
1 A Short Primer on Quantum
Mechanics

Nanomechanics is part of both quantum physics and molecular physics. As this book
is aimed at engineering students and engineers, whom we assume have no formal
training in quantum physics, we begin our presentation with a short introduction
of quantum mechanics, in order to provide the necessary background for later
presentations.

1.1 Wave–Particle Duality: Law of Physics

Light and matter exhibit wave–particle duality, in other words, all matter and light
have two manifestations: discreteness as the deterministic being and continuousness in
the sense of probabilistic presence. In our current understanding, such wave–particle
duality is the law of physics or first principle, because we do not know, at least to date,
any other laws of universe that are more fundamental than it.

The relations between wave and particle properties of any object in the universe
may be described by the de Broglie relations,

E = hν, and p = h

λ
, (1.1)

where h is the Planck constant, which is a universal constant of nature, and its value is
h = 6.63 × 10−34 Js; λ is the matter wavelength; and ν is the matter wave frequency,
which is the number of a repeating event, e.g., cycles or temporal wave number per unit
time. The unit of frequency is hertz (Hz) (1 Hz means one wave cycle per second). The
reciprocal of the frequency is period, which is the time duration of one wave cycle, i.e.,

T = 1

ν
.

At first sight, many of us may experience difficulties understanding such wave–particle
proposition because, in our common experience, a finite mass matter is always associ-
ated with the discrete particle, whereas the light wave is associated with the continuous
electromagnetic field.

However, at the turn of the twentieth century, people had found several counterex-
amples or evidences that show either (1) light wave behaves like particles, and (2)
matter exhibits wave properties.
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4 Part I First-Principles Calculations

Figure 1.1 Illustration of photoelectric effect experiment

Two famous examples showing that light exhibits particle properties are: (1) pho-
toelectric effect and (2) Compton effect.

1.1.1 Photoelectric Effect

In 1887, Heinrich Hertz found that when ultraviolet (UV) light is shone on a metal
plate in a vacuum, and it emits charged particles (see Fig. 1.1), which were later shown
to be electrons by J. J. Thomson (1899).

Based on classical electromagnetic theory, electric field E of light exerts force
F = −eE on electrons. As the intensity of light increases, the input energy to the
metal plate increases as well, which may be absorbed by the electrons inside the
metal plate, so that the kinetic energy of electrons inside the metal plate increases
too. When the kinetic energy of the electrons reach a critical value, they may escape
from the metal plate. From this perspective, electrons should be emitted whatever the
frequency ν of light is, so long as E is sufficiently large; and for very low intensity,
one may expect a time lag between light exposure and electron emission, because
electrons need to absorb enough energy to escape from the metal plate.

The actual experimental observation shows that the maximum kinetic energy of
ejected electrons is independent of light intensity, but dependent on the frequency ν of
the light. For ν < ν0, i.e., for frequencies below a cutoff frequency, no electrons are
emitted from the metal plate, and there is no time lag when the light intensity is low.
However, the rate of ejection of electrons depends on light intensity.

To interpret the experimental results, Albert Einstein theorized that the energy
distribution in light is discrete, or light travels in packets of discrete energy, which
are referred to as quanta, and they are now called as photons,1

E = hν. (1.2)

1 Here, we adopt the hypothesis that the group of velocity of light is the velocity of photons.
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Figure 1.2 Compton scattering: (a) schematic illustration and (b) experimental observation

When an electron absorbs a single photon, it may leave the metal plate. The maximum
kinetic energy of an emitted electron can then be expressed as

Kmax = hν − ϕ,

where ϕ is the work function, which is the minimum energy needed for an electron
to escape from the surface of the metal plate of a given metallic material. It is usually
2∼5 eV depending on the type of materials, and it may be written as ϕ = hν0, so that
we must have ν > ν0 for the photoelectric effect to occur. Einstein’s theory was later
validated by the experiments conducted by Robert Andrews Millikan in 1914.

For his discovery of the law of the photoelectric effect, in 1921 Albert Einstein was
awarded the Nobel Prize in Physics.

1.1.2 Compton Scattering

The second example is the so-called Compton scattering or the Compton effect, which
is the light scattering due to the inelastic collision of photons and electrons. The exper-
iment is illustrated in Fig. 1.2(a). In the experiment, a high-energy X-ray or gamma
ray photon beam hits a target with electrons. In this case, classical theory predicts that
when light is scattered on a free electron, the incident electromagnetic (EM) wave
will shake the electron transversely, and the oscillating electron then radiates in all
directions (except the exact direction of 90◦). The classical theory predicts that there
may be a change of the wavelength of the colliding photons due to the associated
Doppler shift, when the light intensity is large.
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However, in the Compton scattering experiment, one can observe the change of the
wavelength of the scattering light even when the light intensity is very small, which is
called the Compton shift. The shift of the wavelength can be calculated by treating the
collision of the photon and electron as the elastic collision of two billiard balls. That
is, the photon behaves like a particle and, hence, the photon–electron collision obeys
the energy conservation and momentum conservation,

hν +mec
2 = hν′ + (p2

e c
2 +m2

ec
4)1/2 and pν = pν′ + pe. (1.3)

Note that (p2
e c

2 +m2
ec

4)1/2 = mc2 is Einstein’s relativistic energy, which can be
derived from Einstein relations,

E = mc2, m = me√
1 − v2/c2

, and p = mv, → p2c2 = −m2
ec

4 + (mc2)2

and me in Eq. (1.3) is the electron’s static mass.
From Eq. (1.3), one can find that

λ′ − λ = h

mec
(1 − cos θ) ≥ 0. (1.4)

In Fig. 1.2(b), one finds the shifted wavelength measurement at different angles. Note
that for every fixed angle, there is also an unshifted peak, that is due to collision of
the X-ray photon and the core of the atom (the nucleus of the atom plus the immobile
electrons) because in that case, based on Eq. (1.3), one can find that

λ′ − λ = h

mcc
(1 − cos θ) ∼ 0, mc � me. (1.5)

The Compton effect is a strong evidence that the continuous electromagnetic waves
may behave like particles. For the discovery of the Compton effect, Arthur Holly
Compton earned the 1927 Nobel Prize in Physics.

On the other hand, discrete matter may also behave like continuous waves. In
the following, we consider a well-known double-slit diffraction experiment of matter
waves.

1.1.3 Interference of Matter Waves

The double-slit experiment was originally performed by Thomas Young in 1801 in
demonstrating the wave nature of light, in which an incoming coherent plane wave
is directly hitting a thin plate with two slits, one can observe the wave interference
pattern on the screen behind the double-slit plate as shown in Fig. 1.3(b).

On the other hand, if the incoming object is not light, but a beam of particles such
as electrons, atoms, or even molecules, what would we expect the measurement result
on the back screen to be? A natural expectation on the results of double-slit diffraction
of matter waves is depicted in Fig. 1.3(a). However, on the contrary, for matter particle
waves, the particle density on the back screen has the same interference pattern as the
light wave. Interference pattern produced by a beam of C60 molecules is shown in
Fig. 1.4, which demonstrates the wave–particle duality of C60 molecules. It should be
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Figure 1.3 Double-slit experiment: (a) expected result for particles and (b) experimental
observation

Figure 1.4 Interference pattern produced by C60 molecules: (a) experimental recording (open
circles) and the fitting curve by using the Kirchhoff diffraction theory (continuous line) – the
expected zeroth and first-order maxima can be clearly seen. The details of the theory are
discussed in the text; and (b) the molecular beam profile without the grating in the path of the
molecules (Arndt et al. (1999))
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noted that the position of the matter wave is uncertain, and it is a wave of probability
distribution, and it is sometimes called the de Broglie wave. One of the consequences
of this probabilistic wave is the uncertainty principle, which is sometimes called
the Heisenberg principle. The principle asserts that there is a fundamental limit to
the precision with which certain pairs of physical properties of a particle can be
simultaneously determined, such as position x and momentum p,

σxσp ≥ h̄

2
,

where h̄ = h
2π = 1.05457172610−34Js is the reduced Planck constant and σx,σp are

standard deviation of position and momentum.
The quantum mechanics uncertainty principle indicates that the more precise the

momentum of a particle is determined, the less precise its position can be known,
and vice versa. In other words, for a fixed precision of momentum, the precision
of the position is bounded below. This is to say that as random variables, position
and momentum are intrinsically related, and the product of their variances has a low
bound.

To close this section, we note that not only light and matter exhibit wave–particle
duality, antimatter also exhibits wave–particle duality.

1.2 Schrödinger Equation

The partial different equation that governs the matter wave motion is called the
Schrödinger equation.

1.2.1 A Short Heuristic Derivation

Since this is not a quantum mechanics book but an introduction to nanomechanics to
engineers, we derived the Schrödinger equation in a heuristic manner.

Before we get into mathematical derivations, we first make the following
assumptions:

1. The total energy E of a particle is

E = T + V = p2

2m
+ V .

This is the energy expression for a classical particle with mass m where the total
energy E is the sum of the kinetic energy T , and the potential energy V (which can
vary with position, and time). p and m are the momentum and the mass of the particle,
respectively.
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1 A Short Primer on Quantum Mechanics 9

2. Einstein’s light quanta hypothesis (1905) asserts that the energy E of a photon is
proportional to the frequency ν (or angular frequency, ω = 2πν) of the corresponding
electromagnetic wave:

E = hν = h̄ω.

3. The de Broglie hypothesis (1924) states that any particle can be associated with a
wave, and that the momentum p of the particle is related to the wavelength λ (or wave
number k) of such a wave by:

p = h

λ
= h̄k.

Expressing p and wavelength k as vectors, we have

p = h̄k.

4. The three assumptions discussed earlier allow one to derive the governing equation
for plane waves only. To extend those assumptions to general situations will require the
superposition principle, and thus, one must separately postulate that the Schrödinger
equation is linear.

Schrödinger’s main idea was to express the phase of the matter wave as a complex
phase factor so that the matter wave probability function has the following form:

�(r,t) = A exp i(k · r − ωt), where r = xex + yey + zez, (1.6)

where k is the wave number and ω is the angular frequency.
Considering that Eq. (1.6) is the intrinsic form of the wave function, we have

∂

∂t
� = −iω�

and then

E� = hν� = h̄ω� = ih̄
∂

∂t
�. (1.7)

Similarly, for spatial derivatives, we have

∂

∂x
� = ikx�, and

∂2

∂x2
� = −k2

x�.

We then have

p2
x� = (h̄kx)2� = −h̄2 ∂2

∂x2
�

and hence

p2� = (
p2

x + p2
y + p2

z

)
� − h̄2

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
� = −h̄2∇2�.
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Recalling the Assumption 1 on total energy,

E = T + V = p2

2m
+ V ⇒ E� = (T + V )� = − h̄2

2m
∇2� + V � (1.8)

and combining Eqs. (1.7) and (1.8), we obtain the standard form of time-dependent
Schrödinger equation for a single particle as,

ih̄
∂

∂t
�(r,t) = − h̄2

2m
∇2�(r,t) + V (r,t)�(r,t), (1.9)

where m is the mass of the particle, − h̄2

2m
∇2 is said to be the kinetic energy operator,

and V (r,t) is the potential energy of the particle at position r and at time t .
In passing, we note that the Schrödinger equation, i.e., Eq. (1.9), is a second-order,

homogeneous, linear partial differential equation.

1.2.2 Wave Function

Further examining the time-dependent Schrödinger equation,

ih̄
∂�

∂t
= − h̄2

2m
∇2� + V (r,t)�

we find that

E = T + V = p · p
2m

+ V (r,t) ⇒ − h̄2

2m
∇2 + V (r,t),

which may be viewed as a differential operator, and we name the energy differential
operator as Hamiltonian operator or simply “Hamiltonian,”

Ĥ = T̂ + V̂ = − h̄2

2m
∇2 + V (r,t). (1.10)

Max Born made a physical interpretation of the wave function �(r,t): The probability
of finding the particle in a small volume δ� at position r and time t is equal to
|�(r,t)|2δ� = �(r,t)�∗(r,t)δ�. In other words, |�(r,t)|2 is the probability dis-
tribution of finding the particle in the location r at time t . Since the total probability
to find the particle in the space should be one, i.e.,∫

IR3
|�(r,t)|2d� = 1

and a wave function that satisfies this condition is said to be normalized. Suppose that
we have a solution of Eq. (1.9), which is not normalized,∫

IR3
|�(r,t)|2d� = C,

we can then normalize it by choosing

�(r,t) = 1√
C

�(r,t).
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In fact, we can show that the Born interpretation of the wave function

Pr =
∫ ∞

−∞
|�(x,t)|2dx = const .

is correct by proving dPr

dt
= 0. We know that

ih̄
∂�

∂t
= − h̄2

2m

∂2�

∂x2
+ V (x,t)�. (1.11)

By taking the complex conjugate of the above equation, we can have the conjugate
Schrödinger equation,

− ih̄
∂�∗

∂t
= − h̄2

2m

∂2�∗

∂x2
+ V (x,t)�∗. (1.12)

Then, multiplying Eq. (1.11) with �∗ and multiplying Eq. (1.12) with � yield

ih̄�∗�̇ = − h̄2

2m
�∗ ∂2�

∂x2
+ V (x,t)�∗�, (1.13)

ih̄��̇∗ = h̄2

2m
�

∂2�∗

∂x2
− V (x,t)��∗. (1.14)

By integrating Eqs. (1.13) and (1.14) from −∞ to ∞ and by integration by parts, we
obtain

ih̄
∂

∂t

∫ ∞

−∞
|�|2dx = − h̄2

2m
�∗ ∂�

∂x

∣∣∣∞−∞ + h̄2

2m
�

∂�∗

∂x

∣∣∣∞−∞
+ h̄2

2m

∫ ∞

−∞

(
�∗

,x�,x − �,x�
∗
,x

)
dx = 0,

the last equality is derived by considering the fact that wave function should be con-
vergent, which requires �(x) and �∗(x) → 0, as x → ∞. This result leads to Born’s
statistical interpretation, ∫ ∞

−∞
|�|2dx = const .

is the probability of finding the particle at time t along the x-axis.

1.3 Solution Examples of the Schrödinger Equation

In this section, we provide a few benchmark solutions, as well as corresponding
solution techniques, of the Schrödinger equation.

1.3.1 Time-Independent Schrödinger Equation

There is a large class of problems in which the potential function is independent
from time, t . In one-dimensional (1D) cases, we can write such potential function
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as V (x,t) = V (x), and the corresponding Schrödinger equation can be written as
follows:

ih̄
∂�

∂t
= − h̄2

2m

∂2�

∂x2
� + V (x)�. (1.15)

Using separation of variable and substituting �(x,t) = ψ(x)T (t) into Eq. (1.15), we
have

ih̄ψ
dT

dt
= − h̄2

2m
T (t)

d2ψ

dx2
+ V (x)ψ(x)T (t).

Dividing the above equation by ψ(x)T (t), we can obtain

ih̄
1

T

dT

dt
= − h̄2

2m

1

ψ

d2ψ

dx2
+ V (x) = const . = A, (1.16)

where A is separation constant.
Equation (1.16) can be separated into two equations, and we can solve the first

equation,

dT

dt
= −i

A

h̄
T → T (t) = C exp

(
−i

A

h̄
t

)
.

We know that the matter wave solution should have a factor exp(−iωt) and ω = E/h̄.
Thus, we can now identify that A = E.

Subsequently, the two ordinary differential equations of Eq. (1.16) can be written as

ih̄
1

T

dT

dt
= E and − h̄2

2m

1

ψ

d2ψ

dx2
+ V (x) = E

or

ih̄
dT

dt
= ET (1.17)

− h̄2

2m

d2ψ

dx2
+ V (x) = Eψ. (1.18)

Equation (1.18) is called the time-independent Schrödinger equation. For time-
independent wave function, we always denote ψ(r), which is the stationary part of the
total wave function.

In three-dimensional (3D) space, the time-independent Schrödinger equation has
the following form

− h̄2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r) or Ĥψ(r) = Eψ(r), (1.19)

where the energy E is a constant. One may find that Eq. (1.19) is an eigenvalue
problem.
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The solution of Eq. (1.17) is given as

T (t) = a exp

(
−i

Et

h̄

)
, ⇒ T (t) = a exp(−iωt), ← ω = E

h̄

and the probability density becomes

P (x,t) = |�(x,t)|2 = ψ∗(x) exp(−iωt)ψ(x) exp(−iωt)

= ψ∗(x)ψ(x) = |ψ(x)|2 = P (x),

which indicates that the probability density only depends on the solution of time-
independent Schrödinger equation, and hence the probability distribution is spatial
and stationary, if V (x,t) = V (x).

1.3.2 Free Particle Solution

If we let V (x) = 0 in Eq. (1.18), this is the case that a particle freely moves in a 1D
space. The solution of Eq. (1.18) in this case is:

ψ(x) = b exp

(
±i

√
2mE

h̄
x

)
.

Consider that, in this case,

E = p2

2m
and p = h̄k ⇒

√
2mE

h̄
= p

h̄
= k, ⇒ ψ(x) = b exp(i ± kx).

Therefore, the total solution of the wave function becomes

�(x,t) = (a · b) exp i(±kx − ωt) = C exp i(±kx − ωt).

In the derivation above, the sign of the time term (−iωt) is fixed by the sign adopted
in time-dependent Schrödinger equation, while the sign of the position term ±ikx

depends on propagation direction of wave: +ikx term propagates toward +∞, while
the term −ikx propagates toward −∞.

In fact, in the above heuristic derivation of the Schrödinger equation we have
assumed that the general wave function solution has a plane wave form. We say that
the derivation is heuristic, because the derivation does not consider the general cases
of potential function V (r,t) � 0.

1.3.3 Particle in a Finite Potential Well

Assume that a particle is associated with a finite potential well,

− h̄2

2m

d2ψ

dx2
+ V (x)ψ = Eψ, where V (x) =

⎧⎨
⎩

V0, if x < −a

0, if |x| < a

V0, if x > a

. (1.20)
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The eigen solution for the above problem has the form exp(kx) and

Outside the well: k ∼ ±
√

2m(V0 − E)

h̄
, when V0 > E,

∼ ±i

√
2m(E − V0)

h̄
when V0 < E,

Inside the well: k ∼ ±i

√
2mE

h̄
.

Outside the well, we may discard the eigen solutions

ψ ∼ exp

(
±i

√
2m(E − V0)

h̄

)
because they are not convergent when x → ±∞. However, outside of the well we
have convergent solutions,

ψ ∼ exp

( √
2m(V0 − E)

h̄
x

)
, when x < 0 ,

and exp

(
−
√

2m(V0 − E)

h̄
x

)
, when x > 0. (1.21)

Now, we even have a solution that corresponds to the case E < V0 outside the well.
For classical particles, it is impossible to have a solution when E < V0, which means
the classical particles can never escape from the energy well, however, for quantum
mechanics, this is a valid possibility. Let q =

√
2m(V0 − E)/h̄. Based on the con-

vergence argument, in x < −a we have to discard the solution ∼ exp(−qx) and, for
x > a, we must discard the solution ∼ exp(qx).

Finally, we have the convergent wave function solution in the whole domain,

ψ(x) =
⎧⎨
⎩

C exp(qx), ∀ x < −a

A cos kx + B sin kx, ∀ − a < x < a

D exp(−qx), ∀x > a

(1.22)

where A,B,C,D are coefficient constants determined by boundary conditions. It may
be noted again that inside the well V = 0 and,

ψ(x) = A cos kx + B sin kx and E = k2h̄2

2m
.

Using the continuity condition,

ψ(−a−) = ψ(−a+) and
dψ

dx
(−a−) = dψ

dx
ψ(−a+)

one can find that the even function solution must satisfy the conditions,

C exp(−qa) = A cos ka and αC exp(−qa) = kA sin(ka),

which lead to

q = ktan(ka). (1.23)
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Figure 1.5 Eigenvalue locations for a particle in a finite depth well

While, for the odd function solution

ψ(a−) = ψ(a+) and
dψ

dx
(a−) = dψ

dx
ψ(a+)

it must satisfy the conditions,

C exp(−qa) = B sin ka and − αC exp(−qa) = kB cos(ka),

which lead to

q = −kcot(ka). (1.24)

The graph solution of the two characteristic equations for eigenvalues is shown in
Fig. 1.5, in which the intersection points are between y(ka) = tan(ka) or − cot(ka)

and y(ka) = q/k =
√

k2
0/k2 − 1, where k0 = √

2mV0/h̄. Another approach to find

the allowable discrete energy level is utilizing the fact that q = √
2m(V0 − E)/h̄. Let

u = qa, v = ka =
√

2mEa

h̄
and u0 =

√
2mV0a

h̄
.

Equations (1.23)–(1.24) may be converted to the following energy balance relation:

u2
0 − u2 =

{
(vtanv)2 (symmetric case)

(vcotv)2 (antisymmetric case).

If we choose X = v and Y = u , we can find different energy levels for a fixed depth of
the well, i.e., V0, in a plot. In Fig. 1.6, the solid semicircle is the contour for u2

0 = 20,
and the dash or dotted curves are functions u = v tan v or u = −v cot v. In this case,
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Figure 1.6 Eigenvalues for a particle in a finite depth well

there are exactly three solutions, v1 = 1.28,v2 = 2.54, and v3 = 3.73, with the
corresponding energies

En = h̄2v2
n

2ma2
.

Consider a special case that V0 → ∞. The finite depth of potential well becomes a
infinite height potential well, and the solution Eq. (1.22) degenerates to

ψ(x) =
⎧⎨
⎩

0, ∀ x < −a

A cos kx + B sin kx, ∀ − a < x < a

0, ∀x > a

. (1.25)

The wave function solution will then become:

Even solution: ψn(x) =
√

1

a
cos

(nπx

2a

)
, n = 1,2,5, . . .∞ and

Odd solution: ψn(x) =
√

1

a
sin
(nπx

2a

)
, n = 2,4,6, . . .∞,

which satisfy the boundary conditions ψ(−a) = ψ(a) = 0, as shown in Fig. 1.7. The

energy level for each quantum state n is En = n2h̄2π2

8ma2 . When n = 1 E1 = h̄2π2

8ma2 , it is
the minimum quantum energy state in the well, which we call as the ground state.
In general, the ground state of a quantum mechanical system is its lowest-energy
state and the energy of the ground state is known as the zero-point energy of the
system. An excited state is any state with energy greater than the ground state. If
more than one ground state exist, they are said to be degenerate. Many systems have
degenerate ground states. Mathematically speaking, the ground state eigenvalue has
multiplicities. According to the third law of thermodynamics, a system at absolute
zero temperature only exists in its ground state. At the ground state, the system’s
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1 A Short Primer on Quantum Mechanics 17

Figure 1.7 Different quantum states in an infinite well

entropy is determined by the degeneracy of the ground state. Many systems, such as a
perfect crystal lattice, have a unique ground state and, therefore, have zero entropy at
absolute zero temperature.

1.3.4 Harmonic Oscillator

If we choose the potential energy as the quadratic function

V (x) = 1

2
kx2 = 1

2
m2ω2x2, ← Recall ω2 = k

m
,

the time-independent Schrödinger equation will take the form

− h̄2

2m

d2ψ

dx2
+ 1

2
mω2x2ψ = Eψ. (1.26)

Since, in classical mechanics, this is the potential function of the simple harmonic
oscillator, we call the solution of Eq. (1.26) the quantum harmonic oscillator.

Choosing ψ(x) = exp(−α2x2/2) and taking the second-order derivative of the
wave function, one may find that

d2ψ

dx2
= −α2ψ + α4x2ψ,
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18 Part I First-Principles Calculations

and the Schrödinger equation becomes,

− h̄2

2m

(
−α2 + α4x2

)
ψ(x) + 1

2
mω2x2ψ(x) = Eψ(x).

To solve the equation, we obtain

α =
√

mω

h̄
and E0 = 1

2
h̄ω,

which is the lowest achievable energy state or the ground state the particle can occupy.
In general, one can assume the form of solution as ψ(x) = H (y) exp(−y2/2),

y = αx, and Eq. (1.26) becomes,

d2H

dy2
− 2y

dH

dy
+ (λ − 1)H = 0, where λ := 2E

h̄ω
.

To obtain a convergent solution for this equation (see, e.g., Pilar 1990), the parameter
λ has to satisfy the condition

λ = 2n + 1, n = 0,1,2, . . . and hence En = h̄ω

(
n+ 1

2

)
, n = 0,1,2, . . .

and a complete family of solutions may be found as

ψn(x) = 1√
2nn!

(
mω

πh̄

)1/4

Hn

(√
mω

h̄
x

)
exp

(
−mωx

2h̄

)
, n = 0,1,2,3, . . .

where the function Hn are the Hermite polynomials

Hn(x) = (−1)n exp(x2)
dn

dxn

(
exp

(−x2)) , n = 0,1,2, . . . .

For example,

H0(x) = 1, H1(x) = 2x,H2(x) = 4x2 − 2,H3(x) = 8x3 − 12x, . . . .

1.3.5 Physical Meaning of the Operators

The operators of the Schrödinger equation have definite physical meanings relating to
the physical properties of the particle that is under investigation.

To study the motion of a subatomic particle, the first thing that you may want to
do is to measure its position and velocity, which are related with the position operator
and momentum operator. The position operator is an algebraic operator that can be
expressed as,

x̂ = x (in 1D space) and r̂ = r, (in 3D space).

The velocity of a particle is related to the linear momentum operator:

p̂x = ih̄
∂

∂x
and p̂ = −ih̄

[
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

]
= −ih̄∇.
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Other important operators are:

• Kinetic energy operator

T = p2

2m
→ T̂ = 1

2m

(
−ih̄

∂2

∂xi∂xi

)
= − h̄2

2m
∇2.

• Hamiltonian operator

E = p2

2m
+ V (r) → Ĥ = − h̄2

2m
∇2 + V (r).

• Angular momentum operator

L = r × p → L̂ = −ih̄r ×∇.

1.3.6 Dirac’s Notation: Bra–Ket Notation

The solution of quantum mechanics belongs to a complex Hilbert space. Paul Dirac
developed a set of notations for vector operations in the complex Hilbert space, which
are essentially analogs of vector operations in linear vector space.

Dirac denoted that vector basis and its complex conjugate or transpose as
ket or bra, i.e.,

|ei > := ei and < ei | := e∗i

where the superscript indicates the complex conjugate.
To illustrate the concept here, we slightly alter the notation, so that we may write a

vector in a complex finite dimensional vector space by using the bras and kets as

A = A1e1 + A2e2 + A3e3 = A1|e1 > +A2|e2 > +A3|e3 > =
⎛
⎝A1

A2

A3

⎞
⎠

and

A∗ = A∗
1e∗1 + A∗

2e∗2 + A∗
3e∗3 = A∗

1 < e1| + A∗
2 < e2| + A∗

3 < e3| =
(
A∗

1,A
∗
2,A

∗
3

)
and you may see that the bra is basically a complex conjugate of row vector, whereas
the ket is a complex column vector. Essentially, the bra may be viewed as the complex
conjugate transpose of the ket.

The inner product of finite dimensional vector space may be defined as

< ei |ej > := e∗i · ej = δij ;

and the outer product of bra and ket may be viewed as a tensor product, i.e.,

|ei >< ej | := ei ⊗ e∗j .
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20 Part I First-Principles Calculations

Using engineering notations, we can express the inner product of bra and ket as the
scalar dot product of two vectors,

< A|B >= (
A∗

1,A
∗
2,A

∗
3

)⎛⎝B1

B2

B3

⎞
⎠ = A∗

1B1 + A∗
2B2 + A∗

3B3

and express the outer product of bra and ket as the following matrix multiplication,

|A >< B| =
⎛
⎝A1

A2

A3

⎞
⎠(B∗

1 B∗
2 B∗

3

) =
⎛
⎝A1B

∗
1 A1B

∗
2 A1B

∗
3

A2B
∗
1 A2B

∗
2 A2B

∗
3

A3B
∗
1 A3B

∗
2 A3B

∗
3

⎞
⎠ .

Moreover, it may be shown that

(|A >< B|)|C >=< B|C > |A > .

In the complex Hilbert space, we can define the inner product between two function
bases as

< ψi |ψj >=
∫ ∞

−∞
ψ∗

i (x)ψj (x)dx.

As seen previously, the total wave function is the superposition of a complete set of
eigenfunctions, which can now be written by using the bra–ket notation,

ψ =
∑
i∈H

aiφi → |ψ > =
∑
i∈H

< φi |ψ > |φi >,

where, by definition,

< φi |ψ > =
∫ ∞

−∞
φ∗i ψdx = ai

because
∫ ∞

−∞
φ∗i (x)φj (x)dx = δij, ψ(x) =

∑
i

aiφi(x),

if we view the eigenfunction as the vector(function) basis.
Similarly, one may write,

ψ∗ =
∑
i∈H

a∗i φ
∗
i → |ψ > =

∑
i∈H

< φi | < ψ|φi >, where a∗i = < ψ|φi > .

1.3.7 Measurement and Expectation

In quantum mechanics, a measurable operator, differential or algebraic, is often called
the observable, by which the state of the physical system can be determined by a
sequence of physical measurements. When a measurement of the observable Q̂ is
made on a normalized wave function ψ, i.e.,

Q̂φn = qnφn, ψ =
∑
n

anφn(r),
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the probability of obtaining the eigenvalue qn is given by the modulus squared of the
overlap integral,

Pr (qn) = |an|2, an =
∫

IR3
φ∗n(r)ψ(r)dV .

The operator here can be energy, linear momentum, position, angular momentum, and
so forth.

Based on the occurrence probability of each eigenvalue, we can define the expecta-
tion value of the operator Q̂, i.e., in an 1D case,

< Q > :=
∑
n

Pr (qn)qn =
∑
n

|an|2qn, where an =
∫

IR
φ∗(x)ψ(x)dx.

One can readily show that

< Q > =
∫

IR
ψ∗Q̂ψdx,

this is because

< Q > =
∫

IR
ψ∗Q̂ψdx =

∫
real

[∑
i

a∗i φ
∗
i

]
Q̂

[∑
j

ajφj

]
dx

=
∫

real

[∑
i

a∗i φ
∗
i

][∑
j

aj qjφj

]
dx ← Q̂φj = qjφj

=
∑

i

∑
j

a∗i aj qj

∫
IR
φ∗i φj dx

=
∑

i

|ai |2qi ←
∫

IR
φ∗i φj dx = δij .

Now, we can write the expectation of a operator Q̂ as

< Q > =
∫

IR
ψ∗Q̂ψdx =

∫
IR

[∑
i

a∗i φ
∗
i

]
Q̂

[∑
j

ajφj

]
dx

=
∑

i

< φi | < ψ|φi > Q̂
∑
j

< φj |ψ > |φj > . =< ψ|Q̂|ψ > . (1.27)

If the wave function is not normalized, i.e.,
∫
ψ∗ψdx � 1, the expectation of the

operator Q̂ should be written as

< Q̂ > = < ψ|Q̂|ψ >

< ψ|ψ >
.

1.3.8 Operator, Commutators, and Uncertainty Principle

All the operators in quantum mechanics have definite physical meanings or properties
that may be measurable. The operation order of the two different quantum mechanics
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22 Part I First-Principles Calculations

operators is not commutable in general, and such incommutable property has profound
physical implications To briefly discuss this basic concept of quantum mechanics, we
first define the operator commutator. Assume that there are two operators Â and B̂, we
define the operator commutator as the difference between the two different orderings,

[Â,B̂] := ÂB̂ − B̂Â.

We say that the two operators commute only if the commutator is zero. To better
understand this, we now present some examples.

Example 1.1 Let Â be a position operator and B̂ be a momentum operator:

Â = x̂ = x and B̂ = p̂x = −ih̄
∂

∂x
.

We can find that

[x̂,p̂x]ψ = x

(
−ih̄

∂

∂x

)
ψ −

(
−ih̄

∂

∂x

)
(xψ) = −ih̄x

∂ψ

∂x
+ ih̄x

∂ψ

∂x
+ ih̄ψ = ih̄ψ,

(1.28)
which means that the position operator x̂ does not commute with the momentum
operator p̂x , and based on the calculation,

[x̂,p̂x] = ih̄. (1.29)

However, if we consider Â = x̂ but B̂ = p̂y , one may verify that

[x̂,p̂y]ψ = x

(
−ih̄

∂

∂y

)
ψ −

(
−ih̄

∂

∂y

)
(xψ) = 0, → [x̂,p̂y] = 0,

that is, x̂ and p̂y commute.

Note that any wave function ψ in a complex Hilbert space may be viewed as a
vector in a vector space, which may be expressed in terms of eigenfunction expansion.
So, a more rigorous way to write Eq. (1.28) is

[x̂,p̂x]|ψ>= ih̄|ψ>.

A profound consequence of [x̂,p̂x] = ih̄ is the Heisenberg uncertainty principle,
which is expressed in the following famous mathematical expression in quantum
physics,

σxσp ≥ h̄

2
, (1.30)

where

σx :=
√

< x̂2 > − < x̂ >2 and σp :=
√

< p̂2
x > − < p̂x >2.

We note that, in statistics
√

< Â2 > − < Â >2 is called as the standard deviation of
operator Â. If Â is measurable, σA represents the accuracy of the measurement. We
note that for an operator both < Â2 > and < Â >2 are real numbers, because
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< Â > = < ψ|Â|ψ >

< ψ|ψ >
and < Â2 > = < Âψ|Âψ >

< ψ|ψ >

if we assume that Â is self-adjoint and, if the wave function is normalized, we may
drop the denominator.

When we say an operator is self-adjoint, what we mean is that

< Âψ1|ψ2 > = < ψ1|Âψ2 > or
∫

IR
Â∗ψ∗

1(x)ψ2(x)dx =
∫

IR
ψ∗

1(x)Âψ2(x)dx.

(1.31)
Most operators in quantum mechanics are self-adjoint, for instance, the Hamiltonian
operator,

Ĥ = − h̄2

2m
∇2 + V (r).

In fact, Eq. (1.31) is the definition of symmetric operator. Based on the Hellinger–
Toeplitz theorem, a everywhere-defined symmetric operator in the Hilbert space is
bounded and self-adjoint, and we call the self-adjoint operators in the Hilbert space as
the Hermitian operator. In quantum mechanics, we are mainly dealing with Hermitian
operators.

Now, by using Eq. (1.29), we prove Eq. (1.30). We first show that

σ2
Aσ

2
B ≥

(
1

2
< {Â,B̂} > − < Â >< B̂ >

)2

+
(

1

2i
< [Â,B̂] >

)2

, (1.32)

where

{Â,B̂} := ÂB̂ + B̂Â

is called the anticommutator.
Assume that both Â and B̂ are Hermitian. The corresponding standard deviation

can be written as

σ2
A = < (Â− < Â >)�|(Â− < Â >)� > = < f |f > ,

where |f > = |(Â− < Â >)� >

σ2
B = < (B̂− < B̂ >)�|(B̂− < B̂ >)� > = < g|g > ,

where |g > = |(B̂− < B̂ >)� >

and, by the complex version of the Cauchy–Schwartz inequality,

σ2
Aσ

2
b = < f |f >< g|g > ≥ < f |g >2 .

Note that < f |f > and < g|g > are real numbers, but < f |g > may be a complex
number in general, and can be shown that

| < f |g > |2 =
(

< f |g > + < g|f >

2

)2

+
(

< f |g > − < g|f >

2i

)2

(1.33)
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and

< f |g >=< �|(Â− < Â >)(B̂− < B̂ >)|� > =< ÂB̂ > − < Â >< B̂ >

(1.34)
and

< g|f >=< �|(B̂− < B̂ >)(Â− < Â >)|� > =< B̂Â >−< B̂ >< Â >.
(1.35)

Substituting Eqs. (1.34) and (1.35) into Eq. (1.33) yields the desired result:

σ2
Aσ

2
B ≥< f |g >2 =

(
1

2
< {Â,B̂} > − < Â >< B̂ >

)2

+
(

1

2i
< [Â,B̂] >

)2

.

For the case Â = x̂ and B̂ = p̂x , we have

σ2
xσ

2
px

≥
(

1

2i
< [x̂,p̂x] >

)2

→ σxσpx ≥
∣∣∣ 1

2i
< [x̂,p̂x] >

∣∣∣ = ∣∣∣ 1

2i
< ih̄ >

∣∣∣ = h̄

2
.

This is the complete proof of the uncertainty principle.

1.3.9 Hydrogen Atom

Now we consider a 3D example – an electron in hydrogen atom that is floating in free
space, and hence, in this case, the potential energy between the electron and nucleus
is V (r) = −Ze2/(4πε0r), or in atomic unit −e2/r , where r = |r|. The Schrödinger
equation for this problem is

− h̄2

2μ
∇2ψ(r) + V (r)ψ(r) = Eψ(r).

By symmetry, the problem is being solved in spherical coordinates, and the Schrödinger
equation may be cast into the following form:

− h̄2

2μ

{
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2

}
ψ(r)

+ (V (r) − E)ψ(r) = 0, (1.36)

where r is the radial distance, θ is the azimuthal angle (longitude), φ is the zenith
angle (colatitude), and μ = memu/(me + mu).

We often write the quantum angular Laplacian operator as

L̂2 = − h̄2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
, → ∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂2

h̄2r2
.

The Schrödinger equation can then be written as

Ĥ (r)ψ(r)=Eψ(r), → − h̄2

2μr2

∂

∂r

(
r2 ∂ψ(r)

∂r

)
+ L̂2

2μr2
ψ(r)− Ze2

4πε0r
ψ(r) = Eψ(r).
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Equation (1.36) can be solved by successive separation of variables. In the first
separation of variables, we let ψ(r,θ,φ) = R(r)Y (θ,φ). After separating r-function
part from θ,φ-part, we have

− h̄2

2μ

1

R

∂

∂r

(
r2 ∂R

∂r

)
+ r2(V (r) − E)

= h̄2

2μ

[
1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

Y sin2 θ

∂2Y

∂φ2

]

= const . = −�(�+ 1)h̄2

2μ
. (1.37)

The solution of the above equations will correspond to some particular constants
(eigenvalues), for reasons which will be discussed later, we choose the constant as
−�(�+ 1)h̄2/2μ, where � is a constant integer. The radial part of Eq. (1.37) is

− h̄2

2μr2

d

dr

(
r2 dR

dr

)
+ �(�+ 1)h̄2

2μr2
R − Ze2

4πε0r
R = ER (1.38)

and the circumference part of Eq. (1.37) is

L̂Y (θ,φ) = �(� + 1)h̄2. (1.39)

In the second separation of variables, we can further factor Y (θ,φ) = P (θ)u(φ).
With this form of the solution, we can further separate the second equation of
Eq. (1.39) into another two equations,

−1

u

d2u

dφ2
= sin θ

P

d

dθ

(
sin θ

dP

dθ

)
+ �(�+ 1) sin2 θ = const . = m2. (1.40)

Again, the two equations in Eq. (1.37) equal to a same constant, which for a good
reason we may denote it as m2, and m is a constant.

The separation of variables leads to the following three (eigenvalue) ordinary
differential equations,

r2 d2R

dr2
+ 2r

dR

dr
+ 2Mr2

h̄2
(E − V (r)) − �(� + 1) = 0, (1.41)

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+ �(� + 1)P − m2

sin2 θ
P = 0, (1.42)

d2u

dφ2
= −m2u. (1.43)

The solution of Eq. (1.41) is

Rn�(r) = exp(−r/na0)

(
r

na0

)�

L2�+1
n−�−1

(
2r

na0

)
,

where L2�+1
n−�−1 are the associated Laguerre polynomials, and a0 = 1 in atomic units.
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The solutions of Eqs. (1.42) and (1.43) are spherical harmonics and exponential
functions, which can be expressed as follows:

P�m = P m
� (cos θ) and um = exp(imφ),

where P�m(cos θ) are the associated Legendre polynomials, and the first few associ-
ated Legendre polynomials are

P 0
0 (x) = 1, P 0

1 (x) = x, P 1
1 (x) = −(1 − x2)1/2,

P 0
2 (x) = 1

2
(3x2 − 1), P 1

2 (x) = −3x(1 − x2)1/2, . . .

and the total stationary wave function solution for a hydrogen atom is

ψn�m(r) = Rn�(r)Y�m(θ,φ).

1.3.10 Spin

An electron has three basic properties: mass, charge, and spin. To understand what
electron spin is, we may imagine that an electron is a charged sphere rotating around
the axis of the sphere, which we usually call the Z-axis. According to classical elec-
tromagnetics, such a rotating sphere would have an angular momentum S associated
with its rotational motion about the Z-axis. Moreover, since the sphere is charged,
the rotating charge will give rise to a current loop. According to the classical electro-
magnetism, such tiny current loop will generate a magnetic dipole, and we denote its
magnetic moment as μS .

In quantum mechanics, spin angular momentum S can take only certain directions
and discrete magnitude. In solving the Schrodinger equation for the hydrogen atom, it
is found that the orbital angular momentum is quantized according to the relationship

L2 = �(�+ 1)h̄2

and, hence, the magnitude of the angular momentum in terms of the orbital quantum
number is of the form

L =
√

�(�+ 1)h̄

and that the z-component of the angular momentum in terms of the magnetic quantum
number takes the form:

Lz = m�h̄.

The spin angular momentum follows the formula. The magnitude of spin angular
momentum S is given by

S =
√

s(s + 1)h̄,
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Figure 1.8 ms = 1/2: “spin up” and ms = −1/2: “spin down”
.

where s is the spin quantum number that equals to 1/2. The spin direction is specified
by the component of S along a Z-axis as shown in Fig. 1.8. The projection of the spin
vector to the Z-axis has two possibilities:

SZ = mSh̄ = ±1

2
h̄.

The associated magnetic moment is

μz = ±1

2
gμB,

where g is called the gyromagnetic ratio, and the electron spin g-factor has the value
g = 2.00232. The electron spin can be predicted by the Dirac equation. In 1928, Paul
Dirac derived a wave equation for describing the relativistic quantum wave equation
of electrons. The Dirac equation is consistent with both the principles of quantum
mechanics and the theory of special relativity, and the wave function is in (at least)
four-dimensional (4D) space. The additional dimension provides the accommodation
for spin and antimatter.

We can then introduce the spin Hermitian operator and its eigenvalues for electron
spin as an analog of the orbital angular momentum operator. We denote the spin
operator as Ŝ, spin eigenfunction as χs,m, and two spin quantum numbers as s and ms ,
they are
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Ŝ =

⎛
⎜⎝Ŝx

Ŝy

Ŝz

⎞
⎟⎠

and

Ŝxχs,m = msh̄χs,m = ±1

2
h̄χs,ms ; Ŝ2χs,m = s(s + 1)h̄2χs,ms .

Note that the spin wave functions χs,ms do not depend on the electron spatial
coordinates r,θ,φ. They represent a purely internal degree of freedom, and we
have two choices,

χ1/2,1/2 =
(

1
0

)
and χ1/2,−1/2 =

(
0
1

)
.

1.4 Interpretations of Quantum Mechanics

1.4.1 Uncertainty Principle

The uncertainty principle, which is also called Heisenberg’s uncertainty principle,
was first put forward by Werner Heisenberg see Heisenberg (1985)) in the following
expression:

σrσp ≥ h̄

2
.

According to Heisenberg’s explanation, it indicates that in a quantum system, the more
precisely the position of a particle is being measured, the less precisely can one mea-
sure its momentum and vice versa. However, from the current understanding, Heisen-
berg’s explanation of the uncertainty principle may be a little bit misleading because it
improperly emphasizes the importance of measurement interference and measurement
technology. In fact, the uncertainty principle is not about measurement technology, and
it is independent from technology; it is a quantum mechanics statement on correlation
condition between two observables. The uncertainty principle elucidates the relation
of wave–particle duality in clear mathematical terms, it also articulates the necessity of
a statistical approach to the study of subatomic particles and, remarkably, it provides
an explicit expression on scale transition from determinacy to indeterminacy.

The uncertainty principle provides a lower bound of the position and momentum
correlation. However, that is the direct estimate. To make an estimate uncertainty
relation, Niels Bohr gave a derivation of the uncertainty relations between position
and momentum and between time and energy. Consider

E = hν and p = h/λ,

which connects the energy E and momentum p from the particle picture with those
of frequency ν and wavelength λ from the wave picture. Denoting the spatial and
temporal extensions of the wave packet by �x and �t , and the extensions in the wave
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Figure 1.9 Comparison between classical probability density and amplitudes of wave functions:
(a) particle in an infinite depth potential well and (b) harmonic oscillator

number and frequency by �k and �ν, it then follows from Fourier analysis that, in
the most favorable case, �x�k ≈ �t�ν ≈ 1 and one obtains the relations

�p = h�k, �E = h�ν → �t�E ≈ �x�p ≈ h.

Note that �x, �p are not the standard deviations, but unspecified measures of the size
of a wave packet.

1.4.2 Correspondence Principle

In quantum physics, the correspondence principle (Bohr) states that the behavior of
systems described by the theory of quantum mechanics reproduces classical physics
in the limit of large quantum numbers. In other words, it states that, for large orbits
and for large energies, quantum calculations must agree with classical calculations.

This can be demonstrated by the previous two examples, i.e., a particle in an infinite
well and the quantum harmonic oscillator. From Fig. 1.9, one can find that, as the
energy level increases, the profile of amplitudes of the wave function approaches the
classical limit. This confirms the correspondence principle. However, for the quantum
problems in which particle energy levels does not increase monotonically, how to link
the microscale wave function description to the macroscale physical response is often
a critical point of quantum mechanics for both theory and applications.

1.4.3 Pauli’s Exclusion Principle

For a many-body quantum mechanical system, interchanging two particles occupying
two different states should not change the probability density, |�|2, of the system.
Consider a two noninteracting identical particle system. The probability density of the
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two-particle wave function �(r1,r2) must be identical to that of the the wave function
�(r2,r1), where the particles have been interchanged, i.e.,

|�(r1,r2)| = |�(r2,r1)|.
There are two ways that this can be achieved:

1. Symmetric WF : �(r1,r2) = �(r2,r1);
2. Antisymmetric WF : �(r1,r2) = −�(r2,r1).

It turns out that particles whose wave functions are symmetric under particle
interchange have integral or zero intrinsic spin and are termed “bosons.” Particles
whose wave functions are antisymmetric under particle interchange have half-integral
intrinsic spin and are termed “fermions.” Experimentation and quantum theory place
electrons in the fermion category. That is the reason why we say that electrons are
spin −1/2 particles and are described by the antisymmetric wave function:

�(r1,s1,r2,s2, . . . ,rN,sN ).

Consider a two-particle noninteracting fermion system. The “noninteracting”
qualifier implies the two-particle wave function can be written as the product of two
single-particle wave functions. These can be written as either

�I (r1,r2) = ψa(r1)ψb(r2) or �II (r2,r1) = ψa(r2)ψb(r1).

where a and b label two different single-particle states. Because we cannot distinguish
between the particles, we cannot know which of �I or �II , describes the system.
Consequently, we have to consider the system as being in some linear combination, or
superposition of �I and �II . There are only two correctly normalized combinations
possible:

1. Symmetric WF (bosons): � = 1√
2
(�I + �II );

2. Antisymmetric WF (fermions): � = 1√
2

(�I −�II ).

In the case of fermions, if a = b, then � = 0, which implies that no two fermions
can occupy the same state. By considering the form of wave function for a system of
identical particles, we have illustrated Pauli’s exclusion principle.

1.4.4 Copenhagen Interpretation

The “Copenhagen Interpretation” of quantum physics refers to the following set of
statements for explanation of the meanings of quantum mechanics:

• A system is completely described by a wave function, representing the state of the
system, which evolves smoothly in time, except when a measurement is made, at
which point it instantaneously collapses to an eigenstate of the observable
measured.
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• The description of nature is essentially probabilistic, with the probability of a
given outcome of a measurement given by the square of the amplitude of the wave
function (Born rule, named after Max Born).

• It is not possible to know the value of all the properties of the system at the same
time; those properties that are not known exactly must be described by
probabilities (Heisenberg’s uncertainty principle).

• Matter exhibits a wave–particle duality. An experiment can show the particle-like
or wave-like properties of matter. In some experiments, both of these
complementary viewpoints must be invoked to explain the results, according to
the complementarity principle of Niels Bohr.

• Measuring devices are essentially classical devices and measure only classical
properties such as position and momentum.

• The quantum mechanical description of large systems will closely approximate the
classical description. This is the correspondence principle of Bohr and Heisenberg.

1.4.5 Schrödinger’s Cat and Parallel Universe

The many-worlds interpretation is an interpretation of quantum mechanics that asserts
the objective reality of the universal wave function and denies the actuality of wave
function collapse. “Many-worlds” implies that all possible alternative histories and
futures are real, each representing an actual “world” (or “universe”).

Schrödinger’s cat is a thought experiment and sometimes it is described as a para-
dox. It was devised by Erwin Schrödinger in 1935. It illustrates what he saw as
the problem of the Copenhagen interpretation of quantum mechanics when applied
to everyday objects, resulting in a contradiction with common sense. The scenario
presents a cat that might be alive or dead, depending on a previous random event.

One may even set up quite absurd but revealing cases where quantum mechanics,
or at least the interpretation of quantum mechanics, conflicts with common sense.
For example, we may consider an imaginary experiment where a cat is contained in a
closed steel cage, along with a special device, in which there is a Geiger counter with a
tiny amount of a radioactive substance. The amount of this radioactive substance is so
small that, in the course of one hour, only one of the atoms may decay, but also with the
equal probability that no atoms may decay. If the decay happens, a radiation detector
will trigger the release of a hammer that will smash a glass container thereby releasing
some form of poisonous gas, for instance hydrocyanic acid, killing the cat instantly.
Thus, if one has left this entire system to itself for an hour, one may find that the cat
may still be alive, if meanwhile no atom has decayed. On the other hand, one may also
find the cat is dead, because there is an equal probability that an atom has decayed,
and if there is only an atom decay, it would trigger the radioactive device and killed the
cat. Therefore, the thought experiment cleverly translates a microscale quantum event
described by a wave function into a macroscale event of the life-and-death experience
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Figure 1.10 Parallel universe interpretation based on Schödinger’s cat paradox (Photograph
courtesy of Christian Schirm and Wikipedia.org)

of a poor cat. The essence of this thought experiment is that it establishes a direct
correlation between a microscale wave function (atom decay or not decay) with a
macroscale state of a cat (dead or alive). Since at microscale, there is a superposed
state of wave functions, accordingly it will link to a macroscale state of cat, in which
both the living and the dead cat are mixed in equal parts. Such a superposed reality
at macroscale may be interpreted as the superposition of two events happening in two
parallel universes as shown in Fig. 1.10.

1.5 Homework Problems

Problem 1.1 Consider a particle in an one-dimensional (1D) finite depth well, which
obeys the Schrödinger equation,(

− h̄2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x),

where the potential energy is given as

V (x) =

⎧⎪⎨
⎪⎩

V0 x ≤ −L
2

0 |x| < L
2

V0 x ≥ L
2

.

Find all the eigenvalues (energy levels) and eigenfunctions of the solution. Discuss the
solution when V0 →∞.

Problem 1.2 Consider the following time-dependent Schrödinger equation,

ih̄
∂�

∂t
= −

(
h̄2

2m

)
∇2� + Veff �.
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Make the following polar decomposition or variable separation,

�(x,t) = R(x,t) exp

[
i
S(x,t)

h̄

]
.

Show that the time-dependent Schrödinger equation is equivalent to the following
quantum hydrodynamic system,

∂ρ

∂t
+∇ · (ρv) = 0 (1.44)

∂S

∂t
+ 1

2m
|∇S|2 + V eff + V qu = 0 (1.45)

where

ρ := R2 (1.46)

v := ∇
(

S

m

)
(1.47)

Vqu := −
(

h̄2

2m

)
∇2R

R

= −
(

h̄2

2m

)(
∇2 log R + |∇ log R|2

)
(1.48)

or, in terms of ρ,

V qu =
(
− h̄2

4mρ

)[
∇2ρ − 1

2ρ
(∇ρ) · (∇ρ)

]
. (1.49)

Equation (1.44) is an analog of conventional mass conservation law of continuum fluid
dynamics.

Problem 1.3 Consider a particle in a box (1D), which obeys the following Schrödinger
equation, (

− h̄2

2m

d2

dx2
+ V

)
�(x,t) = −h̄

∂

∂t
�(x,t)

with the time-independent part,(
− h̄2

2m

d2

dx2
+ V

)
ψ(x) = Eψ(x),

where

V (x) =

⎧⎪⎨
⎪⎩
∞, x ≤ −L

2

0, |x| < L
2

∞, x ≥ L
2

.
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Assume that the initial condition of the wave function is,

�(x,0) = A sin

(
2πx

L

)
, A is given.

Find

< x >, < px >, and < H >?

Problem 1.4 Consider the angular momentum operator, L̂ = −ih̄r ×∇:

L̂x = −ih̄

[
y

∂

∂z
− z

∂

∂y

]
, L̂y = −ih̄

[
z

∂

∂x
− x

∂

∂z

]
, and L̂z = −ih̄

[
x

∂

∂y
− y

∂

∂x

]
.

Calculate the operator commutator,

[L̂x,L̂y] = ?

Problem 1.5 Define the standard deviation of two Hermitian operators, Â and B̂, as:

σA =
√

< Â2 > − < Â > and σB =
√

< B̂2 > − < B̂ >.

Show that

σ2
A = < (Â− < Â >)�|(Â− < Â >)� >=< f |f >,

where |f > := |(Â− < Â >)� >

σ2
B = < (B̂− < B̂ >)�|(B̂− < B̂ >)� >=< g|g >,

where |g > := |(B̂− < B̂ >)� >

and

< f |g > = < ÂB̂ > − < Â >< B̂ >

< g|f > = < B̂Â > − < B̂ >< Â>. (1.50)

Let Â = x̂ and B̂ = p̂x and use the Cauchy–Schwartz inequality to show that

σxσpx ≥
h̄

2
,

considering the fact that, for the complex number < f |g >,

| < f |g > |2 =
(

< f |g > + < g|f >

2

)2

+
(

< f |g > − < g|f >

2i

)2

.
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