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Exact budget equations are derived for the coherent and stochastic contributions to
the second-order structure function tensor. They extend the anisotropic generalised
Kolmogorov equations (AGKE) by considering the coherent and stochastic parts of the
Reynolds stress tensor, and are useful for the statistical description of turbulent flows
with periodic or quasi-periodic features, like, for example, the alternate shedding after
a bluff body. While the original AGKE describe production, transport, inter-component
redistribution and dissipation of the Reynolds stresses in the combined space of scales
and positions, the new equations, called ϕAGKE, contain the phase ϕ as an additional
independent variable, and describe the interplay among the mean, coherent and stochastic
fields at the various phases. The newly derived ϕAGKE are then applied to a case where an
exactly periodic external forcing drives the flow: a turbulent plane channel flow modified
by harmonic spanwise oscillations of the wall to reduce drag. The phase-by-phase action of
the oscillating transversal Stokes layer generated by the forcing on the near-wall turbulent
structures is observed, and a detailed description of the scale-space interaction among
mean, coherent and stochastic fields is provided thanks to the ϕAGKE.

Key words: turbulent flows

1. Introduction

Understanding the multiscale nature of turbulence and the sustaining mechanisms of
turbulent fluctuations is a long-standing effort in fluid mechanics, motivated by the
ambition to determine and possibly to manipulate the mean flow. According to the
classic arguments by Richardson and Kolmogorov, at large enough Reynolds numbers
a clear scale separation is expected between the large energy-containing scales and the
small dissipative ones. Fluctuations of different scales interact nonlinearly, and a cascade
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mechanism transfers energy (on average) towards the dissipating scales. The geometrical
information embedded in the larger scales vanishes at smaller ones, so that turbulence
becomes locally isotropic below a small enough scale. However, in turbulent flows with
practical interest, the scale separation is often incomplete, owing to the finite value of the
Reynolds number and to the presence of boundaries; studying such flows is particularly
challenging, because of their strongly anisotropic and inhomogeneous nature, which
implies that the very concept of scale comes to depend on the position in physical space.

Among the approaches developed over the years to describe anisotropic and
inhomogeneous flows, the anisotropic generalised Kolmogorov equations (AGKE) are well
suited to account for the multiscale nature of turbulence. The AGKE (Gatti et al. 2020)
are exact budget equations for each component of the second-order structure function
tensor. They extend the generalised Kolmogorov equation (GKE) (see e.g. Danaila
et al. 2001; Hill 2001), sometimes referred to as the Kármán–Howarth–Monin–Hill
equation (Alves Portela, Papadakis & Vassilicos 2017), which, in turn, is the exact
budget equation for half the trace of the second-order structure function tensor, i.e. the
scale energy. The AGKE, which consider each tensor component separately, describe
the production, inter-component redistribution, transport and dissipation of the Reynolds
stresses simultaneously across scales and in physical space. Unlike the GKE, they fully
account for anisotropy and inhomogeneity, and feature a pressure–strain term that plays
a central role in redistribution. Moreover, the AGKE simplify the structural analysis of
turbulence, owing to the direct link of each tensor component to the correlation function
(Davidson, Nickels & Krogstad 2006; Gatti et al. 2020).

The GKE has been already applied to several flows to describe how inhomogeneity
changes the Richardson–Kolmogorov scenario, possibly leading to inverse (from small to
large scales) energy transfer: the plane channel flow at different Re (Cimarelli, De Angelis
& Casciola 2013; Cimarelli et al. 2016), the flow over a bump (Mollicone et al. 2018),
the wake of a square cylinder (Alves Portela et al. 2017) and the plane jet Cimarelli et al.
(2021). Using the GKE, Yao, Mollicone & Papadakis (2022) showed that an intense inverse
cascade dominates a boundary layer undergoing bypass transition. Danaila, Voivenel &
Varea (2017) derived the variable-viscosity GKE and proved that, in flows with mixing of
two or more fluids, all scales evolve in a similar fashion only for regions where viscosity is
uniform. Lai, Charonko & Prestridge (2018) derived the variable-density GKE and studied
the multi-material effects on the interscale energy transfers in a turbulent round jet, finding
that the deformation of smaller turbulent eddies into larger ones accompanies energy
transfers. Arun et al. (2021) derived the budget equation for the derivative of the two-point
velocity correlation for compressible flows, and identified the effects of variable density
and dilatation on the energy cascades. The more recent AGKE, instead, have been first
demonstrated in a plane channel flow (Gatti et al. 2020), and then used to investigate the
ascending/descending and direct/inverse cascades of the Reynolds stresses in a turbulent
Couette flow (Chiarini et al. 2022b) and to characterise the structure of turbulence in the
flow past a rectangular cylinder (Chiarini et al. 2022a).

It is not uncommon to encounter turbulent flows in which large scales are relatively
organised in space, and follow a temporally repeating pattern. This happens in the presence
of an external periodic forcing, or when the flow is quasi-periodic because of instabilities,
as in the turbulent wake of bluff bodies. An example of the former class, which is
considered in the second half of this paper as a simpler testbench, is the canonical turbulent
channel flow modified by periodic spanwise wall oscillation to obtain skin-friction drag
reduction (Jung, Mangiavacchi & Akhavan 1992). The spanwise forcing creates a coherent
periodic velocity field, known as the generalised Stokes layer (Quadrio & Ricco 2011),

960 A7-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.150
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which superimposes on the stochastic turbulent fluctuations. The latter class includes the
quasi-periodic Kármán-like vortices in the turbulent wake of bluff bodies, forming after
the roll-up of the separating shear layers. Such quasi-periodic structures, usually referred to
as coherent motions, interact with the stochastic fluctuations and affect their organisation.

A complete, multiscale description of the interaction among the mean, the coherent
(e.g. periodic) and the stochastic fields is highly desirable. Indeed, one can resort to a
triple decomposition of the velocity and pressure fields into mean, coherent and stochastic
motions, and use it, together with the single-point Reynolds stress budget equations, to
describe how these large-scale motions interact with the turbulent fluctuations in physical
space. For the spanwise-oscillating wall, Agostini, Touber & Leschziner (2014) found that
the phase variation of the stochastic contribution to the Reynolds stresses is mainly driven
by production, and that the dissipation plays only a marginal role; they concluded that
the increase of the dissipation cannot be the cause of drag reduction. For the alternate
shedding behind a bluff body, Kiya & Matsumura (1988) experimentally investigated the
various frequency components of the stochastic motions in the wake behind a flat plate
perpendicular to the flow. They found that the frequency of the main contributions to
the stochastic shear stresses is one-half of the vortex-shedding frequency, explaining it
with the different spanwise arrangement of consecutive coherent vortices. In both cases,
however, the description was incomplete: a triple decomposition alone does not capture
the interaction between coherent and stochastic motions in the space of scales.

Alves Portela, Papadakis & Vassilicos (2020) followed Thiesset, Danaila & Antonia
(2014) and used the GKE together with a triple decomposition to describe the interaction
between the coherent and stochastic motions in the space of scales and positions. They
arrived at two budget equations for the coherent and stochastic parts of the scale energy,
and applied them to the turbulent wake past a square cylinder. Interestingly, they found
that the mean flow does not feed the stochastic field directly, but it produces kinetic energy
that feeds the large-scale coherent structures shed in the wake. Part of this energy is then
transferred towards the stochastic turbulent fluctuations, at all scales. Although promising,
the approach of Alves Portela et al. (2020) is still affected by limitations, discussed
by Thiesset & Danaila (2020), that prevent a complete understanding of the interaction
among the three fields. This is because their budget equations are obtained by averaging
over the phase of the coherent motions, and the phase dependence is lost in the process.
Furthermore, being based on the GKE, their procedure considers only the scale energy, and
does not describe the pressure–strain redistribution among the various components of the
Reynolds stress tensor. Finally, Alves Portela et al. (2020) additionally discard directional
information by taking orientation averages of every term of the budget equations.

The present work goes one step further to overcome these limitations. We use a triple
decomposition to extend the AGKE, and arrive at two phase-by-phase budget equations
for the coherent and stochastic parts of each component of the structure function tensor.
These equations, named ϕAGKE, describe the phase-by-phase mean–coherent–stochastic
interaction of each component of the Reynolds stresses in the combined space of scales
and positions. There is no phase-average involved, so that the description is complete.
The paper is structured as follows. After this introduction, in § 2 we briefly recall the
AGKE for the classic Reynolds decomposition and introduce the ϕAGKE for the triple
decomposition, discussing the meaning of the various terms. In the second part of
the contribution, in § 3, we provide a relatively simple example, and apply the new
budget equations to a turbulent channel flow subjected to an oscillatory spanwise wall
motion, chosen because of the deterministic nature of the periodic component. In § 4 we
demonstrate how the ϕAGKE describe the mean–coherent–stochastic interaction, and shed
light into the complex working mechanism of the oscillating wall. The paper closes with
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a brief discussion in § 5. Appendix A contains the detailed derivation of the ϕAGKE
from the Navier–Stokes equations, followed in Appendix B by their specialisation to plane
channel flow with oscillating walls. In Appendix C the velocity field induced by the
ensemble-averaged quasi-streamwise vortex at different phases is computed and used to
support the ϕAGKE-based analysis of the channel flow with oscillating walls.

2. Mathematical formulation

In this section we introduce the triple decomposition and recall briefly the standard
AGKE, before presenting the new ϕAGKE, the detailed derivation of which is reported
in Appendix A.

2.1. Triple decomposition of the velocity field
An incompressible turbulent flow, varying in space x and time t, is typically described via
its mean and fluctuating velocity and pressure fields, defined after the classic Reynolds
decomposition. Provided the flow exhibits well-defined non-stochastic (e.g. periodic)
features, the fluctuating field can be further decomposed into a coherent and a stochastic
part. Therefore, the velocity field reads

u = U + ũ + u′′︸ ︷︷ ︸
u′

, (2.1)

where U , u′, ũ and u′′ indicate the mean, fluctuating, coherent and stochastic parts of
the velocity field u. The mean velocity U is defined as U ≡ 〈u〉, with the operator 〈·〉
indicating ensemble averaging, which under the ergodic hypothesis becomes equivalent
to averaging over homogeneous directions and time (if the flow is statistically stationary).
For a single realisation without homogeneous directions, the mean is simply a temporal
average:

U(x) ≡ lim
τ→+∞

1
τ

∫ τ

0
u(x, t) dt. (2.2)

Considering a periodic motion with period T and phase ϕ ∈ (0, 2π], the overbar
· denotes the phase average operator over an integer number N of periods. Like 〈·〉,
it includes averaging over the homogeneous directions. Considering again a single
realisation without homogeneous directions, · is defined as

u(x, ϕ) ≡ lim
N→+∞

1
N

N−1∑
n=0

u
(

x,
( ϕ

2π
+ n

)
T
)
. (2.3)

The coherent field ũ is thus defined as

ũ(x, ϕ) = u(x, ϕ)− U(x), (2.4)

and the stochastic vector field u′′ is defined after the triple decomposition (2.1) as u′′ =
u − U − ũ. An analogous triple decomposition is used to decompose the pressure field
p = P + p̃ + p′′, with p̃ + p′′ = p′.
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x1 = X − r/2

x2 = X + r/2

X

u(X − r/2, t)

u(X + r/2, t)

δu

r

Figure 1. Sketch of two points x1 and x2 involved in the definition of the second-order structure function
tensor. Here, X = (x1 + x2)/2 and r = x2 − x1 indicate their mid-point and separation vector, respectively,
and δu = u2 − u1 is the velocity increment between the two points.

2.2. The AGKE
Before presenting the ϕAGKE, the standard AGKE based on the Reynolds decomposition
are recalled. Full details of their derivation from the incompressible Navier–Stokes
equations are provided by Gatti et al. (2020).

Exact budget equations can be written for the components of the second-order structure
function tensor

〈
δuiδuj

〉
, where δui = ui(X + r/2, t)− ui(X − r/2, t) is the ith component

of the velocity difference between two points x1 and x2, identified by their midpoint X =
(x1 + x2)/2 and their separation vector r = (x2 − x1), as shown by the sketch in figure 1.
The Reynolds decomposition leads to budget equations for δUiδUj and

〈
δu′

iδu
′
j
〉
. In general,

the time-independent tensor δUiδUj depends upon six independent variables, i.e. the six
coordinates of X and r. The tensor

〈
δu′

iδu
′
j
〉

additionally features time t as an independent
variable if the process is not statistically stationary (e.g. periodic), and is related to the
Reynolds stresses

〈
u′

iu
′
j
〉

and to the spatial correlation tensor Rij (Davidson et al. 2006;
Agostini & Leschziner 2017) as〈

δu′
iδu

′
j
〉
(X , r, t) = V ij(X , r, t)− Rij(X , r, t)− Rij(X ,−r, t), (2.5)

where

V ij(X , r, t) = 〈
u′

iu
′
j
〉 (

X + r
2
, t
)

+ 〈
u′

iu
′
j
〉 (

X − r
2
, t
)

(2.6)

is the sum of the single-point Reynolds stresses evaluated at the two points X ± r/2 and

Rij(X , r, t) =
〈
u′

i

(
X + r

2
, t
)

u′
j

(
X − r

2
, t
)〉

(2.7)

is the two-point spatial correlation function.
The budget equations for the components of the mean second-order structure function

tensor δUiδUj are presented here for the first time; they were not reported by Gatti et al.
(2020), and the tensor has received little attention so far, owing to its irrelevance in
homogeneous isotropic turbulence, where there is no mean flow. The mean AGKE are
written compactly as

∂Φm
k,ij

∂rk
+
∂Ψ m

k,ij

∂Xk
= Ξm

ij , (2.8)

where the repeated index k implies summation. The following notation is adopted.
Uppercase letters (e.g. Φ, Ψ and Ξ ) are used to denote time-averaged quantities and
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lowercase letters (e.g. φ, ψ and ξ ) are used for phase-dependent quantities. Furthermore,
superscripts m, f , c and s are used to label terms in the budget equations for the mean
structure function tensor δUiδUj, the fluctuating structure function tensor

〈
δu′

iδu
′
j
〉
, the

coherent structure function tensor δũiδũj = δũiδũj and the stochastic structure function
tensor δu′′

i δu
′′
j .

The fluxes Φm
k,ij and Ψ m

k,ij are the mean scale- and physical-space fluxes, i.e.

Φm
k,ij = δUkδUiδUj︸ ︷︷ ︸

Mean transport

+ δUj
〈
δu′

kδu
′
i
〉+ δUi

〈
δu′

kδu
′
j
〉︸ ︷︷ ︸

Fluctuating transport

−2ν
∂δUiδUj

∂rk︸ ︷︷ ︸
Viscous diffusion

k = 1, 2, 3 (2.9)

and

Ψ m
k,ij = U∗

k δUiδUj︸ ︷︷ ︸
Mean transport

+ δUj
〈
u′∗

k δu
′
i
〉+ δUi

〈
u′∗

k δu
′
j
〉︸ ︷︷ ︸

Fluctuating transport

+ 1
ρ
δPδUjδki + 1

ρ
δPδUiδkj︸ ︷︷ ︸

Pressure transport

−ν
2
∂δUiδUj

∂Xk︸ ︷︷ ︸
Viscous diffusion

k = 1, 2, 3, (2.10)

where δij is the Kronecker delta, ν is the kinematic viscosity and the asterisk superscript
(·)∗ indicates the arithmetic average of a quantity between the two points X ± r/2. The
term Ξm

ij , instead, is the mean source and reads

Ξm
ij = −

[
−〈u′∗

k δu
′
j
〉
δ

(
∂Ui

∂xk

)
− 〈

u′∗
k δu

′
i
〉
δ

(
∂Uj

∂xk

)
− 〈
δu′

kδu
′
j
〉 (∂Ui

∂xk

)∗
− 〈
δu′

kδu
′
i
〉 (∂Uj

∂xk

)∗]
︸ ︷︷ ︸

Mean-fluctuating production (Pmf
ij )

+ 1
ρ
δP
∂δUi

∂Xj
+ 1
ρ
δP
∂δUj

∂Xi︸ ︷︷ ︸
Pressure strain (Πm

ij )

−4εm∗
ij︸ ︷︷ ︸

Dissipation (Dm
ij )

+ δUjδFi + δUiδFj︸ ︷︷ ︸
Forcing interaction (Fm

ij )

. (2.11)

The standard AGKE, presented by Gatti et al. (2020), pertain to increments of the
fluctuating velocity field, and describe the production, transport, redistribution and
dissipation of each component, in physical space X and in the space of scales r. They
can be written compactly as

∂
〈
δu′

iδu
′
j
〉

∂t
+
∂Φ

f
k,ij

∂rk
+
∂Ψ

f
k,ij

∂Xk
= Ξ

f
ij . (2.12)

The scale-space fluxes Φ f
k,ij and physical-space fluxes Ψ f

k,ij are defined as

Φ
f

k,ij = 〈
δUkδu′

iδu
′
j
〉︸ ︷︷ ︸

Mean transport

+ 〈
δu′

kδu
′
iδu

′
j
〉︸ ︷︷ ︸

Fluctuating transport

−2ν
∂

∂rk

〈
δu′

iδu
′
j
〉

︸ ︷︷ ︸
Viscous diffusion

k = 1, 2, 3 (2.13)
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and

Ψ
f

k,ij = 〈
U∗

k δu
′
iδu

′
j
〉︸ ︷︷ ︸

Mean transport

+ 〈
u′∗

k δu
′
iδu

′
j
〉︸ ︷︷ ︸

Fluctuating transport

+ 1
ρ

〈
δp′δu′

i
〉
δkj + 1

ρ

〈
δp′δu′

j
〉
δki︸ ︷︷ ︸

Pressure transport

−ν
2
∂

∂Xk

〈
δu′

iδu
′
j
〉

︸ ︷︷ ︸
Viscous diffusion

k = 1, 2, 3. (2.14)

The term Ξ
f

ij in (2.12) is the source for
〈
δu′

iδu
′
j
〉

and reads

Ξ
f

ij = −〈u′∗
k δu

′
j
〉
δ

(
∂Ui

∂xk

)
− 〈

u′∗
k δu

′
i
〉
δ

(
∂Uj

∂xk

)
− 〈
δu′

kδu
′
j
〉 (∂Ui

∂xk

)∗
− 〈
δu′

kδu
′
i
〉 (∂Uj

∂xk

)∗

︸ ︷︷ ︸
Mean-fluctuating production (Pmf

ij )

+ 1
ρ

〈
δp′ ∂δu

′
i

∂Xj

〉
+ 1
ρ

〈
δp′ ∂δu

′
j

∂Xi

〉
︸ ︷︷ ︸

Pressure strain (Π f
ij )

−4εf ∗
ij︸ ︷︷ ︸

Dissipation (D f
ij )

+ 〈
δu′

jδf
′
i
〉+ 〈

δu′
iδf

′
j
〉︸ ︷︷ ︸

Forcing interaction (F f
ij )

, (2.15)

in which ε
f
ij is the pseudo-dissipation tensor

〈
∂u′

i/∂xk∂u′
j/∂xk

〉
. The source term Ξ

f
ij

identifies scales and positions with a net sink (Ξ f
ij < 0) or a net source (Ξ f

ij > 0) for
each component of the Reynolds stresses. The separation of Ξ f

ij into its constituent terms
provides insight into mean-fluctuating production Pmf

ij (which also appears in (2.11) with
opposite sign), redistribution Π f

ij , dissipation D f
ij and interaction with external fluctuating

volume forces F f
ij of turbulent stresses among scales and positions (note that the forcing

interaction term was missing in the original AGKE formulated by Gatti et al. (2020)).
The flux vectors describe the various transfer processes, and their field lines visualise how
fluctuations are transferred among scales and positions, via direct and inverse cascades. It
should be recalled that, as stressed by Gatti et al. (2020), when interpreting AGKE results
to extract structural turbulence information, local peaks of the structure functions always
need to be connected to local maxima/minima of the correlation functions whenever a
separation along an inhomogeneous direction is involved.

2.3. The phase-aware AGKE (ϕAGKE)
By using the triple decomposition (2.1), the phase-averaged fluctuating structure function
tensor δu′

iδu
′
j(X , r, ϕ) can be separated into its coherent and stochastic parts, i.e.

δu′
iδu

′
j(X , r, ϕ) = δũiδũj(X , r, ϕ)+ δu′′

i δu
′′
j (X , r, ϕ); (2.16)

note that δũiδũj ≡ δũiδũj owing to the definition of the phase-average operator. Two budget
equations, called ϕAGKE, can be written for δũiδũj and δu′′

i δu
′′
j , which include, unlike

the standard AGKE, the interplay among the mean, coherent and stochastic fields at each
phase ϕ. These new equations extend in a significant way the work of Thiesset et al. (2014)
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and Alves Portela et al. (2020), which considered the budget equations for 〈δũiδũi〉 (X , r)
and

〈
δu′′

i δu
′′
i
〉
(X , r). They applied the triple decomposition to the trace

〈
δu′

iδu
′
i
〉

of the
second-order structure function tensor, instead of considering the whole tensor. The major
difference, though, is that the dependence on the phase ϕ of the coherent motion (or
external forcing) was lost, because of the use of the 〈·〉 operator. On the contrary, the
ϕAGKE retain full phase information.

The step-by-step derivation of the ϕAGKE from the incompressible Navier–Stokes
equations is described in Appendix A. At each phase ϕ, they link the phase variation
of each component of the coherent and stochastic structure function tensors, at a given
scale r and position X , to the unbalance among inter-component redistribution, scale-space
transport, dissipation and mean–coherent–stochastic interaction. The last term is obviously
absent in the classic AGKE.

The equations for the coherent and stochastic parts can be compactly written as

2π

T
∂δũiδũj

∂ϕ
+
∂φc

k,ij

∂rk
+
∂ψc

k,ij

∂Xk
= ξ c

ij + ζ c
ij (2.17)

and

2π

T

∂δu′′
i δu

′′
j

∂ϕ
+
∂φs

k,ij

∂rk
+
∂ψ s

k,ij

∂Xk
= ξ s

ij, (2.18)

where, as above, the repeated index k implies summation.
The first term in each of (2.17) and (2.18) represents the phase variation of the coherent

and stochastic components of the structure function tensor. The coherent and stochastic
scale fluxes φc

k,ij and φs
k,ij, i.e. the fluxes of δũiδũj and δu′′

i δu
′′
j in the space of scales, are

defined as

φc
k,ij = δUkδũiδũj︸ ︷︷ ︸

Mean transport

+ δũkδũiδũj︸ ︷︷ ︸
Coherent transport

+ δu′′
kδu

′′
i δũj + δu′′

kδu
′′
j δũi︸ ︷︷ ︸

Stochastic transport

−2ν
∂δũiδũj

∂rk︸ ︷︷ ︸
Viscous diffusion

k = 1, 2, 3 (2.19)

and

φs
k,ij = δUkδu′′

i δu
′′
j︸ ︷︷ ︸

Mean transport

+ δũkδu′′
i δu

′′
j︸ ︷︷ ︸

Coherent transport

+ δu′′
kδu

′′
i δu

′′
j︸ ︷︷ ︸

Stochastic transport

−2ν
∂δu′′

i δu
′′
j

∂rk︸ ︷︷ ︸
Viscous diffusion

k = 1, 2, 3.

(2.20)

The coherent and stochastic spatial flux terms ψc
k,ij and ψ s

k,ij, i.e. the fluxes of δũiδũj and

δu′′
i δu

′′
j in physical space, are defined as

ψc
k,ij = U∗

k δũiδũj︸ ︷︷ ︸
Mean transport

+ ũ∗
kδũiδũj︸ ︷︷ ︸

Coherent transport

+ u′′∗
k δu

′′
i δũj + u′′∗

k δu
′′
j δũi︸ ︷︷ ︸

Stochastic transport

+ 1
ρ
δp̃δũiδkj︸ ︷︷ ︸

Pressure transport

+ 1
ρ
δp̃δũjδki︸ ︷︷ ︸

Pressure transport

−ν
2
∂δũiδũj

∂Xk︸ ︷︷ ︸
Viscous diffusion

k = 1, 2, 3, (2.21)
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Structure functions with triple decomposition

ψ s
k,ij = U∗

k δu
′′
i δu

′′
j︸ ︷︷ ︸

Mean transport

+ ũ∗
kδu

′′
i δu

′′
j︸ ︷︷ ︸

Coherent transport

+ u′′∗
k δu

′′
i δu

′′
j︸ ︷︷ ︸

Stochastic transport

+ 1
ρ
δp′′δu′′

i δkj + 1
ρ
δp′′δu′′

j δki︸ ︷︷ ︸
Pressure transport

−ν
2

∂δu′′
i δu

′′
j

∂Xk︸ ︷︷ ︸
Viscous diffusion

k = 1, 2, 3. (2.22)

The differences with the fluxes (2.13) and (2.14) appearing in the standard AGKE are
worth noticing. Two new terms appear here to account for the effect of the coherent field
upon transport in the stochastic field, labelled as coherent transport in (2.20) and (2.22).
Vice versa, how the stochastic field affects transport in the coherent field is reflected by
the stochastic transport term in (2.19) and (2.21).

The coherent and stochastic source terms ξ c
ij and ξ s

ij denote the scale-space net

production of δũiδũj and δu′′
i δu

′′
j . They can be either positive or negative, and read

ξ c
ij = −δũjδũk

(
∂Ui

∂xk

)∗
− δũiδũk

(
∂Uj

∂xk

)∗
− δũjũ∗

kδ

(
∂Ui

∂xk

)
− δũiũ∗

kδ

(
∂Uj

∂xk

)
︸ ︷︷ ︸

Mean–coherent production (pmc
ij )

−
[
−δu′′

j δu
′′
k

(
∂ ũi

∂xk

)∗
− δu′′

i δu
′′
k

(
∂ ũj

∂xk

)∗
− δu′′

j u′′∗
k δ

(
∂ ũi

∂xk

)
− δu′′

i u′′∗
k δ

(
∂ ũj

∂xk

)]
︸ ︷︷ ︸

Coherent–stochastic production (pcs
ij )

+ 1
ρ
δp̃
∂δũi

∂Xj
+ 1
ρ
δp̃
∂δũj

∂Xi︸ ︷︷ ︸
Pressure strain (πc

ij)

−4εc∗
ij︸ ︷︷ ︸

Dissipation(dc
ij)

+ δũjδf̃i + δũiδf̃j︸ ︷︷ ︸
Forcing interaction(f c

ij)

, (2.23)

ξ s
ij = −δu′′

j δu
′′
k

(
∂Ui

∂xk

)∗
− δu′′

i δu
′′
k

(
∂Uj

∂xk

)∗
− δu′′

j u′′∗
k δ

(
∂Ui

∂xk

)
− δu′′

i u′′∗
k δ

(
∂Uj

∂xk

)
︸ ︷︷ ︸

Mean–stochastic production(pms
ij )

+
[
−δu′′

j δu
′′
k

(
∂ ũi

∂xk

)∗
− δu′′

i δu
′′
k

(
∂ ũj

∂xk

)∗
− δu′′

j u′′∗
k δ

(
∂ ũi

∂xk

)
− δu′′

i u′′∗
k δ

(
∂ ũj

∂xk

)]
︸ ︷︷ ︸

Coherent–stochastic production (pcs
ij )

+ 1
ρ
δp′′ ∂δu

′′
i

∂Xj
+ 1
ρ
δp′′ ∂δu

′′
j

∂Xi︸ ︷︷ ︸
Pressure strain (πs

ij)

−4εs∗
ij︸ ︷︷ ︸

Dissipation(ds
ij)

+ δu′′
j δf

′′
i + δu′′

i δf
′′
j︸ ︷︷ ︸

Forcing interaction(f s
ij)

. (2.24)

Among the terms appearing in the source, the mean–coherent and mean–stochastic
productions pmc

ij and pms
ij indicate the scales and positions where the mean flow feeds,

or drains energy from, the coherent and stochastic fields: they are not positive definite, and
therefore can be either sources or sinks. They both contribute to the mean-fluctuating
production Pmf

ij in (2.11), as Pmf
ij = 〈

pmc
ij
〉+ 〈

pms
ij
〉
. The coherent–stochastic production

pcs
ij indicates the exchange of stresses between the coherent and stochastic fields, and
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appears in the budgets for δũiδũj and δu′′
i δu

′′
j with opposite sign. Terms dc

ij and ds
ij

denote viscous dissipation, and the pressure–strain terms πc
ij and πs

ij describe the interplay
between pressure and velocity fields. Pressure–strain terms involve neither production nor
dissipation of energy, and no cross-talk between coherent and fluctuating fields. Overall,
among the source terms, the productions pmc

ij , pms
ij and pcs

ij are the only ones that connect
the mean, coherent and fluctuating budgets, and are essential to ascertain how the mean,
stochastic and coherent fields force each other. The forcing interactions f c

ij and f s
ij represent

the power injected into the system by the interaction of a coherent and stochastic external
volume forcing with the coherent and stochastic flow fields, respectively. Finally, in (2.17)
for δũiδũj a new term ζ c

ij appears on the right-hand side. It describes the inter-phase
interaction driven by the coherent flow field, and is defined as

ζ c
ij = ∂

∂rk

[〈δũiδũk〉 δũj + 〈
δũjδũk

〉
δũi
]+ ∂

∂Xk

[〈
ũ∗

kδũi
〉
δũj + 〈

ũ∗
kδũj

〉
δũi
]

+ ∂

∂rk

[〈
δu′′

i δu
′′
k
〉
δũj + 〈

δu′′
j δu

′′
k
〉
δũi

]
+ ∂

∂Xk

[〈
u′′∗

k δu
′′
i
〉
δũj + 〈

u′′∗
k δu

′′
j
〉
δũi

]
− 〈δũiδũk〉

(
∂ ũj

∂xk

)∗
− 〈
δũjδũk

〉 ( ∂ ũi

∂xk

)∗
− 〈
δũiũ∗

k
〉
δ

(
∂ ũj

∂xk

)
− 〈
δũjũ∗

k
〉
δ

(
∂ ũi

∂xk

)

− 〈
δu′′

i δu
′′
k
〉 ( ∂ ũj

∂xk

)∗
− 〈
δu′′

j δu
′′
k
〉 ( ∂ ũi

∂xk

)∗
− 〈
δu′′

i u′′∗
k
〉
δ

(
∂ ũj

∂xk

)
− 〈
δu′′

j u′′∗
k
〉
δ

(
∂ ũi

∂xk

)
.

(2.25)

The terms in the last two rows above resemble a production term, and indicate the
production of δũiδũj due to the correlation of each phase with all the others.

By averaging equations (2.17) and (2.18) over the phases, the budget equations
for

〈
δũiδũj

〉
(X , r) and

〈
δu′′

i δu
′′
j
〉
(X , r) are obtained. In doing this, the inter-phase

contributions vanish, since by definition they have zero average. The sum of the equations
for the three diagonal components of

〈
δũiδũj

〉
and

〈
δu′′

i δu
′′
j
〉

yields the GKE used by Alves
Portela et al. (2020). If the equations for

〈
δũiδũj

〉
and

〈
δu′′

i δu
′′
j
〉

are added together, the
standard AGKE for the fluctuating field

〈
δu′

iδu
′
j
〉

are recovered.

3. Turbulent drag reduction by a spanwise-oscillating wall

The ϕAGKE are now applied to a fully developed turbulent channel flow subjected to a
spanwise harmonic oscillation of the walls. This flow is a convenient example where the
deterministic external periodic forcing provides an unambiguous definition of the phase,
yet the physics behind drag reduction is interesting and not fully understood yet.

The spanwise oscillating wall is a well-known skin-friction drag reduction technique,
intensely studied over the last thirty years (see Ricco, Skote & Leschziner 2021, and
references therein). The channel walls periodically move along the spanwise direction,
according to

ww(t) = A sin
(

2π

T
t
)
, (3.1)

where A and T are the prescribed amplitude and period of the sinusoidal oscillation and
ww is the spanwise velocity of the wall. Here, x, y and z (u, v and w) denote the streamwise,
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Figure 2. Wall-normal profile of the spanwise coherent velocity w̃+ (a) and shear ∂w̃+/∂y (b), plotted at

eight equally spaced phases ϕ1, . . . , ϕ8 along the period T+ = 250.

wall-normal and spanwise directions (velocity components); the alternative notation x1 =
x (u1 = u), x2 = y (u2 = v) and x3 = z (u3 = w) is also used. The harmonic oscillation
generates a periodic (coherent) spanwise cross-flow, which even for a turbulent streamwise
flow is well described (Quadrio & Sibilla 2000) by the analytical laminar solution of the
second Stokes problem, usually referred to as the Stokes layer:

w( y, ϕ) = A exp
(

−
√
ω

2ν
y
)

sin
(
ϕ −

√
ω

2ν
y
)
, (3.2)

where ϕ is the phase of the oscillation and ω = 2π/T . Figure 2 shows the coherent
spanwise velocity field (the Stokes layer) generated by the harmonic oscillations, and
its derivative in the wall-normal direction (the Stokes shear): the oscillating period is
subdivided into eight equally spaced phases ϕ1, ϕ2, . . . , ϕ8, where ϕi = iπ/4. From here
on, a + superscript is used to indicate quantities made dimensionless with the friction
velocity uτ = √

τw/ρ (ρ is the fluid density and τw is the time-averaged streamwise wall
shear stress; the spanwise component is zero) and the kinematic viscosity ν.

The interaction between the coherent Stokes layer and the stochastic near-wall
turbulence influences the main structures of the near-wall cycle, i.e. the low-speed streaks
and the quasi-streamwise vortices, eventually yielding a reduction of turbulent friction.
When the Reynolds number based on the friction velocity is Reτ = 200, the largest drag
reduction rate for a given oscillation amplitude A+ = 12 is approximately 45 %, obtained
for the optimal actuation period T+ ≈ 100 (Quadrio & Ricco 2004). Larger or smaller
periods result in smaller drag reduction. Several authors, for example Yakeno, Hasegawa &
Kasagi (2014), observed that the orientation of near-wall structures in wall-parallel planes
is cyclically altered by the coherent spanwise shear. Touber & Leschziner (2012) have
shown that, provided the time scale of the spanwise shear oscillation is short enough, the
low-speed streaks do not have the time to fully reorient during the oscillation, and are thus
weakened. Hence, at the root of drag reduction lies the interaction between the oscillating
shear (a coherent component) and the natural streak regeneration mechanism (seen in the
stochastic component).

Touber & Leschziner (2012) and later Agostini et al. (2014) applied a triple
decomposition of the velocity field to the budgets of the single-point Reynolds stresses; the
turbulent (stochastic) fluctuations were isolated and their interaction with the (coherent)
Stokes layer was studied. It was found that the interaction between coherent and stochastic
fields is mediated by the interplay between the coherent spanwise shear ∂w̃/∂y and the
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v′′w′′ component of the Reynolds stress tensor, induced by the rotation of the vortical
structures. For nearly optimal periods, the interaction between the coherent and stochastic
fields is a one-way interaction, with the former altering the latter. This weakens the
wall-normal velocity fluctuations and reduces the turbulent shear, reducing eventually the
friction drag. For larger periods, instead, the interaction becomes a two-way interaction,
with coherent and stochastic fields mutually exchanging energy. In this case, however, the
drag reduction effect is less important. By looking at different phases along the period,
they found that, when large, the Stokes shear ∂w̃/∂y changes relatively slowly in time
and allows the structures to become more vigorous and well-established (a process they
referred to as lingering). Conversely, when ∂w̃/∂y is small, the structures appear weak and
less tilted.

In this example, we intend to add scale information to the picture. We thus apply
the ϕAGKE: (i) to describe the influence of the coherent motion on the spatial
arrangement of the near-wall structures during the control period, (ii) to inspect the
mean–coherent–stochastic interaction in the scale space and in physical space and (iii) to
characterise the phase dependence of the interaction between the coherent and stochastic
fields.

3.1. Database and computational details
The ϕAGKE terms are computed from two datasets obtained by direct numerical
simulations. They are described by Gallorini, Quadrio & Gatti (2022), where the interested
reader can find full details.

The simulations are run under a constant pressure gradient (Quadrio, Frohnapfel &
Hasegawa 2016), with a friction Reynolds number of Reτ = uτh/ν = 200, where h is
the channel half-height. A constant pressure gradient provides a unique value of uτ
with/without drag reduction, thus avoiding ambiguities in viscous scaling. The size of
the computational domain is (Lx, Ly, Lz) = (4πh, 2h, 2πh) in the streamwise, wall-normal
and spanwise directions. The number of Fourier modes is Nx = Nz = 256 in the two
homogeneous (streamwise and spanwise) directions, further increased by a factor of 3/2
to remove aliasing error. In the wall-normal direction, a hyperbolic tangent distribution of
Ny = 192 points provides a finer grid near the wall. The spatial resolution is �x+ = 6.6
and �z+ = 3.3 by considering the extra modes, while �y+ varies from �y+ ≈ 0.5 close
to the wall to �y+ ≈ 3.7 at the centreline.

A first simulation of a plane channel with fixed walls is run as a reference, followed
by two others in which wall oscillation according to (3.1) is enforced. The oscillation
amplitude is fixed at A+ = 7: a rather small value, which keeps the energy cost of the
actuation limited, and might even provide a small net energy saving at optimal periods.
As in Agostini & Leschziner (2014), we consider two control periods, namely T+ = 75
and T+ = 250. The value T+ = 75 is nearly optimal, and yields drag reduction (defined
here as a percentage decrease of the friction coefficient, determined by the increase in
bulk velocity) of 25.2 %. The value T+ = 250 is suboptimal, and yields only 13.2 %
drag reduction. These figures are in agreement with existing information (see e.g. Gatti
& Quadrio 2016).

Simulations are started from an uncontrolled turbulent flow field. During the initial,
transient phase, the solution is advanced by setting the Courant–Friedrichs–Lewy number
at 1. After the transient, however, the time step is set to a fixed value, in order to
synchronise data saving with predetermined control phases. The value of the time step
is thus chosen as an integer submultiple of the forcing period that keeps the maximum
Courant–Friedrichs–Lewy number below unity: it is �t+ = 0.0938 for the smaller period
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and �t+ = 0.0781 for the longer period. After the transient, 376 complete velocity fields
are saved, so that 47 control periods are stored for later analysis, each of them divided in 8
equally spaced phases.

The ϕAGKE terms are computed from the database with a post-processing code derived
with modifications from that described by Gatti et al. (2020). It employs the same
important numerical optimisations described in Gatti et al. (2019), which include the
computation of correlations pseudo-spectrally whenever possible. The code, written in
the CPL computer programming language (Luchini 2020, 2021), has been validated by
checking that the sum of each term of the budget of coherent and stochastic fields equals
the corresponding term of

〈
δu′

iδu
′
j
〉

within round-off. Statistical convergence of the results
is verified by ensuring that the residuals of the budgets are negligible compared with the
values of the production, pressure–strain and dissipation.

3.2. The ϕAGKE tailored to channel flow with oscillating walls
The general form (2.17) and (2.18) of the ϕAGKE can be simplified for the problem at
hand. Since x and z are homogeneous, in an indefinite plane channel the ϕAGKE depend
on five independent variables: the three components of the separation vector (rx, ry, rz),
the wall-normal component of the midpoint Y and the phase ϕ. Note that the finite distance
between the two walls implies the constraint ry < 2Y .

In an indefinite channel flow, the x direction aligns with the mean flow, hence U( y) =
(U( y), 0, 0), and the wall-parallel derivatives of the mean velocity are zero. Moreover, in
the specific case of the oscillating wall, the coherent velocity field is independent on x and
z, as the wall control law (3.1) is a function of time only, so that ∂ ũi/∂x = ∂ ũi/∂z = 0.
Therefore, incompressibility and no penetration at the wall dictate that the wall-normal
component of the coherent field is null everywhere, i.e. ṽ( y, t) = 0. The streamwise
coherent velocity ũ, instead, does not vanish, albeit it is known to be extremely small:
(Yakeno et al. 2014) report it to be two orders of magnitude smaller than the spanwise
coherent velocity w̃. The non-zero components of the δũiδũj tensor are δũδũ, δw̃δw̃ and
δũδw̃.

The specialised form of the ϕAGKE for the channel flow with oscillating walls is
reported in Appendix B. It can be observed that the mean–coherent production pmc

ij is
zero: in this particular case, there is no exchange of stresses between the mean and
coherent fields, as the coherent field interacts directly with the external forcing and
with the stochastic field only. However, this term does appear in other flows, and for
example is important for the flow past a bluff body (Alves Portela et al. 2020), where the
mean flow supports the coherent vortex shedding, which in turn supports the stochastic
fluctuations. In the budget for the stochastic part, the productions pms

ij and pcs
ij represent

the two avenues for the stochastic field to interact with the mean and coherent fields,
involving distinct components of δu′′

i δu
′′
j . The mean–stochastic production pms

ij is non-zero
only for δu′′δu′′ and for the off-diagonal components δu′′δv′′ and δu′′δw′′. In contrast,
the coherent–stochastic production contributes to all the elements of δu′′

i δu
′′
j except for

δv′′δv′′, being pcs
22 = 0.

The flow symmetries and the type of forcing make only certain paths available for energy
exchanges. This is represented graphically in figure 3, which shows an ‘energy circle’
(Quadrio 2011) to describe energy exchanges among the mean, coherent and stochastic
fields after spatial and temporal integration. In the following, thanks to the ϕAGKE, these
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Figure 3. Sketch of the energy exchanges between mean, coherent and stochastic fields for the turbulent
channel flow modified by spanwise-oscillating walls. Blue (red) arrows indicate energy entering (leaving) the
system. The blue arrows Pm and w̃ represent the pumping energy required to move the flow, and the energy
introduced by the moving walls.

global energy exchanges and redistributions are expanded and described in space and
among scales, with a phase-by-phase analysis.

4. Effect of the spanwise forcing on the near-wall cycle

The influence of the oscillating wall on the structural organisation of the stochastic
part of the velocity fluctuations in the near-wall region is considered first, at a single
phase and then in terms of its phase evolution. The energy exchanges among mean,
coherent and stochastic fields are then addressed, followed by the analysis of the
pressure–strain redistribution. Eventually, the influence of the Stokes layer and the
stochastic pressure–strain term πs

33 on the transfer of the spanwise stochastic stresses is
described.

4.1. Near-wall structures

4.1.1. Description at a fixed phase
Figure 4 shows the diagonal components of δu′′

i δu
′′
j in the ry = rx = 0 plane for the

uncontrolled channel (figure 4a–c), T+ = 75 (figure 4d– f ) and T+ = 250 (figure 4g–i).
For the two controlled cases, only phase ϕ4 is shown, but the discussion that follows is
qualitatively valid for all phases.

The local maxima of δu′′δu′′ and δv′′δv′′, hereafter denoted with subscript m, are the
statistical trace of the structures of the near-wall cycle. In the rx = ry = 0 space, indeed,
they indicate a negative peak of the streamwise and vertical stochastic correlation functions
R11 and R22; see (2.7). The coordinates Y+ ≈ 14–18 and r+

z ≈ 55–65 of δu′′δu′′m in the
(r+

z , Y+) plane indicate the characteristic wall distance and spanwise spacing of low- and
high-speed streaks. The coordinates Y+ ≈ 43–55 and r+

z ≈ 49–59 of δv′′δv′′m indicate
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Figure 4. Diagonal components of the stochastic tensor δu′′
i δu

′′
j
+

at ϕ4 in the (r+
z ,Y+) plane. (a–c)

Uncontrolled case with A = 0, (d– f ) T+ = 75 and (g–i) T+ = 250. The contour is set at 95 % of each
maximum. The coordinates of the maximum, marked with a cross, can be read on the axes.

the characteristic wall distance and spanwise size of the quasi-streamwise vortices, which
induce at their spanwise sides regions of vertical velocity with negative correlation.

Figure 4 shows that the oscillating wall leaves δu′′δu′′ and δv′′δv′′ almost unchanged,
indicating that the size and strength of the near-wall structures only marginally depend on
the amount of drag reduction.

This is consistent with the constant pressure gradient driving strategy, which forces the
same level of wall friction; the large changes observed by various authors under different
driving strategies simply derive trivially from the different friction, as discussed by
Frohnapfel, Hasegawa & Quadrio (2012). However, the velocity streaks are slightly moved
away from the wall: an upward shift of δu′′δu′′m can be seen in figure 4. The previous
observation is confirmed by numerical data: the maximum moves from Y+ = 14.1 in
the reference case to Y+ = 17.8 for T+ = 75 and to Y+ = 14.7 for T+ = 250 (at phase
ϕ4). Both shifts are upwards, and the T+ = 75 case with larger drag reduction has
a larger shift. The quasi-streamwise vortices react differently from control: δv′′δv′′m
moves from Y+ = 53 in the reference case to Y+ = 55 for T+ = 75 and to Y+ = 43
for T+ = 250. These contrasting trends are consistent with the wall-normal displacement
found by Gallorini et al. (2022) for conditionally averaged quasi-streamwise vortices, but
are extracted from the present analysis without the need for an (inevitably subjective)
procedure for conditional structure extraction.

In the canonical channel flow, the map of δw′′δw′′ embeds information of the
quasi-streamwise vortices only when the ry /= 0 space is considered, which contains the
peak

〈
δw′δw′〉

m (Gatti et al. 2020). Indeed, the quasi-streamwise vortices induce negatively
correlated regions of w′′ fluctuations at their vertical sides only, and the ry coordinate of the
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Figure 5. Diagonal components of the stochastic tensor δu′′
i δu

′′
j
+

in the (r+
z ,Y+) plane, at phases (a–c) ϕ1,

(d– f ) ϕ2, (g–i) ϕ3 and ( j–l) ϕ4, for the period T+ = 250. For each component, the white contour is set at the
95 % of the smallest peak over the phases (i.e. at ϕ2 for δu′′δu′′ and δw′′δw′′, and at ϕ3 for δv′′δv′′).

maximum indicates their characteristic wall-normal size. In the controlled cases, however,
a local peak of δw′′δw′′ appears in the rx = ry = 0 (figure 4) and rz = ry = 0 (not shown)
planes. Interestingly, the local peak is particularly evident for T+ = 250, extending for
r+

z ≈ 50–100, r+
x ≈ 85–270 and Y+ ≈ 13–25, but it is hardly visible for T+ = 75, where

the w′′ fluctuations are weaker. The next subsection, which examines how these quantities
vary with ϕ, shows that this derives from a combination of the streaks tilting in the x–z
plane and from the interaction of the quasi-streamwise vortices with the coherent spanwise
shear.

4.1.2. Evolution during the cycle
Figure 5 shows the phase evolution of δu′′δu′′, δv′′δv′′ and δw′′δw′′ in the rx = ry = 0
plane, to describe how the organisation of the near-wall stochastic fluctuations changes
during the oscillation cycle, i.e. the very type of information that the ϕAGKE are designed
to provide. Only the suboptimal T+ = 250 is considered, as the large period emphasises
the phase dependence; moreover, only one half of the forcing period is shown (from ϕ1 to
ϕ4), because of temporal symmetry. Extra quantitative information is provided by figure 6,
which plots the phase evolution of the maxima δu′′δu′′m, δv′′δv′′m and δw′′δw′′m.
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Figure 6. (a–c) Phase variation of the maxima δu′′
i δu

′′
i
+
m in the (r+

z ,Y+) plane.

The streamwise velocity streaks cyclically strengthen and weaken under the action
of the alternating Stokes layer. The maximum δu′′δu′′m assumes its lowest value at ϕ2,
and then grows to reach the highest value at ϕ4, with an intra-cycle variation of 27 %.
The quasi-streamwise vortices, instead, show a much smaller phase dependence:
the intra-cycle variation of δv′′δv′′ is 8 % only. This is not surprising, since the
quasi-streamwise vortices reside at larger wall distances, where the intensity of the Stokes
layer is lower; at y+ = 14, the average position of the streaks, the maximum w̃+ is 1.15,
while at y+ = 50, representative wall-normal distance of the vortices, it is only 0.2. A
different wall distance for streaks and vortices also implies a phase shift; in fact the
intensity of δv′′δv′′ is minimum at ϕ3 and maximum at ϕ1, whereas δu′′δu′′ and δw′′δw′′
are minimum at ϕ2 and maximum at ϕ4. This is consistent with the early observation
(Baron & Quadrio 1996) that streaks and quasi-streamwise vortices are displaced by the
spanwise Stokes layer differently.

From figure 6, one notices that the phase evolution of δw′′δw′′m resembles that
of δu′′δu′′m, thus suggesting that part of the stochastic w′′ fluctuations derives from
a redistribution of the streamwise fluctuations. The near-wall structures are tilted in
the x–z plane and follow the shear vector (dU/dy, 0, ∂w̃/∂y) (Yakeno et al. 2014).
The tilting causes the streamwise high- and low-speed streaks to reorient, thus
contributing via pressure–strain redistribution (see below § 4.3) to the spanwise stochastic
fluctuations. When the tilting angle is positive (negative), the low- and high-speed
streaks contribute to respectively positive (negative) and negative (positive) w′′. This
produces regions of w′′ fluctuations that correlate negatively for scales rx and rz and
position Y compatible with the position of δw′′δw′′m observed in figure 5. This is
shown with a sketch in figure 7, and confirmed with a phase-by-phase conditional
average of events extracted from the present database in Appendix C. The picture is
also consistent with the lower δw′′δw′′m observed in figure 4 for T+ = 75: for periods
close to the optimum, the oscillation is too fast for the streaks to align with the
shear vector (Touber & Leschziner 2012), and this redistribution mechanism becomes
weaker.

Similar information is usually extracted (Yakeno et al. 2014) from phase-locked
conditional averages. However, such statistics are unavoidably arbitrary to some degree;
e.g. ‘short’ structures have to be excluded from averaging, and one needs to predetermine
a specific wall distance for the eduction procedure. Here we obtain information that
is equivalent to conditional averaging, but via a statistical analysis that is free from
assumptions and hypotheses.

960 A7-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.150


F. Gattere, A. Chiarini, E. Gallorini and M. Quadrio

z

x

u′′ > 0

w′′ < 0

u′′ < 0

w′′ > 0

rz

rx

z

x

u′′ > 0

w′′ > 0

u′′ < 0

w′′ < 0

rz

rx

(a) (b)

Figure 7. Sketch of the contribution of u′′ and w′′ for positively (a) and negatively (b) tilted low-speed (blue)
and high-speed (red) streaks induced by a positively rotating quasi-streamwise vortex (white).

For example, the scales rz,m and rx,m identified by δw′′δw′′m can be used to track the
phase evolution of the tilting angle θ of the flow structures during the cycle:

|θ(ϕ)| = tan−1
(

rz,m(ϕ)

rx,m(ϕ)

)
. (4.1)

Similarly, the evolution of the wall-normal position Ym of δw′′δw′′m (or, equivalently, of
δu′′δu′′m) quantifies the vertical displacement of the streaks during the cycle.

Figure 8 compares |θ | with the shear angle θs evaluated at Ym, i.e.

θs = tan−1
(
∂w̃/∂y
dU/dy

)
, (4.2)

that is conventionally used to describe the tilting angle of the near-wall structures (Yakeno
et al. 2014; Gallorini et al. 2022). The two quantities θ and θs are quantitatively similar and
present the same phase dependence, with a nearly constant difference of approximately 8◦.
Figure 8(b) also shows that when the tilting angle of the streaks is maximum, their distance
from the wall is minimum (and vice versa). This implies that a higher coherent spanwise
velocity yields a larger tilting.

Part of the wall-parallel modulation of δw′′δw′′ induced by the wall oscillation
derives from the interaction of the quasi-streamwise vortices with the coherent
spanwise shear. When the coherent shear ∂w̃/∂y is positive, the quasi-streamwise vortices
move low-spanwise-velocity fluid upwards, and high-spanwise-velocity fluid downwards.
The opposite happens when ∂w̃/∂y < 0. This creates two regions with spanwise velocity
of opposite sign at the vortex sides, resulting in negative R33 correlation and a positive
peak of δw′′δw′′ at their characteristic spanwise separation. This process, quantified
by the coherent–stochastic production pcs

33 (see § 4.2), resembles the ejections and
sweeps typical of the near-wall cycle, where the mean streamwise shear is involved; its
description is similar to the explanation provided by Agostini et al. (2014) for the non-zero〈
v′′w′′〉. Once again, our interpretation is supported by the velocity field induced by the
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Figure 8. (a) Evolution of the tilt angle of the wall streaks during the cycle. Comparison between present
results (blue symbols) and the shear angle introduced by Yakeno et al. (2014) (red symbols). (b) Wall-normal
position of the structures, educed from the wall-normal position Y+

m of δw′′δw′′m.

ensemble-averaged quasi-streamwise vortex, computed at various phases and shown in
Appendix C.

4.2. Interaction of the mean, coherent and fluctuating fields
The energy exchanges of the mean field with the stochastic and coherent fields are
described by the two mean production terms pmc

ij and pms
ij . However, as shown in

figure 3, for the present problem pmc
ij = 0, and the mean field interacts directly with the

stochastic field only, by feeding (or draining from) streamwise fluctuations. Moreover,
energy is exchanged between the coherent and stochastic fields via the coherent–stochastic
production pcs

ij , which involves only δu′′δu′′ and δw′′δw′′ among the diagonal components

of the δu′′
i δu

′′
j tensor.

Figure 9 shows how the mean–stochastic production pms
11 varies with ϕ for T+ = 75

(figure 9a,c,e,g) and T+ = 250 (figure 9b,d, f,h) in the rx = ry = 0 plane, where the
production terms are maxima. Here, pms

11 reduces to

pms
11 = −2δu′′δv′′

(
dU
dy

)
. (4.3)

The mean–stochastic production is positive everywhere, with a peak in the range
r+

z,m = 36–42 and Y+
m = 13–17 for T+ = 75 and r+

z,m = 36–39 and Y+
m = 12–14 for

T+ = 250. Hence, the interaction of the near-wall cycle (δu′′δv′′) with the mean shear
(dU/dy) invariably moves energy from the mean field towards the stochastic streamwise
fluctuations. Note that the smaller Y+ for T+ = 250 is consistent with the reduced
thickening of the viscous sublayer for suboptimal periods. The production intensity is
largest at ϕ1 and lowest at ϕ3 for T+ = 75, whereas it is largest at ϕ3 and lowest at ϕ1
for T+ = 250. Since dU/dy is phase-independent, this can only descend from δu′′δv′′,
which includes the phase evolution of the streaks and of the quasi-streamwise vortices
(see § 4.1.2).

Figures 10 for T+ = 75 and 11 for T+ = 250 show how pcs
11 and pcs

33 change with ϕ.
Like for pms

11 , the expressions for pcs
11 and pcs

33 simplify in the rx = ry = 0 plane where their
maxima occur, i.e.

pcs
11 = −2δu′′δv′′

(
∂ ũ
∂y

)
and pcs

33 = −2δv′′δw′′
(
∂w̃
∂y

)
. (4.4a,b)
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Figure 9. Mean–stochastic production pms
11

+ in the (r+
z ,Y+) plane for T+ = 75 (a,c,e,g) and T+ = 250

(b,d, f,h), at phases (a,b) ϕ1, (c,d) ϕ2, (e, f ) ϕ3 and (g,h) ϕ4. The contour line is set at 95 % of the smallest
maximum over the phases. The coordinates of the maximum, marked with a cross, can be read on the axes.

Unlike pms
11 , however, these productions can take either sign. Their maps show evident

horizontal stripes of alternating sign, from the wall up to Y+ ≈ 40: hence, at a given
phase the coherent field feeds the stochastic field at certain wall distances, but extracts
energy from it at others. It is worth noting that, although pcs

11 and pcs
33 at a given phase are

both positive and negative, after averaging over the phases
〈
pcs

11
〉

almost vanishes and
〈
pcs

33
〉

is positive everywhere. This is not entirely new, and confirms the single-point analysis
by Agostini et al. (2014) (see their figure 14); however, scale information is added here
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Figure 10. Coherent–stochastic production pcs
11

+ (a,c,e,g) and pcs
33

+ (b,d, f,h) in the (r+
z ,Y+) plane for T+ =

75, at phases (a,b) ϕ1, (c,d) ϕ2, (e, f ) ϕ3 and (g,h) ϕ4. The thin contour line is set at 95 % of the smallest
(positive and negative) maximum over the phases; the thick black contour line is pcs

ii = 0. The coordinates of
the maximum, marked with a cross, can be read on the axes.

so that this mechanism can be related to the structures of the flow. At every phase, the
positive/negative peaks of pcs

11 and pcs
33 occur at r+

z ≈ 25–50, a spanwise separation which
points to the structures of the near-wall cycle.

The intensity of pcs
11 and pcs

33 at the two periods is comparable, at all scales and positions.
However, for pcs

11 the contribution of the shear stresses is dominant, whereas the opposite
occurs for pcs

33, where the coherent spanwise shear dominates. Indeed, ∂w̃/∂y is two
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Figure 11. As in figure 10, but for T+ = 250.

orders of magnitude larger than ∂ ũ/∂y, and δv′′δw′′ is two orders of magnitude smaller
than δu′′δv′′. Note, moreover, that for both control periods pms

11  pcs
11, meaning that the

streamwise stochastic fluctuations are predominantly fed by the mean field.
The alternating positive/negative stripes for pcs

11 and pcs
33 are due to the change of sign

of ∂ ũ/∂y and ∂w̃/∂y with y. For pcs
33, the changing sign of the shear is also indirectly

responsible for the alternating positive/negative δv′′δw′′, due to the quasi-streamwise
vortex–shear interaction described in § 4.1.2. In contrast, for pcs

11, δu′′δv′′ is entirely due to
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the interaction of the near-wall structures with the mean shear dU/dy, which overwhelms
∂ ũ/∂y everywhere.

Comparing figures 10 and 11 highlights that the slower oscillation introduces substantial
differences in the coherent–stochastic energy exchange. The positive/negative maxima of
pcs

11 increase, and their positions move towards larger rz and larger Y , but the effect of T+
on pcs

33 is even more evident. At T+ = 250, the stripes of negative pcs
33 weaken, while those

with pcs
33 > 0 strengthen; overall, the spanwise contribution to the energy flowing from

the coherent to the stochastic field becomes larger. A larger oscillating period implies a
larger thickness of the Stokes layer, proportional to

√
νT , thus stretching outwards the

coherent spanwise shear and, as a consequence, the scale-space map of δv′′δw′′, yielding
an overall increase of the positive pcs

33. At ϕ2 and ϕ3, for example, ∂w̃/∂y is negative close
to the wall and changes sign only at y+ ≈ 30–50 for T+ = 250 (see figure 2), while it
changes sign already at y+ ≈ 13–18 for T+ = 75 (not shown). For T+ = 250 this results
in a large increase of the near-wall positive pcs

33, as highlighted by the dark red colour in
figure 11. Due to the negative ∂w̃/∂y, indeed, the quasi-streamwise vortices induce on their
sides positive/negative v′′ and convect upwards/downwards high/low spanwise velocity
w′′, thus yielding positive δv′′δw′′ and an intense energy exchange from the coherent to the
stochastic field. The scale-space information of this exchange mechanism is highlighted by
the positive peak of pcs

33 placed at (r+
z , Y+) ≈ (38, 9) for the considered ϕ2 and ϕ3 phases.

4.3. Pressure–strain redistribution
As seen schematically in figure 3, the pressure–strain action partially redistributes
the streamwise energy δu′′δu′′ drained from the mean flow towards the cross-stream
fluctuations δv′′δv′′ and δw′′δw′′. Figure 12(a,c,e) shows that πs

11 < 0, πs
22 > 0 and

πs
33 > 0 at almost all scales and positions: only in a very thin region close to the wall

are πs
11 > 0, πs

22 < 0 and πs
33 > 0, according to the reorientation of vertical fluctuations

into wall-parallel ones because of the impermeable wall (Mansour, Kim & Moin 1988).
The peaks of πs

11, πs
22 and πs

33 in the (rz, Y) plane have Y+
m ≈ 11–27 and r+

z,m ≈ 30–52,
indicating that the energy redistribution is dominated by the near-wall cycle.

It is known (Touber & Leschziner 2012; Yakeno et al. 2014) that the spanwise oscillation
of the wall enhances the energy redistribution, mainly towards spanwise fluctuations.
Compared with the uncontrolled case, the negative peak of πs

11 increases by 23 %–67 %
for T+ = 75 and by 36 %–77 % for T+ = 250, while the positive peak of πs

22 decreases
by 2 %–11 % for T+ = 75 and increases by 4 %–29 % for T+ = 250. The positive peak
of πs

33, instead, has the largest variation, with an increase of 30 %–53 % for T+ = 75 and
40 %–87 % for T+ = 250.

The phase evolution of the pressure-mediated energy redistribution is described in
figure 12(b,d, f ) for the T+ = 250 case, by considering the maxima of the diagonal
components of πs

ij. Only their values are plotted, since their position remains nearly
constant at (Y+, r+

z ) ≈ (20, 52) for πs
11,m, ≈ (27, 30) for πs

22,m and ≈ (12, 46) for πs
33,m.

Like δv′′δv′′m, πs
22,m is the component with the smallest intra-cycle variation, with a 21 %

excursion during the cycle compared with 30 % and 35 % for πs
11,m and πs

33,m. In fact,
the largest energy redistribution towards δv′′δv′′ occurs quite far from the wall, where
the influence of the Stokes layer is weak. The phase dependence of πs

11,m is qualitatively
different from that of the others. The redistribution of δu′′δu′′ towards the cross-stream
components is maximum at ϕ3 and minimum at ϕ1, following the absolute value of πs

11,m.
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Figure 12. (a,c,e) Pressure–strain redistribution πs+
ii from δu′′δu′′ towards δv′′δv′′ and δw′′δw′′ at phase ϕ4 for

T+ = 250; the coordinates of the maximum, marked with a cross, can be read on the axes. (b,d, f ) Phase
variation of their maxima in the (r+

z ,Y+) plane, with a horizontal solid line indicating the value of the
uncontrolled flow.

In contrast, πs
22,m and πs

33,m are minima at ϕ2 and maxima at ϕ4 (this is not inconsistent
with the incompressibility constraint πs

11 + πs
22 + πs

33 = 0, since the three maxima occur
at different scales and positions). As already mentioned in § 4.1.2, πs

33,m and δw′′δw′′m
have the same phase dependence, confirming that the tilting of the near-wall structures is
accompanied by a redistribution of the streamwise fluctuations towards the spanwise ones.

4.4. Transfers of the spanwise stresses
A peculiarity of the present flow is the direct connection between the Stokes layer and the
stochastic stresses, described by the coherent–stochastic production Pcs

11 and Pcs
33 shown

in figure 3. It is therefore interesting to examine the variable-phase scale-space transfers
of the stochastic stresses by looking at their fluxes in the scale and physical spaces. In
this analysis, we only consider the transfer of spanwise stresses δw′′δw′′, since for the
streamwise stresses pcs

11 is negligible compared with pms
11 . Moreover, only the T+ = 250

case is considered, as the one where the effect of the Stokes layer on the w′′ field is larger.
For simplicity, the analysis is restricted to the rx = ry = 0 subspace, where the budget of
δw′′δw′′ can be rewritten by moving to the right-hand side the off-plane flux divergence
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terms ∂φs
x,33/∂rx, ∂φs

y,33/∂ry and the phase evolution term, as follows:

∂φs
z,33

∂rz
+ ∂ψ s

33
∂Y

= pcs
33 + πs

33 + ds
33︸ ︷︷ ︸

ξ s
33

−∂φ
s
x,33

∂rx
−
∂φs

y,33

∂ry
− ω

∂δw′′δw′′

∂ϕ
. (4.5)

In this way, the left-hand side features the divergence of the in-plane flux vector, which
provides information on the energetic relevance of the fluxes with its intensity, and shows
their direction via its field lines. Moreover, the off-plane fluxes (i.e. the last three terms in
the equation above) are always very small, and the in-plane divergence approximates well
the full source term ξ s

33 everywhere (Gatti et al. 2020). This descends from a combination
of the symmetries of the plane channel flow system and of the approximate alignment
of the dominant vortical structures with the streamwise direction. Hence, the scale-space
properties of the source term ξ s

33 approximate well those of the divergence of the in-plane
flux.

Figure 13 plots the map of ξ s
33 = pcs

33 + πs
33 + ds

33 for the uncontrolled case (where
pcs

33 = 0) and the controlled case at T+ = 250 for ϕ1, ϕ2, ϕ3 and ϕ4, with the field lines
of the in-plane flux coloured with its divergence. In the uncontrolled case, a region with
ξ s

33 > 0 extends for 5 � Y+ � 100 and for r+
z � 15, at scales and positions where the

pressure–strain dominates over dissipation. When control is active, instead, ξ s
33 receives

the additional contribution from coherent–stochastic production, and the values of ξ s
33 are

generally larger. Two regions with ξ s
33 > 0 exist. One is close to the wall at Y+ ≈ 10–20,

and extends for all scales r+
z � 15, with a peak at r+

z ≈ 40. A second, connected region
involves larger wall distances and scales, in the 40 � r+

z � 200 range. It is clearly visible
in figure 14, where the ratio πs

33/(ξ
s
33 − ds

33) is plotted to determine the main contribution
to these positive sources at the different phases. When πs

33/(ξ
s
33 − ds

33) > 0.5, πs
33 > pcs

33
meaning that the pressure–strain is the largest contribution to the positive source. When
πs

33/(ξ
s
33 − ds

33) < 0.5, instead, the main contributor is the coherent–stochastic production
pcs

33. Figure 14 shows that pcs
33 and πs

33 both contribute to the near-wall source, but their
relative importance changes with the phase. For ϕ2 and ϕ3, pcs

33 is the main contributor
to the intense source peak. For ϕ1 and ϕ4, instead, pcs

33 weakens (see figure 11): now the
(weaker) source is mainly fed by the pressure–strain. The source at larger Y , instead, is
dominated by the pressure–strain at all phases; this is reasonable, as for y+ > 30 the Stokes
layer and consequently the coherent–stochastic production are weak.

As for the sinks, figure 13 shows three of them: viscous effects dominate the very
near-wall region (Y → 0), the bulk flow (Y → h) and the smallest scales (rz → 0).
Extension and intensity of these sinks change with ϕ, according to the evolution of pcs

33,
πs

33 and ds
33. A cut-off scale rz,min (Chiarini et al. 2022a) can also be plotted to quantify

the minimal scale where (spanwise) energy is always dissipated, regardless of the wall
distance.

The field lines of δw′′δw′′ drawn in figure 13 originate from a singularity point, i.e. a
point near the source peak where the direction of the fluxes is undefined. Here the lines
are energised by the intense positive source and transfer δw′′δw′′ towards the sinks. Three
types of lines are recognised, depending on where they vanish, and reflect the three sinks
described above. Overall, these fluxes indicate the coexistence of ascending/descending
and direct/inverse energy transfers, as described by Cimarelli et al. (2013, 2016) and
Chiarini et al. (2022b) in the context of Poiseuille and Couette turbulent flows.

The three line types possess the same topology in the uncontrolled and controlled cases.
For the latter, though, the amount of spanwise energy withdrawn from the sources and
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Figure 13. Source ξ s+
33 in the (r+

z ,Y+) plane, with field lines of the in-plane flux vector coloured with its
divergence for (a) the uncontrolled case and for the controlled case at T+ = 250 at phases (b) ϕ1, (c) ϕ2,
(d) ϕ3 and (e) ϕ4. The thin contour line marks the zero level. Dots (coloured according to figure 2) indicate
the singularity point for the near-wall source, and the black vertical line marks the cut-off spanwise scale r+

z,min
(see text).

released to the sinks changes with ϕ. An estimate of this change is provided by the phase
evolution of the positive peak of the two-dimensional divergence of the flux vector. Its
value is maximum at ϕ3 where it is 3.36, 1.56 and 1.29 times larger than at ϕ1, ϕ2 and
ϕ4, respectively. This is consistent with the phase evolution of the positive peak of pcs

33
visualised in figure 11. Moreover, the singularity point lies in the source region dominated
by pcs

33, and its rz position moves with ϕ following the peak of pcs
33, being r+

z = 24, 33, 40
and 45 for ϕ1, ϕ2, ϕ3 and ϕ4; for the uncontrolled case it is r+

z = 26.
We therefore conclude that, at least for the T+ = 250 case discussed here, the phase

dependence of the transfers of δw′′δw′′ is governed by the pcs
33 contribution to ξ s

33 rather
than by πs

33. At all phases, the largest part of δw′′δw′′ withdrawn by the source is released
in the near-wall region; a relatively smaller part goes to the smallest scales, and a minimal
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Figure 14. Region with positive source in the (r+
z ,Y+) plane at phases (a) ϕ1, (b) ϕ2, (c) ϕ3 and (d) ϕ4 for

T+ = 250. The colour scale is for the ratio πs
33/(ξ

s
33 − ds

33) and is centred at 0.5: red means πs
33 > pcs

33 and
blue means πs

33 < pcs
33.

part goes towards the channel centre, where the turbulent activity is low. By comparing the
negative peaks of the divergence of the in-plane flux vector at the wall and at the smallest
scales, it is established that in the uncontrolled case the amount of δw′′δw′′ released at
Y → 0 is 5.67 times larger than that released at rz → 0. The oscillating wall alters the
relative importance of the fluxes: the amount of δw′′δw′′ released at Y → 0 is significantly
less, being 2.62, 3.85, 2.46 and 2.41 times larger than that released at rz → 0 at phases ϕ1,
ϕ2, ϕ3 and ϕ4, respectively.

5. Concluding discussion

We have derived the ϕAGKE, inferred from the incompressible Navier–Stokes equations,
after a triple decomposition to separate the velocity and pressure fields into their coherent
and stochastic parts.

The ϕAGKE are exact budget equations for the coherent and stochastic contributions
to the second-order structure function tensor, namely δũiδũj(X , r, ϕ) and δu′′

i δu
′′
j (X , r, ϕ).

Compared with the standard AGKE, which are based on the classic (double) Reynolds
decomposition, the ϕAGKE add extra features. (i) The transport equations for the coherent
and stochastic parts are separated: disentangling their dynamics becomes possible. (ii) The
scale-space energy exchanges among mean, coherent and stochastic fields can be tracked.
In particular, the mean–coherent production pmc

ij and the mean–stochastic production pms
ij

bring out scales and positions where the mean flow feeds, and/or drains energy from,
the coherent and stochastic fields; the coherent–stochastic production pcs

ij describes the
exchange between the coherent and stochastic fields. (iii) An extra term in the budget for
δũiδũj represents the mutual interaction of the coherent motions at different phases. (iv)
The ϕAGKE imply no average over phases, and thus describe the phase variation of the
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various terms related to coherent and stochastic motions. Once a phase average is taken,
as in Alves Portela et al. (2020), phase information is obviously lost.

To demonstrate the potential of the ϕAGKE, we have applied them to a turbulent plane
channel flow in which spanwise wall oscillations reduce the turbulent skin friction. The
ϕAGKE are perfectly suited for this flow, owing to its deterministic and periodic external
forcing; moreover, the physics of drag reduction remains not entirely understood and
contains interesting interphase and multiscale dynamics.

Thanks to the ϕAGKE, the phase-dependent modifications of the near-wall turbulent
structures have been observed without the need for somewhat arbitrary procedures to
educe phase-locked and conditionally averaged structures. The flow scales involved in
the redistribution of fluctuating energy have been described, together with the process
by which streamwise velocity fluctuations are converted into spanwise ones by the action
of pressure–strain. The interaction among the mean, coherent and stochastic fields is
easily observed with the ϕAGKE, which highlight the energy exchanges between the
coherent and stochastic fields, driven by the interaction between the quasi-streamwise
vortices and the coherent spanwise shear. The phase-by-phase, scale-space transfers of the
spanwise stochastic stresses, observed here for the first time, have revealed a significant
phase dependency for the spanwise energy fluxes, which present ascending/descending
and direct/inverse energy transfers at all phases.

The ϕAGKE can be leveraged to arrive at a thorough description of two-point
second-order statistics in cases that reach far beyond the oscillating-wall problem, used
here as a representative example only. Turbulent flows where an external periodic
forcing is present are common: oscillating airfoils, rotors and turbines are only a few
examples. Moreover, the ϕAGKE can also be used to tackle turbulent flows without
a strictly periodic forcing, in which stochastic fluctuations coexist with some kind of
coherent motion. A non-exhaustive list includes the turbulent flow past bluff bodies,
where large-scale motions typical of the Kármán-like vortices in the wake coexist
with the stochastic motion of smaller scale (Provansal, Mathis & Boyer 1987); the
Taylor–Couette flow, in which Taylor–Görtler vortices develop and remain visible well
into the turbulent regime (Koschmieder 1979); and the atmospheric boundary layer, rich
with quasi-two-dimensional structures forced at smaller scales (Young et al. 2002). In such
cases, though, the period of the oscillation is not uniquely identified, and attention has to
be paid to properly define a phase reference.

Lastly, it should be realised that the specific triple decomposition behind the ϕAGKE
does not matter: alternatives to the temporal triple decomposition could be used with a
different meaning attached to the ·̃ and ·′′ operators, without altering the ensuing equations.
One example is the spatial triple decomposition approach adopted for example by Bech
& Andersson (1996) and Gai et al. (2016) to decompose the velocity fluctuations into
secondary flow and residual fluctuations in a rotating turbulent plane Couette flow. A
further use case for the ϕAGKE would be a turbulent flow over a flat wall with a periodic
pattern, e.g. riblets or dimples, in which the phase average would be again spatially defined.
Finally, another option is to employ a scale-based triple decomposition. For example,
Andreolli, Quadrio & Gatti (2021) used a scale decomposition mutated from Kawata &
Alfredsson (2018) to separate the fluctuating velocity field in a Couette flow into small-
and large-scale components, examining the kinetic energy budget of both components in
physical space. This information, compacted by Andreolli et al. (2021) through spatial
integration into an energy budget without independent variables, similar to that in figure 3,
can instead be expanded at will in the full physical and scale space thanks to the ϕAGKE,
thus providing the ultimate information approximately two-point second-order statistics of
the flow.
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Appendix A. Derivation of the budget equations for δũiδũj and δu′′
i δu′′

j

The derivation of the ϕAGKE via triple decomposition is described below, by listing the
sequence of the main analytical steps.

A.1. Budget equation for Ui, ũi and u′′
i

The starting point is the incompressible Navier–Stokes equations:

∂ui

∂t
+ uk

∂ui

∂xk
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xk∂xk
+ fi. (A1)

The triple decomposition (2.1) for ui, p and fi is introduced to obtain

∂ ũi

∂t
+ ∂u′′

i
∂t

+ (
Uk + ũk + u′′

k
) ∂

∂xk

(
Ui + ũi + u′′

i
) = − 1

ρ

∂

∂xi

(
P + p̃ + p′′)

+ ν ∂2

∂xk∂xk

(
Ui + ũi + u′′

i
)+ Fi + f̃i + f ′′

i , (A2)

which can be reorganised as

∂ ũi

∂t
+ ∂u′′

i
∂t

+ Uk
∂Ui

∂xk
+ Uk

∂ ũi

∂xk
+ Uk

∂u′′
i

∂xk
+ ũk

∂Ui

∂xk
+ ũk

∂ ũi

∂xk
+ ũk

∂u′′
i

∂xk

+ u′′
k
∂Ui

∂xk
+ u′′

k
∂ ũi

∂xk
+ u′′

k
∂u′′

i
∂xk

= − 1
ρ

∂P
∂xi

− 1
ρ

∂ p̃
∂xi

− 1
ρ

∂p′′

∂xi

+ ν
∂2Ui

∂xk∂xk
+ ν

∂2ũi

∂xk∂xk
+ ν

∂2u′′
i

∂xk∂xk
+ Fi + f̃i + f ′′

i . (A3)

Now the averaging operator 〈·〉 is used to arrive at the budget equation for Ui, i.e.

Uk
∂Ui

∂xk
+
〈
ũk
∂ ũi

∂xk

〉
+
〈
u′′

k
∂u′′

i
∂xk

〉
= − 1

ρ

∂P
∂xi

+ ν
∂2Ui

∂xk∂xk
+ Fi. (A4)

When, instead, the phase average operator · is used, we get

∂ ũi

∂t
+ Uk

∂Ui

∂xk
+ ũk

∂Ui

∂xk
+ Uk

∂ ũi

∂xk
+ ũk

∂ ũi

∂xk
+ u′′

k
∂u′′

i
∂xk

= − 1
ρ

∂P
∂xi

− 1
ρ

∂ p̃
∂xi

+ ν
∂2Ui

∂xk∂xk
+ ν

∂2ũi

∂xk∂xk
+ Fi + f̃i, (A5)
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which can be written differently using the budget equation for Ui, i.e.

∂ ũi

∂t
+ ũk

∂Ui

∂xk
+ Uk

∂ ũi

∂xk
+ ũk

∂ ũi

∂xk
+ u′′

k
∂u′′

i
∂xk

−
〈
ũk
∂ ũi

∂xk

〉
−
〈
u′′

k
∂u′′

i
∂xk

〉

= − 1
ρ

∂ p̃
∂xi

+ ν
∂2ũi

∂xk∂xk
+ f̃i. (A6)

This leads to the budget equation for ũi, i.e.

∂ ũi

∂t
+ Uk

∂ ũi

∂xk
+ ũk

∂Ui

∂xk
+ ∂

∂xk
(ũiũk − 〈ũiũk〉)+ ∂

∂xk

(
u′′

i u′′
k − 〈

u′′
i u′′

k
〉)

= − 1
ρ

∂ p̃
∂xi

+ ν
∂2ũi

∂xk∂xk
+ f̃i. (A7)

The budget equation for u′′
i is obtained by subtracting from (A3) the budget equations

for Ui (A4) and ũi (A7):

∂u′′
i

∂t
+ Uk

∂u′′
i

∂xk
+ ũk

∂u′′
i

∂xk
+ u′′

k
∂Ui

∂xk
+ u′′

k
∂ ũi

∂xk
+ ∂

∂xk

(
u′′

i u′′
k − u′′

i u′′
k

)

= − 1
ρ

∂p′′

∂xi
+ ν

∂2u′′
i

∂xk∂xk
+ f ′′

i . (A8)

A.2. The ϕAGKE for δũiδũj

The budget equation for ũi in x is subtracted from that evaluated in x+ = x + r:

δ

(
∂ ũi

∂t

)
+ δ

(
Uk
∂ ũi

∂xk

)
+ δ

(
ũk
∂Ui

∂xk

)
+ δ

(
∂

∂xk
(ũiũk − 〈ũiũk〉)

)

+ δ

(
∂

∂xk

(
u′′

i u′′
k − 〈

u′′
i u′′

k
〉)) = −δ

(
1
ρ

∂ p̃
∂xi

)
+ δ

(
ν
∂2ũi

∂xk∂xk

)
+ δ

(
f̃i
)
. (A9)

By recalling that the two reference systems are independent, one may write for example

δ

(
Uk
∂ ũi

∂xk

)
= U+

k
∂δũi

∂x+
k

+ Uk
∂δũi

∂xk
; (A10)

using the same line of reasoning for all the other terms one obtains

∂δũi

∂t
+ U+

k
∂δũi

∂x+
k

+ Uk
∂δũi

∂xk
+ ũ+

k
∂δUi

∂x+
k

+ ũk
∂δUi

∂xk
+ ũ+

k
∂δũi

∂x+
k

+ ũk
∂δũi

∂xk

−
〈

ũ+
k
∂δũi

∂x+
k

〉
−
〈
ũk
∂δũi

∂xk

〉
+ u

′′+
k
∂δu′′

i

∂x+
k

+ u′′
k
∂δu′′

i
∂xk

−
〈

u
′′+
k
∂δu′′

i

∂x+
k

〉
−
〈
u′′

k
∂δu′′

i
∂xk

〉

= − 1
ρ

∂δp̃
∂x+

i
− 1
ρ

∂δp̃
∂xi

+ ν

(
∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk

)
δũi + δf̃i. (A11)
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Structure functions with triple decomposition

Then one may write for example

ũ+
k
∂δũi

∂x+
k

= δũk
∂δũi

∂x+
k

+ ũk
∂δũi

∂x+
k

(A12)

and using this expression for all the terms we obtain the budget equation for δũi:

∂δũi

∂t
+ δUk

∂δũi

∂x+
k

+ Uk

(
∂

∂x+
k

+ ∂

∂xk

)
δũi + δũk

∂δUi

∂x+
k

+ ũk

(
∂

∂x+
k

+ ∂

∂xk

)
δUi

+ δũk
∂δũi

∂x+
k

+ ũk

(
∂

∂x+
k

+ ∂

∂xk

)
δũi −

〈
δũk

∂δũi

∂x+
k

〉
−
〈

ũk

(
∂

∂x+
k

+ ∂

∂xk

)
δũi

〉

+ δu′′
k
∂δu′′

i

∂x+
k

+ u′′
k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

i −
〈
δu′′

k
∂δu′′

i

∂x+
k

〉
−
〈

u′′
k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

i

〉

= − 1
ρ

∂δp̃
∂x+

i
− 1
ρ

∂δp̃
∂xi

+ ν

(
∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk

)
δũi + δf̃i. (A13)

This equation is multiplied by δũj to obtain

δũj
∂δũi

∂t
+ δũjδUk

∂δũi

∂x+
k

+ δũjUk

(
∂

∂x+
k

+ ∂

∂xk

)
δũi + δũjδũk

∂δUi

∂x+
k

+ δũjũk

(
∂

∂x+
k

+ ∂

∂xk

)
δUi + δũjδũk

∂δũi

∂x+
k

+δũjũk

(
∂

∂x+
k

+ ∂

∂xk

)
δũi−δũj

〈
δũk

∂δũi

∂x+
k

〉

− δũj

〈
ũk

(
∂

∂x+
k

+ ∂

∂xk

)
δũi

〉
+ δũjδu′′

k
∂δu′′

i

∂x+
k

+ δũju′′
k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

i

− δũj

〈
δu′′

k
∂δu′′

i

∂x+
k

〉
− δũj

〈
u′′

k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

i

〉
= −δũj

1
ρ

(
∂

∂x+
i

+ ∂

∂xi

)
δp̃

+ νδũj

(
∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk

)
δũi + δũjδf̃i. (A14)

The same equation is written again by swapping the i and j indices, and the two equations
are then summed together:

∂

∂t
δũiδũj + δũjδUk

∂δũi

∂x+
k

+ δũiδUk
∂δũj

∂x+
k

+ δũjUk

(
∂

∂x+
k

+ ∂

∂xk

)
δũi

+ δũiUk

(
∂

∂x+
k

+ ∂

∂xk

)
δũj + δũjδũk

∂δUi

∂x+
k

+ δũiδũk
∂δUj

∂x+
k

+ δũjũk

(
∂

∂x+
k

+ ∂

∂xk

)
δUi

+ δũiũk

(
∂

∂x+
k

+ ∂

∂xk

)
δUj + δũjδũk

∂δũi

∂x+
k

+ δũiδũk
∂δũj

∂x+
k

+ δũjũk

(
∂

∂x+
k

+ ∂

∂xk

)
δũi
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+ δũiũk

(
∂

∂x+
k

+ ∂

∂xk

)
δũj − δũj

〈
δũk

∂δũi

∂x+
k

〉
− δũi

〈
δũk

∂δũj

∂x+
k

〉

− δũj

〈
ũk

(
∂

∂x+
k

+ ∂

∂xk

)
δũi

〉
− δũi

〈
ũk

(
∂

∂x+
k

+ ∂

∂xk

)
δũj

〉

+ δũjδu′′
k
∂δu′′

i

∂x+
k

+ δũiδu′′
k

∂δu′′
j

∂x+
k

+ δũju′′
k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

i

+ δũiu′′
k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

j − δũj

〈
δu′′

k
∂δu′′

i

∂x+
k

〉
− δũj

〈
u′′

k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

i

〉

− δũi

〈
δu′′

k

∂δu′′
j

∂x+
k

〉
− δũi

〈
u′′

k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

j

〉
= −δũj

1
ρ

(
∂

∂x+
i

+ ∂

∂xi

)
δp̃

− δũi
1
ρ

(
∂

∂x+
j

+ ∂

∂xj

)
δp̃ + νδũj

(
∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk

)
δũi

+ νδũi

(
∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk

)
δũj + δũjδf̃i + δũiδf̃j. (A15)

At this point, after applying the phase average operator · and manipulating the equations,
one obtains

∂

∂t
δũiδũj + ∂

∂x+
k
δUkδũiδũj +

(
∂

∂x+
k

+ ∂

∂xk

)
Ukδũiδũj + δũjδũk

∂δUi

∂x+
k

+ δũiδũk
∂δUj

∂x+
k

+ δũjũk

(
∂

∂x+
k

+ ∂

∂xk

)
δUi + δũiũk

(
∂

∂x+
k

+ ∂

∂xk

)
δUj + ∂

∂x+
k
δũkδũiδũj

+
(
∂

∂x+
k

+ ∂

∂xk

)
ũkδũiδũj − δũj

〈
δũk

∂δũi

∂x+
k

〉
− δũi

〈
δũk

∂δũj

∂x+
k

〉

− δũj

〈
ũk

(
∂

∂x+
k

+ ∂

∂xk

)
δũi

〉
− δũi

〈
ũk

(
∂

∂x+
k

+ ∂

∂xk

)
δũj

〉

+ δũj
∂

∂x+
k
δu′′

i δu
′′
k + δũi

∂

∂x+
k
δu′′

j δu
′′
k + δũju′′

k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

i

+ δũiu′′
k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

j − δũj

〈
δu′′

k
∂δu′′

i

∂x+
k

〉
− δũj

〈
u′′

k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

i

〉

− δũi

〈
δu′′

k

∂δu′′
j

∂x+
k

〉
− δũi

〈
u′′

k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

j

〉
= −δũj

1
ρ

(
∂

∂x+
i

+ ∂

∂xi

)
δp̃
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Structure functions with triple decomposition

− δũi
1
ρ

(
∂

∂x+
j

+ ∂

∂xj

)
δp̃ + νδũj

(
∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk

)
δũi

+ νδũi

(
∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk

)
δũj + δũjδf̃i + δũiδf̃j. (A16)

We now introduce the new independent variables X and r such that

Xi = xi + x+
i

2
ri = x+

i − xi. (A17)

As a result the xi and x+
i derivatives are related to the Xi and ri derivatives by the following

relations:

∂

∂xi
= 1

2
∂

∂Xi
− ∂

∂ri
; ∂

∂x+
i

= 1
2
∂

∂Xi
+ ∂

∂ri
;

∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk
= 1

2
∂2

∂Xk∂Xk
+ 2

∂2

∂rk∂rk
.

(A18a–c)

Equation (A16) becomes

∂

∂t
δũiũj +

(
1
2
∂

∂Xk
+ ∂

∂rk

)
δUkδũiδũj + ∂

∂Xk
Ukδũiδũj + δũjδũk

(
1
2
∂

∂Xk
+ ∂

∂rk

)
δUi

+ δũiδũk

(
1
2
∂

∂Xk
+ ∂

∂rk

)
δUj + δũjũk

∂

∂Xk
δUi + δũiũk

∂

∂Xk
δUj

+
(

1
2
∂

∂Xk
+ ∂

∂rk

)
(δũkδũiδũj)+ ∂

∂Xk
(ũkδũiδũj)− ∂

∂rk
〈δũiδũk〉 δũj + 〈δũiδũk〉 ∂δũj

∂rk

− ∂

∂Xk

〈
ũ∗

kδũi
〉
δũj + 〈

ũ∗
kδũi

〉 ∂δũj

∂Xk
− ∂

∂rk

〈
δũjδũk

〉
δũi + 〈

δũjδũk
〉 ∂δũi

∂rk
− ∂

∂Xk

〈
ũ∗

kδũj
〉
δũi

+ 〈
ũ∗

kδũj
〉 ∂δũi

∂Xk
+ δũj

(
1
2
∂

∂Xk
+ ∂

∂rk

)
δu′′

i δu
′′
k + δũi

(
1
2
∂

∂Xk
+ ∂

∂rk

)
δu′′

j δu
′′
k

+ δũju′′
k
∂

∂Xk
δu′′

i + δũiu′′
k
∂

∂Xk
δu′′

j − ∂

∂rk

〈
δu′′

i δu
′′
k
〉
δũj + 〈

δu′′
i δu

′′
k
〉 ∂δũj

∂rk

− ∂

∂Xk

〈
u

′′∗
k δu

′′
i

〉
δũj + 〈

u′′∗
k δu

′′
i
〉 ∂δũj

∂Xk
− ∂

∂rk

〈
δu′′

j δu
′′
k

〉
δũi

+
〈
δu′′

j δu
′′
k

〉 ∂δũi

∂rk
− ∂

∂Xk

〈
u′′∗

k δu
′′
j

〉
δũi +

〈
u′′∗

k δu
′′
j

〉 ∂δũi

∂Xk

= −δũj
1
ρ

(
∂

∂Xi

)
δp̃ − δũi

1
ρ

(
∂

∂Xj

)
δp̃ + νδũj

(
1
2

∂2

∂Xk∂Xk
+ 2

∂2

∂rk∂rk

)
δũi

+ νδũi

(
1
2

∂2

∂Xk∂Xk
+ 2

∂2

∂rk∂rk

)
δũj + δũjδf̃i + δũiδf̃j, (A19)

960 A7-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.150


F. Gattere, A. Chiarini, E. Gallorini and M. Quadrio

where the asterisk (·)∗ denotes the average of any quantity between x and x+. We also
observe that

δũj

(
1
2
∂

∂Xk
+ ∂

∂rk

)
δu′′

i δu
′′
k + δũju′′

k
∂

∂Xk
δu′′

i

= δũj

(
1
2
∂

∂Xk
+ ∂

∂rk

)
δu′′

i δu
′′
k + δũj

∂

∂Xk
u′′

kδu
′′
i

= δũj
∂

∂rk
δu′′

i δu
′′
k + δũj

∂

∂Xk

1
2

(
u′′

k + u
′′+
k

)
δu′′

i

= ∂

∂rk
δu′′

i δu
′′
kδũj − δu′′

i δu
′′
k
∂δũj

∂rk
+ ∂

∂Xk
u′′∗

k δu
′′
i δũj − u′′∗

k δu
′′
i
∂

∂Xk
δũj. (A20)

The viscous term can be simplified as

νδũj

(
1
2

∂2

∂Xk∂Xk
+ 2

∂2

∂rk∂rk

)
δũi + νδũi

(
1
2

∂2

∂Xk∂Xk
+ 2

∂2

∂rk∂rk

)
δũj

= ν

2
∂2

∂Xk∂Xk
δũiδũj + 2ν

∂2

∂rk∂rk
δũiδũj − ν

∂δũi

∂Xk

∂δũj

∂Xk
− 4ν

∂δũi

∂rk

∂δũj

∂rk

= ν

2
∂2

∂Xk∂Xk
δũiδũj + 2ν

∂2

∂rk∂rk
δũiδũj − 2

(
εc+

ij + εc
ij

)
, (A21)

where εc
ij is the pseudo-dissipation tensor of the coherent part of the velocity, defined as

εc
ij = ν

〈
∂ ũi

∂xk

∂ ũj

∂xk

〉
. (A22)

Moreover we write

δũjδũk
∂δUi

∂rk
= δũjδũk

(
∂Ui

∂xk

)∗
(A23)

and

δũjũ∗
k
∂

∂Xk
δUi = δũjũ∗

kδ

(
∂Ui

∂xk

)
. (A24)

Finally, the budget equation for δũiδũj is obtained:

∂

∂t
δũiδũj + ∂

∂rk
δUkδũiδũj + ∂

∂Xk
U∗

k δũiδũj + ∂

∂rk
δũkδũiδũj + ∂

∂Xk
ũ∗

kδũiδũj

+ ∂

∂rk
δu′′

kδu
′′
i δũj + ∂

∂Xk
u′′∗

k δu
′′
i δũj + ∂

∂rk
δu′′

kδu
′′
j δũi + ∂

∂Xk
u′′∗

k δu
′′
j δũi

− 2ν
∂2

∂rk∂rk
δũiδũj − ν

2
∂

∂Xk

(
∂

∂Xk
δũiδũj

)
+ ∂

∂Xi

1
ρ
δp̃δũj + ∂

∂Xj

1
ρ
δp̃δũi

− ∂

∂rk
〈δũiδũk〉 δũj − ∂

∂Xk

〈
ũ∗

kδũi
〉
δũj − ∂

∂rk

〈
δũjδũk

〉
δũi − ∂

∂Xk

〈
ũ∗

kδũj
〉
δũi

− ∂

∂rk

〈
δu′′

i δu
′′
k
〉
δũj − ∂

∂Xk

〈
u′′∗

k δu
′′
i
〉
δũj − ∂

∂rk

〈
δu′′

j δu
′′
k
〉
δũi − ∂

∂Xk

〈
u′′∗

k δu
′′
j
〉
δũi
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Structure functions with triple decomposition

= −δũjδũk

(
∂Ui

∂xk

)∗
− δũiδũk

(
∂Uj

∂xk

)∗
− δũjũ∗

kδ

(
∂Ui

∂xk

)
− δũiũ∗

kδ

(
∂Uj

∂xk

)

− 〈δũiδũk〉
(
∂ ũj

∂xk

)∗
− 〈
δũjδũk

〉 ( ∂ ũi

∂xk

)∗
− 〈
δũiũ∗

k
〉
δ

(
∂ ũj

∂xk

)
− 〈
δũjũ∗

k
〉
δ

(
∂ ũi

∂xk

)

− 〈
δu′′

i δu
′′
k
〉 ( ∂ ũj

∂xk

)∗
− 〈
δu′′

j δu
′′
k
〉 ( ∂ ũi

∂xk

)∗
− 〈
δu′′

i u′′∗
k
〉
δ

(
∂ ũj

∂xk

)
− 〈
δu′′

j u′′∗
k
〉
δ

(
∂ ũi

∂xk

)

+ δu′′
i δu

′′
k
∂δũj

∂rk
+ δu′′

i u′′∗
k
∂δũj

∂Xk
+ δu′′

j δu
′′
k
∂δũi

∂rk
+ δu′′

j u′′∗
k
∂δũi

∂Xk

+ 1
ρ
δp̃
∂δũj

∂Xi
+ 1
ρ
δp̃
∂δũi

∂Xj
− 4εc∗

ij + δũjδf̃i + δũiδf̃j. (A25)

A.3. The ϕAGKE for δu′′
i δu

′′
j

We write the budget equation for u′′
i twice for the positions x and x+ = x + r, then the

first is subtracted from the second:

δ

(
∂u′′

i
∂t

)
+ δ

(
Uk
∂u′′

i
∂xk

)
+ δ

(
ũk
∂u′′

i
∂xk

)
+ δ

(
u′′

k
∂Ui

∂xk

)
+ δ

(
u′′

k
∂ ũi

∂xk

)

+ δ

(
∂

∂xk

(
u′′

i u′′
k − u′′

i u′′
k

))
= −δ

(
1
ρ

∂p′′

∂xi

)
+ δ

(
ν
∂2u′′

i
∂xk∂xk

)
+ δ

(
f ′′
i
)
. (A26)

Following the line of reasoning described above, the equation for δu′′
i is obtained, i.e.

∂δu′′
i

∂t
+ δUk

∂δu′′
i

∂x+
k

+ Uk
∂δu′′

i

∂x+
k

+ Uk
∂δu′′

i
∂xk

+ δũk
∂δu′′

i

∂x+
k

+ ũk
∂δu′′

i

∂x+
k

+ ũk
∂δu′′

i
∂xk

+ δu′′
k
∂δUi

∂x+
k

+ u′′
k
∂δUi

∂x+
k

+ u′′
k
∂δUi

∂xk
+ δu′′

k
∂δũi

∂x+
k

+ u′′
k
∂δũi

∂x+
k

+ u′′
k
∂δũi

∂xk
+ δu′′

k
∂δu′′

i

∂x+
k

+ u′′
k
∂δu′′

i

∂x+
k

+ u′′
k
∂δu′′

i
∂xk

− δu′′
k
∂δu′′

i

∂x+
k

− u′′
k

(
∂

∂x+
k

+ ∂

∂xk

)
δu′′

i

= − 1
ρ

∂δp′′

∂x+
i

− 1
ρ

∂δp′′

∂xi
+ ν

(
∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk

)
δui + δf ′′

i . (A27)

As above, we first multiply this equation for δu′′
j , and then we sum to the same equation

with swapped i and j indices. Using again the independence of the x and x+ reference
systems and incompressibility, and applying the phase average operator ·, we obtain

∂

∂t
δu′′

i δu
′′
j + ∂

∂x+
k
δUkδu′′

i δu
′′
j +

(
∂

∂x+
k

+ ∂

∂xk

)
Ukδu′′

i δu
′′
j + δu′′

j δu
′′
k
∂δUi

∂x+
k

+ δu′′
i δu

′′
k
∂δUj

∂x+
k

+ δu′′
j u′′

k

(
∂

∂x+
k

+ ∂

∂xk

)
δUi + δu′′

i u′′
k

(
∂

∂x+
k

+ ∂

∂xk

)
δUj + ∂

∂x+
k
δũkδu′′

j δu
′′
i
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+
(
∂

∂x+
k

+ ∂

∂xk

)
ũkδu′′

j δu
′′
i + δu′′

j δu
′′
k
∂δũi

∂x+
k

+ δu′′
i δu

′′
k
∂δũj

∂x+
k

+ δu′′
j u′′

k

(
∂

∂x+
k

+ ∂

∂xk

)
δũi + δu′′

i u′′
k

(
∂

∂x+
k

+ ∂

∂xk

)
δũj

+ ∂

∂x+
k
δu′′

kδu
′′
i δu

′′
j +

(
∂

∂x+
k

+ ∂

∂xk

)
u′′

kδu
′′
i δu

′′
j

= − 1
ρ

(
∂

∂x+
i

+ ∂

∂xi

)
δp′′δu′′

j − 1
ρ

(
∂

∂x+
j

+ ∂

∂xj

)
δp′′δu′′

i

+ 1
ρ
δp′′

(
∂

∂x+
i

+ ∂

∂xi

)
δu′′

j + 1
ρ
δp′′

(
∂

∂x+
j

+ ∂

∂xj

)
δu′′

i

+ νδu′′
j

(
∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk

)
δu′′

i + νδu′′
i

(
∂2

∂x+
k ∂x+

k
+ ∂2

∂xk∂xk

)
δu′′

j

+ δf ′′
i δu

′′
j + δf ′′

j δu
′′
i . (A28)

We switch as above to the notation with X and r to obtain

∂

∂t
δu′′

i δu
′′
j + ∂

∂rk
Ukδδu′′

i δu
′′
j + ∂

∂Xk
U∗

k δu
′′
i δu

′′
j + δu′′

j δu
′′
k
∂δUi

∂rk
+ δu′′

i δu
′′
k
∂δUj

∂rk

+ δu′′
j u′′∗

k
∂δUi

∂Xk
+ δu′′

i u′′∗
k
∂δUj

∂Xk
+ δu′′

j δu
′′
k
∂δũi

∂rk
+ δu′′

j u′′∗
k
∂δũi

∂Xk
+ δu′′

i δu
′′
k
∂δũj

∂rk

+ δu′′
j u′′∗

k
∂δũj

∂Xk
+ ∂

∂rk
δu′′

kδu
′′
i δu

′′
j + ∂

∂Xk
u′′∗

k δu
′′
i δu

′′
j + ∂

∂rk
δũkδu′′

i δu
′′
j

+ ∂

∂Xk
ũ∗

kδu
′′
i δu

′′
j + ∂

∂Xi

1
ρ
δp′′δu′′

j + ∂

∂Xj

1
ρ
δp′′δu′′

i = 1
ρ
δp′′ ∂δu

′′
j

∂Xi
+ 1
ρ
δp′′ ∂δu

′′
i

∂Xj

+ ν

2
∂2

∂Xk∂Xk
δu′′

i δu
′′
j + 2ν

∂2

∂rk∂rk
δu′′

i δu
′′
j − 2

(
εs+

ij + εs
ij

)
+ δf ′′

i δu
′′
j + δf ′′

j δu
′′
i ,

(A29)

where

εs
ij = ν

∂u′′
i

∂xk

∂u′′
j

∂xk
(A30)

is the pseudo-dissipation tensor of the stochastic part of the velocity. Also in this case we
can write

δu′′
j δu

′′
k
∂δUi

∂rk
= δu′′

j δu
′′
k

(
∂Ui

∂xk

)∗
(A31)

and

δu′′
j u′′∗

k
∂δUi

∂Xk
= δu′′

j u′′∗
k δ

(
∂Ui

∂xk

)
(A32)
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Structure functions with triple decomposition

so that the budget equation for δu′′
i δu

′′
j is eventually obtained:

∂

∂t
δu′′

i δu
′′
j + ∂

∂rk
δUkδu′′

i δu
′′
j + ∂

∂Xk
U∗

k δu
′′
i δu

′′
j + ∂

∂rk
δu′′

kδu
′′
i δu

′′
j + ∂

∂Xk
u′′∗

k δu
′′
i δu

′′
j

+ ∂

∂rk

(
−2ν

∂

∂rk
δu′′

i δu
′′
j

)
+ ∂

∂Xk

(
−ν

2
∂

∂Xk
δu′′

i δu
′′
j

)
+ ∂

∂rk
δũkδu′′

i δu
′′
j + ∂

∂Xk
ũ∗

kδu
′′
i δu

′′
j

+ ∂

∂Xi

1
ρ
δp′′δu′′

j + ∂

∂Xj

1
ρ
δp′′δu′′

i = −δu′′
j δu

′′
k

(
∂Ui

∂xk

)∗
− δu′′

i δu
′′
k

(
∂Uj

∂Xk

)∗

− δu′′
j u′′∗

k δ

(
∂Ui

∂xk

)
− δu′′

i u′′∗
k δ

(
∂Uj

∂xk

)
− δu′′

j δu
′′
k

(
∂ ũi

∂xk

)∗
− δu′′

i δu
′′
k

(
∂ ũj

∂xk

)∗

− δu′′
j u′′∗

k δ

(
∂ ũi

∂xk

)
− δu′′

i u′′∗
k δ

(
∂ ũj

∂xk

)
+ 1
ρ
δp′′ ∂δu

′′
j

∂Xi
+ 1
ρ
δp′′ ∂δu

′′
i

∂Xj

− 4εs∗
ij + δf ′′

i δu
′′
j + δf ′′

j δu
′′
i . (A33)

Appendix B. The ϕAGKE for plane channel flow with oscillating walls

The special form assumed by the ϕAGKE under the symmetries of a plane channel flow
with spanwise oscillations is reported below. The coherent part reduces to

ω
∂δũiδũj

∂ϕ
+ ∂

∂rk

(
δu′′

kδu
′′
i δũj + δu′′

kδu
′′
j δũi

)
︸ ︷︷ ︸

Turbulent transport

+ ∂

∂ry

(
−2ν

∂δũiδũj

∂ry

)
︸ ︷︷ ︸

Viscous diffusion

+ ∂

∂Y

(
−ν

2
∂δũiδũj

∂Y

)
︸ ︷︷ ︸

Viscous diffusion

+ ∂

∂Y

(
v′′∗δu′′

i δũj + v′′∗δu′′
j δũi

)
︸ ︷︷ ︸

Turbulent transport

+ ∂

∂Y

(
1
ρ
δp̃δũiδj2

)
︸ ︷︷ ︸
Pressure transport

+ ∂

∂Y

(
1
ρ
δp̃δũjδi2

)
︸ ︷︷ ︸
Pressure transport

= −

⎡
⎢⎢⎢⎣

−δu′′
i δv

′′
(
∂ ũ
∂y

)∗
δj1 − δu′′

j δv
′′
(
∂ ũ
∂y

)∗
δi1

−δu′′
i v

′′∗δ
(
∂ ũ
∂y

)
δj1 − δu′′

j v
′′∗δ

(
∂ ũ
∂y

)
δi1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
pcs

ij

−

⎡
⎢⎢⎢⎣

−δu′′
i δv

′′
(
∂w̃
∂y

)∗
δj3 − δu′′

j δv
′′
(
∂w̃
∂y

)∗
δi3

−δu′′
i v

′′∗δ
(
∂w̃
∂y

)
δj3 − δu′′

j v
′′∗δ

(
∂w̃
∂y

)
δi3

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
pcs

ij

+ 1
ρ
δp̃
∂δũi

∂Y
δj2 + 1

ρ
δp̃
∂δũj

∂Y
δi2︸ ︷︷ ︸

πc
ij

− 4εc∗
ij︸ ︷︷ ︸

dc
ij
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+ ∂

∂rk

[〈
δu′′

i δu
′′
k
〉
δũj +

〈
δu′′

j δu
′′
k

〉
δũi

]
+ ∂

∂Y

[〈
v′′∗δu′′

i
〉
δũj +

〈
v′′∗δu′′

j

〉
δũi

]
︸ ︷︷ ︸

ζ c
ij

+
[
− 〈δu′′

i δv
′′〉 (∂ ũj

∂y

)∗
−
〈
δu′′

j δv
′′
〉 (∂ ũi

∂y

)∗
− 〈
δu′′

i v
′′∗〉 δ (∂ ũj

∂y

)
−
〈
δu′′

j v
′′∗
〉
δ

(
∂ ũi

∂y

)]
︸ ︷︷ ︸

ζ c
ij

.

(B1)

The ϕAGKE for the stochastic part δu′′
i δu

′′
j become

ω
∂δu′′

i δu
′′
j

∂ϕ
+ ∂

∂rx

(
δUδu′′

i δu
′′
j

)
︸ ︷︷ ︸
Mean transport

+ ∂

∂rx

(
δũδu′′

i δu
′′
j

)
︸ ︷︷ ︸

Coherent transport

+ ∂

∂rz

(
δw̃δu′′

i δu
′′
j

)
︸ ︷︷ ︸

Coherent transport

+ ∂

∂rk

(
δu′′

kδu
′′
i δu

′′
j

)
︸ ︷︷ ︸

Turbulent transport

+ ∂

∂rk

(
−2ν

∂δu′′
i δu

′′
j

∂rk

)
︸ ︷︷ ︸

Viscous diffusion

+ ∂

∂Y

(
v′′∗δu′′

i δu
′′
j

)
︸ ︷︷ ︸

Turbulent transport

+ ∂

∂Y

(
−ν

2

∂δu′′
i δu

′′
j

∂Y

)
︸ ︷︷ ︸

Viscous diffusion

+ ∂

∂Y

(
1
ρ
δp′′δu′′

j δi2 + 1
ρ
δp′′δu′′

i δj2

)
︸ ︷︷ ︸

Pressure transport

=

⎡
⎢⎢⎢⎣

−δu′′
i δv

′′
(

dU
dy

)∗
δj1 − δu′′

j δv
′′
(

dU
dy

)∗
δi1

−δu′′
i v

′′∗δ
(

dU
dy

)
δj1 − δu′′

j v
′′∗δ

(
dU
dy

)
δi1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
pms

ij

+

⎡
⎢⎢⎢⎣

−δu′′
i δv

′′
(
∂ ũ
∂y

)∗
δj1 − δu′′

j δv
′′
(
∂ ũ
∂y

)∗
δi1

−δu′′
i v

′′∗δ
(
∂ ũ
∂y

)
δj1 − δu′′

j v
′′∗δ

(
∂ ũ
∂y

)
δi1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
pcs

ij

+

⎡
⎢⎢⎢⎣

−δu′′
i δv

′′
(
∂w̃
∂y

)∗
δj3 − δu′′

j δv
′′
(
∂w̃
∂y

)∗
δi3

−δu′′
i v

′′∗δ
(
∂w̃
∂y

)
δj3 − δu′′

j v
′′∗δ

(
∂w̃
∂y

)
δi3

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
pcs

ij

+ 1
ρ
δp′′

(
∂δu′′

i
∂Xj

)
+ 1
ρ
δp′′

(
∂δu′′

j

∂Xi

)
︸ ︷︷ ︸

πs
ij

−4εs∗
ij︸ ︷︷ ︸

ds
ij

. (B2)
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Structure functions with triple decomposition

Here, the mean transport term contributes to φs
x, consistently with a non-zero streamwise

mean velocity U. Similarly, coherent transport appears in φs
x and φs

z , since ũ /= 0 and
w̃ /= 0. Since no external volume forcing acts on the flow, the interaction forcing term
is zero for both components.

Appendix C. Analysis of conditionally averaged quantities

In this appendix, the interpretations of the local maxima of δw′′δw′′ in the rx =
ry = 0 and rz = ry = 0 planes provided in § 4.1.2 are supported by inspecting the
velocity field induced by the conditionally averaged quasi-streamwise vortex at different
phases of the control cycle. The procedure to extract the conditional average from
the direct numerical simulation database closely resembles that presented by Jeong
et al. (1997); it is described in detail by Gallorini et al. (2022) and is not repeated
here.

Figure 15 uses velocity isosurfaces to describe the spatial shape of the conditionally
averaged negative rotating (SN) structure for the case at T+ = 250 at the two phases ϕ1
and ϕ3. The extraction procedure is centred at the wall-normal position of the maxima
of δw′′δw′′ for ϕ1 and ϕ3 (see figure 4): this position is shown in the shear panel at
the bottom of figure 15. At the two chosen phases, the structures show their maximum
negative and positive tilt angle; however, the discussion below for ϕ1 can be extended to
ϕ2, and that for ϕ3 extends to ϕ4. Isocontours of streamwise (transparent) and spanwise
(solid colour) velocities are shown in a view from above (top) and from upstream
(bottom).

Following the discussion in § 4.1.2, when the tilting angle is negative (see ϕ1), the
low-speed streak associated with a SN structure redistributes its energy via pressure
strain and creates negative spanwise velocity fluctuations; the opposite occurs for the
high-speed streak. This is confirmed by the ensemble-averaged structure, which shows
a region of positive (negative) spanwise velocity close to the side of the high-speed
(low-speed) streak. At ϕ3, instead, the tilt angle of the streak is positive, and the
low-speed (high-speed) streak induces positive (negative) w′′ velocity fluctuations at its
side.

Another view of the spanwise velocity contours is displayed in figure 15(c,d).
In these images, the streamwise velocity contours are removed, to focus on the
spanwise component only. In the canonical channel flow, a negatively rotating vortex
induces two regions of high and low spanwise velocity below and above its centre,
respectively. However, when the wall oscillates, two additional regions of positive
and negative spanwise velocity originate at the sides of the tilted vortex because of
its interaction with the Stokes layer. At phase ϕ1 (figure 15c), the peak of δw′′δw′′
occurs at Y+ = 25, where the spanwise shear ∂w̃+/∂y is positive. Therefore, the
negatively rotating quasi-streamwise vortex lifts low spanwise velocity fluid, and displaces
high-spanwise-velocity fluid downwards. This process explains the appearance of a
low w-velocity region at the right-hand side of the quasi-streamwise vortex, whereas
the high-spanwise-velocity region is absorbed into the lower-side one. At ϕ3 the
regions of low/high spanwise velocity are opposite compared with ϕ1 owing to the
opposite sign of the spanwise shear at the location of the peak of δw′′δw′′ at this
phase.
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Figure 15. Conditionally averaged structure, extracted at ϕ1 (a,c) and ϕ3 (b,d) at T+ = 250. The spatial shape
of the structure is shown via isosurfaces of u′+ (transparent colour) and w′+ (solid colour) velocity fluctuations
at the level ±0.5 (red/blue is positive/negative). The bottom panels also include the spanwise shear dw̃+/dy at
that phase, and show the wall-normal position where the extraction procedure is carried out.
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