1. We now prove the formula for i7(uX,Y). The formula for (X, uY)

~ ~

can be deduced from it. We leave the proof of the formulae for i(uX,Y’) and (X, uY) to the
reader. They can be proved in the same way.

Firstly, we introduce some notations. Let q (respectively p) be the unique complement of t
(respectively ¢) in b (respectively s) which is stable under the adjoint action of T. Denote by S;
the set of roots of T~ in g(F). For each subspace f C g(F) such that the restriction of {-,-) to

f is nondegenerate and for each Op-lattice L C f, set L ={f € §: VW' € L,yp({(¢',¢)) = 1}. We
denote by L. the Op-lattice of ¢(F") such that

Lc={Z € ¢(F) : Va € S.,vp(a(Z)) > 0}.

Fix Op-lattices Ly C p(F), Ly C t(F) and Ly C q(F). Set Ly = L@ Ly, Ly = Ly® Ly, L = Lo Ly,
For simplicity, write d = dimg(g(F)) = 4n?. Denote by F[U], the set of monic polynomials
of degree d with coefficients in F. For P € F[U]y, write

d
PU)=>_s(P)U".
i=0
For a € Z and Py, P, € F[U]y, we write Py = P, mod w®QOp if vp(s;(P1) — s;(P2)) = a for each
i=20,1,...,d. For each Z € g(F), denote by Pz the characteristic polynomial of ad(Z) acting
on g(F). Then Pz € F[U]4.
Fix an integer ¢ € N satisfying the following conditions.

(i) For each a € N, a > ¢, we have the following.

— We have the inclusions w®Ly C Vj and @w®L C Vj.
— The group K, := exp(w®Ly) is a subgroup of K = GL,,(Ofr) x GL,(OF), and 1|k, = 1.
— The action of K, stabilizes Ly (hence stabilizes fjs)
(ii) For each a € N, a > ¢, and each Z € w®Ly, we have:
~(expZ)-Y - Y —[Z,Y] € w?*“Lg;
~ (exp2)-Y =Y —[2,Y] - 1[Z,[2,Y]] € @3 L,.

(iii) Denote by C(X) the set of X’ € ¢(F) satisfying that there exists h € H such that
h- X' = X, which is a finite set. We require that the following hold.

~IfaeN, a>c, X', X" e C(X), and v € K, satisfying v- X' = X", then X' = X".
— For each X’ € C(X), denote by ng’ the dual of Lq in q(F') with respect to the form
gx,y; then require wCng’ C 2w “Ly.

(iv) If Z € p(F) satisfying [Y, Z] € Ly, then Z € w L.
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(v) For each h € H, denote by c(h) the unique element of Z such that
Xt e e, _ e+,
Since X € s,5(F), the set {c(h),h € H} has a lower bound. We require that the following holds.
— For each h € H, ¢(h) > —c.

(vi) Fix a basis B of g(F) formed of basis of ¢(F') and t(F'), and root vectors associated to
S¢. We require that the following hold.

— For each Z € Zp, the coefficients of the matrix representation of ad(Z) with respect to
the basis B are of valuation > —ec.

— Foreachi=0,1,...,d, vp(si(Px)) > —c.
(vii) There exists an open compact set € C ¢reg(F') such that if Z € c,o(F') satisfying Pz =
Px mod w®Op, then Z € ().

The integer c is fixed from now on. We also fix an open compact 2 satisfying condition (vii).
The following lemma actually is [Wal95, Lemme VIII.3|, and whose proof can be applied in our
situation.

LEMMA 7.2. There exists ¢ € N, ¢ > ¢, such that ifa €N, a >, and Z € Q + w‘”‘clzp, then
there exists v € K, such that v - Z € Q).

From now on, we fix an integer ¢’ as in the above lemma. Set
N =2(d+8)c+6c +12. (1)
Let p € F* be such that vp(u) < —N. Choose m € N such that the following hold.
— The functions Y’ > i(uX,Y"), Y' > |D*(Y')|r and x(Y) are constant on Y + @™ L.

— For each X' € C(X), uX' € w ™Ls.

Let f be the characteristic function of Y + w™L,, and f’ be the characteristic function of
w~ ™Ls. Then we have

fﬂ(HX, f)= /(F)ZH(MX’ Y’)K&(Y’)f(Y’”DS(Y,)|;1/2 ay’
= vol(@" L) [D*(Y) [ 5 (Y )" (X, Y ). (2)

On the other hand, it is easy to verify that
FY') = vol(@™ Lo}y (Y. Y') f (V).

Hence

(X, f) = |D*(uX)[ /> vol(w™ L) . F XMy, X" )n(h) dh.

Set
a=[—vp(u)/2] —2c—c —1. (3)

By (1), a > c. Fix a set of representatives I in H for the double coset T\ H/K,,. By condition (iii),
we can suppose that if there exist h € I and h’ € ThK, such that X € ¢(F), then X" € ¢(F).
Then we have

o~ 1/2 .

P(pX,Y) = |D*(uX)D* (V)2 K(Y) Y vol(T\ThK,) £ (nX " )n(h)i(h),

hel’
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where

i(h) = [ (Y, uX"))dn.
K,

Fix h € I". Choose b € N such that:
o (c+ e(h) — vp()) /2 < b < clh) — vr () — 1 — 20

e ) ;

which implies b > a. Fix a set of representatives I of K,/K}. Then we have
i(h) =Y _i(h,g),
g€er”’

where

i(h,g) = g VY, pX"97)) dy.

Fix g € IV, and set X’ = X". Then
i(h,g) = / Y((exp Z - Y, uX')) dZ.
wbLy

Notice that since K}, stabilizes Ly and Lg, then ¢(hg) = c(h). In particular, X’ € w= <" L,. By (4),
we have
({2, pX")) =1
for each Z € w?~°L,. Notice that b > c. For Z € w’Ly, by condition (ii), we have
d({exp Z - Y, pX")) = ({Y + [Z,Y], nX"))
= (Y, nXNY((Z, [V, nX7])).

Therefore we see that i(h,g) =0 if [V, uX'] ¢ w_bzh. We make the following claim:

(*) if [Y,uX'] € w ®Ly then X" € ¢(F).
Now we prove this claim. Suppose [Y, uX'] € w*bzh, in other words, [Y, X}] € ,uflw*bzq, where
X' = X{+ X, is the decomposition of X’ with respect to s = ¢ @ p. Thus, by condition (iv),

X; € plw L, (5)
Moreover, by (4), X, € w—dh)“Zp. By the definition of ¢(h) and that c¢(hg) = ¢(h), we deduce
that
Xl e w WL, — @ W+

Set R = {a € S. : vp(a(X!)) < —c(h) 4 1}. The above relation and the definition of L. imply
that R # . Set r = #R, we calculate the coefficient s,(Px). This is a sum of products of the
coefficients of the matrix representations of ad X! and ad Xé with respect to the basis B. By (4),
(5) and condition (vi), the coefficients of ad X, are of valuation > —c(h) + 1. The same relation
holds for the coefficients of ad X{ other than that of a(X{) for a € R. The term [] ., a(X{),
which occurs in s,(Px), is of the valuation strictly less than that of any other term. Thus

vp(sy(Pxr)) = UF(H a(Xé)) < r(—c(h) +1).

aER
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Since X' is conjugate to X by the action of H, then Py = Px. By condition (vi), we have
—c <r(—c(h)+1),

therefore
c(h) <ec. (6)

Let i € {1,2,...,d}. We now compare the coefficients s;(Px) and s;(Px). Their difference is
a sum of products of coefficients of the matrix representations of ad X! and ad X,g with respect
to the basis B, and at least one coefficient of ad X, is involved in these products. By (6), the
coefficients of ad X! are of valuation greater than or equal to —c(h) > —c. By (4)-(6) and
condition (vi), the coefficients of ad X, are of valuation greater than or equal to dc. Therefore

vr(si(Pxr) — s8i(Px1)) =2 —(i — 1)c+dec > c

In other words, Py; = Px: mod @w‘Op. Thus, by condition (vii), X{ € Q. By (4)-(6), X, €
w‘”dffp. By (1) and (3), a > ¢/. By Lemma 7.2, there exists v € K, such that - X’ € ¢(F). By
the choice of I', we have X" € ¢(F). Now we have finished the proof the claim.

From now on, we suppose that X" € ¢(F). Thus f'(uX") = 1 by the condition on f’. Notice
that the multiplication by h~! induces an isomorphism from T\ThK, to T\TK,. Now we have

VX, Y) = k(Y)| D (uX)D*(V)[* ol (Ko) 7 vol(M\TK,) > n(h)i(X), (7)

X'=XheC(X)
where
J(X') = . Y((Y, n X)) dry
— [ wllexpz-Youx?) az.
Wa’Lh

Fix X’ € C(X). By (1) and (3), ¢({Y"
(

pX')) =1for Y’ € w3 <¢L,. Since Y, X' € ¢(F), then for
any Z € g(F)a <[Z,Y],X/ = >

= 0. By condition (ii), we have

i) =y [ (212 vnx) ) az

o321 2)) dz
—uxolees) [ o jaws(@) a2
w?Lq
Since a < —c¢ — vp(p)/2 and by condition (iii), we obtain
J(X") = vol(w* L) vol(w” Lg)'/? vol (e~ Lg) 1y (guxr y ) ({Y, 1 X)), (8)
where Lq is the dual lattice of Ly with respect to the form g, xy. There is a relation:

vol(K,) = vol(T\TK,) vol(T N K,) = vol(T\T K,) vol(w® Ly). (9)
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By definition
Ly={Z € a(F) :¥Z' € Ly, v(([Z,uX'),[Y, Z'))) = 1}
={Z ea(F):VZ' € Lo, p(([[%, nX"), Y], Z')) = 1}
={Z € q(F): [[Z, nX"],Y] € Lq}.

In other words,

(adY) o (ad pX")(Lg) = Ly,
and
vol(Lq) = |D*(Y) D* (uX")| 5! vol(Ly). (10)

On the other hand, we have the relation

vol(Lq) vol(Lg) = 1. (11)
Then Proposition 7.1 follows.

7.2 Formulae for ~,(X,Y)
For X, Y € ¢1eg(F) or ¢}, (F'), since 7,4(X,Y") appears in the expression of i(X,Y) ori(X,Y) as

re,

in Proposition 7.1, we neged to know an explicit formula of v, (X,Y"). In this subsection, we show
a formula (see Proposition 7.3) of 7, (X, Y’) for X, Y lying in a Cartan subspace of the Lie algebra
associated to a general symmetric pair. This result is an analogue of [Wal95, Lemme VIIL5].

Now we introduce some notations. Assume that (G, H,0) is a general symmetric pair, as
introduced in §3. Let s be the Lie algebra associated to (G, H, ), and ¢ a Cartan subspace of
s. Let T be the centralizer of ¢ in H and write t = Lie(T). Fix a G-invariant and #-invariant
nondegenerate symmetric bilinear form (,) on g(F'). Then, for X,Y € ¢;ee(F'), the bilinear form

gx,y on h(F)/t(F) defined by
QX,Y(Za Z,) = <[Z7X]v [Y’ Z/]>

is nondegenerate and symmetric. Write v, (X,Y) = vy (¢x,y). For any subspace f of g(F') such
that the restriction of (,) on f is nondegenerate, we write v, (f) for the Weil index associated to
¥ and the form (,) on f.

Let T~ be the maximal #-split torus in G whose Lie algebra is ¢. Denote by S, the set of
roots of T~ in g(F). Write I'g for the absolute Galois group Gal(F/F). Then I'r acts on S..
For a € S;, denote by m,, its multiplicity in g(F'). Since ¢ C s, for a € S;, we have §(a) = —«a
and mq = m_,. For a € S, denote by I'y,, the stabilizer of {«, —a} in I'r, by Fi, the fixed
field of I't, in F, and by S¥ a fixed set of representatives of orbits {a, —a}. Notice that, if
X,Y € treg(F), then a(X)a(Y) € Fiq.

For a € S¢, denote by ¢ the character ¢ o Trp, /p of Fio. Set

((X)a(Y)q)
v (4)
where ¢ is the quadratic form on FL, defined by g(\) = \2.

Yrea (U(X)a(Y), ) = 1

PROPOSITION 7.3. Let the notations be as above. Then, for X,Y € ¢.eq(F'), we have

W (X, Y) =7 (4(F)) "y (b(F))

x T ((@X)a(Y),2)pe, vrea (@(X)a(Y), ¢) ",
aeSE

where (,)p,, Is the Hilbert symbol on Fi,.

1863

https://doi.org/10.1112/50010437X15007344 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007344

C. ZHANG

Proof. Notice that for a € S. we have myo, = m, for every ¢ € I'p. For each root space gq.
associated to a € S¢ we can choose its basis {E],..., ET} so that: (1) o(E}) = E.,, for each
o€ p; (2) 0(E,) = BLo; (3) (B, BL,) = dij.

Consider the homomorphism

[ maFea — aF), )= 303 S o) (EL, + ELy).

S a =1 gel'/T1q
In fact the image of 7 lies in g(F') and 7 defines an isomorphism
HmaF:I:a — q(F)7
S¢

where ¢ is the unique complement of t in h which is stable under the adjoint action of T. For
(N € HS: Mo Fia, Wwe have

sy (O =33 S oOAA(EL + Bl XL [V, By + EL)

a€eS¢ i=1 gel' /T,
=Y oA (—oa(X)oa(Y)(Ery — B o, By — ELbp)

—oa
a,l,0

=Y 0N 2oa(X)oa(Y W By + B 4o Eby + EL,)

—o) —oQx

a,t,o

= Z ZOjQX,Y,a(Ai)v

aeSE =1
where gx y.o()) is the quadratic form on Fl, defined by
ax,v.a(A) = Trp, r(20(X)a(Y)N).

Therefore

(X, V) = JT wlaxya)™.
aeSE

For a € 57, let qg(,y, ., be the quadratic form on Fl, defined by
Ay ya(N) = 2a(X)a(Y)N%
Then vy (gx,v,a) = ’YW(q;{,Y,a)’ and
Y (dxyva) = ((X)a(Y),2) o Vrea ((X)a(Y), ¥ ) vy (q),
where ¢/, is the quadratic form on Fy, defined by ¢/, (\) = 2A2. Therefore

Y (axy.a) = (a(X)(Y),2) ey YEr, ((X)(Y), 9) vy (¢a),

where ‘ 4 ' '
Ga(N) = TrFJEO¢/F(2)‘2) = TrFia/F(<E}x + EL,, E, + El—a>)‘2)~

In summary, we deduce that

w(X,Y) =[] (@X)a(Y),2) re,yr. (@(X)a(Y), ¥) 1 (ga) ™

aEeSy
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On the other hand, by the same argument as above, we can show that
yo@(F) =TT lga)™-
aEeSY

Together with the obvious relation

Yo (A(F)) = 75 () "y (h(F)),

we complete the proof. O

7.3 Comparison lemma
To obtain the main result of this subsection, we need the following lemma.

LEMMA 7.4. Let X € creg(F) and Y € ¢, (F) be such that X <> Y. Then there exists an
element x € GLg,(F) such that Ad(z)Y = X, and Ad(z) induces isomorphisms Ad(x) : ¥ — t
and Ad(z) : ¢ — ¢ over F.

Proof. Tt suffices to prove this for X = (§ 161) and Y = (% 'YOB), where A € GL,(F) is regular
semisimple and A = yBB. Then we have

¢(F) = {(AOC g) . C € gln(F), AC = CA},
{(F) = {(10) g) . D € gly(F), AD = DA},

J(F) = {(% 75) . P e gl,(E),BP = PB},
" ¢(F) = {(%2 g) .Q € glu(E),BQ = QB}.

Take x = (lgl 799) € GL2,(E). We claim that Ad(x) satisfies the required condition. By the above
relation, it is easy to see that:

(i) Ad(z) - (370 = (>, ng*l), APB~! = PB14;

(i) Ad(z)- (§5) =(§0) 4Q = QA.

Therefore we have to show that PB~! € gl,,(F), Q € gl,(F).

Note that since A = BB, A commutes with B. It is easy to see that P and @ also commute
with A. Hence P and ) commute with B, since A is regular. Therefore the relation BP = PB
implies that PB~! = PB_I; the relation BQ = QB implies that Q = @, which concludes the
proof. O

Now let X € ceq(F) and Y € ¢, (F') be such that X < Y. Then we can take an x € GLa,(E)

as in the above lemma. For any V' € ¢, (F), put U = Ad(z)V.
LEMMA 7.5. Let X,Y,U,V be as above. Then we have the following relations
(X,U0) =\, V),
and
76(X,U) = 7 (0(F) )y (' () "y (Y, V).

Proof. The first relation follows directly from the above lemma. The second relation follows from
the above lemma, Proposition 7.1 and the similar arguments of [Wal95, p. 96, (6)]. O
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7.4 Test functions

This subsection is devoted to showing that we can construct specific C°-functions satisfying
certain ‘good’ matching conditions. Such functions will play an important role in proving
Theorem 5.16 by global method. The result below is an analogue of [Wal97, Proposition in
§8.2].

PROPOSITION 7.6. Let Yy € ¢, (F) C s,(F') and Xo € treg(F) C sp(F') be such that Xy <> Yp.

reg

Then there exist functions f € C°(s(F)) and f' € C°(s'(F')) satisfying the following conditions.
(i) If X € Supp(f), there exists Y € ¢, (F) such that X < Y.
(ii) IfY € Supp(f’), Y is H'-conjugate to an element in c;eg(F).
(iii) The functions f and f’ are smooth transfers of each other.
)

(iv) There is an equality

K(Xo)I"(Xo, f) = cI(Yo, f') # 0,

where ¢ = v, (h(F))yy (b (F)) .

Proof. Let W, (respectively W) be the Weyl group associated to ¢ (respectively ¢'), i.e. W, =
Ny (¢)/Zg(c) (respectively Wy = Ny (¢')/Z i (c')). Set

C(Xp) ={X € treg(F) : X = i(Xp) for some i € W},

and
C(Yy) ={Y €l .(F): Y =i(Yp) for some i € Wy }.

reg

By Lemma 7.4, we fix an isomorphism ¢ : ¢(F) — ¢(F) such that ¢(Yy) = Xo. Fix Vj €
Creg (F') and Up := (Vo) € treg(F) so that if X € C(Xo) — Xo (respectively Y € C(Yp) — Yp), we
have (X — Xo, Up) # 0 (respectively (Y — Yp, Vo) # 0), and moreover, x(Up) = k(Xp). We make

the following choices.
(i) Fix an integer r > 1 such that the following hold.
— We have 1 + w"Op C F*2.
— The sets i((1 + w"Op)Up) (respectively i((1 + w"Or)Wy)), for i € W, (respectively
i € Wy), are mutually disjoint.

(ii) There exists an integer N such that if u € F* satisfying vp(u) < —N, we have the
following.

— For each X € C(Xy) — Xo (respectively Y € C(Yp) — Yp), the character o —
Y(w" pa(X — Xo, Up)) (respectively a — ¢(w" pa(Y — Yy, Yp))) is nontrivial on Op.

(iii) Fix N and p € F* with vp(u) < —N such that the following hold.

— We have n(p) = 1.

— The condition (ii) above is satisfied.

— The formulae of Proposition 7.1 hold for i"(Xo, i(uUp)) and i(Yo, 7' (uVp)) for all i € W,
and i € Wy.
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(iv) Set wy = p(l + @w"Op)Up and w) = p(1 + w"OF)Vj. Denote by d (respectively d') the
F-vector space generated by Uj (respectively Vp), and fix a complement e (respectively ¢') in
¢(F) (respectively ¢/(F)), i.e. ¢(F) =02 @e (respectively ¢/ (F) =0 @¢). If U € ¢(F) (respectively
V € d(F)), denote by U, (respectively Vi) its projection on d (respectively ?’). We choose open
compact neighborhoods w, and w}, of 0 in ¢ and ¢’ small enough so that if we set w = wg ® w,
and W' = w) @ w),, then we have the following.

— The sets i(w) (respectively i'(w')), for i € W, (respectively i’ € W), are mutually
disjoint.

— We have w C treg(F), w' C tree(F), p(w') = w,
match with each other if and only if (V) = U.

— For each X € C(Xj) (respectively Y € C(Y))), and each U € w (respectively V € '),

and therefore, for U € w,V € W/, they

o~ ~

/Z\W(Xv U) :/’L\H(Xv Ub)v Z(Y,V) :Z<Y7 ‘/D/)

The function « is constant on w, which hence equals x(Xj).

Define a function f, (respectively f/,) on w (respectively w’) by

Ju(U) = ¥(=(Xo,Up)) for U € w,
fL(V) ==Y, Vo)) for Veuw.

Now we fix a function f € C°(s(F)) (respectively f' € C°(s'(F))) such that

Supp(f) C w® and k(U)I'NU, f) = f.(U) for each U € w,
Supp(f’) c W' and I(V,f) = f,(V) foreach V € u'.
Then, we have, for X € s.5(F),

fu(U) if X is H-conjugate to some U € w,
AX)TIX, f) = {O ) otherwise

and for YV € sl (F),

v, ') = (V) ifYis H’—conjugate to some V € W/,
’ 0 otherwise.

Thus the assertions (i), (ii) and (iii) of the proposition follow from the above construction and
Lemma 7.5.
To prove the assertion (iv), we observe that

S (Ko, )= w(Xo) [T, OISO 2

— (Wl k(o) / P D)) U

o(F)

:n(xo)/?n(xo,U)fw(U) dU

=) %(Xo)/n(i)ff(U)w(i(Xo),U)¢(<i(Xo)7U>)fw(U) au

i€EW, “
= Z VOl(we)H(X)H(U)/ Y (X, Un) Y ((X — Xo, Up)) dUy
XeC(Xp) o
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= Z vol(w)k(X)k(U)

XeC(Xo)

X / Yo (X, (1 + w" ) Up ) ((X — Xo, p(1 + w"a)Up)) dov.

O
By condition (i),
Yoo (X, (1 + @w"a)Up) = v (X, plp) for any o € Op.
If X # Xo, by condition (ii),

/ Y((X — Xo, (1 + w"a)Up)) dae = 0.

Therefore,

k(X0)I"(Xo, f) = vol(w)yy(Xo, ul) # 0.

~

The same computation goes for I(Yp, f’) and we get

(Yo, f) = vol(w')yy (Yo, uVa) # 0.

Then the conclusion follows from Lemma 7.5 and vol(w) = vol(w’). O

8. Proof of Theorem 5.16

In this section, we will prove Theorem 5.16. We divide this theorem into two parts,
i.e. Theorems 8.1 and 8.2 below.
THEOREM 8.1. If f is in C°(s(F))o, so is 7.

THEOREM 8.2. There exists a nonzero constant ¢ € C satisfying that if f € C°(s(F)) and
f €CP(s'(F)) are smooth transfers of each other, then

KX)I(X, f) = el(Y, f)
for any X € s,5(F) and Y € s/ (F) such that X < Y.
We will use a local method to prove Theorem 8.1, and a global method to prove Theorem 8.2,

as we have said before. The global method is a modification of that of [Wal97].

8.1 Proof of Theorem 8.1
By Lemma 5.15, it suffices to only consider the case s’ = s. when € = 1. Throughout this
subsection, we assume that € = 1.

Recall that s,4(F")o is the subset of elements in s,4(F') coming from s, (F"). Let %y be the set of
Cartan subspaces of s coming from those of &', and |4p| a set of representatives for H-conjugacy

classes of Cartan subspaces in %p.
Let f be in C°(s(F'))o. Then, by the Weyl integration formula, we have

P = | S PRSPy

AR PNX,Y)k(WINY, f)dY
S /Cmg(p)u (Y)Y, f)
=3 ! (X, Y)R(Y)I(Y, f)dY.
c§)| /Creg(F)

Thus, to show I7(X, f) = 0 for any X ¢ s.5(F)o, it suffices to show the following lemma.
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LEMMA 8.3. For any X ¢ s.s(F)o and any Y € s,5(F)o, we have i'(X,Y) = 0.

Proof. First we need some preparation. Define an involution 7 on C°(s(F)) : f7(X) := f(X?),
where X = (g 6‘) € s(F) and X! is its transpose. The following two properties can be easily
checked.

(i) The involution 7 commutes with Fourier transform, i.e. (f)T = F
(ii) For X = (% 4) € sws(F), I(X, f7) = n(det AB)I"(X, f) for any f € C°(s(F)).
In particular, if Y € s,5(F)o, then I"(Y, f7) = I"(Y, f); if an elliptic X is not in s,5(F)o, then
(X, f+ f7) =0,
Now let X ¢ s.5(F)o be an elliptic element. For any f € C2°(s(F))o, by the above discussion,
we see that

0=+ =2 3 W [ PRI ) a.
c€|%o| creg (1)

For any Y| € s,5(F)p we may choose a specific fo € C°(s(F))o so that

ST YWY Y =T,
Ga Jetn)

Therefore i(X,Y) = 0 for any elliptic X ¢ s,5(F)o and any Y € sy5(F)o.

Now let X ¢ s.5(F)o be a nonelliptic element. It suffices to assume that X is of the form
X(A) = (1) for some A € GLy15(F). Since X ¢ s.5(F)g is nonelliptic, we can assume that
A is of the form (%1 /?2) where A1 € GL,,, s(F) is elliptic and not in N(GL,, (E)), and Ay is
in GLy, 1s(F'). Recall the discussions in §6.1. There is a subspace t =~ §,, X §,, of § such that
X € v. Moreover, under the natural isomorphism ¢ : t > 5, X 5,,, the image of X is (X7, X5)
where X; = X (4;) for i = 1,2. Write s; = s,,, for i = 1,2. Let M = H; x Hy where H; = H,,
for i = 1,2. Then M acts on t naturally. For Z € t,s(F), let i7%(Z,-) be the kernel function that
represents the distribution f — I (Z, f) for f € C°(x(F)). It is obvious that

P(Z,Y) = T (21, V)i (22, V)

where (Z1, Z3) and (Y1, Y2) are the images of Z and Y under ¢ in $1 X 59 respectively, and 77 (Zi, ")
is the kernel function that represents the distribution f — I"Hi(Z;, f) for f € C(s;(F)) for
i=1,2.

By Proposition 6.3, we have

MX,Y) =) XY,
Y/

where Y’ runs over a set of representatives for the finitely many M-conjugacy classes of elements

of t(F') which are H-conjugate to Y. Therefore we can and do assume that Y € s.5(F)g is in

t(F') and of the form Y = (Y7, Y3) under the natural map ¢ where Y; € s; ;s(F")o. Then
PN(X,Y) = (X, Y1) (X, Ya) = 0,

since X1 ¢ s1.5(F)o is elliptic and Y7 € 51 15(F")o. We complete the proof of the lemma. O
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8.2 A result on convergence

Now let k& be a number field, and A = A, x A; its ring of adeles. Let k' be a quadratic field
extension of k, D a quaternion algebra over k containing k', and 7 the quadratic character of
A*/E* attached to k' by the class field theory. We define the global symmetric pairs (G, H) and
(G',H’) over k with respect to k¥’ and D similarly as the local cases. Let s, s’ be the corresponding
global ‘Lie algebras’ associated to (G,H) and (G’,H’) respectively, which are defined over k.
Denote by S(s(A)) (respectively S(s'(A))) the space of Schwartz functions on s(A) (respectively
s'(A)). Denote by H(A)! the set of (h1,hs) € H(A) such that |det hy| = |det hz| = 1, and by
H/(A)! the set of h € H'(A) such that |det h| = 1. The groups H(A)! and H'(A)! are subgroups
of H(A) and H'(A) respectively. We have the following theorem concerning the issue about
convergence.

THEOREM 8.4. For each ¢ € S(s(A)),

/H(k)\H(A)1 Z #X)] dh < .

Xesen (k)

Similarly, for each ¢' € S(s'(A)),

> ¢ (VM) dh < .

/H’(k)\H’(A)l yee ()

Proof. We prove the first assertion of Theorem 8.4 as follows. Here we still write Z = (X,
Y)es=gl,Dgl, and h- Z = (Adh)Z where h € H for convenience. Recall that Z = (X,Y)
is in s (k) if and only if neither XY nor Y X is contained in a proper parabolic subgroup of
GL, (k). Let Pg be the minimal parabolic subgroup of GL,, consisting of the upper-triangular
one. Put P = Py x Py C H. Identify Ri with the subgroup of A% consisting of elements whose
components at each place are the same and belong to R’ . For each real number ¢ > 0, put A9
the set of a = diag(al, ..., ap) € SL,(R) such that GZ/GZ+1 cforalll1<i<mn—1anda; € RX
for all 1 <1i < n, and set
A, =AY x AY CH(R) C H(A).

By reduction theory, we know that there exists a maximal compact subgroup K of H(A), a
compact subset w C P(A) N H(A)! and a ¢ > 0 such that, if we set

G = {pak; p e w,a € A, k € K},

we have the equality H(A)! = H(k)G, and thus, for each measurable function ¢ on H(k)\H(A)!
with value greater than or equal to 0, the integral

/ o) da
H(k)\H(A)!
is convergent if and only if the integral
[ otz
g

is convergent. Fix such K,w,c. Then the integral is convergent if there exists C' > 0 such that
for each p € w, k € K,

/ 3 6(0ek)- 2)sple) da <,

Ac ZEsen(
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where p is the modulus character of P. There exists a compact set Q C H(A)! such that for
all p € w,a € Ac,k € K we have a 'pak € Q. Then there exists ¢’ € S(s(A)) such that for all
Z € 5(A) and h € Q, we have |¢(h-Z)| < ¢'(Z). It suffices to consider ¢’ of the form ¢’ = ¢, ® ¢},
where ¢ € S(5(Ax)), ¢ € S(s(A¢)) both with values greater than or equal to 0, and suffices to

consider the integral
/ Z ¢'(a- Z)op(a)~! da.
Ae 7 €sen (k)

Choose an Oy-lattice L in s(k) such that s(k) N Supp(¢¢) C L. Denote Ley = L N sep(k). Since
di(a-Z) = ¢t(Z), it suffices to consider the integral

/A > lla-Z)sp(a)”! da.

¢ Z€Len(k)

If z, € k, and v is an infinite place of k, write |z,| for the usual absolute value of z,. For
every « = (x,) € Ay, put |z| = max,|z,|. For X = (z;;) € glp(Ax), put | X| = max; j|z; ;|. For
Z =(X,Y) €s(Ax), write | Z| = max{|X]|,|Y|}. Then the following lemma implies the theorem.

LEMMA 8.5. Assume that n > 2. There is a positive valued polynomial function P on the real
vector space 5(A,), which depends on L and ¢, such that

P(a-Z)>(ﬁ G b )\Z|,

—1 i1 bz—i—l

for all a = diag(ay,...,an,b1,...,by) € Ac and all Z € Ley.
Proof. Take a positive valued polynomial function P; on §(As) such that
P (X,Y) 2> max{| XY|,|YX|} forall (X,Y)e€s(Ay).
Take a positive number ¢y, such that
(X,Y) € L,d is a nonzero entry of XY or YX = |d| > ¢,

Let a = (a1, a2,...,an,b1,b2,...,b,) in Acand let Z = (X,Y) = ((x4,), (¥i,5)) in Len. Write (u; ;)

for XY. Fixipg =1,2,...,n — 1. Since XY is not contained in a proper parabolic subalgebra of
gl,,(k), there are i > ig + 1 and j < ig such that
Ug, 5 75 0.
Then
|Uz,] ’ CL,

and we have

1 1 i—io—1 do—j . —1
Pi(a-2)> \azu”a] \ > craa; = crc " ajga;
P

This implies that
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and
n—1 ' (n—1)/2
ay = }_Il(ai/ai—i-l)(nl)/n s (chn2 Pi(a- Z)> '

Similarly,

Pi(a-Z)>=cpc™ 2bmbmﬁrl,
and

(n—1)/2
it (e )
For alli,7 =1,2,...,n, we have
’CL . Z‘ 2 ai|am’ b]_l
Therefore,
jai | < a;'bjla- Z| < 70 My a - 2]
—1
] (R R YA
crch 2

Similarly,

—(2n—2) 1 o 1

n— n—

|b7]‘ (W) Pl((IZ) |(IZ’

By timing a;/a;+1 and b;/b;+1 on both sides of the above inequality, we get the lemma. O

The convergence of the second integral (for ¢’ € §'(s(A))) in Theorem 8.4 can be deduced
easily from [Wal97, Lemma 10.8], since the twisted conjugation by A. is the usual conjugation.
O

By the above theorem, we have a well-defined distribution I” on s(A), defined by
o) = [ S G(XMn(hydh, & e S(s(A),
HENHA) X coq (k)
and a well-defined distribution I on s'(A), defined by
16 = | S dMan ¢ € S(E0).
HNH (A yegr (k)
If ¢ =1, v, ¢ =11, ¢, it is routine to see that

IU(¢) = Z HX Hﬁv I77 X ¢v)

Xel[sen (k)]
I(¢h= > r@\Ey)][1(V.¢)),
Ye[s,, (k)] v

where
7(Hx) = vol(Hx (k)\(Hx N H(A)")), 7(H}) = vol(Hy (k)\(H} N H'(A)")),

[sen(k)] denotes the set of H(k)-orbits in seji(k), and [s.,,(k)] denotes the set of H'(k)-orbits in
s (k). If X € s(k) and Y € s (k) so that X < Y, then Hy ~ H{, (for the same reason as the
local case). We choose Haar measures on Hx (A) and H{ (A) so that they are compatible. Thus,
if X € sen(k),Y € s.,(k) such that X <> Y, we have

7(Hx) = r(Hy).
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8.3 Proof of Theorem 8.2
Now, we fix f € C°(s(F)) and f' € C°(s'(F)) so that they are smooth transfers of each
other. Here we allow that f may not lie in C°(s(F"))o, as we have mentioned in the proof
of Proposition 5.17. We also refer the reader to the proof of Proposition 5.17 to see the definition
of smooth transfer in this more general situation.

Fix X € 5,5(F), Y € s.(F) such that Xy <> Yy. Our aim is to search for a nonzero constant
¢ which is independent of f, f/, Xy and Yy such that

K(Xo)I"(Xo, f) = I (Yo, f').

In the following, we choose some global data.

Fields. We choose a number field k, a quadratic field extension &” of k, and a quaternion algebra
D over k containing k' so that the following hold.

(i) The number field k is totally imaginary.
(ii) There exists a finite place w of k such that k,, ~ F, k!, ~ FE and D(k,,) ~ D.

s vy —

(iii) There exists another finite place u of k such that w is inert in &’.

Such a number field k£ and a quaternion algebra D do exist (cf. [Wal97, Proposition in §11.1]).
From now on, we identify k,, with F, k/, with F, and D(k,,) with D. Denote by A the ring of
adeles of k, by Oy the ring of integers of k, and Oy the ring of integers of k’. Fix a continuous
character A/k whose local component at w is our fixed character ¢ of k. Denote by v this
global character, when there is no confusion.

Groups. We define the global symmetric pairs (G,H) and (G’,H’) over k with respect to &’
and D similarly as the local case. We still use h and b’ to denote the Lie algebras of H and H’
respectively, and use s and s’ to denote the global Lie algebras corresponding to (G, H) and
(G',H') respectively, if there is no confusion. Thus Xy € s.5(ky) and Yy € si (k).

Places. Denote by V' (respectively Vi, V) the set of all (respectively archimedean, nonarchime-
dean) places of k. Fix two Op-lattices: L = gl,,(Ox) @ gl (Of) C s(k) and L” = gl,,(Oys) C s/ (k).
For each v € V4, put L, = L®o, Ok, L), = L' ®0, O,. We fix a finite set S C V such that the
following hold.

(i) The set S contains u,w and V.

(ii) For each v € V — S, everything is unramified, i.e. G and G’ are unramified over k,, L, and
L/ are self-dual with respect to ¢, and ().

We denote by S’ the subset S — Voo — {w} of S.

Orbits. For each v € V¢, we choose an open compact subset €2, C s'(k,) such that the following
hold.

(i) If v =w, we require that Yy € Qy C §55(kw), I(-, f') is constant on €, and x(-)I7(-, f) is
constant and hence equal to x(Xo)I"(Xo, f) on the set of X € s.5(ky) which matches an
element Y in €.

(ii) If v = u, we require Q, C s, (k).
(iii) If v € S but v # w,u, choose €, to be any open compact subset.
(iv) fveV;— S, let Q, =L..

1873

https://doi.org/10.1112/50010437X15007344 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007344

C. ZHANG

Then by the strong approximation theorem, there exists Y € §'(k) such that Y° € Q, for each
v € V4. Furthermore, by the condition (ii) above, Y € s/;,(k). Take an element X° € s¢(k) such
that X0 « YO,

Functions. For each v € V, we choose functions ¢, € S(s(k,)) and ¢, € S(s'(k,)) as follows.

(i) If v =w, let ¢, = f and ¢, = f'.
(ii) If v € S’, by Proposition 7.6, we require that the following hold.

— If X, € Supp(¢), there exists Y, € ¢},o(ky) such that X, < Y, where we denote by
¢\ the Cartan subspace in ' containing Y.

~ If Y, € Supp(¢y,,), there exists Y, € ¢i,o(ky) such that Y, and Y, are H'(k,)-conjugate.

The function ¢, is a transfer of ¢, .

 Ro(XOTIXO, 6,) = e, T(Y 0, 6,) 0, where ¢, = 7 (B(ku) Vo (b (k)L

(iii) Forv eV =8, set ¢, = 1L, ¢;, = 1; then ¢, = bo, B, = /TU, and by Lemma 5.18 we have

Ro(XOI(X0, 60) = mo (XX, 6,) = I(Y',6,) = I(Y", 8.

(iv) For v € V., identifying (H(ky),s(ky)) with (H'(k,),s'(ky)), we choose ¢, = ¢, € S(s(ky))
such that the following hold.
— We have I"(X°, ¢,) = I(Y?, ¢) # 0.
- If X € s(k) is H(k,)-conjugate to an element in the support of @ at each place v € V,
then X is H(k)-conjugate to X°.
- IfY € ¢'(k) is H (k,)-conjugate to an element in the support of @ at each place v € V|
then Y is H'(k)-conjugate to Y.

This is possible. The key point is that, by invariant theory, we have natural maps
(cf. Remark 5.3)
§/H — s/H— A7,

where A7 is the n-dimensional affine space over k so that A} = Spec(O(s)H). We refer
the reader to [Wal97, Lemme in §10.7] for the proof in the endoscopic case, and a similar
argument is also valid here.

Set ¢ € S(s(A)) and ¢' € S(s'(A)) to be

o=1[d ¢ =]]¢-

veV veV

Final proof. According to the conditions on ¢, (respectively ¢! ), we know that if X € s(k)
(respectively Y € s'(k)) is such that X € Supp(¢)H®) (respectively Y € Supp(¢/)®H'®)), then
X € sen(k) (vespectively Y € s!,(k)). Here we use Supp(¢)F®) to denote the union of H(A)-
orbits intersecting Supp(¢), and Supp(¢')®' ™) to denote the union of H'(A)-orbits intersecting
Supp(¢’). Suppose that X € s¢ (k) is such that

"X, ¢) = [] I"(X, ¢0) # 0.

veV

Then, by the conditions on ¢,, X comes from s'(k,) at each place v not equal to w. We claim
that X must come from s'(k). If not, there exists at least two places v; and vy such that X does
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not come from s'(k,), which is a contradiction. Therefore we have

I"(¢) = 1(¢'),
since ¢, is a transfer of ¢! at each place v not equal to w and is a partial transfer of ¢] at the

place v = w by the requirements we have imposed. . e
On the other hand, according to the conditions on ¢, and ¢!, we know that if X € s(k)

(respectively Y € s/(k)) is such that X € Supp(qAS) (A) (respectively Y e Supp(¢’) (A), then X
is H(k)-conjugate to X° (respectively Y is H'(k)-conjugate to Y?).
By the Poisson summation formula, we have
Z (X" = 3 H(X") forall h € H(A),
Xes(k Xes(k)

and
Yo oYy = > #(Y") for all h € H'(A).

ves (k) ves! (k)
Therefore, by the conditions on ¢ and ¢’, we have
I'(¢)=1"(9), I1(¢) =1(J).
Hence we obtain R R
I"(¢) = 1(¢'),
or, equivalently,

T(Hyo) [] #o(XOTNXO, ¢0) = 7(Hyo) [ 1(Y°. )
veV veV
Note that for v € V — § , we have

ro (XX, ) = 1(Y°,8,) # 0,
and for almost allv e V — S,
HU(XO)TH(X()?(%) = IA(Y07¢;) =1
For v € S’ and v € V,, we have
"%(XO)TH(XO,(%) = CvIA(YOvd;) # 0

Therefore R R
k(X)X f) = cI(YO, ),

1
e= (L&) = I swlo) o0/

veS’ vesS’
Notice that if v e Vo orv e V — 5,

Yo (ko)) = 1 (0" (ko)) = 1.

[T (k) = T 7o' (k) = 1.

where

Also notice that

veV veV
Therefore
¢ = Yy (k) (0 (k)
Since
rw(Xo) (X, f) = ro(XO)IN(X°, f),  I(Yo, f') = I(Y", f'),
we complete the proof of the theorem. O
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