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On a class of power-associative
periodic rings

J.A. Loustau

A power-associative ring A is called a p-ring provided there

exists a prime p so that for every x in A , ar = x and

px = 0 . It is shown that if A is such a ring with p # 2 ,

then A is isomorphic to a subdirect sum of copies of GF(p) ,

the Galois field with p elements.

1. Introduction

A power-associative ring A is called a p-ring provided there exists

a prime p so that for every x in A , x? = x and px = 0 . It is

well known that any associative p-ring is commutative and is isomorphic to

a subdirect sum of copies of GF(p) (see for example, [3, p. I1*1*]). In

this paper we will extend this result to power-associative p-rings with

p t 2 . Stated formally we have:

THEOREM. Let A be a power-as so dative p-ring with p f 2 3 then A

is associative and aommutative. Thus, A is a subdireot sum of copies of

GF(p) .

Before proceeding we need the following terminology. Let A be an

algebra over a field F not of characteristic 2 . Then A will denote

the algebra which is the same set as A with addition and scalar

multiplication defined as in A and multiplication defined by

x.y = l(xy+yx) , where juxtaposition denotes the product in A . Hence A

is a commutative algebra which is power-associative if A is
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power-associative.

The proof of the theorem will proceed as follows. We begin by letting

A be a power-associative p-ring of characteristic not 2 and show that

A is a Jordan ring. The argument used here is similar to the one

employed by Albert which showed that for any finite strictly

power-associative division ring D , D is a Jordan algebra [5, p. 133].

Next we shall show that A is associative. For this purpose we first

apply the Shirshov-Cohn Theorem and then the Vandermonde determinant

argument employed by Forsythe and McCoy which showed that associative

p-rings are commutative [3, p. l M ] . The proof is completed by showing

that if A is a power-associative algebra of characteristic not 2 such

that for every a in A there exists an integer n(a) > 1 , depending on

a , with a = a , then A is commutative and associative provided A

is associative.

2. Proof

In order to show that A is a Jordan algebra, it is necessary to

show that (a;, y, x2) , the associator in x, y , and x 2 , is zero for

every x and y in A For this purpose we look at the ring < x)

generated by x . Clearly we may suppose that x # 0 . Since A is

power-associative, then <x> is associative. Also since' A is a p-ring,

it follows that <x> is a finite, semi-simple algebra over GF(p) . Thus,

<x> is equal to the direct sum of a finite number of copies of GF(p) .

n
Hence if <x> = Y F. , with F. = GF(p) for every i = 1, ..., n , then

i=l t *

there are elements X. and y . t GF(p) , i, j = 1, , n , with
*• 0

n 2 n

x = J \.e. and x = \ \x .e. , where e. is the identity of F. .

Also it is clear that ie-}._. is a set of orthogonal idempotents in A

Now with this representation for x and x 2 it follows that
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2 f n n

. y> x ) = \ I A . e . , y , I u . e .
H=l v v i = l 3 °
n

I KvAe., y, e.)
1=1 J J

since A is commutative and hence flexible. However, Albert has shown

that in a commutative, power-associative algebra Ft , {e, r, e' ) = 0 for

every r i. R and every pair of orthogonal idempotents e, e' [5, Lemma

5.2, p. 133]. Thus, indeed (x, y, x2) = 0 , and A is Jordan.

Next we claim that the Jordan algebra A is associative. First of

all note that because A has no nonzero nilpotent elements, it suffices

to show that A is alternative. This is the case due to the well-known

fact that any commutative, alternative ring without nonzero nilpotent

elements is associative [4, Lemma 3, p. 1175]- Hence, we only need show

that if A is generated by two elements, then it is associative.

Therefore, we can suppose by the Shirshov-Cohn Theorem that- A is a

special Jordan algebra.

Let \S[A ) , a be the special universal envelope of A . Then we

have that 0 is an injection mapping and A can be assumed to be

contained in S[A ) . Now S[A ) has the following properties. It is an

associative algebra with identity generated by {x : x € A u GF(p)} .

Also if x, y i A with x.y their product in A and xy their product

in S(A ) , then x.y = ±{xy+yx) . Therefore, to show that A is

associative it suffices to show that S(A ) is commutative, since in this

case A is a subalgebra of S{A ) = S[A }. Clearly s[A ) is

commutative if and only if xy = yx for every x, y (. A
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Now with x and y in A , we have in S(A )

(1) (x*yf = a? + yP .

Therefore in s[A ) ,

where A^ is the sum of all words in the expansion of (x+y)^ in which y

appears i times and a; appears (p-t) times. Then substituting \y

for y in (l) for any X € GF(p) we have

(2) 5 _

Thus, if m denotes the determinant of the matrix

1 1 1

2P-1

and if m.,...,m . denote the co-factors of the elements of the first

column of the above matrix, then by multiplying the X-th equation in (2)

by m^ and adding we have from an elementary property of determinants that

mA = 0 . But since the above determinant is a Vandermonde determinant it

follows that m and p are relatively prime. Hence A = 0 . Now by an

easy calculation we have

0 — xA — A x = Xr y — war = xy — yx .

Therefore S(A ) is commutative, and hence A is associative.

It remains to show that A is commutative, since then A = A and

the result will follow. For this purpose we have the following lemma.

LEMMA. Let R be a power-associative algebra of characteristic not

2 such that for every a in R there exists a positive integer

n{a) > 1 , depending on a , with a a = a . Then R is commutative and
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associative if R is associative.

Proof. As above, it suffices to show that R is commutative. Let x

and y be in R and look at the ring B generated by x and y . Since

B is a finitely generated, associative, commutative ring, without nonzero

nilpotent elements and satisfying the hypothesis of the lemma, then B is

the direct sum of a finite number of Galois fields, that is,

+ n
B = 7 F • where each F. is a finite field. Hence to show that A is

i=X l V

commutative it suffices to show that st = ts for every s £ F. and

t € F . for some choice of i and j . Also, we can suppose that neither
3

s nor t is zero. If i = j , then there is a z £. B and positive

integers a and $ with za = s and z = t . So by the

power-associativity of B , st = ts • If i i- j , then we look at the

following identity which holds in any power-associative algebra not of

characteristic 2

(3) [a.b, c] + [a.c, b] + [b.c, a] = 0

for every a, b, c i B [5, p. 129]. (Here a.b denotes the product in

B and [u, v] is the commutator in B of u and V .) Since S is

the direct sum of the fields F. , i = 1, ..., n , then u.V = 0 for

every udF.,v£F.,itj. Then by setting a = s, b = s , c = t

in (3) it follows that the last two commutators in (3) are zero. Hence

0 = [s.S
n(s)-\ t] = [s, t] .

Therefore, B is indeed commutative, and since x and y were chosen

arbitrarily, R is also commutative. This completes the proof of the

lemma and also the proof of the theorem.
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