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Abstract

This paper investigates tail asymptotics of stationary distributions and quasi-stationary
distributions (QSDs) of continuous-time Markov chains on subsets of the non-negative
integers. Based on the so-called flux-balance equation, we establish identities for sta-
tionary measures and QSDs, which we use to derive tail asymptotics. In particular,
for continuous-time Markov chains with asymptotic power law transition rates, tail
asymptotics for stationary distributions and QSDs are classified into three types using
three easily computable parameters: (i) super-exponential distributions, (ii) exponential-
tailed distributions, and (iii) sub-exponential distributions. Our approach to establish
tail asymptotics of stationary distributions is different from the classical semimartingale
approach, and we do not impose ergodicity or moment bound conditions. In particular,
the results also hold for explosive Markov chains, for which multiple stationary dis-
tributions may exist. Furthermore, our results on tail asymptotics of QSDs seem new.
We apply our results to biochemical reaction networks, a general single-cell stochastic
gene expression model, an extended class of branching processes, and stochastic popu-
lation processes with bursty reproduction, none of which are birth–death processes. Our
approach, together with the identities, easily extends to discrete-time Markov chains.
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1. Introduction

Stochastic biological models based on continuous-time Markov chains (CTMCs) are com-
monly used to model complex cellular behaviours, gene expression, and the evolution of DNA
[19]. Noise is an inherent extrinsic and intrinsic property of such biological systems and cannot
be ignored without compromising the conclusions and the accuracy of the models.

In many cases it is reasonable to expect well-behaved biological systems, and thus also
well-behaved stochastic models. Therefore, in these cases, it is natural to assume the modelling
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CTMC is ergodic, that is, that there exists a unique stationary distribution which describes the
system in the long run. In other cases, for example for population processes without immi-
gration, the population eventually goes extinct almost surely, and thus the ergodic stationary
distribution is trivially the Dirac delta measure at zero. In these cases, it makes sense to study
the quasi-stationary distribution (QSD), that is, the long-time behaviour of the process before
extinction (usually called the Q-process) [34]. Jointly, stationary distributions and QSDs are
referred to as limit distributions in the present paper.

The stationary distribution (provided it exists) is generally difficult to state in explicit
form, except in a few cases. If the underlying stochastic process has a detailed balanced
structure, then the stationary distribution takes a product form; see [2, 9, 23, 30, 32, 46]
for various network models, [34] for birth–death processes (BDPs), and [18, 22, 28, 38, 42]
for generalizations of such processes. QSDs with explicit expressions appear in even rarer
cases [45].

While an explicit expression might not be known in general, less suffices in many cases.
For example, if an expression for the tail distribution is known, then the existence and relative
sizes of moments could be assessed from the decay rate of the tail distribution. Additionally,
relative recurrence times could be assessed for stationary distributions of CTMCs.

With this in mind, we establish results for the tail behaviour of stationary distributions and
QSDs, provided such exist. In particular, we concentrate on CTMCs on the non-negative inte-
gers N0 with asymptotic power law transition rate functions (to be made precise). Our approach
is based on generic identities derived from the flux-balance equation [30] for limit distributions
and stationary measures (Theorems 1 and 2). The identity for stationary distributions/measures
might be seen as a difference equation, which has order one less than the difference equation
obtained directly from the master equation. More interestingly, for any given state x, the left-
hand side of the identity consists of terms evaluated in states ≥ x only, while the right-hand
side of the identity consists of terms evaluated in states < x only, and all terms have non-
negative coefficients. For BDPs, the identities coincide with the classical recursive expressions
for stationary distributions and QSDs.

Furthermore, the identities allow us to study the tail behaviour of limit distributions, pro-
vided they exist, and to characterize their forms (Theorems 4 and 3). Specifically, in Section 5,
for CTMCs with transition rate functions that are asymptotically power laws, we show that
there are only three regimes: the decay follows either (i) a Conley–Maxwell–Poisson distribu-
tion (light-tailed), (ii) a geometric distribution, or (iii) a sub-exponential distribution. Similar
trichotomy results appear in the literature in other contexts [5, 33], but, to our knowledge,
only for stationary distributions. Our approach is based on repeated use of the identities we
establish, combined with certain combinatorial identities (e.g., Lemma 1).

Importantly, we successfully obtain QSD tail asymptotics. To the best of our knowledge, no
similar classification results on QSD tail asymptotics have been established, despite the fact
that the Lyapunov function approach has been used frequently to establish ergodicity of QSDs
[12]. A superficial reason may be the inherent difference between stationary distributions and
QSDs: stationary distributions are equilibria of the master equation while QSDs are not. A
deeper explanation may be that the drift of CTMCs (or discrete-time Markov chains (DTMCs))
may not directly relate to the decay rate of QSDs. For an absorbing CTMC, known condi-
tions for exponential ergodicity of stationary distributions are not even sufficient to establish
uniqueness of QSDs [45].

This difference is also reflected in our results, where an extra condition is required to estab-
lish QSD tail asymptotics (Theorems 3 and 4). Our novel approach successfully addresses tail
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asymptotics of both stationary distributions and QSDs at the same time, based on the similarity
of the algebraic equations they satisfy (Theorems 1 and 2).

We apply our main results to biochemical reaction networks, a general single-cell stochastic
gene expression model, an extended class of branching processes, and stochastic population
processes with bursty reproduction, none of which are BDPs.

The Lyapunov function approach is widely taken as a standard method to prove ergodicity
of Markov processes [36]. Additionally, the approach has been used to obtain tail asymptotics
of stationary distributions, assuming ergodicity [6, 8, 16, 17, 35, 47]. In contrast, our results do
not require ergodicity or any other finite moment condition. For DTMCs, ergodicity follows
from the existence of a stationary distribution on an irreducible set [37]; in contrast, this is not
true for CTMCs [37]. In particular, for explosive Markov chains, potentially with more than
one stationary distribution, the cited results fail, whereas our results also hold in this case.

The trichotomy pattern which we observe for the tail asymptotics is not surprising, as it has
already been observed for BDPs [44], as well as for processes on continuous state spaces, such
as the Lindley process [5] and the exponential functional of a Lévy process drifting to infinity
[33]. The techniques applied in these papers do not seem applicable in our setting.

It is noteworthy that the identities we establish could be used to calculate the limit distribu-
tion recursively, up to an error term that depends on only a few generating terms (π (0) in the
case of BDPs) and the truncation point of the limit distribution. The error term is given by the
tail distribution, and thus the decay rate of the error term can be inferred from the present work.
Approximation of limit distributions will be pursued in a subsequent paper. The main results
of this paper, together with the approach, can be extended to DTMCs in a straightforward way.

2. Preliminaries

2.1. Sets and functions

Denote the sets of real numbers, positive real numbers, integers, positive integers, and non-
negative integers by R, R+, Z, N, and N0, respectively. For m, n ∈N, let Rm×n denote the
set of m-by-n matrices over R. Furthermore, for any set B, let #B denote its cardinality and
1B the corresponding indicator function. For b ∈R, A⊆R, let bA= {ba : a ∈ A} and A+ b=
{a+ b : a ∈ A}. Given A⊆R, let inf A and sup A denote the infimum and supremum of the
set, respectively. By convention, sup A=−∞ and inf A=+∞ if A=∅; sup A=+∞ if A is
unbounded from above; and inf A=−∞ if A is unbounded from below. For x, y ∈N0 with
x≥ y, let xy = x!

(x−y)! .
Let f and g be non-negative functions on an unbounded set A⊆N0. We write f (x) � g(x) if

there exist C, N > 0 such that

f (x)≤Cg(x) for all x ∈ A, x≥N;

that is, f (x)=O(g(x)) since f is non-negative. (Here O refers to the standard big-O notation.)
The function f is said to be asymptotic power law (APL) if there exists r1 ∈R such that
limx→∞ f (x)

xr1 = a exists and is finite. Hence r1 = limx→∞ log f (x)
log x . An APL function f is called

hierarchical (APLH) on A with (r1, r2, r3) if there further exist r2, r3 with r2 + 1≥ r1 > r2 >

r3 ≥ r1 − 2, and a > 0, b ∈R, such that for all large x ∈ A,

f (x)= axr1 + bxr2 +O(xr3 ). (1)

The requirement r2 + 1≥ r1 and r3 ≥ r1 − 2 comes from the analysis in Sections 6–7, where
asymptotic Taylor expansions of functions involve the powers of the first few leading terms.
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Here r1, r2, and r3 are called the first, second, and third power of f , respectively. All rational
functions, polynomials, and real analytic APL functions are APLH. Not all APL functions are
APLH; e.g., f (x)= (1+ (log (x+ 1))−1)x on N is not APLH.

Given a function f which is APLH, the first power in the expansion is uniquely determined,
while the other two powers are not. In other words, given the asymptotic expansion (1), there
may exist a family of APLH functions admitting the same asymptotic expansion. Let r∗2 and r∗3
be the infima over all (r2, r3) ∈R2 such that f is APLH on A with (r1, r2, r3). For convention,
we always choose the minimal powers

(
r1, r∗2, r∗3

)
, whenever f is APLH with

(
r1, r∗2, r∗3

)
. As

an example, f (x)= x2 + 3x+ 4 is APLH on N0 with (2, r2, r3) for any 2 > r2 > r3 ≥ 1 (in
which case b= 0) or 1= r2 > r3 ≥ 0 (b= 3). In this case, f is APLH on N0 with minimal
powers

(
r1, r∗2, r∗3

)= (2, 1, 0). In contrast, take f (x)= x+ x1/3 log x. Then f is APLH on N0
with (1, r2, r3) for any r2 > r3 > 1/3 (b= 0). In this case, r1 = 1 and r∗2 = r∗3 = 1/3, but f is
not APLH on N with (1, 1/3, 1/3). For any real analytic APLH function f on N0, f is APLH
on N0 with

(
r1, r∗2, r∗3

)
, where r1 = limx→∞ log f (x)

log x , r∗2 = r1 − 1, and r∗3 = r1 − 2.

2.2. Markov chains

Let (Yt : t≥ 0) (or Yt for short) be a CTMC with state space Y ⊆N0 and transition rate
matrix Q= (q(x, y))x,y∈Y ; in particular, each entry is finite. Recall that a set A⊆Y is closed if
q(x, y)= 0 for all x ∈ A and y ∈Y \ A [39]. Assume ∂ �Y is a (possibly empty) finite closed
absorbing set, which is to the left of ∂c =Y \ ∂ . Here, the relative position of ∂ to ∂c ensures
that the only way for the Markov chain to end in an absorbing state is by jumping from a
transient state backward to an absorbing state (this property is used in Proposition 1 below).
Furthermore, define the set of jump vectors

�= {y− x : q(x, y) > 0, for some x, y ∈Y},
and let �± = {ω ∈� : sgn(ω)=±1} be the sets of forward and backward jump vectors,
respectively.

For any probability distribution μ on ∂c, define

Pμ( · )=
∫
Y
Px( · )dμ(x),

where Px denotes the probability measure of Yt with initial condition Y0 = x ∈Y . Any positive
measure μ on a set A⊆N0 can be extended naturally to a positive measure on N0 with no mass
outside A, μ(N0 \A)= 0.

A (probability) measure π on Y is a stationary measure (distribution) of Yt if it is a non-
negative equilibrium of the so-called master equation [24]:

0=
∑
ω∈�

q(x−ω, x)π (x−ω)−
∑
ω∈�

q(x, x+ω)π (x), x ∈Y . (2)

(Here and elsewhere, functions defined on Y are put to zero when evaluated at x 	∈Y ⊆Z.)
Any stationary distribution π of Yt satisfies

Pπ (Yt ∈ A)= π (A), A ∈ 2Y ,

for all t≥ 0, where 2Y is the power set of Y [12].
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Let τ∂ = inf{t > 0 : Yt ∈ ∂} be the entrance time of Yt into the absorbing set ∂ . We say
Yt admits certain absorption if τ∂ <∞ almost surely for all Y0 ∈ ∂c. Moreover, the process
associated with Yt conditioned never to be absorbed is called a Q-process [11]. A probability
measure ν on ∂c is a quasi-stationary distribution (QSD) of Yt if for all t≥ 0,

Pν(Yt ∈ A|τ∂ > t)= ν(A), A ∈ 2∂c
.

3. Identities for limit distributions

Let ω∗ = gcd(�) be the (unique) positive greatest common divisor of �. Define the scaled
largest positive and negative jump, respectively, as

ω+ := sup
ω∈�+

ωω−1∗ , ω− := inf
ω∈�−

ωω−1∗ .

Furthermore, for j ∈ {ω−, . . . , ω+ + 1}, define

Aj =
{
{ω ∈�− : jω∗ > ω}, if j ∈ {ω−, . . . , 0},
{ω ∈�+ : jω∗ ≤ω}, if j ∈ {1, . . . , ω+ + 1}. (3)

Hence, ∅= Aω− ⊆ Aj ⊆ Aj+1 ⊆ A0 =�− for ω− < j < 0, and ∅= Aω++1 ⊆ Aj+1 ⊆ Aj ⊆ A1 =
�+ for 1 < j < ω+.

The following classical result provides a necessary condition for QSDs.

Proposition 1. ([15].) Assume ∂ 	=∅. Let ν be a QSD of Yt on ∂c. Then for x ∈N0\∂ ,

θνν(x)+
∑
ω∈�

q(x−ω, x)ν(x−ω)−
∑
ω∈�

q(x, x+ω)ν(x)= 0,

where

θν =
∑

ω∈�−

∑
y∈∂c∩(∂−ω)

ν(y)q(y, y+ω)

is finite.

Proof. For ∂ = {0} and x ∈ ∂c, the identity follows from [15]. The same argument applies
if ∂c 	= {0}. For x ∈N0 \Y , the identity holds trivially (with both sides being zero), which can
be argued similarly to the proof of Theorem 1. �

Before stating a generic identity for stationary distributions which originates from the
master equation of the CTMC, we provide an example.

Example 1. Consider a CTMC on N0 with �= {1,−2} and transition rate functions

q(x, x+ 1)= κ1x+ κ2x(x− 1), q(x, x− 2)= κ3x(x− 1)(x− 2),

where κi (i= 1, 2, 3) are positive constants. Such rate functions can be associated with a weakly
reversible stochastic reaction network (see Example 10 in Section 5). This CTMC is ergodic
on N and there exists a stationary distribution π , which solves the master equation

b(x− 1)π (x− 1)+ a(x+ 2)π (x+ 2)= (a(x)+ b(x))π (x), x ∈N0, (4)
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where a(x)= κ3x3 and b(x)= (κ1x+ κ2x2). One can show by induction that the terms in (4)
can be separated so that those with π (y) for y≥ x and those with π (y) for y < x are on different
sides of the equality, in such a way that all coefficients are positive. Naive rearrangement of
the terms does not suffice. We find

a(x)π (x)+ a(x+ 1)π (x+ 1)= b(x− 1)π (x− 1), x ∈N0. (5)

In addition, to our surprise, we observe that (4) is a third-order difference equation, while (5)
is a second-order difference equation. Hence, the identity (5), though equivalent to (4), helps
simplify the relationship among all terms of the stationary distribution.

The following generic identities generalize the observations in Example 1, and provide an
equivalent definition of a stationary distribution, perhaps in a more handy form. The identities
are the so-called flux-balance equation [30, Lemma 1.4] specialized to one dimension. We
emphasize that stationary measures are not necessary finite, while stationary distributions and
QSDs are probability distributions.

Theorem 1. The following statements are equivalent:

(1) π is a stationary measure (stationary distribution) of Yt on Y;

(2) π is a positive measure (probability distribution) on Y satisfying, for x ∈N0,

∑
ω∈�−

0∑
j=ωω−1∗ +1

q(x− jω∗, x− jω∗ +ω)π (x− jω∗)

=
∑

ω∈�+

ωω−1∗∑
j=1

q(x− jω∗, x− jω∗ +ω)π (x− jω∗) <∞;

(3) π is a positive measure (probability distribution) on Y satisfying, for x ∈N0,

0∑
j=ω−+1

π (x− jω∗)
∑
ω∈Aj

q(x− jω∗, x− jω∗ +ω)

=
ω+∑
j=1

π (x− jω∗)
∑
ω∈Aj

q(x− jω∗, x− jω∗ +ω) <∞.

Proof. We only prove the equivalent representations for stationary measures; the equivalent
representations for stationary distributions then follow. We assume without loss of generality
that ω∗ = 1.

Recall from [30, Lemma 1.4] that π is a stationary measure satisfying (2) if and only if for
any A⊆Y , ∑

y∈A

∑
z∈Ac

π (y)q(y, z)=
∑
y∈A

∑
z∈Ac

π (z)q(z, y) <∞, (6)

where Ac =Y \ A. (In [30], the identity (6) is proved for finite Y . It can be shown by induction
that it also holds for countable Y .) Let π (x)= 0 for x /∈Y and q(x, y)= 0 for (x, y) /∈Y2; then
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(6) holds for A⊆Y if and only if for A⊆Z,∑
y∈A

∑
z∈Z\A

π (y)q(y, z)=
∑
y∈A

∑
z∈Z\A

π (z)q(z, y) <∞. (7)

In particular, for any x ∈N0, let A= {y ∈Z : y≥ x}. Then (7) implies that∑
y≥x

∑
z≤x−1

π (y)q(y, z)=
∑
y≥x

∑
z≤x−1

π (z)q(z, y) <∞. (8)

Conversely, (8) implies (2) (i.e., π is a stationary measure), which is shown by subtracting
from both sides of (8) the same equations but with x replaced by x+ 1. This is possible since
both sides are finite. We now compare (8) with Theorem 1(3). Recall that Aω− = Aω++1 =∅.
In the latter equation, let y= x− j and z= x− j+ω; then Theorem 1(3) follows from (8).
Furthermore, let j= x− y and ω= z− y, then (8) is obtained from Theorem 1(3). Observe that
Theorem 1(2) and Theorem 1(3) are equivalent by Fubini’s theorem. �

A special form of Theorem 1 under more assumptions has been stated in the context of
stochastic reaction networks [26, Proposition 5.4.9].

For any positive measure μ on N0, let

Tμ : N0→ [0, 1], x �→
∞∑

y=x

μ(y),

be the tail distribution (or simply the tail) of μ.
The following identities for QSDs also present equivalent definitions of the latter.

Theorem 2. Assume ∂ 	=∅. Then the following statements are equivalent:

(1) ν is a QSD of Yt on ∂c;

(2) ν is a probability measure on ∂c, and for x ∈N0 \ ∂ ,

∑
ω∈�−

0∑
j=ωω−1∗ +1

q(x− jω∗, x− jω∗ +ω)ν(x− jω∗)= θνTν(x)

+
∑

ω∈�+

ωω−1∗∑
j=1

q(x− jω∗, (x− jω∗ +ω)ν(x− jω∗) <∞;

(3) ν is a probability measure on ∂c, and for x ∈N0 \ ∂ ,

0∑
j=ω−+1

ν (x− jω∗)
∑
ω∈Aj

q(x− jω∗, x− jω∗ +ω)= θνTν(x)

+
ω+∑
j=1

ν (x− jω∗)
∑
ω∈Aj

q(x− jω∗, x− jω∗ +ω) <∞.

Proof. The proof is similar to that of Theorem 1 and is thus omitted. �
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If a CTMC jumps unidirectionally (e.g., it is a pure birth or a pure death process), then
all stationary measures, if such exist, are concentrated on absorbing states [48]. In contrast, an
absorbed pure birth process has no QSDs. However, an absorbed pure death process may admit
one or more QSDs, as illustrated below.

Example 2. Consider a pure death process Yt on N0 with linear death rates dj = dj for j ∈N0.
Let 0 < a≤ 1, and define ν as follows:

ν(1)= a, ν(x)=
{

a
x!


(x−a)

(1−a) , if 0 < a < 1,

0, if a= 1,

}
for x > 1,

where 
( · ) is the gamma function. Then ν is a QSD of Yt on N with ∂ = {0}. Hence, there is
a family of QSDs fulfilling Theorem 2.

Formulae for stationary distributions and QSDs of BDPs follow directly from Theorems 1
and 2.

Corollary 1. ([4, 10].) (i) Let Yt be a BDP on N0 with birth and death rates bj and dj, respec-
tively, such that bj−1 > 0 and dj > 0 for all j ∈N. If π is a stationary distribution for Yt,
then

π (j)= π (0)
j−1∏
i=0

bi

di+1
, j ∈N.

(ii) Let Yt be a BDP on N0 with birth and death rates bj and dj, respectively, such that
b0 = 0, and bj > 0 and dj > 0 for all j ∈N. Then a probability distribution ν on N is a QSD
trapped into 0 for Yt if and only if

djν(j)= bj−1ν(j− 1)+ d1ν(1)

⎛⎝1−
j−1∑
i=1

ν(i)

⎞⎠ , j≥ 2. (9)

Proof. Here �= {−1, 1}, ω∗ =ω+ = 1, ω− =−1, and Y =N0. Moreover, q(j, j− 1)= dj

and q(j, j+ 1)= bj for j ∈N.
(i) ∂ =∅. Since π is a stationary distribution on N0, it follows from Theorem 1 that

π (j)q(j, j− 1)= π (j− 1)q(j− 1, j), j ∈N.

Hence the conclusion is obtained by induction.
(ii) ∂ = {0} and ∂c =N. It follows from Theorem 2 that a probability measure ν is a QSD

on N if and only if

θν = q(1, 0)ν(1), ν(j)q(j, j− 1)= θνTν(j)+ ν(j− 1)q(j− 1, j), j ∈N \{1},

that is, (9) holds. �

https://doi.org/10.1017/apr.2023.42 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.42


The asymptotic tails of limit distributions of CTMCs 701

Regarding the tail distributions, we have the following identities.

Corollary 2. Assume � is finite and ∂ =∅. Let π be a stationary distribution of Yt on Y . Then,
for x ∈N0,

Tπ (x)

(∑
ω∈A0

q(x, x+ω)+
∑
ω∈A1

q(x−ω∗, x−ω∗ +ω)

)
+
−1∑

j=ω−
Tπ (x− jω∗)

·
(∑

ω∈Aj

q(x− jω∗, x− jω∗ +ω)−
∑

ω∈Aj+1

q(x− (j+ 1)ω∗, x− (j+ 1)ω∗ +ω)

)

=
ω+∑
j=1

Tπ (x− jω∗)
(∑

ω∈Aj

q(x− jω∗, x− jω∗ +ω)

−
∑

ω∈Aj+1

q(x− (j+ 1)ω∗, x− (j+ 1)ω∗ +ω)

)
,

where Aj is defined in (3).

Proof. Assume without loss of generality that ω∗ = 1 and 0 ∈Y . The left-hand side of the
equation in Theorem 3(3) is

LHS=
0∑

j=ω−+1

(Tπ (x− j)− Tπ (x− j+ 1))
∑
ω∈Aj

q(x− j, x− j+ω)

=
0∑

j=ω−+1

Tπ (x− j)
∑
ω∈Aj

q(x− j, x− j+ω)

−
−1∑

j=ω−
Tπ (x− j)

∑
ω∈Aj+1

q(x− j− 1, x− j− 1+ω)

=
−1∑

j=ω−
Tπ (x− j)

( ∑
ω∈Aj

q(x− j, x− j+ω)−
∑

ω∈Aj+1

q(x− j− 1, x− j− 1+ω)

)

+ Tπ (x)
∑
ω∈A0

q(x, x+ω),

while the right-hand side equals

RHS=
ω+∑
j=1

(Tπ (x− j)− Tπ (x− j+ 1))
∑
ω∈Aj

q(x− j, x− j+ω)

=
ω+∑
j=1

Tπ (x− j)

( ∑
ω∈Aj

q(x− j, x− j+ω)−
∑

ω∈Aj+1

q(x− j− 1, x− j− 1+ω)

)

− Tπ (x)
∑
ω∈A1

q(x− 1, x− 1+ω),

which together yield the desired identity. �
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Corollary 3. Assume � is finite, ∂ 	=∅, and let ν be a QSD of Yt on ∂c. Then for all x ∈N0 \ ∂ ,

Tν(x)

(∑
ω∈A0

q(x, x+ω)+
∑
ω∈A1

q(x−ω∗, x−ω∗ +ω)

)
+
−1∑

j=ω−
Tν(x− jω∗)

·
(∑

ω∈Aj

q(x− jω∗, x− jω∗ +ω)−
∑

ω∈Aj+1

q(x− (j+ 1), x− (j+ 1)+ω)ω∗)
)

= θνTν(x)+
ω+∑
j=1

Tν(x− jω∗)
(∑

ω∈Aj

q(x− jω∗, x− jω∗ +ω)

−
∑

ω∈Aj+1

q(x− (j+ 1)ω∗, x− (j+ 1)ω∗ +ω)

)
, (10)

where Aj is defined in (3).

Proof. Similar to that of Corollary 2. �

4. Asymptotic tails of limit distributions

To establish the asymptotic tails of limit distributions, we assume the following:

(A1) #� <∞.

(A2) Y is unbounded, and for ω ∈�, q(x, x+ω)= aωxR1
ω + bωxR2

ω +O
(
xR3

ω
)

is an APLH
function in x on Y with

(
R1

ω, R2
ω, R3

ω

)
for some constants aω, bω. The APLH function is

assumed strictly positive for all large x ∈Y .

(A3) ∂c is irreducible.

Assumption (A1) guarantees that the chain has bounded jumps only, which enables us to
use the identities established in the previous section to estimate the tails. Assumption (A2) is
common in applications, and ensures that ∂c is unbounded too, as ∂ is finite by assumption. In
particular, (A2) is satisfied provided the following assumption holds:

(A2)′ For ω ∈�, q(x, x+ω) is a strictly positive polynomial for all large x ∈Y .

Assumption (A3) is assumed to avoid non-essential technicalities. Moreover, (A3) means
that either Yt is irreducible or the conditional process of Yt before entering ∂ is irreducible. This
assumption is satisfied for many known one-dimensional infinite CTMCs modelling biological
processes (e.g., for population processes). In addition, (A3) implies that �+ 	=∅ and �− 	=∅

(otherwise there are no non-singleton communicating classes).
The following parameters are well-defined and finite. Let

R=max
ω∈�R1

ω, R− = max
ω∈�−

R1
ω, R+ = max

ω∈�+
R1

ω,

E− = ∪
ω∈�−

{
R1

ω, R2
ω, R3

ω

}
, E+ = ∪

ω∈�+
{
R1

ω, R2
ω, R3

ω

}
,

and define

σ1 =min
{
R− − R1−, R+ − R1+

}
, σ2 =min

{
R− − R2−, R+ − R2+

}
,
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where

R1− =max
{
r ∈ E− : r < R−

}
, R1+ =max

{
r ∈ E+ : r < R+

}
,

R2− =max
{
r ∈ E− : r < R1−

}
, R2+ =max

{
r ∈ E+ : r < R1+

}
.

(These values are only used to define σ1, σ2.)
Hence R1− ≥ R2

ω ≥ R− − 1, for some ω ∈�− with R1
ω = R−. Similarly, R1+ ≥ R+ − 1, R2− ≥

R− − 2, and R2+ ≥ R+ − 2. This implies that 0 < σ1 ≤ 1 and σ1 < σ2 ≤ 2. If all transition rate
functions are real analytic, then by convention, R2

ω = R1
ω − 1, R3

ω = R1
ω − 2, for all ω ∈�, and

hence σ1 = 1 and σ2 = 2. Furthermore, let

α = lim
x→∞

∑
ω∈� q(x, x+ω)ω

xR
, α− = lim

x→∞

∑
ω∈�− q(x, x+ω)|ω|

xR− ,

α+ = lim
x→∞

∑
ω∈�+ q(x, x+ω)ω

xR+ , ϑ = 1

2
lim

x→∞

∑
ω∈� q(x, x+ω)ω2

xR
,

γ = lim
x→∞

∑
ω∈� q(x, x+ω)ω− αxR

xR−σ1
, β = γ − ϑ .

The parameters also admit limit-free representations:

α=
∑

ω∈� : R1
ω=R

aωω, α− =
∑

ω∈�− : R1
ω=R−

aω|ω|, α+ =
∑

ω∈�+ : R1
ω=R+

aωω,

ϑ = 1

2

∑
ω∈� : R1

ω=R

aωω2, γ =
∑

ω∈� : R1
ω=R−σ1

aωω+
∑

ω∈� : R2
ω=R−σ1

bωω, β = γ − ϑ .

The form with the limit emphasizes that the parameters are coefficients of monomials of certain
leading degrees. Furthermore, define

�=
{ −γ (α+ω∗)−1, if σ1 < 1,

(−γ + Rϑ)(α+ω∗)−1, if σ1 = 1,
δ =�(ω+ −ω− − 1)−1.

Note that α ≤ 0 implies R− ≥ R+. Moreover, we have α+, α− > 0 and 0 < δ ≤�, by (A3).
Furthermore, α, α−, α+, β, and ϑ do not depend on the choice of second and third powers of
the transition rate functions, whereas σ1, σ2, γ , �, and δ do depend on the powers.

To state the results on the asymptotic tails of limit distributions, we classify probability
distributions into the following classes.

Let P be the set of probability distributions on A. For a, b > 0, define

P1+
a = {μ ∈P : Tμ(x) � exp (−ax(log x)(1+ o(1)))},

P1−
a = {μ ∈P : Tμ(x) � exp (−ax(log x)(1+ o(1)))},

P2+
a,b =

{
μ ∈P : Tμ(x) � exp (−bxa(1+ o(1)))

}
,

P2−
a,b =

{
μ ∈P : Tμ(x) � exp (−bxa(1+ o(1)))

}
,

P3+
a =

{
μ ∈P : Tμ(x) � x−a},

P3−
a =

{
μ ∈P : Tμ(x) � x−a},
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where Tμ(x) is the tail distribution of a probability measure μ, and o( · ) refers to the standard
little-o notation. Furthermore, define

P2+
a =∪b>0P2+

a,b, P2−
a =∪b>0P2−

a,b, P2−
<1 =∪0<a<1P2−

a ,

P i+ =∪a>0P i+
a , P i− =∪a>0P i−

a , i= 1, 2, 3.

The sets P i+
a , i= 1, 2, 3, are decreasing in a, while P i−

a , i= 1, 2, 3, are increasing in a.
Similarly, P2+

a,b is decreasing in both a and b, while P2−
a,b is increasing in both a and b. Moreover,

it is readily verified that

P1+ ⊆P2+
1 ⊆P3+, P3− ⊆P2−

<1 ⊆P2−
1 ⊆P1−.

The probability distributions in P2+
1 ∩P2−

1 decay as fast as exponential distributions and are
therefore exponential-like. Similarly, those in P1+ are super-exponential; those in P2−

<1 are
sub-exponential, and in particular those in P3+ ∩P3− are power-like [29].

The Conley–Maxwell–Poisson (CMP) distribution on N0 with parameter (a, b) ∈R2+ has
probability mass function given by the following [29]:

CMP(a,b)(x)= ax

(x!)b

⎛⎝ ∞∑
j=0

aj

(j!)b

⎞⎠−1

, x ∈N0.

In particular, CMPa,1 is a Poisson distribution. For every probability distribution μ ∈P1+ ∩
P1−, there exist (a1, b1), (a2, b2) ∈R2+ such that

CMP(a1,b1) � Tμ(x) � CMP(a2,b2).

Conversely, every CMP distribution is an element in P1+ ∩P1−, and hence super-exponential.
The zeta distribution on N with parameter a > 1 has probability mass function given by the
following [29]:

Zetaa(x)= 1

ζ (s)
x−a,

where ζ (a)=∑∞i=1 i−a is the Riemann zeta function of a. For every probability distribution
μ ∈P3+ ∩P3−, there exist a1, a2 > 1 such that

Zetaa1 (x) � Tμ(x) � Zetaa2 (x).

Conversely, every zeta distribution is an element in P3+ ∩P3−, and hence sub-exponential.
We first provide the tail asymptotics for QSDs. We point out that parameter conditions for

the existence and ergodicity of QSDs are given in [48].

Theorem 3. Assume (A1)–(A3) and ∂ 	=∅. Assume there exists a QSD ν of Yt on ∂c. Then
α ≤ 0≤ R. Furthermore, we have the following:

• If R= 0, then α− ≥ θν . If in addition R− = R+, then α ≤−θν , and if R− > R+, then
β ≥ θν .

• If R− = R+ > 0 and α= 0, then R≥ σ1.
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FIGURE 1. I =P1+ ∩P1−: CMP-like distributions. II =P2+
1 ∩P2−

1 : Exponential-like distributions.
III =P3− ∩P3+: Power-like distributions.

Moreover, if R− > R+, we have the following:

(i) If R= 0 and β > θν , then ν ∈P1−
(R− −R+)ω−1∗

.

(ii) If R= 0, β = θν , and R− − R+ ≤ 1, then ν ∈P2−
1 .

(iii) If R= 0, β = θν , and R− − R+ > 1, then ν ∈P2−
R− −R+−1.

(iv) If R > 0, then ν ∈P1−
(R− −R+)ω−1∗

. If in addition R > 1, then ν ∈P1+
(R− −R+)(ω+ω∗)−1 .

If R+ = R−, we have the following:

(v) If R > 0 and α < 0, then ν ∈P2−
1 . If in addition R > 1, then ν ∈P2+

1 .

(vi) If R > 0 and α = 0, we have the following:

– If R= σ1 < 1, then ν ∈P2−
1−R.

– If R≥ σ1 = 1, then ν ∈P3−.

– If min{1, R}> σ1, then ν ∈P2−
1< ,

(vii) If R= 0, we have the following:

– If α + θν = 0 and σ1 < 1, then ν ∈P2−
1−σ1

.

– If α + θν = 0 and σ1 = 1, then ν ∈P3−,

– If α + θν < 0, then ν ∈P2−
1 .

Furthermore, we have the following:

(viii) If R= 1, then ν ∈P3+
θνα−1+

.

(ix) If 0 < R < 1, then ν ∈P2+
1−R.

(x) If R= 0 and α− > θν , then ν ∈P2+
1 .

(xi) If R= 0 and α− = θν , then ν ∈P1+
−σ1ω

−1−
.
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Corollary 4. Assume (A1)–(A3) and ∂ 	=∅. No QSDs have a tail decaying faster than a CMP
distribution. Moreover, any QSD, if such exists, is super-exponential if R− > max{1, R+} or
(xi) holds, exponential-like if (a) R− = R+ = 0 and α+ θν < 0 or (b) R− = R+ > 1 and α < 0
holds, and sub-exponential if (vi) or R− = R+ = α+ θν = 0 holds; in particular, it decays no
faster than a power-like distribution if R≥ σ1 = 1 and α= 0.

Analogously, we further characterize the tails of the stationary distributions. Parameter
conditions for the existence and ergodicity of stationary distributions are given in [48].

Theorem 4. Assume (A1)–(A2) and ∂ =∅. Assume there exists a stationary distribution π of
Yt on Y with unbounded support. Then α ≤ 0, and in particular, when α= 0,

• if �= 0 then σ1 < 1;

• if σ1 = 1 then � > 1.

Moreover, we have the following:

(i) If R− > R+, then π ∈P1+
(R− −R+)(ω+ω∗)−1 ∩P1−

(R− −R+)ω−1∗
.

(ii) If R− = R+ and α < 0, then π ∈P2+
1 ∩P2−

1 .

(iii) If α = 0, � > 0, and σ1 < 1, then π ∈P2+
1−σ1
∩P2−

1−σ1
.

(iv) If α = 0 and σ1 = 1, then π ∈P3+
�−1. In particular, if in addition (iv)′ δ > 1, then π ∈

P3+
�−1 ∩P3−

δ−1.

(v) If α = 0, �= 0, and σ2 < 1, then π ∈P2−
1−σ2

.

(vi) If α = 0, �= 0, and σ2 ≥ 1, then π ∈P3−.

As a consequence, a trichotomy regarding the tails of the stationary distributions can be
derived.

Corollary 5. Assume (A1)–(A2) and ∂ =∅. Any stationary distribution of Yt on Y with
unbounded support, if such exists, is

• super-exponential with a CMP-like tail if Theorem 4(i) holds,

• exponential-like if Theorem 4(ii) holds,

• sub-exponential if one of Theorem 4(iii), Theorem 4(iv)′, and Theorem 4(vi) holds. In
particular the tail is power-like if (iv)′ holds.

Corollary 6. Assume (A1), (A2)′, (A3), ∂ =∅, R≥ 3, and (R− 1)ϑ − α+ ≤ 0. Any stationary
distribution of Yt on Y with unbounded support, if such exists, is ergodic. In particular, Yt is
non-explosive.

Proof. By (A2)′, R ∈N0 and σ1 = 1. By [48, Theorem 1], under (A3), Yt is explosive if
either (1) R≥ 2 and α > 0, or (2) R≥ 3, α= 0, and γ − ϑ > 0. By Theorem 4, α ≤ 0. If a sta-
tionary distribution exists and if Yt is non-explosive, then under (A3), Yt is is positive recurrent
and the stationary distribution is unique and ergodic [39]. When α = 0 and R≥ 3, it follows
from Theorem 4 that � > 1, i.e., γ − ϑ < (R− 1)ϑ − α+ ≤ 0 as assumed. Hence, Yt is always
non-explosive and thus the stationary distribution is ergodic. �
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We make the following remarks:

• The estimate of the tail does not depend on the choice (R2
ω, R3

ω) of the transition rate
functions when α < 0, whereas it may depend on this choice when α = 0. In this case,
the larger σ1 and σ2 are, the sharper the results are.

• Generically, no limit distributions (in the cases covered) can decay faster than a CMP
distribution or slower than a zeta distribution.

• The unique gap case in Theorem 4 is α = 0, σ1 < 1, and �= 0.

• Assume (A2)′. By Corollary 6, if the chain Yt is explosive and a stationary distribution
exists, then α = 0 and R≥ 3.

• Although not stated explicitly in Theorem 4, the tail asymptotics of a stationary distri-
bution of a BDP (Cases (i)–(iii) and (iv)′) is sharp up to the leading order, in comparison
with Proposition 3. Similarly, when R− > R+, the tail asymptotics is sharp up to the
leading order for upwardly skip-free processes (Case (i)) [4]. In comparison with the
sharp results provided in Proposition 4, the results obtained in Theorem 4 capture the
leading tail asymptotics of a stationary distribution, e.g., in Case (iii).

• The assumption that R > 1 in Corollary 4 is crucial. Indeed, as Examples 5 and 6 illus-
trate, when R= 1 and α < 0, the QSD may still exist and has either geometric or zeta-like
tail. This means α < 0 is not sufficient for any QSD to have an exponential tail. It remains
to see whether a QSD with CMP tail may exist when R= 1. Moreover, we emphasize that
the conditions R > 1 and α < 0 ensure the existence of a unique ergodic QSD assuming
(A2)′ [47]. Hence, such ergodic QSDs are not heavy-tailed.

• Let Yt be a CTMC and Ỹt a BDP on the same state space. If the critical parameters are the
same (α, β, R, etc.), then the two processes share the same qualitative characterization
in terms of existence of limit distributions, ergodicity, explosivity, etc. [47]. One might
conjecture that the decay of limit distributions (provided such exist) is also the same and
takes the sharp form induced by the BDP. In other words, one might conjecture that the
tail asymptotics of a general CTMC coincide with that of a BDP representative.

In the following, we illustrate and elaborate on the results by example. The examples have
real analytic APLH transition rate functions, and thus σ1 = 1 and σ2 = 2.

Assumption (A1) is crucial for Theorem 4.

Example 3. Consider a model of stochastic gene regulatory expression [43], given by
�= {−1} ∪N and

q(x, x− 1)= 1N(x), q(x, x+ j)= abj−1, j ∈N, x ∈N0,

where a > 0, and bj ≥ 0 for all j ∈N0. Here the backward jump −1 represents the degradation
of mRNA with unity degradation rate, and the forward jumps j ∈N account for bursty produc-
tion of mRNA with transcription rate a and burst size distribution (bj)j∈N0 . When bj = (1− δ)δj

for 0 < δ < 1, the stationary distribution is the negative binomial distribution [43]:

π (x)= 
(x+ a)


(x+ 1)
(a)
δx(1− δ)a, x ∈N0.

When a= 1, π is also geometric. Theorem 4, if it did apply, would seem to suggest Tπ decays
like a CMP distribution, since 1= R− > R+ = 0. The technical reason behind this is that the
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proof applies Corollary 2, which requires (A1). It does not seem possible to directly extend the
result in Theorem 4 to CTMCs with unbounded jumps.

Example 4. Consider a BDP with birth and death rates

q(x, x− 1)=
b∑

j=1

S(b, j)xj, q(x, x+ 1)= a, x ∈N0,

where a > 0, b ∈N, and the S(i,j) denote the Stirling numbers of the second kind [1].
Here R+ = 0 < R− = b, and α =−S(b, b)=−1 < 0. This BDP has an ergodic stationary
distribution on N0 [47], and the unique stationary distribution is π =CMPa,b.

By Theorem 3(v), the tail of a QSD decays no faster than an exponential distribution when
α < 0 and 0≤ R− = R+ ≤ 1, which is also confirmed by the examples below.

Example 5. Consider the linear BDP on N0 with birth and death rates

q(x, x+ 1)= bx, x ∈N0,

q(1, 0)= d,

q(x, x− 1)= (d · 2−1 + b
)
(x+ 1), x ∈N \ {1},

where b and d are positive constants [40]. For this process, a QSD ν is

ν(x)= 1

x(x+ 1)
, x ∈N.

Hence Tν decays as fast as the zeta distribution with parameter 2. Here α=−d/2 < 0, and
R= R− = R+ = 1.

Example 6. Consider the linear BDP on N0 with bj = bj and dj = d1j with 0 < b < d1 and j ∈N
[45]. For this process, a QSD ν is

ν(x)=
(

b

d1

)x−1 (
1− b

d1

)
, x ∈N,

a geometric distribution. Here α = b− d1 < 0, and R= R− = R+ = 1. By Parts (iv) and (viii)
of Theorem 3, the tail of the QSD decays no faster than a CMP distribution and no more slowly
than a zeta distribution, if R+ < R− = 1, which is also confirmed by the example below.

Example 7. Consider a BDP on N0 given by

q(x, x+ 1)= x

x+ 2
, x ∈N0,

q(x, x− 1)= x− 1+ 2
1

x
, x ∈N.

Here R= R− = 1 > R+ = 0, α=−1, and σ1 = 1, σ2 = 2. Using the same Lyapunov function
constructed in the proof of [47, Theorem 4.4], it can be shown that there exists a uniquely
ergodic QSD. By Theorem 3(iv), the tail of the QSD decays no more slowly than a CMP
distribution. Indeed, the QSD is given by

ν(x)= 1

(x− 1)!(x+ 1)
, Tν(x)= 1

x! , x ∈N.

The tail of the QSD decays like a Poisson distribution.
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Example 8. Consider a BDP on N0 given by

q(x, x+ 1)= x2, q(x, x− 1)= x2 + x, x ∈N0.

Here R= R− = R+ = 2 > 1, and α= 0. Corollary 4 states that any QSD (if it exists) is heavy-
tailed and its tail decays no faster than a zeta-like distribution. Indeed, a QSD of the process is
given by

ν(x)= 1

x(x+ 1)
, Tν(x)= 1

x
, x ∈N.

Example 9. Consider a quadratic BDP on N0, given by

q(x, x+ 1)= x(x+ 3)/2, q(x, x− 1)= x(x+ 1), x ∈N0.

Then R− = R+ = R= 2 > 1, α =−1/2. Hence there exists a uniquely ergodic QSD [47]. By
Corollary 4, this QSD decays exponentially. Indeed, the QSD is given by

ν(x)= 2−x, Tν(x)= 2−x+1, x ∈N.

5. Applications

In this section, we apply the results on asymptotic tails to diverse models in biology. We
emphasize that for all models/applications, the transition rate functions are real analytic APLH
on a subset of N0, and thus σ1 = 1 and σ2 = 2, which we will not further mention explicitly.

5.1. Biochemical reaction networks

In this section, we apply the results of Section 4 to some examples of stochastic reaction
networks (SRNs) with mass-action kinetics. These are used to describe interactions of con-
stituent molecular species with many applications in systems biology, biochemistry, genetics,
and beyond [21, 41]. An SRN with mass-action kinetics is a CTMC on Nd

0 (d≥ 1) encoded
by a labelled directed graph [3]. We concentrate on SRNs on N0 with one species (S). In
this case the graph is composed of reactions (edges) of the form nS−→κ mS, n, m ∈N0
(n molecules of species S is converted into m molecules of the same species), encoding a
jump from x to x+m− n with propensity q(x, x+m− n)= κx(x− 1) . . . (x− n+ 1), κ > 0.
Note that multiple reactions might result in the same jump vector.

In general little is known about the stationary distributions of a reaction network, let alone
the QSDs, provided either such exist [2, 25, 27, 28]. Special cases include complex balanced
networks (in arbitrary dimension) which have Poisson product-form distributions [2, 9], reac-
tion networks that are also BDPs, and reaction networks with irreducible components, each
with a finite number of states.

Example 10. To show how general the results are, we consider two SRNs, neither of which is
a BDP.

(i) Consider a reaction network with a strongly connected graph [47]:

κ1 2S
κ2

κ3

S 3S
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For this reaction network, �= {1,−2}, and

q(x, x+ 1)= κ1x+ κ2x(x− 1), q(x, x− 2)= κ3x(x− 1)(x− 2).

Hence, α =−κ3 < 0. It is known that there exists a unique exponentially ergodic stationary
distribution π on N [47]. (The state 0 is neutral [48].) By Theorem 4, π ∈P1+

1 ∩P1−
1 . Hence

π is light-tailed and Tπ decays as fast as a Poisson distribution, since ω+ =ω∗ = 1, R+ = 2,
and R− = 3. However, the stationary distribution is generally not Poisson. If κ2

2 = κ1κ3, then
the reaction network is complex-balanced; hence the stationary distribution is Poisson [2]. If
the parameter identity is not fulfilled, then the distribution cannot be Poisson in this case [9].

(ii) Consider a similar reaction network including direct degradation of S [47]:

κ4 κ1 2S
κ2

κ3

SS 3S

The threshold parameters are the same as in (i), and it follows from [47] that the reaction
network has a uniformly exponentially ergodic QSD ν. By Theorem 1, Tν decays like a CMP
distribution.

Example 11. The following bursty Schlögl model was proposed in [20]:

∅
κ0−−⇀↽−−
κ−1

S, 3S
κ3−→ 2S

κ2−→ (2+ j)S,

where j ∈N. When j= 1, it reduces to the classical Schlögl model.
The associated process has a unique ergodic stationary distribution π on N0 [47].

Bifurcation with respect to patterns of the ergodic stationary distribution is discussed in
[20], based on a diffusion approximation in terms of the Fokker–Planck equation. Using the
results established in this paper, the tail distribution can be characterized rigorously. In fact
π ∈P1+

j−1 ∩P1−
1 . Hence π is light-tailed and Tπ decays like a CMP distribution.

Proof. We have �= {−1, 1} ∪ {j}. The ergodicity follows from [47, Subsection 4.3] as a
special case. It is straightforward to verify that (A1)–(A3) are all satisfied. Moreover, R+ = 2
and R− = 3. The conclusion then follows from Theorem 4. �
Example 12. Consider the following one-species SRN:

S
κ1−→ 4S, 3S

κ2−→ 0.

In this case, ω∗ = 3, and the ambient space N0 is divided into disjoint irreducible sets 3N,
3N0 + 1, and 3N0 + 2, as well as an absorbing state 0. By simple calculation, we have R− =
3 > R+ = 1, and α=−3κ2 < 0. Hence, this SRN is positive recurrent on the sets 3N0 + 1 and
3N0 + 2, while it admits a unique QSD on 3N [48, Theorem 7]. According to Theorem 4, the
tails of the stationary distributions decay like CMP on 3N0 + 1 and 3N0 + 2, and according to
Theorem 3, the tail of the QSD also decays as CMP on 3N. Since the transition rate functions
take a common form (polynomial) on all three irreducible sets, the parameters are the same on
all three irreducible sets (open and closed), and consequently, the tail asymptotics are the same
on the two closed irreducible sets. The same would hold true for the open irreducible sets, if
there were more than one open irreducible set.
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Example 13. Consider the following one-species S-system modelling a gene regulatory
network [14]:

∅
(κ1,ξ1)−−−→ S

(κ2,ξ2)←−−− 3S

with the generalized mass action kinetics (GMAK)

q(x, x+ 1)= κ1

(x+ ξ1)


(x)
, q(x, x− 2)= κ2


(x+ ξ2)


(x)
, x ∈N0,

where κ1, κ2 > 0 are the reaction rate constants, and ξ2 > ξ1 > 0 are the indices of GMAK.

By Stirling’s formula,

log 
(x)= (x− 1/2) log x− x+ log
√

2π +O
(
x−1);

hence q(x, x+ 1) is APLH with (ξ1, ξ1 − 1, ξ1 − 2) and q(x, x− 2) is APLH with (ξ2, ξ2 −
1, ξ2 − 2). Then R− = ξ2 > R+ = ξ1, ω∗ = 1, ω− =−2, and ω+ = 1. Using the same Lyapunov
function constructed in the proof of [47, Theorem 4.4], it can be shown that there exists a
uniquely ergodic stationary distribution π on N0 with support N. By Theorem 4, π ∈P1+

ξ3−ξ1
∩

P1−
ξ3−ξ1

.

5.2. An extended class of branching processes

Consider an extended class of branching processes on N0 [13] with transition rate matrix
Q= (q(x, y))x,y∈N0 given by

q(x, y)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r(x)μ(y− x+ 1), if y≥ x− 1≥ 0 and y 	= x,
−r(x)(1−μ(1)), if y= x≥ 1,

q(0, y), if y > x= 0,

−q(0), if y= x= 0,

0, otherwise,

where μ is a probability measure on N0, q(0)=∑y∈N q(0, y), and r(x) is a positive finite
function on N0. Assume the following:

(H1) μ(0) > 0, μ(0)+μ(1) < 1.

(H2)
∑

y∈N q(0, y)y <∞, M =∑k∈N0
kμ(k) <∞.

(H3) r(x) is a polynomial of degree R≥ 1 for large x.

The tail asymptotics of infinite stationary measures in the null-recurrent case is investigated
in [31] under (H1)–(H2) for general r. Here we assume r is polynomial (H3). The following
is a consequence of the results of Section 5.

Theorem 5. Assume (H1)–(H3), Y0 	= 0, and that μ has finite support.

(i) Assume q0 > 0. Then there exists an ergodic stationary distribution π on N0 if (i-1)
M < 1 or (i-2) M = 1 and R > 1. Moreover, Tπ decays like a geometric distribution if
(i-1) holds, and like a zeta distribution if (i-2) holds.

(ii) Assume q0 = 0. Then there exists an ergodic QSD ν on N if (ii-1) M < 1 and R > 1 or
(ii-2) M = 1 and R > 2. Moreover, Tν decays like a geometric distribution if (ii-1) holds,
while it decays no faster than a zeta distribution if (ii-2) holds.
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Proof. For all k ∈�, let

q(x, x+ k)=
{

r(x)μ(k+ 1), if x ∈N,

q(0, k), if x= 0.

By (H1), μ(k) > 0 for some k ∈N. Hence, regardless of q(0), by positivity of r,
(A1)–(A3) are satisfied with �− = {−1} and �+ = {j ∈N:j+ 1 ∈ supp μ or q(0, j) > 0}. Let
r(x)= axR + bxR−1 +O

(
xR−2

)
with a > 0. It is straightforward to verify that R+ = R− = R,

α = a(M − 1). The ergodicity follows from [47], and the tail asymptotics follow from
Theorems 4 and 3. �

5.3. Stochastic population processes under bursty reproduction

Two stochastic population models with bursty reproduction are investigated in [7].
The first model is a Verhulst logistic population process with bursty reproduction. The

process Yt is a CTMC on N0 with transition rate matrix Q= (q(x, y))x,y∈N0 satisfying

q(x, y)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cμ(j)x, if y= x+ j, j ∈N,

c
K x2 + x, if y= x− 1 ∈N0,

0, otherwise,

where c > 0 is the reproduction rate, K ∈N is the typical population size in the long-lived
metastable state prior to extinction [7], and μ is the burst size distribution.

Approximations of the mean time to extinction and QSD are discussed in [7] against various
burst size distributions of finite mean (e.g., a Dirac measure, a Poisson distribution, a geomet-
ric distribution, a negative-binomial distribution). The existence of an ergodic QSD for this
population model is established in [47]. However, the tail of the QSD is not addressed therein.

Theorem 6. Assume μ has finite support. Let ν be the unique ergodic QSD on N trapped to
zero for the Verhulst logistic model Yt. Then Tν decays like a CMP distribution.

Proof. We have �= {−1} ∪ supp μ, q(x, x− 1)= c
K x2 + x, q(x, x+ k)= cμ(k)x, for k ∈

supp μ and x ∈N. Since μ has finite support, (A1)–(A3) are satisfied. Moreover, since
supp μ 	=∅, we have R− = 2 and R+ = 1. Again, the ergodicity result follows from [47]. The
tail asymptotics follow directly from Theorem 4. �

In subsequent sections, we provide proofs of the main results in Section 4. Since the proof
of Theorem 3 is based on that of Theorem 4, we begin by proving Theorem 4 in the next
section.

6. Proof of Theorem 4

Let

αj =

⎧⎪⎪⎨⎪⎪⎩
limx→∞

∑
ω∈Aj

q(x,x+ω)

xR− , if j=ω− + 1, . . . , 0,

limx→∞
∑

ω∈Aj
q(x,x+ω)

xR+ , if j= 1, . . . , ω+,

0, otherwise,

γj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
limx→∞

∑
ω∈Aj

q(x,x+ω)−αjxR−

xR− −σ1
, if j=ω− + 1, . . . , 0,

limx→∞
∑

ω∈Aj
q(x,x+ω)−αjxR+

xR+−σ1
, if j= 1, . . . , ω+,

0, otherwise.
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Note that β = α0. From Lemma 1, α− =ω∗
∑0

j=ω−+1 αj and α+ =ω∗
∑ω+

j=1 αj. By (A3),

∑
ω∈Aj

q(x, x+ω)=
⎧⎨⎩xR−(αj + γjx−σ1 +O

(
x−σ2

))
, if j=ω− + 1, . . . , 0,

xR+(αj + γjx−σ1 +O
(
x−σ2

))
, if j= 1, . . . , ω+.

(11)

Since

q(x, x+ jω∗)= sgn(j)

(∑
ω∈Aj

q(x, x+ω)−
∑

ω∈Aj+1

q(x, x+ω)

)
, j=ω−, . . . ,−1, 1, . . . , ω+,

we have

q(x, x+ jω∗)=
{

xR−((αj+1 − αj)+ (γj+1 − γj)x−σ1 +O
(
x−σ2

))
, if j=ω−, . . . ,−1,

xR+((αj − αj+1
)+ (γj − γj+1)x−σ1 +O

(
x−σ2

))
, if j= 1, . . . , ω+.

Since (A1)–(A2) imply that ∩ω∈� {x ∈Y : q(x, x+ω)= 0} is finite, it easily follows that
both �− 	=∅ and �+ 	=∅ since supp π is unbounded. Hence α− ≥ α0 > 0, α+ ≥ α1 > 0, and
−∞< ω− < ω+ <∞.

For ease of exposition and without loss of generality, we assume throughout the proof that
ω∗ = 1 (recall the argument in the proof of Theorem 1). Hence N0 + b⊆Y ⊆N0 for some
b ∈N0 by Proposition 2.

Most of the inequalities below are based on the identities in Theorem 1 and Corollary 2.
Therefore, we use ‘LHS’ (‘RHS’) with a label in the subscript as shorthand for the left-hand
side (right-hand side) of the equation with the given label.

The claims that �= 0 implies σ1 < 1 and that σ1 = 1 implies � > 1 are proved in Step I
below.

We first show α ≤ 0. Suppose for the sake of contradiction that α > 0. Then either (1)
R+ > R− or (2) R+ = R− and α+ > α− holds. Define the auxiliary function

fj(x)=
∑
ω∈Aj

q(x− j, x− j+ω), j=ω− + 1, . . . , ω+.

From (11) it follows that

fj(x)=
{

xR−(αj + γjx−σ1 − αjjR−x−1 +O
(
x−min{σ2,σ1+1})), if j=ω− + 1, . . . , 0,

xR+(αj + γjx−σ1 − αjjR+x−1 +O
(
x−min{σ2,σ1+1})), if j= 1, . . . , ω+.

Let

βj(x)=
{

x−R− fj(x)− αj, if j=ω− + 1, . . . , 0,

x−R+ fj(x)− αj, if j= 1, . . . , ω+.

Then there exist N3, N4 ∈N with N3 > N1, N4 such that for all x≥N3,

|βj(x)| ≤N4x−σ1 , j=ω− + 1, . . . , ω+. (12)

From Theorem 1(3), we have

xR− −R+
0∑

j=ω−+1

(
αj + βj(x)

)
π (x− j)=

ω+∑
j=1

(
αj + βj(x)

)
π (x− j) . (13)
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Since R− ≤ R+ and Tπ (x)≤ 1 for all x ∈N0, summing up in (13) from x to infinity yields

∞∑
y=x

yR− −R+
0∑

j=ω−+1

(
αj + βj(y)

)
π (y− j)=

∞∑
y=x

ω+∑
j=1

(
αj + βj(y)

)
π (y− j) . (14)

In light of the monotonicity of Tπ (x) and xR− −R+ , it follows from (12) that there exist
C=C(N4) > 0 and N5 ∈N with N5 ≥N3 such that for all x≥N5,

LHS(14) ≤
∞∑

y=x

yR− −R+
0∑

j=ω−+1

(
αj +N4y−σ1

)
π (y− j)

≤ xR− −R+
0∑

j=ω−+1

(
αj +N4x−σ1

) ∞∑
y=x

π (y− j)

= xR− −R+
0∑

j=ω−+1

(
αj +N4x−σ1

)
Tπ (x− j)

≤ xR− −R+Tπ (x)
0∑

j=ω−+1

(
αj +N4x−σ1

)
≤ xR− −R+Tπ (x)

(
α− +Cx−σ1

)
.

Similarly, with a possibly larger C and N5, for all x≥N5, one can show

RHS(14) ≥
(
α+ −Cx−σ1

)
Tπ (x− 1),

which further implies that for all x large enough,

1≥ Tπ (x)

Tπ (x− 1)
≥ xR+−R− α+ −Cx−σ1

α− +Cx−σ1
> 1,

since either (1) R+ > R− or (2) R+ = R− and α+ > α− holds. This contradiction shows that
α ≤ 0.

Next, we provide asymptotics of Tπ (x) case by case. Beforehand, let us illustrate the idea
behind the proof by means of an example: the BDP case (ω+ =−ω− = 1) for R− > R+. Again,
assume without loss of generality that ω∗ = 1. From Corollary 2 it follows that

Tπ (x)(q(x, x− 1)+ q(x− 1, x))

Tπ (x− 1)q(x− 1, x)
− Tπ (x+ 1)q(x, x− 1)

Tπ (x− 1)q(x− 1, x)
= 1,

which implies by non-negativity of Tπ (x+ 1)q(x, x− 1) that

Tπ (x)

Tπ (x− 1)
≥ q(x− 1, x)

q(x− 1, x)+ q(x, x− 1)
.
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Note that

q(x− 1, x)= (x− 1)R+(α1 + γ1x−σ1 +O
(
x−σ2

))
,

q(x, x− 1)= xR−(α0 + γ0x−σ1 +O
(
x−σ2

))
.

This further shows that

Tπ (x) � 
(x)R+−R−
(

α1

α0

)x+Cx1−(R− −R+)+O(log x)

for some constant C > 0.
To obtain the upper estimate, rewrite (13) as

(α0 + β0(x))π (x)= (α1 + β1(x))xR+−R−π (x− 1).

Summing up the above equation from x to infinity yields that∑
y≥x

(α0 + β0(y))π (y)=
∑
y≥x

(α1 + β1(x))xR+−R−π (y− 1).

From (12), it follows that there exist C1, N > 0 such that for all large x≥N,∑
y≥x

(α0 + β0(y))π (y)≥ (α0 −C1x−σ1
)

Tπ (x),

while

∑
y≥x

(
α1 + β1(x)

)
xR+−R−π (y− 1)≤

∞∑
y=x

yR+−R− (α1 +C1y−σ1
)
π (y− 1)

≤xR+−R−Tπ (x− 1)
(
α1 +C1x−σ1

)
.

Hence,
Tπ (x)

Tπ (x− 1)
≤ xR+−R− α1 +C1x−σ1

α0 −C1x−σ1
= xR+−R−

(
α1

α0
+O

(
x−σ1

))
,

which further implies that

Tπ (x)(x) � 
(x)R+−R−
(

α1

α0

)x+C2x1−σ1+O(log x)

for some C2 ≥C1.
Now we provide the detailed asymptotic estimates of the tail distribution case by case.
(i) R− > R+. Recall Stirling’s formula for the gamma function [1]:

log 
(x)= x log x− x+O
(
log x

)
,
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where log is the natural logarithm. Based on this formula, it suffices to prove that there exists
C̃ > 0 such that

Tπ (x) � 
(x)R+−R−
(

α1

α0

)x+C̃x1−(R− −R+)+O(log x)

, (15)

Tπ (x) � 

(
xω−1+

)R+−R−
(

α+
α0

ω
R+−R−+

)ω−1+ x+C̃x1−σ1+O(log x)

. (16)

Next, we prove (15) and (16) one by one.
We first show (15). Recall that (A2) ensures that there exists N ∈N such that q(x, x+ω) is

a strictly positive non-decreasing polynomial on N0 +N for all ω ∈�. Moreover, Aj = {ω ∈
�− : ω < j} if j≤ 0, and Aj = {ω ∈�+ : ω≥ j} if j > 0. It follows from Corollary 2 that for all
x ∈N0 +N −ω−,

Tπ (x)

(∑
ω∈A0

q(x, x+ω)+
∑
ω∈A1

q(x− 1, x− 1+ω)

)

+
−1∑

j=ω−
Tπ (x− j) ·

(∑
ω∈Aj

q(x− j, x− j+ω)−
∑

ω∈Aj+1

q(x− (j+ 1), x− (j+ 1)+ω)

)

=
ω+∑
j=1

Tπ (x− j)

(∑
ω∈Aj

q(x− j, x− j+ω)−
∑

ω∈Aj+1

q(x− (j+ 1), x− (j+ 1)+ω)

)
. (17)

Furthermore, note that R− > R+, and we have the following estimates for both sides of the
above equality:

LHS(17) =Tπ (x)

(∑
ω∈A0

q(x, x+ω)+
∑
ω∈A1

q(x− 1, x− 1+ω)

)
+
−1∑

j=ω−
Tπ (x− j)

· (−q(x− (j+ 1), x− (j+ 1)+ j)

+
∑
ω∈Aj

(
q(x− j, x− j+ω)− q(x− (j+ 1), x− (j+ 1)+ω)

))
≤Tπ (x)

(∑
ω∈A0

q(x, x+ω)+
∑
ω∈A1

q(x− 1, x− 1+ω)

+
−1∑

j=ω−

∑
ω∈Aj

(
q(x− j, x− j+ω)− q(x− (j+ 1), x− (j+ 1)+ω)

))

=Tπ (x)xR−(α0 +O
(
x−σ̃

))
,

where σ̃ =min{1, R− − R+}> 0.
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By the monotonicity of q(x, x+ω),

RHS(17)≥
ω+∑
j=1

Tπ (x− j)

(∑
ω∈Aj

q(x− j, x− j+ω)−
∑

ω∈Aj+1

q(x− j, x− j+ω)

)

= Tπ (x− 1)

(∑
ω∈A1

q(x, x+ω)−
∑
ω∈A1

(
q(x, x+ω)− q(x−ω, x)

))
≥ Tπ (x− 1)

(
α1xR+ +O

(
xR+−1)).

Then there exist N1 > N2 > 0 such that for all x≥N1,

Tπ (x)

Tπ (x− 1)
≥ xR+−R− α1 +O

(
x−1

)
α0 +O(x−σ̃ )

= xR+−R−
(α1

α0
+O

(
x−σ̃

))≥ α1

α0
xR+−R−(1−N2x−σ̃

)
. (18)

Hence, if 0 < R− − R+ < 1, then σ̃ = R− − R+ < 1, and there exists C̃= C̃(N1, N2) > 0 such
that for all x≥N1,

Tπ (x)≥ Tπ (N1 − 1)
x−N1∏
j=0

(
α1

α0
(x− j)R+−R−

(
1− N2

(x− j)σ̃

))

= Tπ (N1 − 1)
x∏

j=N1

(
α1

α0
jR+−R−

) x∏
j=N1

(
1− N2

jσ̃

)

�
(

α1

α0

)x+1−N1 
 (x+ 1)R+−R−


(N1)R+−R− exp

(
x∑

j=N1

−2N2j−σ̃

)

� 
(x)R+−R−
(

α1

α0

)x−C̃x1−σ̃

xR+−R− ,

since 1− x−1 ≥ exp
(−2x−1

)
for large x, and we employ the fact that Tπ (N1 − 1) > 0 since

supp π =Y is unbounded. Hence (16) holds. Similarly, if R− − R+ ≥ 1, then σ̃ = 1, and
analogous arguments can be applied.

Next we show (16). Rewrite (13) as

0∑
j=ω−+1

(
αj + βj(x)

)
π (x− j)= xR+−R−

ω+∑
j=1

(
αj + βj(x)

)
π (x− j) . (19)

Summing up in (19) from x to infinity yields

∞∑
y=x

0∑
j=ω−+1

(
αj + βj(y)

)
π (y− j)=

∞∑
y=x

yR+−R−
ω+∑
j=1

(
αj + βj(y)

)
π (y− j) . (20)
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We can obtain the other estimates similarly. It follows from (12) that there exist C=C(N4) > 0
and N5 ∈N such that for all x≥N5,

LHS(20) ≥
(
α0 −Cx−σ1

)
Tπ (x),

RHS(20) ≤
∞∑

y=x

yR+−R−
ω+∑
j=1

(
αj +N4y−σ1

)
π (y− j)

≤ xR+−R−Tπ (x−ω+)
(
α+ +Cx−σ1

)
,

which together further imply that

Tπ (x)

Tπ (x−ω+)
≤ xR+−R− α+ +Cx−σ1

α0 −Cx−σ1
= xR+−R−

(
α+
α0
+O

(
x−σ1

))
.

The remaining arguments are analogous to the arguments for (15).
(ii) R− = R+ and α− > α+. Analogously to (i), we will show that there exist real constants

δ+, δ− and C̃ > 0 such that for all δ > δ+ and δ < δ−,

Tπ (x) �
(

α+
α−

)x+C̃x1−σ1+O(log x)

, (21)

Tπ (x) �
(

α+
α−

)(ω+−ω− −1)−1x+C̃x1−σ1+O(log x)

. (22)

We first prove (21). Since R= R− = R+,

fj(x)= xR(αj + βj(x)
)
, βj(x)=O

(
x−σ1

)
, j=ω− + 1, . . . , ω+.

Moreover, α = α+ − α− < 0 implies that

ω+∑
j=1

αj <

0∑
j=ω−+1

αj.

From (13), it follows that

0∑
j=ω−+1

π (x− j) αj +
0∑

j=ω−+1

π (x− j) βj(x)=
ω+∑
j=1

π (x− j) αj +
ω+∑
j=1

π (x− j) βj(x).

Summing up the above equality from x to∞ yields

0∑
j=ω−+1

∞∑
y=x

π (y− j) αj +
0∑

j=ω−+1

∞∑
y=x

π (y− j) βj(y)

=
ω+∑
j=1

∞∑
y=x

π (y− j) αj +
ω+∑
j=1

∞∑
y=x

π (y− j) βj(y).
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Since each double sum in the above equality is convergent, we have

0=
0∑

j=ω−+1

αj

∞∑
y=x

(π (y)− π (y− j) )+
ω+∑
j=1

αj

∞∑
y=x

(π (y− j)− π (y))

−
⎛⎝ 0∑

j=ω−+1

αj −
ω+∑
j=1

αj

⎞⎠ Tπ (x)

+
0∑

j=ω−+1

∞∑
y=x

(π (y)βj(y+ j)− π (y− j) βj(y))

+
ω+∑
j=1

∞∑
y=x

(π (y− j) βj(y)− π (y)βj(y+ j))

+
ω+∑
j=1

∞∑
y=x

π (y)βj(y+ j)−
0∑

j=ω−+1

∞∑
y=x

π (y)βj(y+ j).

This further yields the following equality:

(α− − α+)Tπ (x)+
0∑

j=ω−+1

∞∑
y=x

π (y)βj(y+ j)−
ω+∑
j=1

∞∑
y=x

π (y)βj(y+ j)

=
−1∑

j=ω−+1

−j−1∑
�=0

π (x+ �) f̃j(x+ j+ �)+
ω+∑
j=1

j∑
�=1

π (x− �) f̃j(x+ j− �), (23)

where f̃j(x)= αj + βj(x)= x−Rfj(x)≥ 0, j=ω− + 1, . . . , ω+. From (12), it follows that there
exist C, N > 0 such that∣∣∣∣∣

0∑
j=ω−+1

∞∑
y=x

π (y)βj(y+ j)−
ω+∑
j=1

∞∑
y=x

π (y)βj(y+ j)

∣∣∣∣∣≤C
∞∑

y=x

π (y)y−σ1 ≤Cx−σ1 Tπ (x),

for x≥N. Hence
LHS(23) ≤

(
(α− − α+)+Cx−σ1

)
Tπ (x).

Using Fubini’s theorem, we have

RHS(23) =
0∑

j=ω−+2

π (x− j)
j−1∑

�=ω−+1

f̃�(x+ �− j)+
ω+∑
j=1

π (x− j)
ω+∑
�=j

f̃�(x+ �− j). (24)

Hence, further choosing larger N and C, we have, for all x≥N,

RHS(23) ≥ π (x− 1)

ω+∑
j=1

f̃j(x+ j− 1)= π (x− 1)

ω+∑
j=1

(
αj + βj(x+ j− 1)

)
≥ (α+ −Cx−σ1

)
π (x− 1) . (25)
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This implies from π (x− 1)= Tπ (x− 1)− Tπ (x) that

Tπ (x)

Tπ (x− 1)
≥ α+ −Cx−σ1

α−
.

Using similar arguments as in the proof of (i), one obtains (21).
Next we show (22). We establish the reverse estimates for both sides of (23). Similarly,

there exist some C, N > 0 such that for all x≥N,

LHS(23) ≥
(
α− − α+ −Cx−σ1

)
Tπ (x)≥ (α− − α+ −Cx−σ1

)
Tπ (x−ω− − 1),

RHS(23) ≤
(
α+ +Cx−σ1

)(
Tπ

(
x−ω+

)− Tπ (x−ω− − 1)
)
.

This implies that for possibly larger C, N, for all x≥N,

Tπ (x−ω− − 1)

Tπ (x−ω+)
≤ α+ +Cx−σ1

α−
.

The remaining arguments are similar to those in the proof of (i).
(iii)–(vi) α= 0. Hence α+ = α−. Recall

�= α−1+ ·
{−γ, if σ1 < 1,

−γ + Rϑ, if σ1 = 1.

Let δ=�(ω+ −ω− − 1)−1. For j=ω− + 1, . . . , ω+,

rj =
{

γj, if σ1 < 1,

γj − jRαj, if σ1 = 1,

ϑj(x)= βj(x)− rjx
−σ1 .

Hence we have

ϑj(x)=O(x−σ2 ), j=ω− + 1, . . . , ω+,

where

σ2 =
{

min{1, σ2}, if σ1 < 1,

σ2, if σ1 = 1.

Let η= σ2 − σ1 and ε=min{σ1, η}. Hence 0 < ε≤ η≤ 1. If σ1 < 1, then η≤ 1− σ1. If σ1 =
1, then ε= η.
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To show (iii)–(vi), it suffices to prove that there exists C > 0 such that

Tπ (x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
− �

1−σ1
x1−σ1 +O

(
x1−σ1−ε + log x

))
, if σ1 < 1, σ1 + ε 	= 1, � > 0,

exp
(
− �

1−σ1
x1−σ1 +O(log x)

)
, if σ1 < 1, σ1 + ε= 1, � > 0,

x−(�−1), if σ1 = 1, � > 0,

exp
(
− C

1−σ2
x1−σ2 +O

(
xσ + log x

))
, if σ2 < 1, σ1 + σ2 	= 1, �= 0,

exp
(
− C

1−σ2
x1−σ2 +O(log x)

)
, if σ2 < 1, σ1 + σ2 = 1, �= 0,

x−C, if σ2 ≥ 1, �= 0,

(26)

where σ =max{1− σ1 − σ2, 0}, and if � > 0, then

Tπ (x) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(
− δ

1−σ1
x1−σ1 +O

(
xmax{1−σ1−ε,0} + log x

))
, if σ1 < 1, σ1 + ε 	= 1,

exp
(
− δ

1−σ1
x1−σ1 +O(log x)

)
, if σ1 < 1, σ1 + ε= 1,

x−max{δ−1,0}, if σ1 = 1.

(27)

To show (26) and (27) for a probability distribution μ on N0, define its weighted tail
distribution on N0 as

Wμ : N→ [0, 1], x �→
∞∑

y=x

y−σ1μ(y).

In the following, we will show there exist constants C > σ1 such that

Wπ (x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
( −�

1−σ1
x1−σ1 +O

(
x1−σ1−ε

))
, if σ1 < 1, σ1 + ε 	= 1, � > 0,

exp
( −�

1−σ1
x1−σ1 +O(log x)

)
, if σ1 < 1, σ1 + ε= 1, � > 0,

x−�, if σ1 = 1, � > 0,

exp
( −C

1−σ2
x1−σ2 +O

(
xmax{1−σ1−σ2,0})), if σ2 < 1, σ1 + σ2 	= 1, �= 0,

exp
( −C

1−σ2
x1−σ2 +O(log x)

)
, if σ2 < 1, σ1 + σ2 = 1, �= 0,

x−C, if σ2 ≥ 1, �= 0,

(28)

with � > 1, when σ1 = 1. Moreover, if � > 0, then

Wπ (x) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

( −δ
1−σ1

x1−σ1 +O(xmax{1−σ1−ε,0})
)
, if σ1 < 1, σ1 + ε 	= 1,

exp
( −δ

1−σ1
x1−σ1 +O(log x)

)
, if σ1 < 1, σ1 + ε= 1,

x−δ, if σ1 = 1.

(29)

Then we will prove (26) and (27) based on (28) and (29).
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Step I. Prove (28) and (29). Here we will also show �≥ 0, and in particular � > 1 when
σ1 = 1. We first show (28). Since α+ = α−,

LHS(23) =
0∑

j=ω−+1

∞∑
y=x

π (y)
(
rj(y+ j)−σ1 + ϑj(y+ j)

)
−

ω+∑
j=1

∞∑
y=x

π (y)
(
rj(y+ j)−σ1 + ϑj(y+ j)

)

=
⎛⎝ 0∑

j=ω−+1

rj −
ω+∑
j=1

rj

⎞⎠Wπ (x)

+
0∑

j=ω−+1

∞∑
y=x

π (y)
(
ϑj(y+ j)+ rj

(
(y+ j)−σ1 − y−σ1

))
−

ω+∑
j=1

∞∑
y=x

π (y)
(
ϑj(y+ j)+ rj

(
(y+ j)−σ1 − y−σ1

))
.

By Lemma 1,
0∑

j=ω−+1

rj −
ω+∑
j=1

rj = α+�.

Moreover,∣∣∣∣∣
0∑

j=ω−+1

∞∑
y=x

π (y)
(
ϑj(y+ j)+ rj

(
(y+ j)−σ1 − y−σ1

))
−

ω+∑
j=1

∞∑
y=x

π (y)
(
ϑj(y+ j)+ rj

(
(y+ j)−σ1 − y−σ1

)) ∣∣∣∣∣
�
∞∑

y=x

π (y)y−σ1−η ≤ x−ηWπ (x).

Since RHS(24) ≥ 0 for all large x, we have �≥ 0.

From (25) it follows that there exist C, N ∈N such that for all x≥N,

LHS(23) ≤ α+
(
�+Cx−η

)
Wπ (x),

while

RHS(23) ≥ α+(1−Cx−σ1 )π (x− 1)

= α+(1−Cx−σ1 )(x− 1)σ1 (Wπ (x− 1)−Wπ (x))

= α+
(
xσ1 −C− σ1xσ1−1 +O

(
xσ1−2))(Wπ (x− 1)−Wπ (x)).

Further choosing larger N and C, by the monotonicity of Wπ , for all x≥N,(
xσ1 −C− σ1xσ1−1 +O

(
xσ1−2))Wπ (x− 1)

≤
(

xσ1 −C+�− σ1xσ1−1 +Cx−η +O
(
xσ1−2))Wπ (x).
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If σ1 < 1, then η≤ 1− σ1, and hence η+ σ1 − 2≤−σ1. If σ1 = 1, then ε= η. Recall that
σ2 = η+ σ1. Then we have

Wπ (x)

Wπ (x− 1)
≥ xσ1 −C− σ1xσ1−1 +O

(
xσ1−2

)
xσ1 −C+�+Cx−η − σ1xσ1−1 +O

(
xσ1−2

)
=
{

1−�x−σ1
(
1+O

(
x−ε

))
, if � > 0,

1−Cx−σ2
(
1+O

(
xmax{−σ1,σ2−2})), if �= 0.

First assume � > 0. Since ε≤ 1, by the Euler–Maclaurin formula,

log
Wπ (x)

Wπ (N − 1)
≥

x∑
j=N

log
(
1−�j−σ1 +O

(
j−σ1−ε

))

=

⎧⎪⎨⎪⎩
−�

1−σ1
x1−σ1 +O

(
xmax{0,1−σ1−ε}), if σ1 < 1, σ1 + ε 	= 1,

−�
1−σ1

x1−σ1 +O(log x), if σ1 < 1, σ1 + ε= 1,

−� log x+O(1), if σ1 = 1,

which implies that

Wπ (x) �

⎧⎪⎪⎨⎪⎪⎩
exp

( −�
1−σ1

x1−σ1 +O
(
x1−σ1−ε

))
, if σ1 < 1, σ1 + ε 	= 1,

exp
( −�

1−σ1
x1−σ1 +O(log x)

)
, if σ1 < 1, σ1 + ε= 1,

x−�, if σ1 = 1;

i.e., (29) holds. Moreover, since xσ
1 Wπ (x)≤ Tπ (x)→ 0 as x→∞, we have

� >

{
0, if σ1 < 1,

1, if σ1 = 1.

Now assume �= 0; then

Wπ (x) �

⎧⎪⎪⎨⎪⎪⎩
exp

( −C
1−σ2

x1−σ2 +O
(
xmax{1−σ1−σ2,0})), if σ2 	= 1, σ1 + σ2 	= 1,

exp
( −C

1−σ2
x1−σ2 +O(log x)

)
, if σ2 	= 1, σ1 + σ2 = 1,

x−C, if σ2 = 1,

where we use the fact that σ1 + σ2 = 1 implies 0 < σ1, σ2 < 1 and σ1 + σ2 = 1. Moreover, also
by the fact that xσ

1 Wπ (x)≤ Tπ (x)→ 0 as x→∞, we have σ2 ≤ 1, which implies that σ1 < 1.
In addition, C > σ1 when σ2 = 1, i.e., σ1 < 1≤ σ2. Hence, for some C > σ1,

Wπ (x) �

⎧⎪⎪⎨⎪⎪⎩
exp

( −C
1−σ2

x1−σ2 +O
(
xmax{1−σ1−σ2,0})), if σ2 < 1, σ1 + σ2 	= 1,

exp
( −C

1−σ2
x1−σ2 +O(log x)

)
, if σ2 < 1, σ1 + σ2 = 1,

x−C, if σ2 ≥ 1.

Next we show (29) by establishing the reverse estimates for both sides of (23). From (24) it
follows that there exist positive constants N and Ci (i= 1, 2) such that for x≥N,

LHS(23) ≥ α+
(
�−Cx−η

)
Wπ (x)≥ α+

(
�−Cx−η

)
Wπ (x− (ω− + 1)),
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whereas

RHS(23) ≤ α+
(
1+C1x−σ1

) ω+∑
j=ω−+2

π (x− j)

≤ α+
(
xσ1 +C2

) ω+∑
j=ω−+2

π (x− j) (x− j)−σ1

= α+
(
xσ1 +C2

)
(Wπ (x−ω+)−Wπ (x− (ω− + 1))).

Hence, when � > 0, for all x≥N we have

Wπ (x− (ω− + 1))

Wπ (x−ω+)
≤ xσ1 +C2

xσ1 +C2 +�−Cx−η
= 1−�x−σ1 +O

(
x−σ1−ε

)
.

Analogously to the above analysis, one might show that

Wπ (x) �

⎧⎪⎪⎨⎪⎪⎩
exp

( −δ
1−σ1

x1−σ1 +O
(
xmax{1−σ1−ε,0})), if σ1 < 1, σ1 + ε 	= 1,

exp
( −δ

1−σ1
x1−σ1 +O(log x)

)
, if σ1 < 1, σ1 + ε= 1,

x−δ, if σ1 = 1;

in particular, one can further choose δ ≥ 1
(
not necessarily δ =�(ω+ −ω− − 1)−1

)
when

σ1 = 1, also because xσ1 Wπ (x)≤ Tπ (x)→ 0 as x→∞.
Moreover, one can always show Wπ (x)≤ x−σ1 Tπ (x)≤ x−σ1 ; hence (29) also holds when

σ1 = 1.

Step II. Prove (26) and (27) based on (28) and (29).
Since Wπ (x)≤ x−σ1 Tπ (x), (26) follows directly from (28).
Next, we prove (27) based on (29). Recall that

π (x)≤ xσ1 Wπ (x).

Assume � > 0. We only prove the case σ1 < 1 and σ1 + ε= 1. (The other two cases
can be proved using analogous arguments.) There exist N ∈N and C1 > σ1 such that

exp
( −δ

1−σ1
y1−σ1 +C1 log y

)
is decreasing on [N,+∞), and for all x≥N,

Tπ (x)=
∞∑

y=x

π (y) ≤
∞∑

y=x

yσ1 Wπ (y) �
∞∑

y=x

exp
( −δ

1−σ1
y1−σ1 +C1 log y

)
�
∫ ∞

x−1
exp

( −δ
1−σ1

y1−σ1 +C1 log y
)

dy �
∫ ∞

x−1
yC1+σ1 d

(
− exp

( −δ
1−σ1

y1−σ1
))

≤ (x− 1)C1+σ1 exp
( −δ

1−σ1
(x− 1)1−σ1

)
+ (C1 + σ1)(x− 1)σ1−1

∫ ∞
x−1

exp
( −δ

1−σ1
y1−σ1 +C1 log y

)
dy,
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which further implies that for all x≥N,

Tπ (x) �
(x− 1)C1+σ1 exp

( −δ
1−σ1

(x− 1)1−σ1

)
1+O

(
(x− 1)σ1−1

)
� exp

( −δ
1−σ1

(x− 1)1−σ1 +O(log x)
)
= exp

( −δ
1−σ1

x1−σ1 +O(log x)
)

.

This shows (28) in that case.

7. Proof of Theorem 3

Again (A3) implies supp ν = ∂c [15], which is unbounded by (A2).
Comparing the identities for stationary distributions and QSDs, the unique difference comes

from an extra term on the right-hand side of the identity for QSDs with coefficient θν > 0. This
makes the identity in Theorem 1(3) for stationary distributions into an inequality, with its left-
hand side greater than its right-hand side, for QSDs. Hence, all arguments in the proof of
Theorem 3 establishing α ≤ 0 as well as the lower estimates for Tπ (the tail of the stationary
distribution) carry over to Tν .

Next, we show R≥ 0. The proof is in a similar spirit to that for α ≤ 0. Since α ≤ 0, we have
R− = R from the definition of α. Again, assume without loss of generality that ω∗ = 1, so that
∂ contains all large positive integers by Proposition 2. From Theorem 2(3), similarly to (13),
for all large x we have

xR(α− +Cx−σ1 )Tν(x)≥ xR
0∑

j=ω−+1

(
αj + βj(x)

)
ν (x− j)

= θνTν(x)+ xR+
ω+∑
j=1

(
αj + βj(x)

)
ν (x− j)

≥ θνTν(x),

which yields

xR(α− +Cx−σ1
)− θν ≥ 0.

This shows R≥ 0, since θν > 0. Moreover, if R= 0, then α− ≥ θν . The claim that R− = R+ = 0
implies α ≤−θν is proved below in (vii).

Recall that α0 = β. Similarly to (17) and the inequality (18) based on it, one can also obtain
α0 ≥ θν if R= 0 and R− > R+. Moreover, there exists C > α1 > 0 such that for all large x,

Tν(x)

Tν(x− 1)
≥
⎧⎨⎩xR+−R− α1−Cx−1

α0−θνx−R−+Cx−σ̃ , if R− > R+,

α1−Cx−1

α0+α1−θνx−R+CxR−1 , if R− = R+,

(30)

where we recall σ̃ =min{1, R− − R+}.
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Similarly to (20), we establish

∞∑
y=x

0∑
j=ω−+1

(
αj + βj(y)

)
ν (y− j)

= θν

∞∑
y=x

y−R−Tν(y)+
∞∑

y=x

yR+−R−
ω+∑
j=1

(
αj + βj(y)

)
ν (y− j) . (31)

Since LHS(32) is finite, we have that
∑∞

y=x y−R−Tν(y) is also finite. Furthermore, by a similar
analysis as in the proof of Theorem 4, there exists C > 0 such that for all large x ∈N,

θν

∞∑
y=x

y−R−Tν(y)≤ (α− +Cx−σ1 )Tν(x)→ 0, if x→∞.

Step I. Establish lower estimates for Tν based on the above inequality, using a similar
asymptotic analysis to that demonstrated repeatedly in the proof of Theorem 3.

1. R− = R > R+:

• R= 0 (Cases (i)–(iii)). Then α0 ≥ θν . If α0 > θν , then there exists C̃ > 0 such that

Tν(x) � exp
(
−(R− − R+) log 
(x)−

(
log α0−θν

α1

)
x− C̃x1−(R− −R+) +O(log x)

)
;

i.e., ν ∈P1−
R− −R+ . Hence Case (i) is proved. If α0 = θν , then

Tν(x)

Tν(x− 1)
≥ xmin{0,1+R+−R−}(α1

C − x−1),
which yields that

Tν(x) � exp
(

min{0, R+ − R− + 1} log 
(x)−
(
log C

α1

)
x− C

α1
log x

)
;

i.e., ν ∈P2−
1 if 0 > R+ − R− ≥−1, and ν ∈P1−

R− −R+−1 if R+ − R− <−1. Hence
Cases (ii) and (iii) are also proved.

• R > 0 (Case (iv)). Based on (30), there exists C̃ > 0 such that

log Tν(x) � exp
(
−(R− − R+) log 
(x)−

(
log α0

α1

)
x− C̃x1−min{̃σ ,R−} +O(log x)

)
;

i.e., ν ∈P1−
R− −R+ . Hence the first part of (iv) is proved. The second part of (iv) is

proved below in Step II.

2. R− = R+ = R. Then (31) is

∞∑
y=x

0∑
j=ω−+1

(
αj + βj(y)

)
ν (y− j)= θν

∞∑
y=x

y−R−Tν(y)+
∞∑

y=x

ω+∑
j=1

(
αj + βj(y)

)
ν (y− j) ,

from which it follows that there exist C > 0 and N ∈N such that for all large x ∈N,

Tν(x)

Tν(x− 1)
≥ α+ −Cx−σ1

α− − θνx−R− +Cx−σ1
, (32)
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Based on this, we establish the following lower estimates for Tν(x):
(v) R > 0 and α < 0. We can show that

Tν(x) �

⎧⎨⎩exp
((

log α+
α−
)
x+O(log x)

)
, if min{R, σ1} = 1,

exp
((

log α+
α−
)
x+O

(
x1−min{R,σ1})), if min{R, σ1} 	= 1,

i.e., ν ∈P2−
1 . The latter part is proved in Step II below.

• R > 0 and α= 0. We prove the conclusions case by case.

• 0 < R < σ1 and α= 0. Then

1≥ Tν(x) �

⎧⎪⎨⎪⎩
exp

(
θν

α+(1−R) x1−R +O(log x)
)
, if min{2R, σ1} = 1,

exp
(

θν

α+(1−R) x1−R +O
(
x1−min{2R,σ1})), if min{2R, σ1} 	= 1,

which tends to infinity as x→∞. This is a contradiction, and thus it is not
possible for this case to occur.

• 0 < R= σ1 < 1 and α = 0. Then

Tν(x) �

⎧⎪⎨⎪⎩
exp

(
− 2C−θν

α+(1−R) x1−R +O(log x)
)
, if 2R= 1,

exp
(
− 2C−θν

α+(1−R) x1−R +O
(
x1−2R

))
, if 2R 	= 1,

i.e., ν ∈P2−
1−R.

• min{1, R}> σ1 and α = 0. Then

Tν(x) �

⎧⎪⎨⎪⎩
exp

(
− 2C

α+(1−σ1) x1−σ1 +O(log x)
)
, if min{R, 2σ1} = 1,

exp
(
− 2C

α+(1−σ1) x1−σ1 +O
(
x1−min{R,2σ1})), if min{R, 2σ1} 	= 1,

i.e., ν ∈P2−
1< .

• R≥ σ1 = 1 and α= 0. If R= σ , then

Tν(x) � x
− 2C−θν

α+ ,

i.e., ν ∈P3−. If R > σ1, then

Tν(x) � x
− 2C

α+ ,

which also indicates ν ∈P3−.
(vii) R= 0. From (32) it follows that

1≥ Tν(x)

Tν(x− 1)
≥ α+ −Cx−σ1

α− − θν +Cx−σ1
,
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which yields α+
α− −θν

≤ 1, i.e., α ≤−θν < 0. Similarly, based on (30), θν ≤ α0 ≤ α−.

• R= 0, α + θν = 0, σ1 < 1:

Tν(x) �

⎧⎪⎨⎪⎩
exp

(
− 2C

(α− −θν )(1−σ1) x1−σ1 +O(log x)
)
, if 2σ1 = 1,

exp
(
− 2C

(α− −θν )(1−σ1) x1−σ1 +O
(
x1−2σ1

))
, if 2σ1 	= 1,

i.e., ν ∈P2−
1−σ1

.

• R= 0, α + θν = 0, σ1 = 1:

Tν(x) � x
− 2C

α− −θν ,

i.e., ν ∈P3−.

• R= 0, α + θν < 0:

Tν(x) �

⎧⎪⎨⎪⎩
exp

(
α+θν

α− −θν
x+O

(
x1−σ1

))
, if σ1 < 1,

exp
(

α+θν

α− −θν
x+O(log x)

)
, if σ1 = 1,

i.e., ν ∈P2−
1 .

Step II. Establish upper estimates for Tν .

Case I: R > 1.

The arguments establishing the upper estimates for Tπ in the proof of Theorem 4 can be
adapted to establish those for Tν .

• Latter part of (iv): R− > max{1, R+}. Based on (31), one can show that there exists C > 0
such that for all large x,

Tν(x)

Tν(x−ω+)
≤ xR+−R− α+ +Cx−σ1

α0 − θν

R− −1 (x− 1)1−R− −Cx−σ1

= xR+−R−
(

α+
α0
+O(x−min{σ1,R− −1})

)
,

which implies that

Tν(x) � exp
(
−(R− − R+)ω−1+ log 


(
xω−1+

)− ((R− − R+)ω−1+ + log α0
α+

)
x

+O
(
x1−min{{σ1,R− −1}} + log x

))
.

Then ν ∈P1+
(R− −R+)ω−1+

.

• Latter part of (v): R− = R+ > 1 and α < 0. An analogue of (23) is

(α− − α+)Tν(x)− θν

∞∑
y=x

y−RTν(y)+
0∑

j=ω−+1

∞∑
y=x

ν(y)βj(y+ j)−
ω+∑
j=1

∞∑
y=x

ν(y)βj(y+ j)

=
−1∑

j=ω−+1

−j−1∑
�=0

ν (x+ �) f̃j(x+ j+ �)+
ω+∑
j=1

j∑
�=1

ν (x− �) f̃j(x+ j− �). (33)

https://doi.org/10.1017/apr.2023.42 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.42


The asymptotic tails of limit distributions of CTMCs 729

Based on this, one can show that there exists C > 0 such that for all large x,(
(α− − α+)− θν

R− 1
x1−R − θνx−R −Cx−σ1

)
Tν(x)≤ LHS(33)

≤ (α− − α+ − θνx−R +Cx−σ1
)

Tν(x),

(α+ −Cx−σ1 )(Tν(x− 1)− Tν(x))≤RHS(33)

≤ (α+ +Cx−σ1 ) (Tν(x−ω+)− Tν(x−ω− − 1)) .

This implies
Tν(x−ω+)

Tν(x−ω− − 1)
≤ α+ +Cx−σ1

α− − θν

R−1 x1−R − θνx−R
,

and hence

Tν(x) � exp
(
−(ω+ −ω− − 1)−1 log

(α−
α+

)
x+O(x1−min{{σ1,R−1}} + log x)

)
.

Then ν ∈P2+
1 .

Case II: R≤ 1 (Cases (viii)–(xi)).

Indeed, from (31), for large x,

Tν(x−ω−)

Tν(x)
≤ α− +Cx−σ1 − θνx−R

α− +Cx−σ1
= 1− θνx−R

α− +Cx−σ1

=

⎧⎪⎪⎨⎪⎪⎩
1− θν

α− x−R +O(x−min{2R,R+σ1}), if R > 0,

1− θν

α− +O
(
x−σ1

)
, if R= 0, α− > θν,

C
α− x−σ1 +O

(
x−2σ1

)
, if R= 0, α− = θν .

Using similar arguments as in the proof of Theorem 4, we can show

Tν(x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−θν/α− , if R= 1,

exp
(
− θν

α−(1−R)

(−xω−1−
)1−R +O(log x)

)
, if 0 < R < 1,

min{2R, R+ σ1} = 1,

exp
(
− θν

α−(1−R)

(−xω−1−
)1−R +O

(
x1−min{2R,R+σ1})) , if 0 < R < 1,

min{2R, R+ σ1} 	= 1,

exp
(
log

(
1− θν

α−

) (−xω−1−
)+O

(
x1−σ1

))
, if R= 0, α− > θν,



(−xω−1−

)−σ1
(
Cα−1−

)−xω−1− −C̃x1−σ1
, if R= 0, α− = θν .

This implies that

ν ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P3+

θν/α− , if R= 1,

P2+
1−R, if 0 < R < 1,

P2+
1 , if R= 0, α− > θν,

P1+
−ω−1− σ1

, if R= 0, α− = θν .
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Appendix A. Structure of the state space

Proposition 2. Let n=min Y . Then Y ⊆ω∗N0 + n. Assume (A2) and �+ 	=∅. Then there
exists m ∈N0 with m− n ∈ω∗N0 such that ω∗N0 +m⊆ ∂c ⊆Y ⊆ω∗N0 + n.

Proof. The first conclusion follows immediately from [48, Lemma B.2].
For the second conclusion, we only prove the case when �− =∅. The case when �− 	=∅ is

proved in [48, Lemma B.1]. If �+ = {ω∗} is a singleton, then by (A2), there exists m ∈Y such
that ω∗N0 +m⊆Y; hence the conclusion follows. Assume �+ has more than one element. By
the definition of ω∗, there exist coprime ω1, ω2 ∈�+. By (A2), there exists n1 ∈Y such that

q(x, x+ω1) > 0, q(x, x+ω2) > 0, x ∈Y, x≥ n1.

Hence (ω1N0 + n1)∪ (ω2N0 + n1)⊆Y . Further assume n1 = 0 for ease of exposition. We
claim that there exists sj ∈Y ∩N, for j= 0, . . . , ω1 − 1, such that sj − j ∈ω1N0. Then

N0 +
ω1−1∏
j=0

sj ⊆∪ω1−1
j=0

(
ω1N0 + sj

)⊆Y,

since for every x ∈N0, x+∏ω1−1
j=0 sj ∈ω1N0 + (x mod ω1) and

∏ω1−1
j=0 sj ≥ sk for all k=

0, . . . , ω1 − 1. Hence it suffices to prove the above claim. Since ω1 and ω2 are coprime,
there exist m1, m2 ∈N such that m1ω1 −m2ω2 = 1. Then let sj = jm1ω1 +m2ω2(ω1 − j), for
j= 0, . . . , ω1 − 1. It is readily seen that sj ∈ω1N0 ∪ω2N0 ⊆Y and

sj =m2ω1ω2 + j(m1ω1 −m2ω2)=m2ω2ω1 + j ∈ω1N0 + j.

The proof is complete. �

Appendix B. A lemma for Theorem 4

Lemma 1. Assume (A1)–(A3). Then the following hold:

(i) We have α0 ≥ α−1 ≥ · · · ≥ αω−+1, and α1 ≥ α2 ≥ · · · ≥ αω+ .

(ii) We have βj(x)=
{

(γj + (−j+ 1)R−αj)x−σ1 +O(x−σ2 ), if j=ω− + 1, . . . , 0,

(γj − jR+αj)x−σ1 +O(x−σ2 ), if j= 1, . . . , ω+.

(iii) It holds that

α− =ω∗
0∑

j=ω−+1

αj, α+ =ω∗
ω+∑
j=1

αj, γ− =ω∗
0∑

j=ω−+1

γj, γ+ =ω∗
ω+∑
j=1

γj.

(iv) If α= 0, then

ω+∑
j=ω−+1

|j|αj = ϑω−2∗ .
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Proof. Assume without loss of generality that ω∗ = 1. We prove only the ‘+’ cases.
Analogous arguments apply to the ‘−’ cases.

(i)–(ii). The first two properties follow directly from their definitions.

(iii). By Fubini’s theorem,

ω+∑
j=1

∑
ω∈Aj

q(x, x+ω)=
∑
j≥1

∑
�≥j

q(x, x+ �)=
∑
1≤j

jq(x, x+ j)=
∑

ω∈�+
q(x, x+ω)ω.

Comparing the coefficients before the highest degree of the polynomials on both sides, and
using the definition of α� as well as α+, we have

α+ =
ω+∑
j=1

αj.

(iv). By Fubini’s theorem again,

ω+∑
j=1

∑
�≥j

jq(x, x+ �)=
ω+∑
j=1

j(j+ 1)

2
q(x, x+ j).

Note that α= 0 implies α− = α+. Since R+ = R, comparing the coefficients before xR, we have

ω+∑
j=1

jαj = 1

2

(
α+ + lim

x→∞

∑
ω∈�+ q(x, x+ω)ω2

xR+

)
.

Similarly,
0∑

j=ω−+1

∑
�≤j−1

|j− 1|q(x, x+ �)=
−1∑

j=ω−

(j− 1)j

2
q(x, x+ j).

Hence
0∑

j=ω−+1

|j− 1|αj = 1

2

(
α− + lim

x→∞

∑
ω∈�− q(x, x+ω)ω2

xR−

)
.

Then the conclusion follows from

ϑ = 1

2
lim

x→∞

∑
ω∈� q(x, x+ω)ω2

xR

and
0∑

j=ω−+1

|j− 1|αj = α− +
0∑

j=ω−+1

|j|αj.

�

Appendix C. Calculation of sharp asymptotics of stationary distributions
in special cases

We first provide the sharp asymptotics of stationary distributions for BDPs. For any
two real-valued functions f ,g on R, we write f (x)∼ g(x) if there exists C > 1 such that
C−1g(x)≤ f (x)≤Cg(x) for all x ∈R.
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Proposition 3. Assume (A1)–(A3), α = 0, and ω+ =−ω− = 1. Let π be a stationary distribu-
tion of Yt supported on Y . Then the following hold:

(i) If �= 0, σ1 < 1, and min{2σ1, σ2}> 1, then R > 1 and π ∈P3+
R−1 ∩P3−

R−1.

(ii) If � > 0, σ1 < 1, then π ∈P3+
1−σ1
∩P3−

1−σ1
.

(iii) If σ1 = 1, then � > 1 and π ∈P3+
�−1 ∩P3−

�−1.

Proof. The proof is similar to that of Theorem 4, with the aid of Stirling’s formula and the
Euler–Maclaurin formula. �

When Yt is not a BDP, the asymptotic tail of a stationary distribution can be established in
some cases when α= 0. When α= 0, α+ = α− and

1

ω+ −ω− − 1
≤ 2

ω+ −ω−
≤ α+ω∗

ϑ
≤ 1.

Hence

δ ≤ R− γ

ϑ
=�

α+ω∗
ϑ
≤�,

and both equalities hold if and only if Yt is a BDP.

Proposition 4. Assume (A1)–(A3), α = 0, γ + ϑ < 0, and ∂ =∅. Let π be a stationary
distribution of Yt supported on Y . Then for large x ∈Y ,

Tπ (x)∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

exp
(

γ
ϑ(1−σ1)

(
ω−1∗ x

)1−σ1 +O(log x)
)
, if σ1 < 1,

min{2σ1, σ2} = 1,

x1−R+σ1 exp
(

γ
ϑ(1−σ1) (ω−1∗ x)1−σ1 +O

(
x1−min{2σ1,σ2})), if σ1 < 1,

min{2σ1, σ2} 	= 1,

x1+ γ
ϑ
−R (1+O

(
x−1

))
, if σ1 = 1.

Hence π ∈P2−
1−σ1
∩P2+

1−σ1
if σ1 < 1, and π ∈P3−

R− γ
ϑ
−1
∩P3+

R− γ
ϑ
−1

if σ1 = 1.

Proof. To prove the conclusions, we apply [16, Theorem1] and arguments similar to those
in the proof of Theorem 4. �
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