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Abstract

Using Fourier transforms, we give a new proof of certain identities for the fundamental solutions
of the iterated Dirac operators Dl = CE,"=i e, 3/3X,/, I € Z+ and Dl = (3/3x0 + D)'. Based
on the close relationship between the fundamental solutions and the conformal weights we then
give a simple proof of B. Bojarski's results on the conformal covariance of Dl. We also prove a
new conformal covariance result of D.

1991 Mathematics subject classification (Amer. Math. Soc): 30 G 35.

1. Introduction

This paper gives an alternative proof of B. Bojarski's results [1, 2] on Mobius
covariance of the iterated Dirac operators Dl = (YH=iei 9/9-Xi) , f- € Z+,
by recognizing the close relationship between the conformal weights and the
fundamental solutions of the operators. We also give a covariance result on
the Dirac operator D = d/dx0 + D, with some observations concerning non-
existence of Mobius covariance of its iterations De, I > 1 (see also [11]).

We begin by recalling basic knowledge related to Clifford algebras ([1,2, 4,
3, 6]). The Clifford algebra #/„ shall be the associative algebra over the real
number system R generated by n elements ex, e2,.. •, en subject to the relations
etej = —ejej, i ^ j , and ef = —1. Each element a e £?„ has a unique
representation in the form a = ^ ases, where as e IR and the summation is over
all ordered subsets s = {0 < «i < • • • < it} c {1, 2, • • • ,«} , and we identify
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es with eh • • • eir For the empty set 0, e0 is interpreted as the real number 1.
s/0, si'\, s/i can be identified with K, the complex field C and the quaternions,
respectively.

s/n is a vector space of real dimension 2". In the literature there are two ways
to identify W with certain linear subspaces of s/n. In this paper we identify
K" with span^i, • • •, en). For any element x = x0 + *i«i + • • • + xnen, we
denote x — x0 + x with x = x\e\ + • • • + xnen e W. Define two operations
on the basic elements: (eh • • • ei()* = ek • • • eh, (eh • • • eit)' — ( - l ) £ (e , , • • • eu)
etc., and extend them by linearity to two corresponding operations on si'„, still
denoted by * and '. By combining them we define the third operation " by
x — (x*)'; it is easy to see that x = x0 — x for x = x0 + x. The natural inner
product between a and b, denoted by (a,b), is the number ^ asbs and the norm
of a associated with this inner product is \a\ = ( ^ l^l2)^. We recall that the
Clifford group Tn is defined as the multiplicative group of all elements in the
Clifford algebra which can be written as products of non-zero vectors in W.
Forelementsa,feinrnU{0},flfl = |a | 2and|a6| = |<z| • \b\ (see [1, 2,4, 3,6]).

If a G Yn, then it has a representation a = YljH? aj> where a; e R". Gen-
erally, such a representation is not unique, and neither is the related integer
M(a). We let m{a) be the minimum of M(a) over all such representations. If
a e 1R\{O}, then we set m(a) — 0. So, m(x) = 1, and for a e Vn it follows that
aa* = a*a = (-\)mW\a\2.

By the Mobius group we mean the group of orientation preserving transform-
ations acting in the Euclidean space W, generated by rigid motions, dilations
and inversions ([1,2, 4, 3, 6]).

According to a theorem of Ahlfors ([1,2, 4, 3]), all Mobius transforms from
W U {oo} to W U {oo} are exactly those of form

<p(x) = (ax + b)(cx + dyl

where a, b, c, d e Vn U {0} and

ad* - be* e 0& \ {0}, a*c, cd*, d*b, ba* e R".

See [2], for example. Furthermore, the identification between the (p's and the

Clifford matrices I I gives a homomorphism under 2 x 2 block matrix

multiplication.
Since we are interested in differentiation of transformations of functions, we

can assume without loss of generality that the functions under consideration
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are defined in W or its one-point compactification, with compact supports and
having as many orders of differentiability as we need in our argument; the same
applies to functions defined in R" = R®W = [x = xo + x; x0 e R, x € W).

For Clifford number-valued functions defined in W belonging to the above
mentioned nice classes we introduce the following Fourier transform:

/(*) = f S^

The associated symbol of the Dirac operator D is /f; and, accordingly, those of
De and D~l are (/£)' and (/f )~£, I e Z+, respectively.

For functions defined in U." — {x0 + x : x0 e U., x e W) we use the
following definition

/ f ei{x-Vf(x)dx= f
where £,JC e W[.

With this definition the associated symbols of the iterated Dirac operator De

and De, i e Z+, where D = d/dx0 + D, are (i%Y and (i^)~e, respectively.
It would be helpful to mention that Hans Jakobson and Michelle Vergne have

established an analogue of Theorem 1 for the group SU(2, 2) ([10]); and Hans
Jakobsen has established related results for other Lie groups ([9]).

2. Fundamental solutions of Dl and D'

First we deduce the fundamental solutions of Dl. We prefer an approach
that will not concentrate on integers I at the beginning. It is consistent with the
above if we define D~a,a > 0, by

(x) = cn

where ( J | ) " ° is defined by

(if)- = if r*+(f) + (-if ir

and

https://doi.org/10.1017/S1446788700035576 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035576


406 Jaak Peetre and Tao Qian

Thus, if a = I is a positive integer, we have

— if I is even;

if t is odd.

[4]

IM-l

Therefore

I f O < a , a + l < n, by invoking the following formula (see [14, p. 117] for
example) for 0 < /3 < n,

we conclude

where

Ux) = cn,a

£>-"/(*) = Kn,a * f(x)

+ dn,a (1 -

For general a > 0, the same criterion gives

KnM) = c»,a (1 + e-™) Gn<a{x) + dn,a (1 - e-*") DGn,a+l{x),

where Gn,p is the fundamental solution of \D\P that is the operator associated
with symbol | | |^.

Accordingly, we conclude that, for n odd,

(1)
Cn,l

Cn,l

£odd;

I even,
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and for n even

Mobius covariance of iterated Dirac operators 407

(2) Kn,t(x) =

CnX

\"-e

{Cn,ll0g\x_\+dn,t)j-^,

(c,,log|*|+</„,,)-—,

I odd and t < n;

I even and I < n;

I odd and € > n;

I even and € > n.

The formulae in (2) can also be derived using other methods. For example,
they follow from the results in [12]. Our method by using Fourier transform,
however, gives the formulae for Kna when a is not an integer. The formulae and
the proof of Theorem 1 indicate the reason why Da has no conformal invariance
when a is not an integer.

Now we turn to the fundamental solutions of De, I e Z+. In fact, writing
Do = 9/9*0, it follows that Dl = (Do + D)'1 = (A, - QY(Dl - D2)~l.
According to the Fourier transform defined at the end of the introductory section,
the symbol of (DQ — D2)"1 is Itl"2*, while its inverse Fourier transform, for
0 < 21 < n + 1, is cn<e\x\~(n+l~2t). This shows that the kernel of the operator
D~l is

0 < 2*

A direct computation then gives

(3) LnX{x) =
lX

\n+r

This result is due to Delanghe and Brackx [7] with a different proof.

3. Conformal Covariance

We normalize the Mobius transformation defined in the introduction by adding
the condition

ad* -be* = 1,
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and consider the multiplier representation

where

(4) *.*(*>={ ' ^ Y
: . .,„ , ' ^even,
\cx + d\"-e

and I e Z.
The following theorem is the main result of [1, 2].

THEOREM 1. For I e Z+, f/ie iterated Dirac operator Dl intertwines the
representations Tt , T_t of the Mobius transformation group, that is, for c ^ 0

l f ^ + ' r - e ( Q e f ) , I odd;

i (Qef), I even,

and, ifc = 0, then it must be the case that d ^ 0, and the factor (-l)m(c)+1 in
the last formula should be replaced by (—l)m(d).

REMARK. Note that the constant factors for I odd in the theorem seem to be
missing in [6].

The following proof of the theorem based on the close relationship between
Kni, the fundamental solutions of Dl, and the conformal weights Jl<tl. Note
that it is thus akin to a known proof of 'Bol's lemma' (cf. [8]).

PROOF. We only give the proof for the case c ^ 0. The proof for c = 0 is
omitted, since it is similar, and even simpler. We are going to show

, v , T , ( (-Dm(c)+1D-£T_, ( D V ) , I odd;

[ D"T_j ( D 7 ) , £even.

First, let us assume that n is odd or that £. < n and n is even. Denote by \fr the
inverse of </>. If v = <f>(x) = (ax + b)(cx+d)~l e R", then y(cx+d) = ax + b
and so, x = ir(y) = (yc — a)~l(—yd + b). Let z = z(v) = yc — a, A —
b — ac~ld, it follows that

(6) x = z-lA-c~id.
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On the other hand, since x = x*, y — y*, (6) is equivalent to

(6') x = A*z*~l-d*c*-\

It can be observed, from the properties of Mobius transformation and formula
(6), that c ̂  0 implies A ̂  0. We have

Dl (71, (

= cn,t j KnA(Mx) - y) • J-iAy) {Oef) {<t>(y))dy

= cn,e j KH,t(Mx) ~ 1r(y)) • J-ijtyiy)) {Qlf) (y)
dMy)

dy
dy,

where \d\fr(y)/dy\ is the Jacobian. Noticing that x = x//(y) is also a Mobius
transformation, by using formula (2.4) of [2] and the condition ad* — be* = 1,
we see that the Jacobian equals |z(y)|~2". In view of the identities (2), (4) and

f(x)-f(y) = {z-\x)-z-\y))A,

z~\x) - z-l(y_) = -z-\x)(z(x) - z(y))z-\y),

and

A* z'-'QQ
\A\"+*+i \z-1

1 1 1

\A\"+e\z-l(y)\n+i \c\"+1'
I even,

for £ odd, the above equals

z-\x) f (x-y)

~1C*)l"-'+1 J \x -y\"-( \c\n-l+l |z-l(y)|»-/+l

z~l*(y) c* ,
|Z-1Q,)|«-W+1 |C|»-W+1 V - " " - ' \Z{y)\2n '-

1 (-l)m(c) z-l(x) f (.x-y)
""' IAI2" Icl2" \z-l(x)\"-t+l

IAI
2" -l(Y\\n-t+\\z-1(x)\

Kn,e(x_-y)(Dlf)(y)dy

:f(x),
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where we used m(z~l A) = 1, which follows from the fact that z"1 A =x + c~1d
and c~*d e W (see [2, Lemma 1.4]), and the properties of the fundamental
solution. Replacing x by 4>(x) in the above and noticing that (x + d*c*~l) =
z~l(<t>{x))A, we obtain

Now be* = ad* — 1 together with c~xd e W implies b = —c*"1 + ac~xd and
hence A = — c*~\ Using this relation, the above immediately gives (5')- The
proof for I even is similar. The only difference is that this time we should use
the expressions for the case I even in formula (1), (2) and (4), respectively. We
consider the case I > n when n is even. Using (2) and the proceeding as above
in the case t is odd, it follows that

— l)m ( c ) z~l(x) fr

^r/[(-^)iog|z(^)i^ \c\2n

] {x — y)
-. TTJTAQ f)(y)dy
\x — y\

Since in the case I > n when n is even and I odd (x — y)/\x — y\" t+1 =
±(x — yY~n, h and 73 are obviously zero. The inequality

h = — ^ - ^ — \ f{x)
I vl 12n |f>|2/i I ^ — 1 f T^"\ | i—1+1 ~

follows from the basic property of fundamental solutions. To conclude we only
need to show 74 = 0. In fact, since

(x—y) £_n

—£+l L ~ _ J
k+j=l-n\x-y\"-e+l

by integration by parts, we have
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/4= -cnX YJhkM-ac-l)kf(\og\y_-ac-l\+\og\c\)i.y-ac-ly(Dlf)(y)dy
k+j=t-n J

k+j=t-n

- c H , t

-h0,i-nJcnielog\y-ac-l\(y-ac-l)t-n(Def)(y)dy

/

(y — ac~l)
cnX{\og \y - ac-'l + ^ ) | z : Q C - i M + , ( ^

= 0,

where the last step used the convention that function / o </> has compact support.
In fact, f(ac~l) = / o </> o \jr{ac~l) = / o <f>(oo) — 0.

So, we still have, as in the previous case

D' (r_, (o'f)) ^f^L
Replacing x by 4>{x) and proceeding as before, we obtain the desired formula
in (5') for the case I odd when I > n and n is even.

The case I even can be treated similarly, and hence the theorem is proved.

Now we turn to the operator De, and ask if we have similar conformal
covariance for these operators. The answer is yes for I — 1; and no for I > 1
(see remark below). First, notice that if we change W to R" in the definition of
Mobius transformations and the identification relationship between them and the
certain Clifford matrices described in the introduction, then all the conclusions-
still hold. In fact, it then becomes L. Ahlfors's original result (see [1, 2, 4, 3]).
Now denote by cp a Mobius transformation from R" U {oo} into R" U {oo} and
let g be the fixed function from W[ U {oo} into R" U {oo} defined by

8(X) = \x^>

where x = xo + x. Define the representations

Si(cp)f(x) = LnA ((cx + d)*) f ((p(x)),
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The following result holds.

THEOREM 2.

(7) D(S1f) = S.l(Df).

PROOF. By using the fundamental solution obtained in Section 1, formula (3),
and the same notation and relations established in the proof of Theorem 1, with
x and y are replaced by x and y, respectively, we have

DHS-i

= J LnA

«/i _
— 1 — z~l(x) f

J LnA(x - y)(Df)(y)dy

;
(x-y)cz-i(y)A A*(z-'(y))*c* 1

\x - y|"+1|c|"+I|z~IOOIll+1l^l'I+1 \A\n+i\z-1(y)\n+i\c\n+3 |z(y)|2<"+1> J

\Ac*\2n+2\z-l(x)\n+l

\Ac*\2"+2 \z-l(x)\"+l

Replacing x by c/>(x) and using Ac* = —1, we obtain (7).

The above proof is not applicable when £ > 1. (For a different proof of
Theorem 2, see [11].) It is caused by the presence of a positive power of the
single component x0, as indicated by formula (3).

REMARK. NOW we indicate why a result such as Theorem 2 cannot be true
for I > 1. Rather than continuing the rather tedious computation in [11]—in
principle this is always possible—we supply the following argument which was
suggested to us by Professor John Ryan (personal communication). Consider
the Clifford algebra s/n+i with n + 1 generators e\, • • •, en+i and let £?*+i

be the subalgebra of even elements of &?n+\- Then there is an isomorphism
p : srfn -> ̂ + 1 such that e, i-»- e~\.xe-} — -en+xej (j = 1, ••• ,«) . (This can be
seen by observing that ^ ^ + 1 is generated by the elements e^ej (j = 1 , • • • ,« ) ,
which again follows from the relation

e~\xx • e~\xy = xy (x, y e &/„).)
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Consider now the equation

9/ ^ 3 /

Applying the isomorphism p we obtain

In condensed form, we may write this as

This gives us a possibility of deriving Theorem 2 from Bojarski's Theorem 1
(the case i. = 1). The point is that such a relation cannot be true if I > 1 and so
the argument breaks down. For iterating gives

That, is p intertwines Dl and (e'^D)1, not De and Dl.
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