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Torsion in the space of commuting
elements in a Lie group
Daisuke Kishimoto and Masahiro Takeda
Abstract. Let G be a compact connected Lie group, and let Hom(Zm , G) be the space of pairwise
commuting m-tuples in G. We study the problem of which primes p Hom(Zm , G)1 , the connected
component of Hom(Zm , G) containing the element (1, . . . , 1), has p-torsion in homology. We will
prove that Hom(Zm , G)1 for m ≥ 2 has p-torsion in homology if and only if p divides the order
of the Weyl group of G for G = SU(n) and some exceptional groups. We will also compute the
top homology of Hom(Zm , G)1 and show that Hom(Zm , G)1 always has 2-torsion in homology
whenever G is simply-connected and simple. Our computation is based on a new homotopy
decomposition of Hom(Zm , G)1 , which is of independent interest and enables us to connect torsion
in homology to the combinatorics of the Weyl group.

1 Introduction

Let π be a discrete group, and let G be a compact connected Lie group. Let Hom(π, G)
denote the space of homomorphisms from π to G, having the induced topology of the
space of continuous maps from π to G. In this paper, we study torsion in the homology
of Hom(Zm , G)1, the connected component of Hom(Zm , G) containing the trivial
homomorphism.

The space Hom(π, G) has connections to diverse contexts of mathematics and
physics [10, 15, 20, 27–29], and the topology of Hom(π, G) has been intensely studied
in recent years, especially when π is a free abelian group. The space Hom(Zm , G) is
identified with the space of commuting m-tuples in G, so that it is often called the space
of commuting elements (see [1–3, 5, 6, 8, 13, 16, 21, 24–26] and the references therein for
the topology of Hom(Zm , G)). In particular, Baird [6] described the cohomology of
Hom(Zm , G)1 over a field of characteristic not dividing the order of the Weyl group
of G or zero as a certain ring of invariants of the Weyl group. Based on this result,
Ramras and Stafa [24] gave a formula for the Poincaré series of Hom(Zm , G)1. We
start with recalling this formula. Let W denote the Weyl group of G, and let F be a
field of characteristic not dividing the order of W or zero. Then Ramras and Stafa [24]
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proved that the Poincaré series of the cohomology of Hom(Zm , G)1 over F is given by

∏r
i=1(1 − t2d i )
∣W ∣ ∑

w∈W

det(1 + tw)m

det(1 − t2w) ,

where d1 , . . . , dr are the characteristic degrees of W, that is, the rational cohomology
of G is an exterior algebra generated by elements of degrees 2d1 − 1, . . . , 2dr − 1. A
more explicit formula for the Poincaré series was obtained by the authors [21], and a
minimal generating set of the cohomology over F was also obtained there. An explicit
description of the cohomology of Hom(Z2 , G)1 over F for G of rank two was obtained
by the second author [26]. Notice that the Poincaré series is independent of the ground
field F as long as its characteristic does not divide the order of W or is zero. Then we
immediately get the nonexistence of torsion in homology.

Lemma 1.1 The homology of Hom(Zm , G)1 has p-torsion in homology only when p
divides the order of W.

On the other hand, as for the existence of torsion in the homology of Hom(Zm , G)1,
there are only a few results, the proofs of which do not extend to more general cases.
Adem and Cohen [1] proved a stable splitting of Hom(Zm , G), and Baird, Jeffrey, and
Selick [5] and Crabb [13] described the splitting summands for G = SU(2) explicitly.
As a result, we can conclude that Hom(Zm , SU(2))1 has 2-torsion in homology for
m ≥ 2. Recently, Adem, Gómez, and Gritschacher [3] computed the second homology
group of Hom(Zm , G)1, and so by combining with the result on the fundamental
group by Gómez, Pettet, and Souto [16], Hom(Zm , Sp(n))1 has 2-torsion in homology
for m ≥ 3. These are all known torsion in homology so far.

1.1 Results

By Lemma 1.1, we must know the order of the Weyl group of a Lie group. Then we
give a table of the order of the Weyl groups of compact simply-connected simple Lie
groups.

Now, we state our results.

Theorem 1.2 The homology of Hom(Zm , SU(n))1 for m ≥ 2 has p-torsion if and only
if p ≤ n.

Since the Weyl group of SU(n) is of order n!, it follows from Lemma 1.1 that
Hom(Zm , SU(n))1 has p-torsion in homology for all possible primes p. We will also
prove a similar result for some exceptional groups.

Theorem 1.3 Let G = G2 , F4 , E6. Then Hom(Zm , G)1 for m ≥ 2 has p-torsion in
homology if and only if p divides the order of the Weyl group of G.

Then for G = G2 , F4 , E6, Hom(Zm , G)1 with m ≥ 2 has all possible torsion in
homology. So the homology of Hom(Zm , G)1 with m ≥ 2 for G = SU(n), G2 , F4 , E6
are quite complicated. We will also show the existence of some torsion in the homology
of Hom(Zm , G)1 for other Lie groups G, though incomplete (see Section 7 and
Corollary 1.5 for details). Our next result is on the top homology of Hom(Zm , G)1
(see [21] for the top rational homology).
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Theorem 1.4 Let G be a compact simply-connected simple Lie group of rank n, and let

t =
⎧⎪⎪⎨⎪⎪⎩

dim G + n(m − 1) − 1, m is even,
dim G + n(m − 1), m is odd.

Then the top homology of Hom(Zm , G)1 is given by

Ht(Hom(Zm , G)1) ≅
⎧⎪⎪⎨⎪⎪⎩

Z/2, m is even,
Z, m is odd.

Since Hom(Z2 , G)1 is a retract of Hom(Zm , G)1 for m ≥ 2, we immediately obtain
the following corollary.

Corollary 1.5 Let G be a compact simply-connected simple Lie group. Then
Hom(Zm , G)1 for m ≥ 2 has 2-torsion in homology.

Let π be a finitely generated nilpotent group whose abelianization is of rank m. We
can extend our results to Hom(π, G)1 as follows. Let G(C) be a complexification of G.
Then Bergeron [7] proved that Hom(π, G) is a deformation retract of Hom(π, G(C)).
Moreover, Bergeron and Silberman [8] proved that there is a homotopy equivalence
Hom(π, G(C))1 ≃ Hom(Zm , G(C))1. Then we get a homotopy equivalence

Hom(π, G)1 ≃ Hom(Zm , G)1 ,

and so all the results above also hold for Hom(π, G)1.

1.2 Summary of computation

We compute the homology of Hom(Zm , G)1 in three steps: the first step is to
give a new homotopy decomposition of Hom(Zm , G)1, namely, we will describe
Hom(Zm , G)1 as a homotopy colimit, the second step is to extract the top line of (a
variant of) the Bousfield–Kan spectral sequence for the homotopy colimit in the first
step, and the third step is to encode the information of the top line extracted in the
second step into the combinatorial data of the extended Dynkin diagram of G.

Let G act on Hom(π, G) by conjugation. Then the quotient space, denoted by
Rep(π, G), is called the representation space or the character variety, which has been
studied in a variety of contexts [4, 14, 18]. We will show that if G is simply-connected
and simple, then Rep(Z, G), the quotient of Hom(Z, G)1 = G, is naturally identified
with the closure of a Weyl alcove which is an n-simplex whose facets are defined by
simple roots and the highest root, where G is of rank n. We consider the composite

π∶Hom(Zm , G)1 → Hom(Z, G) → Rep(Z, G) = Δn ,

where the first map is the mth projection and the second map is the quotient map. We
will see that the fiber of π is constant as long as the point belongs to the interior of
some face of Δn . Let σ0 denote the barycenter of a face σ of Δn , and let P(Δn) denote
the face poset of Δn . Then we get a functor

Fm ∶ P(Δn) → Top, σ ↦ π−1(σ0),

and a new homotopy decomposition in the first step is the following.
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Theorem 1.6 (Theorem 3.2) Let G be a compact simply-connected simple Lie group.
Then there is a homeomorphism

Hom(Zm , G)1 ≅ hocolim Fm .

This homotopy decomposition seems to be of independent interest. We will see that
if m even, then for each σ ∈ P(Δn), Fm(σ) is of dimension dim G + n(m − 2) and its
top homology is isomorphic with Z. Thus, we can consider the pinch map onto the
top cell of Fm(σ). This enables us to extract (a variant of) the Bousfield–Kan spectral
sequence for hocolim Fm , which is the second step. The pinch map onto the top cell
can be explicitly described in terms faces of Δn . Then, since faces of Δn are defined by
simple roots and the highest weight, the computation of the extracted top line can be
connected to the extended Dynkin diagram, which is the third step.

2 Triangulation of a maximal torus

Hereafter, let G denote a compact simply-connected simple Lie group such that
rankG = n and dim G = d. Let T and W denote a maximal torus and the Weyl group
of G, respectively. This section constructs a W-equivariant triangulation of a maximal
torus T, which will play the fundamental role in our study. Let t be the Lie algebra of
T, and let Φ be the set of roots of G. Recall that the Stiefel diagram is defined by

⋃
α∈Φ
i∈Z

α−1(i),

which is a union of hyperplanes in t, where each α−1(i) is called a wall in the Stiefel
diagram. For example, the Stiefel diagram of Sp(2) is given as follows, where integer
points are indicated by white points.

Since G is simple, its Stiefel diagram is a simplicial complex such that every k-face
is included in an intersection of exactly n − k walls.

Lemma 2.1 If two vertices v and v +w of the Stiefel diagram of G are joined by an edge,
then w is a vertex of the Stiefel diagram which is joined with the vertex 0 by an edge.

Proof Since v and v +w are joined by an edge,

{v} = θ−1
1 (k1) ∩ ⋅ ⋅ ⋅ ∩ θ−1

n (kn) and {v +w} = θ−1
1 (k1) ∩ ⋅ ⋅ ⋅ ∩ θ−1

n−1(kn−1) ∩ θ−1
n (kn + ε)
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for some roots θ1 , . . . , θn and integers k1 , . . . , kn , where ε = ±1. Then

{w} = θ−1
1 (0) ∩ ⋅ ⋅ ⋅ ∩ θ−1

n−1(0) ∩ θ−1
n (ε),

which is a vertex of the Stiefel diagram. Moreover, since ε = ±1, 0 and w are joined by
an edge on the line θ−1

1 (0) ∩ ⋅ ⋅ ⋅ ∩ θ−1
n−1(0), completing the proof. ∎

Each connected component of the complement of the Stiefel diagram is called a
Weyl alcove. Since G is simple and of rank n, the closure of each Weyl alcove is an
n-simplex. Let α1 , . . . , αn be simple roots, and let α̃ be the highest root of G. We shall
consider the following closure of a Weyl alcove:

Δ = {x ∈ t ∣ α1(x) ≥ 0, . . . , αn(x) ≥ 0, α̃(x) ≤ 1}.

Let L denote the group generated by coroot shifts. Since G is simply-connected, L is
identified with the integer lattice of t. The affine Weyl group of G is defined by

Waff = W ⋊ L.

Then Waff acts on t. Since this action fixes the Stiefel diagram, Waff permutes Weyl
alcoves. By [19, Theorem 4.5, Part I], we have the following.

Lemma 2.2 The affine Weyl group Waff permutes Weyl alcoves of G simply transitively.

Let P be the union of all closures of Weyl alcoves around the origin. Then P is a
simplicial convex n-polytope.

Lemma 2.3 If σ is a face of P such that σ + a is also a face of P for some 0 ≠ a ∈ L,
then both σ and σ + a must be faces of the boundary of P.

Proof Since W permutes Weyl chambers simply transitively, it follows from Lemma
2.2 that σ and σ + a must not include the vertex 0 ∈ P, completing the proof. ∎

By Lemma 2.3, we can define

Q = P/ ∼,

where σ ∼ σ + a if σ and σ + a are faces of the boundary of P for some a ∈ L. Clearly,
the inclusion P→ t induces a homeomorphism

Q
≅�→ t/L.(2.1)

Since G is simply-connected, L is the integer lattice of t, so a torus t/L coincides with
a maximal torus T. Then we get the following.

Proposition 2.4 The homeomorphism (2.1) is a W-equivariant triangulation of T.

Proof The homeomorphism (2.1) is obviously W-equivariant, so it remains to prove
Q is a simplicial complex. It suffices to show that there is no vertex v of the boundary of
P such that v and v + a are joined by an edge of P for 0 ≠ a ∈ L. This has been already
proved in Lemma 2.1. ∎

Proposition 2.5 The quotient space T/W is naturally identified with Δ.

Proof This follows from [19, Theorem 4.8, Part I]. ∎
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A maximal torus T will always be equipped with a W-equivariant triangulation
(2.1). We consider objects related to the triangulation of T. Let σ be a face of T.
Then there is a face σ̃ of Q which is mapped onto σ . We can associate with σ̃ roots
corresponding to walls including σ̃ . Lifts of σ are related by translations in L, so that
the associated roots are equal. Then we can associate roots to σ . Let Φ(σ) denote the
set of roots associated with σ . Clearly, we have the following.

Lemma 2.6 If faces σ , τ of T satisfy σ < τ, then

Φ(σ) ⊃ Φ(τ).

Let σ be a face of T. We define two groups associated with σ . Let W(σ) be a
subgroup of W generated by reflections corresponding to roots in Φ(σ), and let

Z(σ) = {x ∈ G ∣ x y = yx for each y ∈ σ}.

We have W(σ) = 1 and Z(σ) = T for dim σ = n. Notice that since we may assume Δ
is a face of T, we can consider the groups W(σ) and Z(σ) for a face σ of Δ.

Lemma 2.7 If faces σ , τ of T satisfy σ < τ, then

W(σ) > W(τ) and Z(σ) > Z(τ).

Proof The first statement follows from Lemma 2.6. Since Z(σ) is the union of all
maximal tori including σ , the second statement is true. ∎

3 Homotopy decomposition

This section proves a new homotopy decomposition of Hom(Zm , G)1 (Theorem 1.6).
Let π be a discrete group, and let Rep(π, G) be the quotient of the conjugation action
of G on Hom(π, G) as in Section 1. Then we have

Rep(Z, G) = Hom(Z, G)/G = T/W ,

which is identified with Δ by Proposition 2.5. We will consider the composite

π∶Hom(Zm , G)1 → Hom(Z, G)1 = Hom(Z, G) → Rep(Z, G) = Δ,

where the first map is the mth projection and the second map is the quotient map. We
aim to identify the fibers of the map π. We consider a map

ϕ∶G/T × T m → Hom(Zm , G)1 , (gT , t1 , . . . , tm) ↦ (gt1 g−1 , . . . , gtm g−1).

It is proved in [9] that the map ϕ is surjective. Let the Weyl group W act on G/T × T m

by

(gT , t1 , . . . , tm) ⋅w = (gwT , w−1 t1w , . . . , w−1 tmw)

for (gT , t1 , . . . , tm) ∈ G/T × T m and w ∈ W . Then the map ϕ is invariant under the
action of W, and so it induces a surjective map

G/T ×W T m → Hom(Zm , G)1 .(3.1)
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Lemma 3.1 If x , y ∈ Δ belong to the interior of a common face, then

π−1(x) ≅ π−1(y).

Proof Suppose that x , y ∈ Δ belong to the interior of a common face σ , and consider
the adjoint action of G on Gm−1 × t. Then for each w ∈ W and (t1 , . . . , tm−1) ∈ T m−1,
the isotropy subgroups of (t1 , . . . , tm−1 , wx) and (t1 , . . . , tm−1 , w y) are equal. Thus,
since

(ϕ ○ π)−1(x) = G/T × T m−1 ×W ⋅ x and (ϕ ○ π)−1(y) = G/T × T m−1 ×W ⋅ y,

where W ⋅ x ≅ W ⋅ y ≅ W/W(σ), we obtain π−1(x) ≅ π−1(y), as stated. ∎

Let P(Δ) denote the face poset of Δ, and let σ0 denote the barycenter of a
face σ ∈ P(Δ). For σ ∈ P(Δ), let ϕσ ∶G/T × T m−1 → π−1(σ0) denote the restriction
of the quotient map (3.1). Observe that for σ < τ ∈ P(Δ), there is a natural map
qσ ,τ ∶ π−1(τ0) → π−1(σ0) satisfying a commutative diagram

G/T × T m−1 ϕτ ��

ϕσ

��

π−1(τ0)

qσ ,τ

��
π−1(σ0) π−1(σ0).

Clearly, we have

qσ ,τ ○ qτ ,ν = qσ ,ν

for σ < τ < ν ∈ P(Δ). Let ιτ ,σ ∶ σ → τ denote the inclusion for σ < τ ∈ P(Δ). Then the
above observation implies that

Hom(Zm , G)1 =
⎛
⎝ ∐

σ∈P(Δ)
π−1(σ0) × σ

⎞
⎠
/ ∼,(3.2)

where (x , ιτ ,σ(y)) ∼ (qσ ,τ(x), y) for (x , y) ∈ π−1(τ0) × σ ⊂ π−1(τ0) × τ. Define a
functor

Fm ∶ P(Δ) → Top, σ ↦ π−1(σ0)

such that Fm(τ > σ) = qσ ,τ , where we understand a poset P as a category by assuming
an inequality x > y ∈ P as a unique morphism x → y. Thus, by (3.2), we obtain the
following.

Theorem 3.2 There is a homeomorphism

Hom(Zm , G)1 ≅ hocolim Fm .

We further look into Fm(σ) for σ ∈ P(Δ). Let P(X) denote the face poset of a
regular CW complex X, and let σ be a face of Δ. For τ = τ1 × ⋅ ⋅ ⋅ × τm−1 ∈ P(T m−1),
let Z(τ) = Z(τ1) ∩ ⋅ ⋅ ⋅ ∩ Z(τm−1). For τ < μ ∈ P(T m−1), let ιμ ,τ ∶ τ → μ denote the
inclusion, and let

qσ
τ ,μ ∶G/Z(μ) ∩ Z(σ) → G/Z(τ) ∩ Z(σ)
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be the natural projection. Then we have

π−1(σ0) =
⎛
⎝
⎛
⎝ ∐

τ∈P(Tm−1)

G/Z(τ) ∩ Z(σ) × τ
⎞
⎠
/ ∼

⎞
⎠
/W(σ),

where (x , ιμ ,τ(y)) ∼ (qσ
τ ,μ(x), y) for (x , y) ∈ G/Z(μ) ∩ Z(σ) × τ ⊂ G/Z(μ) ∩

Z(σ) × μ and the quotient by W(σ) is taken by the action of W on G/T × T m−1.
Now, we define a functor

Fσ
m ∶ P(T m−1) → Top, τ ↦ G/Z(τ) ∩ Z(σ),

where Fσ
m(μ > τ) is the projection qσ

τ ,μ . Then we obtain the following.

Proposition 3.3 For σ ∈ P(Δ), there is a natural homeomorphism

Fm(σ) ≅ (hocolim Fσ
m)/W(σ).

Hereafter, we let

qm = d + n(m − 2).

Since the maximal dimension of Fσ
m(τ) × τ for τ ∈ P(T m−1) is qm , we get the follow-

ing.

Corollary 3.4 For each σ ∈ P(Δ), dim Fm(σ) = qm .

Example 3.5 We examine Theorem 3.2 in the G = SU(2) case. Since rankSU(2) = 1,
Δ is a 1-simplex. Let v0 , v1 be vertices of Δ, and let e be an edge of Δ. Since G = SU(2),
{v0 , v1} corresponds to the center, so we have

Fm(v i) = Hom(Zm−1 , SU(2))1

for i = 0, 1. By Proposition 3.3, we also have

Fm(e) = SU(2)/T × T m−1 = S2 × (S1)m−1 .

Then Theorem 3.2 for G = SU(2) is equivalent to that there is a homotopy pushout

S2 × (S1)m−1 gm ��

gm

��

Hom(Zm−1 , SU(2))1

��
Hom(Zm−1 , SU(2))1 �� Hom(Zm , SU(2))1 .

For m = 2, the map g2∶ S2 × S1 → S3 is of degree 2. On the other hand, the map
Hom(Zm−1 , SU(2))1 → Hom(Zm , SU(2))1 has a retraction. Then the homotopy
pushout above for m = 2 splits after a suspension, and so we get a stable homotopy
equivalence

Hom(Z2 , SU(2))1 ≃s S2 ∨ S3 ∨ (S3 ∪2 e4),(3.3)

which was previously proved by Baird, Jeffrey, and Selick [5] and Crabb [13] in different
ways.
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4 The functor F̂m

This section defines a functor F̂m ∶ P(Δ) → Top which extracts the top line of (a variant
of) the Bousfield–Kan spectral sequence for hocolim Fm . First, we compute some
homology of Fm(σ). To this end, we recall the work of Baird [6] on the cohomology of
Hom(Zm , G)1 over a field whose characteristic does not divide the order of W. Let K
be a topological group acting on a space X, and let f ∶X → Y be a K-equivariant map,
where K acts trivially on Y. Let f̄ ∶X/K → Y be the induced map from f. Baird [6]
defined that a map f ∶X → Y is an F-cohomological principal K-bundle if f is a closed
surjection and

H̃∗( f̄ −1(y);F) = 0

for each y ∈ Y , where F is a field. The main result of Baird’s work [6] is the following.
Theorem 4.1 Let K be a finite group, and let F be a field of characteristic prime to ∣K∣.
If a map f ∶X → Y is an F-cohomological principal K-bundle, where X is paracompact
and Hausdorff, then there is an isomorphism

H∗(X;F)K ≅ H∗(Y ;F).

This theorem is applicable to Hom(Zm , G)1 as in [6].

Theorem 4.2 Let F be a field of characteristic prime to ∣W ∣. Then the map (3.1) is an
F-cohomological principal W-bundle, so that there is an isomorphism

H∗(Hom(Zm , G)1;F) ≅ H∗(G/T × T m ;F)W .

We also apply Theorem 4.1 to Fm(σ). The following lemma is immediate from the
definition of a cohomological principal bundle.

Lemma 4.3 If f ∶X → Y is an F-cohomological principal K-bundle, then for any closed
subset Z ⊂ Y, the natural map

f −1(Z) → Z

is an F-cohomological principal K-bundle.
We consider special representations of W.

Lemma 4.4 (1) The W-representation Hn(T ;Q) is the sign representation.
(2) For n ≥ 2, the W-representation Hn−1(T ;Q) does not include the trivial represen-

tation.
(3) The W-representation Hdim G−n(G/T ;Q) is the sign representation.
Proof (1) Since each reflection of W changes the orientation of t and H1(T ;R) ≅ t

as a W-module, Hn(T ;Q) ≅ Λn H1(T ;Q) is the sign representation of W.
(2) By [12, Theorem III.2.4], there is an isomorphism

H∗(T/W ;Q) ≅ H∗(T ;Q)W .

Then, by Proposition 2.5, Hn−1(T ;Q)W = 0 for n ≥ 2, completing the proof.
(3) By Theorem 4.1, there is an isomorphism

H∗(G/T × T ;Q)W ≅ H∗(G;Q),
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because Hom(Z, G)1 = G. Then we get

(Hd−n(G/T ;Q) ⊗ Hn(T ;Q))W ≅ Hd(G/T × T ;Q)W ≅ Hd(G;Q) ≅ Q.

So since Hd−n(G/T ;Q) ≅ Hn(T ;Q) ≅ Q, Hd−n(G/T ;Q) ⊗ Hn(T ;Q) is the trivial
W-representation. Thus, the statement follows from (1). ∎

Now, we compute the homology of Fm(σ).

Lemma 4.5 For σ ∈ P(Δ), we have

Hqm(Fm(σ)) ≅
⎧⎪⎪⎨⎪⎪⎩

Z, m is even or dim σ = n,
0, m is odd and dim σ < n.

Proof By Corollary 3.4, Hqm(Fm(σ)) is a free abelian group. Then we compute
dim Hqm(Fm(σ);Q) because rankHqm(Fm(σ)) = dim Hqm(Fm(σ);Q). By Theorem
4.2 and Lemma 4.3, the map

ϕ−1(π−1(σ0)) → π−1(σ0)

is a Q-cohomological principal W-bundle. The space ϕ−1(π−1(σ0)) = G/T × T m−1 ×
W/W(σ) has ∣W ∣/∣W(σ)∣ connected components and permutes these components
transitively such that each component is fixed by the action of W(σ). Then the map

G/T × T m−1 → π−1(σ0) = Fm(σ)

is a Q-cohomological principal W(σ)-bundle. Thus, by Theorem 4.1, we obtain an
isomorphism

H∗(Fm(σ);Q) ≅ H∗(G/T × T m−1;Q)W(σ).

If dim σ = n, then W(σ) = 1, implying dim Hqm(Fm(σ);Q) = 1. Now, we assume
dim σ < n, or equivalently, W(σ) ≠ 1. By Lemma 4.4, Hd−n(G/T ;Q) and Hn(T ;Q)
are the sign representation of W. Then it follows from the Künneth theorem that
Hqm(G/T × T m−1;Q) is the tensor product of m copies of the sign representation of
W. Thus, since W(σ) ≠ 1, we obtain

Hqm(G/T × T m−1;Q)W(σ) ≅
⎧⎪⎪⎨⎪⎪⎩

Q, m is even,
0, m is odd.

Therefore, the proof is complete. ∎

Now, we define a functor F̂m ∶ P(Δ) → Top by

F̂m(σ) =
⎧⎪⎪⎨⎪⎪⎩

Sqm , m is even or dim σ = n,
∗, m is odd and dim σ < n,

such that the map Fm(σ > τ) is the constant map for m odd and a map of degree
∣W(τ)∣/∣W(σ)∣ for m even. Since

(∣W(μ)∣/∣W(τ)∣) ⋅ (∣W(τ)∣/∣W(σ)∣) = ∣W(μ)∣/∣W(σ)∣

for σ > τ > μ ∈ P(Δ), F̂m is well defined.
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Next, we define a natural transformation ρ∶ Fm → F̂m . For m odd, ρ is defined by
the pinch map onto the top cell G/T × T m−1 → Sqm and the constant map. Suppose m
is even. For σ ∈ P(Δ), let Q(σ) be the union of the boundary of P and the image of
all walls of the Stiefel diagram including σ under the projection t→ Q, where Q is the
triangulation of T in Section 2 and t is the Lie algebra of T. Then, by (2.1),

Q/Q(σ) = ⋁
∣W(σ)∣

Sn .

Moreover, for σ > τ ∈ P(Δ), we have Q(σ) ⊂ Q(τ), implying there is a commutative
diagram

Q/Q(σ)

��

⋁∣W(σ)∣ Sn

⋁∣W(σ)∣∇

��
Q/Q(τ) ⋁∣W(σ)∣⋁∣W(τ)∣/∣W(σ)∣ Sn ⋁∣W(τ)∣ Sn ,

(4.1)

where ∇∶ Sn → ⋁∣W(τ)∣/∣W(σ)∣ Sn is the pinch map. On the other hand, a face τ of Q
satisfies

Z(τ) ∩ Z(σ) = T

whenever Int(τ) is in Q −Q(σ), where Z(τ) ∩ Z(σ) always includes T. Then, by
Proposition 3.3, there is a projection

Fm(σ) →((G/T × T m−2) ∧ (Q/Q(σ)))/W(σ)(4.2)

=
⎛
⎝
(G/T × T m−2) ∧ ⋁

∣W(σ)∣
Sn⎞
⎠
/W(σ).

Since W(σ) permutes spheres in ⋁∣W(σ)∣ Sn , we get

⎛
⎝
(G/T × T m−2) ∧ ⋁

∣W(σ)∣
Sn⎞
⎠
/W(σ) = (G/T × T m−2) ∧ Sn .

Then, by (4.1), the map (4.2) satisfies the commutative diagram

Fm(σ) ��

Fm(σ>τ)
��

(G/T × T m−2) ∧ Sn

∣W(τ)∣/∣W(σ)∣
��

Fm(τ) �� (G/T × T m−2) ∧ Sn .

Thus, composing with the pinch map onto the top cell (G/T × T m−2) ∧ Sn → Sqm , we
obtain a natural transformation ρ∶ Fm → F̂m .

We show properties of the natural transformation ρ∶ Fm → F̂m in homology. By the
construction and Lemma 4.5, we have the following.
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Proposition 4.6 Let σ ∈ P(Δ). If m is even or dim σ = n, then the map ρσ ∶ Fm(σ) →
F̂m(σ) is an isomorphism in Hqm .

The following variant of the Bousfield–Kan spectral sequence for a homotopy
colimit is constructed in [17] (see [11, XII 4.5] for the original Bousfield–Kan spectral
sequence).

Proposition 4.7 Let F∶ P(K) → Top be a functor for a simplicial complex K. Then there
is a spectral sequence

E1
p,q = ⊕

σ∈Pp(K)
Hq(F(σ)) 0⇒ Hp+q(hocolim F),

where Pp(K) denotes the set of p-simplices of K.

By Proposition 4.6, we get the following.

Lemma 4.8 Let Er and Êr be the spectral sequences of Proposition 4.7 for hocolim Fm
and hocolim F̂m , respectively. Then the natural transformation ρ∶ Fm → F̂m induces an
isomorphism of the top lines

ρ∗∶E1
∗,qm

≅�→ Ê1
∗,qm

.

Proposition 4.9 H∗(hocolim F̂m) is a direct summand of H∗(Hom(Zm , G)1) for ∗ ≥
qm .

Proof Let (Er , d r) and (Êr , d̂ r) denote the spectral sequences of Proposition 4.7
for hocolim Fm and hocolim F̂m , respectively. Let r be the smallest integer ≥ 2 such
that there is a nontrivial differential d r

p,qm−r+1∶Er
p,qm−r+1 → Er

p−r ,qm
for some p ≥ 0.

Suppose that d r
p,qm−r+1(x) ≠ 0 for x ∈ Er

p,qm−r+1. Then Er and Êr are illustrated below,
where possibly nontrivial parts are shaded.

qm

qm − r + 1

0

0 npp − r

x

d r
p,qm−r+1

Er
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qm

qm − r + 1

0

0 npp − r

0

d̂ r
p,qm−r+1

Êr

By Lemma 4.8, the natural map ρ∗∶Er
p,qm

→ Êr
p,qm

is an isomorphism, implying

0 ≠ ρ∗(d r
p,qm−r+1(x)) = d̂ r

p,qm−r+1(ρ∗(x)) = 0.

This is a contradiction. Thus, we obtain E2
p,qm

≅ E∞p,qm
. On the other hand, we have

Ê2
p,qm

≅ Ê∞p,qm
≅ H∗+qm(hocolim F̂m). Then the composite

E∞p,qm
→ Hp+qm(hocolim Fm)

ρ∗�→ Hp+qm(hocolim F̂m) ≅ Ê∞p,qm

is identified with ρ∗∶E2
p,qm

→ Ê2
p,qm

, and so it is an isomorphism. Therefore, by
Theorem 3.2, the proof is finished. ∎

Example 4.10 We examine hocolim F̂m for G = SU(2). In this case, Δ is a 1-simplex,
and so as in Example 3.5, there is a homotopy pushout involving hocolim F̂m which
yields a homotopy equivalence

hocolim F̂m ≃
⎧⎪⎪⎨⎪⎪⎩

Sm+2 , m is odd,
Sm+1 ∨ (Sm+1 ∪2 em+2), m is even.

In particular, we can see from (3.3) that hocolim F̂m computes the top homology
of Hom(Zm , SU(2))1. This will be generalized in the next section to an arbitrary
compact simply-connected simple Lie group G.

5 Top homology

This section computes the top homology of Hom(Zm , G)1 and proves Theorem 1.4.
The result depends on the parity of m. We start with the case m is odd.

Theorem 5.1 If m is odd, then the top homology of Hom(Zm , G)1 is

Hqm+n(Hom(Zm , G)1) ≅ Z.
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Proof We present two proofs.
First proof. By Corollary 3.4, the E1-term of the spectral sequence of Proposition

4.7 for hocolim Fm is given below, where a possibly nontrivial part is shaded. Then, by
degree reasons, the statement is proved.

Zqm

0

0 n

Second proof. Hom(Zm , G)1 is of dimension qm + n as mentioned above, implying
Hqm+n(Hom(Zm , G)1) is a free abelian group. Then it suffices to compute the dimen-
sion of the rational cohomology Hqm+n(Hom(Zm , G)1;Q). By Theorem 4.2 and the
Künneth theorem,

Hqm+n(Hom(Zm , G)1;Q) ≅ (Hdim G−n(G/T ;Q) ⊗ Hn(T ;Q) ⊗ ⋅ ⋅ ⋅ ⊗ Hn(T ;Q)
2333333333333333333333333333333333333333333333333333333333333333333333333333333333333334333333333333333333333333333333333333333333333333333333333333333333333333333333333333335

m

)W .

By Lemma 4.4, Hdim G−n(G/T ;Q) and Hn(T ;Q) are the sign representation of W,
and so we get dim Hqm+n(Hom(Zm , G)1;Q) = 1, completing the proof. ∎

Next, we consider the case m is even.

Lemma 5.2 If m is even and n ≥ 2, then Hqm+n−1(Hom(Zm , G)1;Q) = 0.

Proof By Lemma 4.4, Hn−1(T ;Q) does not include the trivial representation of W.
Then, by arguing as in the second proof of Theorem 5.1, the statement is proved. ∎

Remark 5.3 For n = 1, Hn−1(T ;Q) is the trivial representation of W, so that the proof
of Lemma 5.2 does not work for n = 1. The top homology of Hom(Zm , SU(2))1 for m
even can be deduced from the results of Baird, Jeffrey, and Selick [5] and Crabb [13];
it is given by Hm+1(Hom(Zm , G)1) ≅ Z/2.

Theorem 5.4 If m is even and n ≥ 2, then the top homology of Hom(Zm , G)1 is

Hqm+n−1(Hom(Zm , G)1) ≅ Z/2.

Proof Let Er and Êr denote the spectral sequences of Proposition 4.7 for hocolim Fm
and hocolim F̂m , respectively. By Proposition 3.3, E1

n ,∗ ≅ H∗(G/T × T m−1). Then, by
Corollary 3.4, E1 is given below, where a possibly nontrivial part is shaded.
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Z

Z(m−1)n

qm

qm − 1

0

0 n

Thus, H∗(Hom(Zm , G)1) = 0 for ∗ > qm + n, and by Corollary 4.8 and Lemma 5.2,

Hqm+n−i(Hom(Zm , G)1) ≅ E2
n−i ,qm

≅ Ê2
n−i ,qm

for i = 0, 1. Let σ be the only one n-face of Δ, and let τ0 , . . . , τn be (n − 1)-faces of Δ.
Then

Ê1
n ,qm

= Z⟨u ⊗ σ⟩ and Ê1
n−1,qm

= Z⟨u ⊗ τ i ∣ i = 0, . . . , n⟩,

where u is a generator of Hqm(Sqm). Since ∣W(σ)∣ = 1 and ∣W(τ i)∣ = 2 for each i, we
have

d1∶ Ê1
n ,qm

→ Ê1
n−1,qm

, u ⊗ σ ↦ 2
n
∑
i=0
(−1)i u ⊗ τ i ,

implying Ê2
n ,qm

= 0, which is proved by the same way as the second proof of Theorem
5.1. Since Ê1

n−1,qm
is a free abelian group, ∑n

i=0(−1)i u ⊗ τ i ∈ Ê1
n−1,qm

is a nontrivial
cycle. Then, by Lemma 5.2, Ê2

n−1,qm
≅ Z/2, completing the proof. ∎

Proof of Theorem 1.4 Combine Theorems 5.1 and 5.4 and Remark 5.3. ∎

6 The complex Δp(k)

This section provides a combinatorial way to detect torsion in the homology of
Hom(Zm , G)1. Define a subcomplex of Δ by

Δp(k) = {σ ∈ Δ ∣ pk+1 does not divide ∣W ∣/∣W(σ)∣}.

Then there is a sequence of subcomplexes

Δp(0) ⊂ Δp(1) ⊂ ⋅ ⋅ ⋅ ⊂ Δp(r) = Δ,

where r is given by ∣W ∣ = pr q with (p, q) = 1.

Example 6.1 Let G = SU(3), so that Δ is a 2-simplex and ∣W ∣ = 6. Then possibly
nontrivial Δp(k) are Δ2(0) and Δ3(0). It is easy to see that Δ2(0) is the 1-skeleton of
Δ and Δ3(0) is the 0-skeleton of Δ.
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The following lemma will play a fundamental role in connecting the mod p
homology of Δp(k) to p-torsion in the homology of Hom(Z2 , G)1.

Lemma 6.2 The homology H∗(hocolim F̂2) is a finite abelian group for each ∗ > q2
and a finitely generated abelian group of rank 1 for ∗ = q2.

Proof Since hocolim F̂ is a CW complex of finite type, the statement is equivalent to
that H∗(hocolim F̂2;Q) is trivial for each ∗ > q2 and isomorphic with Q for ∗ = q2.
Then we compute the rational homology of hocolim F̂2. Let C∗(−;F) denote the
cellular chain complex over a field F. We assume that a sphere Sq2 is given a cell
decomposition Sq2 = e0 ∪ eq2 . Then for 0 ≤ ∗ ≤ n, we can define a map

ϕ∶C∗(Δ;Q) → C∗+q2(hocolim F̂2;Q), σ ↦ ∣W(σ)∣
∣W ∣ u × σ ,

where σ is a face of Δ and u is a generator of Cq2(Sq2 ;Q) ≅ Q. Then

ϕ(∂σ) =
dim σ
∑
i=0

(−1)i ∣W(τ i)∣
∣W ∣ u × τ i =

∣W(σ)∣
∣W ∣

dim σ
∑
i=0

(−1)i ∣W(τ i)∣
∣W(σ)∣ u × τ i = ∂ϕ(σ),

where ∂σ = ∑dim σ
i=0 (−1)i τ i . Thus, ϕ is a chain map. Clearly, ϕ is bijective, and so

H∗(Δ;Q) ≅ H∗+q2(hocolim F̂2;Q). Since Δ is contractible, the proof is done. ∎

Now, we prove the main theorem of this section.

Theorem 6.3 The mod p homology of Δp(k) is nontrivial for some k if and only if
hocolim F̂2 has p-torsion in homology.

Proof We assume that a sphere Sq2 is given a cell decomposition Sq2 = e0 ∪ eq2 .
Consider a map

ϕk ∶C∗(Δp(k);Z/p) → C∗+q2(hocolim F̂2;Z/p), σ ↦ ∣W(σ)∣
pr−k u × σ ,

where σ is a face of Δp(k), u is a generator of Cq2(Sq2 ;Z/p) ≅ Z/p and r is given by
∣W ∣ = pr q with (p, q) = 1. Then

ϕk(∂σ) =
dim σ
∑
i=0

(−1)i ∣W(τ i)∣
pr−k u × τ i =

∣W(σ)∣
pr−k

dim σ
∑
i=0

(−1)i ∣W(τ i)∣
∣W(σ)∣ u × τ i = ∂ϕk(σ),

and so ϕk is a chain map.
Let P(K) denote the face poset of a simplicial complex K as in Section 4. Suppose

that H̃∗(Δp(k);Z/p) ≠ 0. Then there is a non-boundary cycle

α = ∑
σ∈P(Δp(k))

aσ σ
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in the reduced cellular chain complex C̃∗(Δp(k);Z/p). We may assume that the
homology class [α] does not lie in the image of the natural map

H∗(Δp(k − 1);Z/p) → H∗(Δp(k);Z/p),

because we can replace Δp(k) with Δp(l) for some l < k otherwise. Since ϕk annihi-
lates C∗(Δp(k − 1);Z/p),

ϕk(α) = ∑
σ∈P(Δp(k))−P(Δp(k−1))

∣W(σ)∣
pr−k aσ(u × σ) ∈ C∗+q2(hocolim F̂2;Z/p),

which is a cycle because α is a cycle and ϕk is a chain map. Suppose

ϕk(α) = ∂
⎛
⎝ ∑

τ∈P(Δp(k))
bτ(u × τ)

⎞
⎠

.

Then we have

ϕk(α) = ∂
⎛
⎝ ∑

τ∈P(Δp(k))−P(Δp(k−1))
bτ(u × τ)

⎞
⎠

= ∂ϕk
⎛
⎝ ∑

τ∈P(Δp(k))−P(Δp(k−1))

pr−k

∣W(τ)∣bττ
⎞
⎠

.

By definition, ϕk is injective on the subgroup of C∗(Δp(k);Z/p) generated by faces in
P(Δp(k)) − P(Δp(k − 1)). So we obtain that α is homologous to a cycle in Δp(k − 1).
Since α is not homologous to a non-boundary cycle in Δp(k − 1) by assumption,
α is homologous to a boundary in Δp(k). Then α itself is a boundary, which is a
contradiction. Then ϕk(α) is a non-boundary cycle in C∗+q2(hocolim F̂2;Z/p). If
∣α∣ = 0∣, then the proof of Lemma 6.2 implies that ϕk(α) is not the mod p reduction of
a representative of an integral homology class of infinite order. Thus, by Lemma 6.2,
H∗(hocolim F̂2) has p-torsion in homology.

Assume H̃∗(Δp(k);Z/p) = 0 for each k. Then we suppose hocolim F̂2 has p-torsion
in homology and derive a contradiction. The E2-term of the spectral sequence of
Proposition 4.7 for hocolim F̂2 is illustrated as follows, where possibly nontrivial parts
are shaded.

q2

0

0 n
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Then H∗(hocolim F̂2) has p-torsion only for ∗ ≥ q2. So there is a cycle representing
a p-torsion element in the homology of hocolim F̂2. We may assume that its mod p
reduction

α̂ = ∑
σ∈P(Δ)

āσ(u × σ)

represents a nontrivial mod p homology class of hocolim F̂2. Let

α̂k = ∑
σ∈P(Δp(k))−P(Δp(k−1))

āσ(u × σ).

By definition, α̂ = α̂0 + ⋅ ⋅ ⋅ + α̂r . Clearly, ∂α̂k is a linear combination of simplices in
P(Δp(k)). For σ ∈ P(Δp(k)) − P(Δp(k − 1)) and τ ∈ P(Δp(k − 1)), if σ > τ, then
∣W(τ)∣/∣W(σ)∣ ≡ 0mod p, implying that ∂α̂k is actually a linear combination of
simplices in P(Δp(k)) − P(Δp(k − 1)). Thus, since ∂α̂ = 0, we get

∂α̂k = 0

for each k. Let

αk = ∑
σ∈P(Δp(k))−P(Δp(k−1))

pr−k

∣W(σ)∣ aσ σ ∈ C̃∗(Δp(k);Z/p).

Then ϕk(αk) = α̂k , implying ∂ϕk(αk) = 0. So we get ∂αk ∈ C̃∗(Δp(k − 1);Z/p). Since
H̃∗(Δp(k − 1);Z/p) = 0, there is βk ∈ C̃∗(Δp(k − 1);Z/p) such that ∂αk = ∂βk . Then,
since the map ϕk annihilates C∗(Δp(k − 1);Z/p), we get

ϕk(αk − βk) = ϕk(αk) = α̂k .

So since H̃∗(Δp(k − 1);Z/p) = 0, αk − βk is a boundary, implying α̂k is a boundary.
Thus, since k is arbitrary, α̂ is a boundary, which is a contradiction. Therefore,
hocolim F̂2 does not have p-torsion in homology, completing the proof. ∎

Corollary 6.4 If the mod p homology of Δp(k) is nontrivial for some k, then
Hom(Zm , G)1 has p-torsion in homology for each m ≥ 2.

Proof By Theorem 6.3, if the mod p homology of Δp(k) is nontrivial for some k,
then hocolim F̂2 has p-torsion in homology. Thus, by Proposition 4.9, Hom(Z2 , G)1
has p-torsion in homology too. Since Hom(Z2 , G)1 is a retract of Hom(Zm , G)1 for
m ≥ 2, the statement is proved. ∎

7 Computation of torsion in homology

This section computes torsion in the homology of Hom(Zm , G)1 when G is
SU(n), Spin(2n) and exceptional groups by describing the complex Δp(k) in terms
of the extended Dynkin diagram of G.

Note that every facet of Δ corresponds to a simple root or the highest root, and
every i-face is an intersection of n − i facets, where a facet of Δ means a face of
codimension one. Then there is a one-to-one correspondence between i-faces of Δ
and choices of n − i roots from the simple roots and the highest root. Recall that the
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extended Dynkin diagram of G is a graph whose vertices are simple roots and the
highest root. We will mean by a colored extended Dynkin diagram of G an extended
Dynkin diagram of G whose vertices are colored by black and white. Here is an
example of a colored extended Dynkin diagram of Spin(12).

Let Di be the set of all colored extended Dynkin diagram with i + 1 white vertices
and n − i black vertices, where the extended Dynkin diagram of G has n + 1 vertices.
Then, by the observation above, we get the following.

Lemma 7.1 There is a bijection

Ψi ∶ Pi(Δ) ≅�→ Di ,

which sends an i-face σ ∈ Pi(Δ) to a colored extended Dynkin diagram such that n − i
vertices corresponding to σ are black.

We will compute the mod p homology of Δp(k) by specifying Ψi(Pi(Δp(k))). Let
Γ be a colored extended Dynkin diagram of G. For an induced subgraph Θ of Γ, let
WΘ denote the subgroup of W generated by simple reflections corresponding to the
vertices of Θ, where we put W∅ = 1. By definition, we have the following.

Lemma 7.2 (1) If a colored extended Dynkin diagram Γ is the disjoint union of
induced subgraphs Γ1 , . . . , Γk after removing all white vertices, then

WΓ = WΓ1 × ⋅ ⋅ ⋅ ×WΓk .

(2) For an i-face σ of Δ, there is an isomorphism

W(σ) ≅ WΨi(σ) .

Let v1 , . . . , v i be vertices of the extended Dynkin diagram. We denote by v1 . . . v i
an (i − 1)-face σ such that white vertices of the extended Dynkin diagram Ψi−1(σ)
are v1 , . . . , v i . For example, as for G = SU(3), 13 corresponds the following colored
extended Dynkin diagram.

21

3

7.1 The SU(n) case

Throughout this subsection, let G = SU(n + 1). Recall that the extended Dynkin
diagram of SU(n + 1) is the cycle graph with n + 1 vertices, denoted by Cn+1.
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Example 7.3 The following figure shows all colored extended Dynkin diagrams of
SU(3), where Δ is a 2-simplex. The left three graphs correspond to vertices, the
middle three graphs correspond to edges, and the most right graph corresponds to
the 2-simplex.

Now, we describe faces of Δp(0). Let C(i) be the following graph with pi − 1 black
vertices and one gray vertex.

1 2 pi − 1 pi

Proposition 7.4 For n > 1, let n + 1 = ∑l
j=0 a j p j be the p-adic expansion, where 0 ≤

a j < p for each j. A colored extended Dynkin diagram of SU(n + 1) is in Ψi(Pi(Δp(0)))
if and only if it is obtained by gluing a j copies of C( j) for j = 0, . . . , l such that i + 1 gray
vertices are replaced by white vertices and the remaining gray vertices are replaced by
black vertices.

Proof First, we prove the if part. Let Γ be the colored extended Dynkin diagram
specified in the statement, and let Γ′ be a colored extended Dynkin diagram which
is constructed by recoloring the originally gray vertices of Γ by white. Then, by
Lemma 7.2,

∣WΓ′ ∣ =
l
∏
j=0
(p j!)a j ,

and so we get

∣W ∣
∣WΓ′ ∣

=
l
∏
j=1

a j−1

∏
j′=1

(n + 1 − j′p j ∑k> j ak pk

p j ).

By Lucas’s theorem, (n+1− j′ p j
∑k> j ak pk

p j ) is prime to p for each j and j′, implying that
∣W ∣
∣WΓ′ ∣

is prime to p. Then, since ∣WΓ′ ∣ divides ∣WΓ ∣, ∣W ∣∣WΓ ∣
is prime to p, so that we obtain

Γ ∈ Ψi(Pi(Δp(0))).
Next, we prove the only if part. The n = 2 case can be easily deduced from

Example 7.3. Suppose we have the one-to-one correspondence in the statement for
SU(k + 1) with k ≤ n − 1. Since W(v) = W for each vertex v of Δ, vertices of Δ are
vertices of Δp(0). Then, by Lemma 7.1, there is a one-to-one correspondence between
Ψ0(P0(Δp(0))) and vertices of Δp(0).

Let Γ ∈ Ψi(Pi(Δp(0))) for i > 0. Then Γ includes the following subgraph Θ with
n′ black vertices and two white vertices for 0 ≤ n′ ≤ n − 2.
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1 2 n′ + 1 n′ + 2

Let n′ + 1 = ∑l
j=0 a′j p j be the p-adic expansion. By Lemma 7.2,

∣WΓ ∣ = ∣WΘ ∣∣WΓ−Θ ∣

such that ∣WΘ ∣ = (n′ + 1)! and ∣WΓ−Θ ∣ divides (n − n′)!. Then, since ∣W ∣/∣WΓ ∣ is prime
to p,

∣W ∣
(n′ + 1)!(n − n′)!

= (n + 1)!
(n′ + 1)!(n − n′)!

= ( n + 1
n′ + 1

)

is also prime to p. Thus, by Lucas’s theorem, we obtain

a′j ≤ a j

for each j. Let Θ be a cycle graph with n − n′ + 1 vertices which is obtained from Γ by
contracting Θ to a single white vertex. Then, by the induction hypothesis, Θ belongs to
Ψi−1(Δp(0)) for G = SU(n − n′), and so Θ is obtained by gluing C( j). By definition,
the graph Θ is also obtained by gluing C( j). Therefore, Γ itself is obtained by gluing
C( j), completing the proof. ∎

Now, we compute torsion in the homology of Hom(Zm , SU(n + 1))1.

Theorem 7.5 The homology of Hom(Zm , SU(n + 1))1 for m ≥ 2 has p-torsion in
homology if and only if p ≤ n + 1.

Proof By Lemma 1.1 and ∣W ∣ = (n + 1)!, Hom(Zm , SU(n + 1))1 has no p-torsion in
homology for p > n + 1. So we assume p ≤ n + 1 and prove that Hom(Zm , SU(n +
1))1 has p-torsion in homology. By Corollary 6.4, it suffices to show that the mod
p homology of Δp(0) for SU(n + 1) is nontrivial. To this end, we aim to prove
χ(Δp(0)) ≠ 1, where χ(K) denotes the Euler characteristic of a simplicial complex
K. By Lemma 7.1 and Proposition 7.4, rotations of a cycle graph induce the action
of a cyclic group Z/(n + 1) on Ψi(Pi(Δp(0))). Let n + 1 = ∑l

j=0 a j p j be the p-adic
expansion, where a l ≠ 0. Then every element of the stabilizer of a face σ ∈ Pi(Δp(0))
permutes C(l)-parts of Ψi(σ) because C(l) is not obtained by gluing a i copies of
C(i) for i < l . Thus, the order of the stabilizer of Ψi(σ) is at most (n + 1, a l), implying
∣Pi(Δp(0))∣ is divisible by

1 < n + 1
(n + 1, a l)

< n + 1

for each i. Therefore, since a l < n + 1 and χ(Δp(0)) = ∑i≥0(−1)i ∣Pi(Δp(0))∣, we
obtain that χ(Δp(0)) is divisible by n+1

(n+1,a l )
, implying χ(Δp(0)) ≠ 1. ∎

7.2 The Spin(2n) case

Throughout this subsection, let G = Spin(2n), and let r be the integer such that ∣W ∣ =
pr q for (p, q) = 1. We aim to prove the non-triviality of the homology of Δp(r − 1).
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Fix a vertex v of the extended Dynkin diagram of SU(n + 1). Let f i(n, p) denote the
number of colored extended Dynkin diagrams Γ of SU(n + 1) such that Γ ∈ Di , v is
white-colored and ∣WΓ ∣ is prime to p. Let

χ(n, p) =
n
∑
i=0
(−1)i f i(n, p).

Example 7.6 All colored extended Dynkin diagrams Γ of SU(4) satisfying that a
fixed vertex v is white-colored and ∣WΓ ∣ is prime to p = 3 are as below. Then f0 = 0, f1 =
1, f2 = 3, f3 = 1, implying χ(3, 3) = 1.

v v v v v

We compute χ(n, p) for general n and p.
Lemma 7.7 We have

χ(n, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1, n ≡ −1 mod p,
1, n ≡ 0 mod p,
0, otherwise.

Proof It is easy to see the statement holds for n ≤ p − 1. Let Γ be a colored extended
Dynkin diagram of SU(n + 1) such that v is white-colored and ∣WΓ ∣ is prime to p. Then
for n ≥ p, it follows from Lemma 7.2 that Γ is given as below, where 0 ≤ k ≤ p − 2.

v

k + 1

1

2

k − 1

k

Thus, we get

χ(n, p) =
p−2

∑
i=1

−χ(n − i , p),

and so the proof is done by induction on n. ∎
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We name the vertices of the extended Dynkin diagram of Spin(2n) as follows.

v1

v2

v3

v4 vn−2
vn−1

vn

vn+1

Let Γ1 and Γ2 be colored extended Dynkin diagrams of Spin(2n). Suppose all but one
vertices of Γ1 and Γ2 have the same colors. If Γ1 and Γ2 correspond to faces of Δp(k),
then we can cancel out these faces in the computation of χ(Δp(k)). Thus, we specify
the case Γ1 is a face of Δp(k) but Γ2 is not.

Lemma 7.8 Let Γ1 and Γ2 be colored extended Dynkin diagrams of Spin(2n) such that
all vertices but the vertex v1 have the same color. If Γ1 corresponds to a face of Δp(r − 1)
and Γ2 is not, then Γ2 is of the following form.

v2

v1

v3

v4 vp vp+1

Proof The statement follows from Lemma 7.2. ∎
Theorem 7.9 If p ≤ n and n ≡ 0, 1 mod p, then for m ≥ 2, Hom(Zm , Spin(2n))1
has p-torsion in homology.

Proof As in the proof of Theorem 7.5, it suffices to show χ(Δp(r − 1)) ≠ 1 for p ≤ n
and n ≡ 0, 1mod p. Let

χ̃(n, p) =
n
∑
i=0
(−1)i(∣Pi(Δ)∣ − ∣Pi(Δp(r − 1))∣).

Then, since χ(Δ) = 1, we have χ(Δp(r − 1)) = 1 − χ̃(n, p), and so χ(Δp(r − 1)) ≠ 1 if
and only if χ̃(n, p) ≠ 0.

First, we consider the n ≥ 2p + 2 case. Note that Lemma 7.8 holds if we replace
v1 with vn . Then, since n ≥ 2p + 2, we only need to count colored extended Dynkin
diagrams of Spin(2n) such that vertices v1 , v2 , . . . , vp+1 , vn−p+1 , vn−p+2 , . . . , vn+1 are
colored as in Lemma 7.8. If we delete v1 , v2 , . . . , vp+1 , vn−p+1 , vn−p+2 , . . . , vn+1 and
add a white vertex v together with edges vvp+2 and vvn−p , then we get a colored
extended Dynkin diagram of SU(n − 2p). Through this operation, there is a one-to-
one correspondence between colored extended Dynkin diagrams of Spin(2n) whose
left and right ends are as in Lemma 7.8 and colored extended Dynkin diagrams of
SU(n − 2p) such that a fixed vertex v is white-colored. Then we get

χ̃(n, p) = −χ(n − 2p − 1, p).

Therefore, for n ≥ 2p + 2, the proof is finished by Lemma 7.7.
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Next, we consider the p ≤ n < 2p + 2 case. We only need to count colored extended
Dynkin diagrams such that vertices v1 , v2 , . . . , vp+1 are colored as in Lemma 7.8. Except
for n = p, p + 1, 2p, 2p + 1, vertices vp+2 , vp+3 , . . . , vn+1 can have arbitrarily color, and
so χ̃(n, p) = 0. For n = p, we only need to count the graphs whose vertices v1 , . . . , vp−1
are colored as in Lemma 7.8. Then there are only three graphs to be counted as follows,
where vp and vp+1 are either black or white such that they cannot be white at the same
time.

v2

v1

v3

v4 vp−2
vp−1

vp

vp+1

In each case n = p + 1, 2p, 2p + 1, it follows from Lemma 7.8 that there is only one
graph to be counted. For n = p + 1, the end vertices v1 , v2 , vp+1 , vp+2 are white and
the remaining vertices are black. For n = 2p, the end vertices v1 , v2 , v2p , v2p+1 and the
middle vertex vp+1 are white and the remaining vertices are black. For n = 2p + 1,
the end vertices v1 , v2 , v2p+1 , v2p+2 and the middle vertices vp+1 , vp+2 are white and
the remaining vertices are black. Summarizing, χ̃(n, p) ≠ 0 for n = p, p + 1, 2p, 2p + 1.
Therefore the statement is proved. ∎

7.3 The exceptional case

We continue to compute torsion in the homology of Hom(Zm , G)1 when G is the
exceptional Lie group. Let G be exceptional, and let p be a prime dividing ∣W ∣, where
∣W ∣ is given as in Table 1. Then G has p-torsion in homology except for

(G , p) = (G2 , 3), (E6 , 5), (E7 , 5), (E7 , 7), (E8 , 7)(7.1)

(see [23, Theorem 5.11, Chapter 7]). Since G is a retract of Hom(Zm , G)1,
Hom(Zm , G)1 has p-torsion in homology except possibly for the cases (7.1). On the
other hand, Hom(Zm , G)1 has no p-torsion in homology when p does not divide ∣W ∣.
Then we only need to consider the cases (7.1).

Now, we prove the following.

Theorem 7.10 Let G be exceptional. Then Hom(Zm , G)1 for m ≥ 2 has p-
torsion in homology if and only if p divides ∣W ∣, except possibly for (G , p) =
(E7 , 5), (E7 , 7), (E8 , 7).

Proof As observed above, it follows from Corollary 6.4 that we only need to
show that Δp(0) has nontrivial mod p homology for (G , p) in (7.1) for (G , p) =
(G2 , 3), (E6 , 5).

Let G = G2. Then the extended Dynkin diagram is given as below. So, by Lemma 7.2,
Δ3(0) consists only of two vertices 1 and 3, implying it has nontrivial mod p homology.

1 2 3
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Type Lie group Rank W ∣W ∣

An SU(n + 1) n Σn+1 (n + 1)!

Bn Spin(2n + 1) n Bn 2n n!

Cn Sp(n) n Bn 2n n!

Dn Spin(2n) n B+n 2n−1n!

G2 G2 2 —– 22 ⋅ 3
F4 F4 4 —– 27 ⋅ 32

E6 E6 6 —– 27 ⋅ 34 ⋅ 5
E7 E7 7 —– 210 ⋅ 34 ⋅ 5 ⋅ 7
E8 E8 8 —– 214 ⋅ 35 ⋅ 52 ⋅ 7

Table 1: Simple Lie groups and their Weyl groups.

Let G = E6. Then the extended Dynkin diagram is given as below.

v

It has symmetry of rotation around the vertex v. By Lemma 7.2, we can see that if
a colored extended Dynkin diagram is symmetric with respect to the rotation around
v, then its corresponding face of Δ does not lie in Δ5(0). Then the number of i-faces
of Δ5(0) is divisible by 3 for each i, implying χ(Δ5(0)) is divisible by 3. Thus, Δ5(0)
has nontrivial mod 5 homology. ∎

By Theorems 7.5, 7.9, and 7.10, we dare to pose the following.

Conjecture 7.11 The homology of Hom(Zm , G)1 for m ≥ 2 has p-torsion if and only if
p divides the order of W.

8 Negative results

Although we have pose Conjecture 7.11, the complex Δp(k) does not work in the
remaining cases, unfortunately. To be fair, we prove this, but we have to notice that
those negative results do not imply the nonexistence of torsion in homology because
the non-triviality of the homology of Δp(k) is only a sufficient condition for the
existence of p-torsion in the homology of Hom(Zm , G)1 for m ≥ 2.
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First, we consider the Spin(2n) case by examining (G , p) = (Spin(10), 3) which
is not included in Theorem 7.9. Since ∣W ∣ = 24 ⋅ 5! for G = Spin(10), we only need to
consider Δ3(0).
Proposition 8.1 The complex Δ3(0) of Spin(10) is contractible.
Proof We prove the statement by applying discrete Morse theory. We refer to [22]
for materials of discrete Morse theory. We name the vertices of the extended Dynkin
diagram of Spin(10) as follows.

1

2

3

4

5

6

By Lemma 7.2, it is straightforward to see that facets of Δ3(0) are

1234, 1236, 1346, 1456, 3456.

Then we have the following acyclic partial matching.

(1234,234) (1236,236) (1346,134) (1456,145) (3456,345) (123,12) (124,24)
(126,26) (136,13) (146,14) (156,15) (346,34) (356,35) (456,45)
(16,1) (23,2) (36,3) (46,4) (56,5)

Since all faces of Δ3(0) but the vertex 6 appear in the acyclic partial matching above, it
follows from the fundamental theorem of discrete Morse theory that Δ3(0) collapses
onto the vertex 6, implying Δ3(0) is contractible. ∎

Next, we consider the G = Spin(2n + 1), Sp(n) case.
Proposition 8.2 Let G be Spin(2n + 1) for n ≥ 3 or Sp(n), and let p be an odd prime
dividing ∣W ∣. Then for each k, Δp(k) is contractible.
Proof We only prove the case G = Spin(2n + 1) because the case G = Sp(n) is quite
similarly proved. The extended Dynkin diagram of Spin(2n + 1) is given as follows.

v

Let Δ̂p(k) be the subcomplex of Δp(k) consisting of faces σ such that in the corre-
sponding colored extended Dynkin diagram, the vertex v is black. Let Γ = Ψi(σ) for
an i-face σ of Δ̂p(k). Let Γ′ be a colored extended diagram whose vertices have the
same color as Γ except for the vertex v. So the vertex v of Γ′ is white. By Lemma 7.2,
Γ′ corresponds to the join v ∗ σ . Since ∣WΓ ∣/∣WΓ′ ∣ is a power of 2, the join v ∗ σ is an
(i + 1)-face of Δp(k). Thus, Δp(k) is the join v ∗ Δ̂p(k), completing the proof. ∎
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Finally, we consider the exceptional case. The only cases that are not included in
Theorem 7.10 are (G , p) = (E7 , 5), (E7 , 7), (E8 , 7). Since ∣W(E7)∣ = 210 ⋅ 34 ⋅ 5 ⋅ 7, we
only need to consider Δp(0) for G = E7 and p = 5, 7.

Proposition 8.3 For G = E7 and p = 5, 7, Δp(0) is contractible.

Proof Let G = E7. Then its extended Dynkin diagram is given as follows.

1 2 3 4 5 6 7

8

Then the facets of Δ5(0) are

1237, 1238, 1278, 1567, 1678, 5678.

So we have the following acyclic partial matching.

(1237,137) (1238,138) (1278,278) (1567,157) (1678,168) (5678,578)
(123,13) (127,17) (128,18) (156,15) (167,67) (178,78)
(237,37) (238,38) (567,57) (568,58) (678,68) (12,2)
(16,6) (23,3) (27,7) (28,8) (56,5)

Note that all faces of Δ5(0) but the vertex 1 appear in the acyclic partial matching
above. Thus, by the fundamental theorem of discrete Morse theory, Δ5(0) collapses
onto the vertex 1, implying Δ5(0) is contractible. By Lemma 7.2, the facets of Δ7(0)
are 18 and 78. Then Δ7(0) is a path graph of length 2, implying it is contractible. ∎

Since ∣W(E8)∣ = 214 ⋅ 35 ⋅ 52 ⋅ 7, we only need to consider Δ7(0) for (G , p) =
(E8 , 7).

Proposition 8.4 For G = E8, Δ7(0) is contractible.

Proof The extended Dynkin diagram of E8 is given as below.

1 2 3 4 5 6 7 8

9

Then, by Lemma 7.2, Δ7(0) is the following two-dimensional simplicial complex.
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9

2 1

7

8

Thus Δ7(0) is contractible. ∎
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