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ABSTRACT. In this paper, a higher-order numerical flowline model is presented
which is numerically stable and fast and can cope with very small horizontal grid sizes
(<10m). The model is compared with the results from Blatter and others (1998) on Haut
Glacier dArolla, Switzerland, and with the European Ice-Sheet Modelling Initiative
benchmarks (Huybrechts and others, 1996). Results demonstrate that the significant
difference between calculated basal-drag and driving-stress profiles in a fixed geometry
disappears when the glacier profile is allowed to react to the surface mass-balance condi-
tions and reaches a steady state. Dynamic experiments show that the mass transfer in high-
er-order models occurs at a different speed in the accumulation and ablation areas and that
the front position is more sensitive to migration compared to the shallow-ice approximation.

1. INTRODUCTION

Numerical modelling of glaciers and ice sheets generally
involves a number of simplifications with respect to the
physics of the ice mass. A common simplification is the so-
called shallow-ice approximation (Hutter, 1983), which applies
to ice masses of a small aspect ratio (characteristic ice
thickness divided by the characteristic horizontal exten-
sion) and characterized by relatively small surface and bed-
rock slopes. Ice sheets belong to this category. For glaciers
as well as key areas in ice sheets, such as ice divides,
grounding zones and areas with a pronounced basal topo-
graphic relief, the shallow-ice approximation does not hold
anymore. A rigorous treatment of the force balance in an
ice mass (the so-called higher-order solution) 1s less straight-
forward, but a number of numerical schemes have already
been developed to calculate the velocity and stress field
according to higher-order approximations. Among these
schemes are those of Herterich (1987), Dahl-Jensen (1989),
Van der Veen and Whillans (1989), Blatter (1995) and
Colinge and Rappaz (1999).

Few higher-order models include the time dependence,
1.e. the evolution of the geometry of the glacier as a reaction
to surface boundary conditions such as surface mass balance
and its perturbations. Amongst these are the finite-element
model of Hvidberg (1996) and the finite-difference model of
Mayer (1996). Since those models already demand a signifi-
cant computational effort, a time dependence, which iter-
ates the aforementioned scheme, makes a proper solution
less straightforward.

The higher-order model presented here is a dynamic
flowline model that predicts the ice-thickness distribution
along a fixed flowline in space in response to environmental
conditions. This response is obtained by calculating at a
given moment the two-dimensional flow regime and the
temperature distribution, determined by the glacier geom-
etry and its boundary conditions. A previously developed
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flowline model described in Pattyn (1996), which is also a
higher-order model, was based on the model of Van der Veen
(1989), i.e. by integrating the field equations from the base of
the ice mass to the surface. However, that model still suf-
fered from numerical instabilities when the grid size was
reduced, and remained time-consuming as well. Blatter
(1995) applied a similar technique to solve the field equa-
tions in glaciers, i.e. by integrating them from the base of
the glacier to the surface, but using the method of lines.
The boundary-value problem is solved iteratively, starting
from zeroth-order estimates of the basal shear stress. His
method was further improved using a single-shooting
Newton iteration (Colinge and Blatter, 1998).

Another approach for computing the velocity field in
glaciers 1s based on the method presented by Herterich
(1987), 1.e. by formulating the field equations as a function
of the horizontal velocity. A finite-element scheme accord-
ing to this approach is presented by Colinge and Rappaz
(1999). The model presented here follows a similar
approach: the momentum equations are reformulated as a
function of velocities by introducing the constitutive equa-
tion so that a differential equation as a function of the hori-
zontal velocity is obtained, which is solved by means of the
conjugate gradient method. A further series of iterations is
then necessary to determine the velocity field accurately.
Compared to the model of Pattyn (1996), transverse strain
rates and stresses are now included properly to account for
convergence and divergence of the ice flow (e.g. Reeh, 1988).
The model is compared to results from Blatter and others
(1998) from Haut Glacier dArolla, Switzerland. It is further
compared with the Van der Veen method (Pattyn, 1996) and
the shallow-ice approximation according to the specifications
in the European Ice-Sheet Modelling Initiative (EISMINT)
benchmark for ice-sheet models (Huybrechts and others,
1996). Finally, it 1s investigated how a glacier, simulated with
a higher-order model, reacts to sudden and/or continuous
perturbations in surface mass balance.
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2. FIELD EQUATIONS

Consider a Cartesian coordinate system (z, 2) with the x axis
along the flowline, parallel to the geoid, and the z axis point-
ing vertically upward (z =0 at sea level). The only non-zero
velocity components are thus u, w (horizontal and vertical
velocity, respectively), while the horizontal transverse
velocity v = 0. Since the flowline geometry considers trans-
verse velocity gradients, it follows that dv/dy = (u/w)
(Ow/0x) where wis the width of the drainage basin taken per-
pendicular to the flowline. It should be noted, however, that
this assumption is valid for the axisymmetric case or when
the flowline exhibits a low curvature. The equations for con-
servation of mass and linear momentum then become
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where p is the ice density, g the gravitational constant, and 7;;
the stress components. The values for these and all other con-
stants used in this paper are given in'Table 1. The parameter €
adds complexity to the model: for ea = 1, vertical resistive
stresses and their gradients are included, so that the full
system of equations is solved. This model will be further
referred to as the full-system model. Ignoring this term (e = 0)
corresponds to the model description of Blatter (1995), further
referred to as the basic model. A recent review of asymptotic
theories of large-scale motion in ice sheets by Baral and others
(2001) showed that the basic model description corresponds to
an incomplete second-order approximation.

Neglecting atmospheric pressure, an expression for 7, is
obtained by integrating Equation (3); from the surface stoa

height z in the ice body
o
T =—pgls =2+ e [ Todz (4)
\_i\,__../
Rzz

The second term of the righthand side of Equation (4) repre-
sents the vertical resistive stress R, which is responsible for
the so-called bridging effect (Van der Veen and Whillans
1989). Deviatoric stresses are related to the stress components

1 A —
Tis — 3 (Tmm + Tyy + Tzz) fori = T, Y, 2, and Ozz = Tz

byO’M = 3

Table 1. Constants used in the numerical model

Symbol Constant Value Units
B Dependence of melting on pressure 9.8 x 10 ® KPa'
p Ice density 910 kgm °
By Flow-rate factor 2.207 Paa'”
C Flow-rate factor 0.16612 K
G Geothermal heat flux 42x102 Wm?
K Flow-rate exponent 117
L Specific latent heat of fusion 335%10° Jm 'K 'a!
Q Activation energy for creep 788 x10*  Jmol !
R Universal gas constant 831 Jmol 'K
T, Limit temperature in flow-rate fac-  273.39 K

tor

Cp Thermal conductivity 2009 Jke 'K
g Gravitational constant 9.81 ms 2
ks Thermal conductivity 662 %107 K'a'
m Enhancement factor in flow law 1
n Exponent in Glen’s flow law 3
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Making use of Equation (4) and inserting the deviatoric
stresses, Equation (2) becomes

o [ or,. 0s
Tpr dz + = P9 o~

2 (2 Oz + Uyy) + €

Oz Or? 0z or (5)

z
The constitutive equation governing the creep of poly-
crystalline ice and relating the deviatoric stresses to the

strain rates is taken as a Glen-type flow law with exponent
n = 3 (Paterson, 1994),

oy =méy, p=g AT Era) )
where € is the second invariant of the strain-rate tensor,
defined by &2 = Zi]%éijéij, and p is the effective viscosity.
£p is a small number (1073% a=!) to validate Glen’s flow law in
cases where € equals zero, and singularity might occur. The
use of such a small number does not influence the numerical
outcome of the model. The flow-law rate factor A(T*) is a
function of temperature, where T is the ice temperature (K)
corrected for pressure melting, i.e. T* =T + P, where P is
the ice pressure (P = 04y + 0y + €R.; — pg(s — z)). Fol-
lowing Hooke (1981), A(T*) is set to

o 1\" Q 3C
A(T)—m<§0> exp _RT*+(Z}—T*)K . (N

Here @ is the activation energy for ice creep, R is the uni-

versal gas constant and m is an enhancement factor (or tun-
ing parameter). Experiments carried out with the widely
used “two-step” Arrhenius relationship to determine the
flow-law rate factor A(T*) (e.g. Payne and Dougelmans,
1997) failed, probably due to this discontinuity. Iteration
methods usually rely explicitly or implicitly on gradients
being smooth as well as the function, which is not the case
with a “two-step” Arrhenius relationship. However, using
the Arrhenius equation (Equation (7)), which is continuous
over the whole range of ice temperatures, allows for a proper
solution of the iteration scheme.

By definition, strain rates are related to velocity gradients
by £ij = 3[(0ui/0x;) + (Ou;/0x;)] Applied to the flowline
geometry and making use of the conservation of mass
(Equation (1)), one obtains
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Combining the flow-law equation (Equation (6)) and
the horizontal stress-field equation (Equation (5)), and
replacing the strain-rate components by velocity gradients
using Equations (8—11), one obtains
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Expanding Equation (12) and rearranging terms leads to
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An expression for the vertical velocity w is obtained
through vertical integration of the incompressibility condi-
tion (Equation (1)) from the base of the glacier to a height z,

w(z) — w(b) = — / Vii(z) dz = —/Z(%+%%) dz
b b

(15)
The thermodynamic equation for the ice flow along a flow-
line is written as
or o*T
PCp E = ki

or n or Py
—pepl u——+w—
P\ " e 0z o
where k; and ¢, are the thermal conductivity and the specific

heat capacity, respectively, and 7 is the effective stress or the
second invariant of the stress tensor. The heat transfer is thus

7+1 Ow 8T+82T
Ox? wOx Or 022

(16)

a result of horizontal and vertical diffusion, horizontal and
vertical advection,and internal friction due to deformational
heating.

Using a kinematic boundary condition at the upper and
lower surface of the ice mass (see below), the mass-balance
equation (Equation (1)) is integrated along the vertical in
order to obtain an expression for the change of local ice
thickness in space

a_H__EB(ﬂHw)
ot w Oz

where % is the depth-averaged horizontal velocity (ma~!),

+ My — M, , (17)

H is the ice thickness (m), Mj is the surface mass balance
(ma~tice equivalent) and M, is the melting rate at the base
of the glacier (ma™!).

In the experiments described below, a comparison is made
with a zeroth-order model (according to the shallow-ice
approximation). Ignoring terms involving €; as well as normal
stress components (7, ) in Equation (2), it is straightforward to
derive the velocity u(z), which is then solely dependent on the
local geometry, i.e. ice thickness and surface gradient. The
horizontal velocity in the grounded ice sheet according to the
shallow-ice approximation is determined as (e.g. Huybrechts
and Oerlemans, 1988)

"1 9s

%/b A(T) (s — 2)" dz,
(18)

Os

u(2) —w, = —2(pg)" p

where wy, is the basal velocity.
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3. BOUNDARY CONDITIONS

Boundary conditions to the ice mass are a symmetric ice
divide (9s/0x = OH /Ox = 0) in the case of an ice sheet, or
H = Ointhe case of'a valley glacier, zero ice thickness at the
downstream edge of the glacier, a stress-free surface and a
basal sliding function at the bottom of the glacier, which is
a function of the basal drag 7,
3

up = AbTNb )
where A =20 x 1077 N=2 m®a~! is a sliding parameter
and N the effective pressure at the base of the ice mass
(Van der Veen, 1987). The kinematic boundary condition at
the lower ice surface reads

(19)

b
wy, = %—F u, Vb + My, . (20)

The basal drag is defined as the sum of all basal resistive
forces and written as (Van der Veen and Whillans, 1989)

ob

Ty = Tu2(b) — (2044(b) + 0y (b) + €2R..(b)) e (21)
It should be noted that the basal drag is linked to the driv-
ing stress 7q = —pgHVs, corrected for longitudinal pushes

and pulls and the vertical resistive stress. This expression is
obtained after vertically integrating Equation (3) from the
base of the ice mass to the surface:

T =T, +2(2H6 + HG )—|—6 //%dz’dz
b — 7d &v Tx yy 2 61’2 .
b b

(22)
The stress-free surface implies that
0Os
(2020(5) + 00y(6) + 2 Re(s)) o = als) =0, (23)

where R..(s) = 7,,(s)0s/0x. Written in terms of velocity
gradients, this results in

@ 4@_;’_2_“8_('0 4+ @J’_ 6_11) @ 2_1 —
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(24)
Boundary conditions to the thermodynamic equation
(Equation (16)) follow from the mean annual air tempera-
ture at the surface. At the base, the temperature gradient is
defined as
oLy, _ G + myup
T R

where G is the geothermal heat flux. However, a constant

(25)

geothermal heat flux 1s not strictly correct; it might be more
realistic to consider heat conduction in the bedrock, so that
G = —k,(0T/0z), where k; is the thermal conductivity in
the underlying bedrock. In view of the experiments carried
out hereafter, the choice of basal thermal boundary condi-
tion will not alter the results. Furthermore, a constant value
of G is a common boundary condition in ice-sheet and glacier
models, and facilitates future model intercomparison. The
basal temperature in the ice mass is kept at the pressure-melt-
ing point whenever it is reached, and the basal melt rate My, is
calculated as

1 Ty,
M, = p_L (k‘z p» + G+ ubTb> , (26)

where L is the specific latent heat of fusion.
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4. NUMERICAL SOLUTION

For numerical convenience, a dimensionless vertical
coordinate 1is introduced to account for ice-thickness vari-
ations along the flowline, and which is defined as
¢ = (s—2)/H, so that ¢ = 0 at the upper surface and ¢ =
1 at the base of the ice mass. The coordinate transformation
maps (z, 2) — (&, (), where £ = x is the transformed hori-
zontal coordinate. Details on the transformation of the
global velocity term (Equation (14)), the viscosity term
(Equation (13))
(Equation (24)) are given in Appendix A. After this trans-

and the surface boundary condition

formation, all equations are solved on an irregularly spaced
gridin € and (. Central differences are used to compute first-
and second-order gradients. At the boundaries, upstream
and downstream differences are employed (see Appendix B
for more details on the procedure).

4.1. Velocity field

The finite-difference forms of the transformed differential
equations for u (Equations (52) and (53)) are written as a
set of linear equations with u(&, ¢) as unknowns. In matrix
notation this becomes

A(u').u*! =b(uh), (27)

where £ is the iteration number. Starting from a zeroth-
order estimate of the horizontal velocity field u’, a new esti-
mation u! of the velocity is obtained by solving the set of
linear equations. For a numerical grid of N¢ = 17, N = 21,
the matrix A consists of (17 x 21)2 = 127449 nodes. However,
only 2642 nodes contain non-zero elements, clustered
around the diagonal, which is 2% of A.

A solution to the linear system of Equation (27) is accom-
plished using the sparse-matrix algorithms of Press and
others (1992), which are based on the conjugate gradient
method. Although the coding of sparse matrices is rather
complicated, they are far more efficient in terms of computa-
tion time than point-relaxation algorithms on the full or even
parts of the matrix. Because of the non-linear nature of
Equation (52), A and b contain three parameters that are still
a function of u, i.e. the viscosity term p, the vertical velocity
w, and the vertical resistive stress I, which have to be deter-
mined in an iterative fashion (the iterative determination of
both w and R, applies only to the full-system model for
€2 = 1). The successive substitution method or Picard itera-
tion was used for this purpose. In order to optimize the rate
of convergence, a relaxation formula was added based on the
unstable manifold correction (Hindmarsh and Payne, 1996).
Therefore, Equation (27) is written as

A(u).u” =b(u), (28)

where u* 1s the velocity estimate obtained with the conju-
gate gradient method. Consider an iterative solution of a
non-linear equation which generates a series of approximate
solutions u‘™ u’, ... being updated by a series of correc-
tion vectors /1, ¢, . .. such that u*! = u’ + c’. Since the
correction vector is defined as ¢’ =u* — u’, the Picard
iteration would simply update the velocity u*! with this
correction vector, so that u*! = u*, If e’*!, e’, .. . is taken
as the error in the solution vector u*?, u!

u’, ... then we can
state that (e‘*! e’,...) = a(c!,cf,...). Assuming that
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the decay is on a straight line in the correction space, we
obtain (Hindmarsh and Payne, 1996)
et
lef — eI
A new update of the velocity vector 1s obtained by

u =ou" + (1 - a)u’, (29)

where the modified correction vector becomes ¢! ~ ac’.

The direction 0 between successive correction vectors is

computed as
el el1
6 = arccos (7 )
M-l

where the norms refer to the Ly norm. Whenever this angle is
close to 0 or m, the subspace iteration might become applic-

o=

able. Using this subspace relaxation algorithm, the solution
vector properly converges, which is not the case with the
Picard iteration method.

4.2. Glacier evolution and thermodynamics

The continuity equation (Equation (17)) is reformulated as
a diffusion equation for ice thickness H, i.e.

oH 0 D OH D OwOoH
ot 83:( 83:) w Oz Oz
0 D b D 0w b
_8x< Bx) w8x8x+
where D = uH /Vs. Equation (30) results in a tridiagonal
system of N, equations, and is solved using the tridiagonal
algorithm of Press and others (1992).

The thermodynamic equation (Equation (54)) is solved
implicitly in the vertical, giving rise to a tridiagonal system
of N¢ equations which is solved using the tridiagonal algo-
rithm of Press and others (1992). A two-point upstream dif-

(30)
Ms - Mb )

ference notation was employed for the horizontal, while
central differences were used in the vertical. The horizontal
implicit terms are found by iteration of this scheme. Only a
few iterations are necessary to obtain a good convergence.

5. MODEL COMPARISON AND VALIDATION
5.1. Haut Glacier d’Arolla

One way to validate the sequence of numerical schemes is to
compare the model—or part of the model —with other
studies. For this purpose, the longitudinal surface and bed-
rock profiles of Haut Glacier dArolla were digitized from
Blatter and others (1998), in order to compare our basic model
(e2 =0) with the Blatter model (Fig. la). The longitudinal
profile of this glacier has a very simple geometry, hence the
resulting stress field is not influenced by geometrical perturb-
ations such as the presence of a steep icefall. For this model
run we keep the glacier geometry fixed. A zero basal velocity
was considered, and w was kept equal to 1 along the whole
flowline domain. The flow-law rate factor A(T*) was taken
constant over the whole model domain, and equals
A(T*) =101 Pa"a~!, a value corresponding to an iso-
therm ice mass of around —2°C (Paterson, 1994). The model
was numerically solved on a regular grid in both the horizon-
tal and vertical dimensions, with 50 equidistant layers in the
vertical. A series of experiments were carried out, each with
different grid resolutions, i.e. 380, 200, 100, 50, 20 and 10 m,
respectively. To obtain a glacier geometry at these different
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Fig. 1. (a) Longitudinal profile of Haut Glacier dArolla,
taken from Blatter and others (1998) (solid line ). The dashed
line is the calculated steady-state surface profile. The glacier
is i both cases 3.8 km long. (b) The difference between the
basal drag and the driving stress T, — Tq (solid line) vs the
vertically integrated longitudinal stress gradient 2(0/0x)
(HG ) (dotted line). (¢) Basal drag Ty, ( solid line), basal
shear stress Ty, (dotted line) and driving stress Tq (dashed
line ). The horizontal model resolution is 20 m.

resolutions, the longitudinal bedrock and surface profiles
were resampled using a cubic spline to assure smooth surface
slopes even at the highest model resolution. The resulting
basal drag and driving stress for the 20 m resolution experi-
ment are displayed in Figure Ic, and can be compared to those
of Blatter and others (1998, p.463, fig. 13). Small differences in
driving stress compared to the results of Blatter and others
(1998) are due to the accuracy of the digitizing process, since
the driving stress depends solely on the local glacier geometry.
For the model results, however, the comparison between the
driving stress and the basal drag is more relevant.

The basal drag is a smoothed version of the driving
stress (Fig. 1c), and displays a pattern that is very similar to
the profile obtained by Blatter and others (1998). The driv-
ing stress oscillates between 0.7 and 2.2 bar, and becomes
zero at both ends of the longitudinal profile. Differences
between the 7q and 7, profiles are as high as 0.5 bar (25%
of 7q). The basal-drag signal is thus characterized by a lower
amplitude and phase shifts compared to the profile of the
driving stress. The direction and magnitude of these phase
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Fig. 2. Effect of grid resolution on the calculated longitudinal
average of the basal drag T, (solid line) and of the driving
stress Tq (dashed line) for the profile of Haut Glacier dArolla.

shifts are similar to those observed in Blatter’s Arolla
profile. Such phase shifts are due to local pushes and pulls
as a result of bedrock and surface perturbations. Mayer
and Huybrechts (1999) identified phase shifts between 7/4
and 7/2 on Ekstromisen, Antarctica, suggestive of a topo-
graphical control on surface undulations. However, it will
be shown below that the differences between driving stress
and basal drag—in both magnitude and phase shift—
gradually disappear when the free surface is allowed to
react on surface mass-balance conditions and a steady-state
glacier profile is reached.

The model consistency is verified by Equation (22), which
states that the basal drag, as defined in Equation (21), must
balance the difference between the driving stress and the gra-
dient of the vertical mean longitudinal stress deviator (for
€2 = 0). Both curves, i.e. 7, calculated from Equations (21)
and (22), respectively, coincide well for the Arolla experiment
(Fig. 1b). A second verification involves the integration of
Equation (22) along the whole flowline. For the basic model
this becomes

L L
1 1 1 0 _ _
Z/dex——/mdx Z/a— 2HUM—|—HUyy)dx
0 0
=T _Td+L [2H0m+H0yy] (31)

Since the ice thickness H as well as the stress deviators
equal zero at both ends of the flowline (at z =0 and
x = L), it follows from Equation (31) that 7, = 74. Hence,
the average of the basal drag over the entire bed equals the
average of the basal driving stress over the entire bed and
thus 1s an invariant that only depends on the geometry of
the glacier. This relation therefore yields an accuracy test
for the numerical solution (Blatter and others, 1998). It can
be seen that this invariant depends almost linearly on the
model resolution, which confirms Blatter’s findings (Fig. 2).
Moreover, the invariant (7, = 7Tq) holds for all resolutions,
contrary to results of Blatter and others (1998). The differ-
ence between the mean basal drag and the mean basal driv-
ing stress, especially at larger Az, is due to a round-off error
specified by the iteration scheme. This error is <1% at grid
sizes smaller than 100 m. According to Blatter’s findings,
however, the basal drag remains constant over the whole
range of grid resolutions (Blatter and others, 1998). This dis-
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Fig. 3. (a) Surface slopes along the flowline of Haut Glacier
dArolla of the steady-state profile according to the basic model
solution (solid line), according to the shallow-ice approxima-
tion (dotted line), and according to the present observations in
Blatter and others (1998) (dashed line). (b) Basal drag T,
(solid line ), basal shear stress T, (dotted line), driving stress
Ta (long-dashed line) and basal longitudinal stress Oy
(short-dashed line ). The horizontal model resolution is 50 m.

crepancy might be due to the difference in resampling of the
glacier geometry at different grid resolutions.

5.2. EISMINT benchmarks

The computer code of the zeroth-order model (according to
the shallow-ice approximation), the basic model (€2 = 0) and
the full-system model (€2 = 1) is tested against the EISMINT
benchmarks for ice sheets with simplified geometry
(Huybrechts and others, 1996). Furthermore, the full-system
model is compared to the force-budget method of Van der
Veen (1989) and Van der Veen and Whillans (1989), which was
previously used in Pattyn (1996). The EISMINT moving-
margin experiment was chosen for the intercomparison of
the different model codes, especially in relation to the time-
dependent solution. Since for these experiments aspect ratios
are small, all models should more or less give the same result.
Moreover, the full-system model should give exactly the same
result as the Van der Veen model of Pattyn (1996).

The EISMINT benchmark consists of a flowline of 16
gridpoints, regularly spaced at intervals of 50 km, so that
the model domain stretches from z = 0 (a symmetric ice
divide) to z = 750 km (zero ice thickness). In the vertical,
50 equally spaced layers are considered. In order to produce
an axisymmetric ice-sheet profile, the width parameter w
was chosen to vary linearly along the flowline, with w = 0
at the ice divide and w = 750 km at the last gridpoint. The
absolute value of wis not important, as long as its gradient is
correct, which is in this case a constant value over the whole
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model domain. The climatic boundary conditions at the sur-
face are determined as (Huybrechts and others, 1996)

M = min [0.5, a(Ry — d)] ma™!, (32)

where d is the distance (in km) from the ice divide, a =102
ma~ ! km~!isthe mass-balance gradient, and R =450 km
is the distance at which the surface mass balance changes
from positive to negative values.

A calculation over a time period of 50 000 years with a
time-step of 20years takes 2098 central processing unit
(CPU) seconds on a Gompag-Alpha server GSI40 for the basic
model solution starting from zero ice thickness over the whole
model domain, and 8.32 CPUseconds when starting from an
already calculated ice-sheet profile. For the zeroth-order
model it takes about 2.87 CPUseconds in both cases. The
evolution of the ice surface as well as the temperature field is
exactly the same for the full-system model solution and the Van
der Veen model. Both deviate slightly from the shallow-ice
approximation, but this deviation, except for the ice divide, is
only 1-2% of the ice thickness and global velocity field, as is to
be expected for such a large-scale ice-sheet experiment. This
confirms the validity of the shallow-ice approximation in large
ice sheets resting on a flat bedrock. At the ice divide, the differ-
ence in ice thickness with the shallow-ice approximation is
somewhat larger (4—5m), as longitudinal stress gradients are
not neglected in the basic model.

6. GLACIER EVOLUTION

6.1. Steady-state solutions

Starting from the present longitudinal profile of Haut Glacier
dArolla (Tig. la, solid line), the glacier is now allowed to react
to a given time-independent surface mass-balance distribu-
tion defined as

M, = min[0.5, a(s — ELA) ma™" | (33)

where a = 1072 a"! is the mass-balance gradient, estimated
from Willis and others (1996), and ELA = 2800 m the equilib-
rium-line altitude, chosen in such a way that the steady-state
front position coincides with the present observed position of
the glacier terminus (Fig. 1a, dashed line). The width of the
drainage basin w was also determined from the maps by
Willis and others (1996). Figure 3 displays the basal stress field
and surface conditions of Haut Glacier dArolla in steady
state. Here, the relation between the driving stress and the
basal drag is quite striking. Compared to the fixed-geometry
calculations of Figure 1, the large oscillations in the driving
stress are apparently smoothed out when the free surface is
allowed to react to mass-balance conditions at the surface.
Furthermore, the basal-drag profile is almost similar to the
driving stress, which means that longitudinal pushes and
pulls tend to cancel themselves out with surface and bedrock
slopes. Not only does the basal drag tend to equal the driving
stress in amplitude, but the phase shift between both disap-
pears as well. The reason for this behaviour lies in the surface
slopes (Fig. 3a), since they readjust to the stress field in two
ways. First, the steady-state surface slopes are smoother than
the observed ones, except at the beginning and end of the lon-
gitudinal glacier profile. Second, a phase shift appears in the
surface slope profiles when the basic model is compared with
the zeroth-order model. This difference between the steady-
state surface profile and the observed profile might be attrib-
uted to the fact that the present glacier surface is not in steady
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Fig. 4. Change in ice thickness after a sudden surface mass-
balance increase of 0.5 m a " along the whole flowline, lasting
Lyear. (a) and (¢) show the results for the basic higher-order
model, and (b) and (d) for the shallow-ice approximation.
(a, b) Response after 1year (solid line), 5 years (long-
dashed line), 10 years (short-dashed line) and 20 years
(dotted line). (¢, d) Response after 20 years (solid line),
50 years (long-dashed line), 100 years (shori-dashed line)
and 150 years ( dotted line ).

state, but also to the fact that the applied surface mass-
balance function is a smoothed function and might deviate
from reality, and to assumptions in the model description that
are different from the real world (isothermal ice, no basal
sliding, etc). It should be added that the longitudinal profile
of Haut Glacier dArolla has a relatively simple geometry and
lacks, for instance, a pronounced icefall, where compression
and extension of ice flow would eventually alter the basal-
drag profile compared to the driving stress.

6.2. Response to perturbations at the surface

Glaciers advance and retreat in response to changes in mass
balance induced by climate. Such front migrations do not
occur instantaneously, but with a given time lag in response
to the climatic perturbation. The time lag is due to the
downstream mass transport of the glacier and governed by
the deformational and flow properties of the glacier. A
theoretical concept that translates this mass transfer is found
in the theory of kinematic waves, and was applied to glaciers
by Nye (1960). Subsequent validation and comparison of the
kinematic wave theory with numerical glacier models has
been done by Johannesson and others (1989) and Van de Wal
and Oerlemans (1995). In this paper, we will limit our investi-
gation to whether the model complexity is responsible for dif-
ferent response patterns to sudden perturbations in the
surface mass balance.

Starting from the steady-state glacier conditions, a sudden
change in surface mass balance was applied, 1.e. a perturbation
of +0.5 m in accumulation over the entire glacier surface, last-
ing for lyear. The glacier reacts to such a perturbation by
transporting the excess mass from the head of the glacier
towards the front, where the ice accumulates and the front con-
siderably thickens. After the perturbation, the ice thickness
starts to decrease in the accumulation area and increases in
the ablation zone. Such a behaviour is expected from the line-
ar-wave theory and has been demonstrated by numerical
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Fig. 5. Time needed for an ice-thickness perturbation (as given
by Equation (34) ) to travel down the glacier. The curve shows
the time of the maximum ice thickness reached at a specific site
on the glacier. A denotes the amplitude of the perturbation.
Results given for the basic model (solid line) and the shallow-
wce approximation (dashed line ). The irregular nature of some
of the curves is due to the interpolation procedure which locates
the maximum ice-thickness perturbation in the (discrete) out-
put files. They are by no means numerical artefacts produced by
the model itself.

model experiments (Van de Wal and Oerlemans, 1995). Our
experiments confirm this behaviour, though the basic (higher-
order) model transports the ice faster towards the front, so that
the ice thickness at the terminus is higher compared to the
zeroth-order model (Fig. 4). The pronounced frontal thicken-
ing is also confined to a smaller area. Due to the accelerated
downstream transport of ice, a steady-state condition after the
perturbation is reached sooner than with the zeroth-order
model (Fig. 4). For both models the terminus position did not
change throughout the experiment.

Abetter insight into these mechanisms is obtained by for-
cing the model with a sine-wave ice-thickness perturbation
in the accumulation area:

T

Hi(z) = Ho(z) + Asin(T) , forz <X, (34)
where H is the new ice thickness and Hj refers to the ice thick-
ness before the perturbation was applied. The perturbation in
ice thickness starts at the head of the glacier. Att = 0, a local
maximum in ice-thickness perturbation is thus situated at
2 = A/2. The downstream propagation of the wave is moni-
tored by determining for each position along the flowline the
time needed for the maximum ice-thickness perturbation to
arrive, which is a measure for the phase velocity of the wave.
The results for A =1, 2, 4 and 6 m, respectively, obtained by
both model configurations are shown in Figure 5. A was taken
1000 m, thus covering the accumulation area at ¢t = 0, and
which corresponds to 25% of the total glacier length. Accord-
ing to the shallow-ice approximation, the wave travels almost
at constant speed towards the front (dashed lines in Fig. 5). The
situation is slightly different for the basic model (solid lines in
Fig. 5), where the wave travels more slowly in the accumulation
area, accelerates in the ablation area and reaches the terminus
before the zeroth-order model. Due to this acceleration, and
confirming the findings of the previous experiment, more
mass is stored near the front, so that at higher amplitudes
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Fig. 6. Response of the glacier surface at particular locations
(x =053, 0.80,0.96 and 1.00) to a sudden perturbation (as
given by Equation (34)) for the basic model (A =4.0m
(thick solid lines) and A = 6.0m (long-dashed lines) ) and
according to the shallow-ice approximation (A = 4.0m ( thin
solid lines ) and A = 6.0 m ( short-dashed lines) ). The irregu-
lar nature of some of the curves is explained in the lext.

(A= 6m) the model glacier is more sensitive to a front
advance, contrary to the shallow-ice approximation. This front
migration therefore disturbs the velocity signature for A =6 m
in Figure 5, where the wave is retarded as mass is spread out in
the horizontal and not only in the vertical.

A more detailed view of the glacier behaviour is given in
Figure 6 for the experiments with A =4 and 6. Here, the local
ice-thickness variation at four positions along the flowline is
given (z =0.53, 0.80, 0.96 and 1.00 scaled distance). Although
the perturbation travels more slowly in the upstream part
according to the basic higher-order model, a steady state is
reached sooner compared to the shallow-ice approximation.
Close to the ice front, we notice that the response signature is
disturbed due to the non-linearity of the model equations. A
similar behaviour is noticed in other experiments as well.
With higher values for the amplitude A, for instance, the
pattern becomes even more complex. Altering the grid-size
resolution or the error cut-off value in the subspace relaxation
algorithm leads to the same result, which means that the
observed behaviour is not a numerical artifact.

The above experiment was repeated for waves with dif-
ferent wavelengths as well as with a glacier of simplified
geometry. Those experiments confirm the above-described
glacier response.

6.3. Response to climatic variations

The previous series of experiments demonstrated how a
sudden increase in ice accumulation at the head of the glacier
affects the response of this ice mass. The response is generally
fast and, with one exception, does not influence the length of
the glacier. When studying glaciers over a longer time-span of
several hundreds of years, significant glacier-length vari-
ations do occur. This series of experiments is designed to
investigate the reaction of a glacier described by a higher-
order model to continuous perturbations in glacier mass
balance on longer time-scales, which involves a distinct pat-
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Fig. 7. Glacier response time lag (a) and range (b) to a per-
turbation in surface mass balance according to Equation (35)
(A =01ma’;. T = 500years ). Response curves are given
Jor the basic higher-order model without (solid line) and
with basal shiding (long-dashed line) and for the shallow-
ice approximation without (short-dashed line) and with

(dotted line) basal sliding.

tern in glacier advance and retreat. We applied, therefore, a
sinusoidal mass-balance forcing in time:

M,(z,t) = My(z,0) + Asin (?) : (35)

where T is the time period, ¢ time (years) and A the mass-
balance perturbation amplitude. The reaction of the glacier
to the mass-balance perturbation (Equation (35)) can be
expressed in a variety of measures. One measure is the
response time lag to the climatic perturbation, obtained
from a correlation between the forcing series(M;(z,t)) and
the response time series (H(z,t)) at different time lags. The
lag corresponding to the maximum correlation then gives
the time lag between both time series (Fig. 7). A second
measure is the response range, defined as the maximum
minus the minimum ice thickness during the investigation
period. Starting from steady-state conditions, the model of
Haut Glacier dArolla was forced according to Equation (35)
with A = 0.l ma~! and a time period T' = 500 years, for a
total period of 2000 years. This experiment was repeated
with the shallow-ice approximation as well. The lagged
response of the local ice thickness follows approximately
40 years (in the accumulation zone) to 90 years (near the
terminus) after the mass-balance perturbation. The differ-
ence between both model types is largest in the central part
of the glacier and is of the order of 5 years (a 10% difference
between the shallow-ice approximation and the basic model,
the latter showing a larger time lag). However, both advance
and retreat of the glacier occur faster with the higher-order
model, but a local maximum ice thickness is reached at a
later moment in time. Variations in range also increase
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towards the terminus. For this parameter we did not observe
a significant difference between both model types.

A second experiment consisted of introducing basal slid-
ing over the whole model domain, according to Equation (19).
For the zeroth-order model, the basal drag was replaced by
the driving stress 7q. Despite significant differences in model
description, the overall behaviour is in accordance with the
previous non-sliding experiments (Fig. 7). Moreover, the dif-
ference in response pattern due to the introduction of basal
sliding is of minor importance compared to the use of higher-
order physics (2% vs the aforementioned 10%). One reason
might be that the basal-drag pattern is rather similar to the
driving-stress pattern in steady-state conditions (Fig. 3). Since
these stresses directly influence the basal sliding conditions,
both models should therefore react in a similar way.

7. CONCLUSIONS

In this paper, a new higher-order numerical glacier model is
developed, which is numerically stable and fast and copes
with small horizontal grid sizes. Moreover, the possibility
of using an irregularly spaced grid allows for high-reso-
lution modelling adapted to the available input-data distri-
bution. The numerical model is compared with (1) the
Blatter-model solution on the longitudinal profile of Haut
Glacier dArolla (Blatter and others, 1998), (ii) the Van der
Veen model (Van der Veen, 1989; Pattyn, 1996) and (ii1) the
shallow-ice approximation of the EISMINT benchmarks
(Huybrechts and others, 1996).

The calculation of the stress field in the longitudinal
profile of Haut Glacier dArolla (fixed geometry experiment)
demonstrates that the basal-drag profile has a smaller ampli-
tude than the driving-stress profile and that a pronounced
phase shift occurs between the two curves. Furthermore, the
average of the basal drag over the entire bed equals the aver-
age of the driving stress over the entire bed (7, = 74) and
thus is an invariant that solely depends on the glacier geom-
etry. This invariant holds for any grid resolution.

When the glacier surface is allowed to evolve in response
to a surface mass-balance distribution, the steady-state basal-
drag and driving-stress profiles tend to fall together. The
phase shift, necessary to balance the longitudinal stresses,
disappears in the stress field but becomes apparent in the sur-
face gradients. This might indicate that the steady-state gla-
cier profile (as a reaction to the surface mass-balance
conditions) is less influenced by the higher-order physics than
it is by the surface mass-balance distribution. This transient
glacier behaviour was investigated by applying surface
mass-balance and ice-thickness perturbations in the accumu-
lation area and to analyze the mass redistribution. Such a
perturbation is transported towards the glacier front, where
a significant thickening appears. The zeroth-order model
transports this excess mass at a more or less constant speed
towards the front, while the higher-order model transports
this mass at a slower rate in the accumulation area, but faster
in the ablation zone, so that the front position is more sensi-
tive to migration than the zeroth-order model. The non-line-
ar behaviour in mass transport is responsible for a 10%
difference in time-lagged response to the climatic signal com-
pared to the response of the zeroth-order model.
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APPENDIX A

COORDINATE TRANSFORMATION

Due to the coordinate transformation (z, 2) — (&, (), where-
by ¢ = (s — 2z)/H and £ = x, the function derivatives trans-
form to (Lliboutry, 1987)

of _of o€  of &

T r (A1)
of _of oc  of o
oo kD (A2)

where 06/0x = 1, 06/0z = 0, 0(/0x = a, O(/Dz = —1/H.

The function derivatives can thus be rewritten as
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so that the incompressibility condition (Equation (1)) becomes
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Equation (14) then becomes after coordinate transform-
ation, by making use of Equations (A3—A9),
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where
09 o0H .
RZZ = Ha—€ + ¢8—§ + 2CLH’UJ€:EZ , (A12)
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The strain rates are rewritten as
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Equation (All) can be decomposed further by replacing
the terms involving Ow/9¢ with the incompressibility con-
dition of Equation (Al0). Rearranging terms finally leads to
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Similarly, the upper boundary condition (Equation
(24)) is transformed to
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a
where ¢ = e(ds/0z)>~1. The thermodynamic equation
(Equation (16)) is transformed as follows:
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APPENDIX B

FINITE-DIFFERENCE APPROXIMATION

Equations (Al7-Al9) are solved on an irregular grid in ¢
and (. Central difference approximations on an irregular
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grid of first and second derivatives are governed by (e.g.
Payne and Dongelmans, 1997)

of ~ fios Ck — Gt
A lik """ (G = Gre1) (Gt — Ci1)
Chr1 — 2Ck + G
i (Ck = Go—1)(Crr1 — k)
+ fikt1 S = G-t
(G = ) (Crrr — G1)
Fr . 2
ac i~ fikr (Ck = Gr-1) (Cry1 — Ci1)

+ fik (— (ot — Ck)2(Ck - Ck_l))

+ f 2
i k1 .
(G — G0 (Crit — Gin)
The horizontal gradients f /¢ and 9 f /0¢* are obtained
from Equation (Bl) by replacing (j with &;. An expression for

(B1)

0%f/060C is obtained by combining the finite-difference
approximation of 9f /0¢ and Jf /OC. At the surface boundaries
i = N¢ and k = N, first derivatives are computed using
upstream differences:

of ~f, Ck — Cr1
aC iy~ PR (Ck—1 — Co—2) (G — Ci—2)
‘ Ce—2 — Ck
T fit (G = Ce-1)(Cr1 — Ch2)
s 2C, — Co—1 — Gr2 (B2)

(Ck = Ce1)(Ck — C2)

At the surface boundaries ¢ = 1 and k = 1, downstream dif-
ferences are formulated by replacing (k—1) — (k+1) and
(k—2)— (k+2) in Equation (B2). With the exception of the
surface boundaries, central differences are used every-
where.
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