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On a class of power-associative
periodic rings

J.A. Loustau

A power-associative ring A is called a p-ring provided there

exists a prime p so that for every x in 4 , xp = x and
pr = 0 . It is shown that if A4 1is such a ring with p # 2 ,
then A is isomorphic to a subdirect sum of copies of GF(p) ,

the Galois field with p elements.

1. Introduction

A power-associative ring A is called a p-ring provided there exists

a prime p so that for every 2 in A4 , xp =x and pxr =0 . It is
well known that any associative p-ring is commutative and is isomorphic to
a subdirect sum of copies of GF(p) (see for example, [3, p. 1L44]). 1In
this paper we will extend this result to power-associative p-rings with

p # 2 . BStated formally we have:

THEOREM. Let A be a power-associative p-ring with p # 2 , then A
i8 assoctative and commutative. Thus, A <is a subdirect sum of copies of
GF(p) .

Before proceeding we need the following terminology. Let A4 be an

+
algebra over a field F not of characteristic 2 . Then A will denote

the algebra which is the same set as A with addition and scalar

multiplication defined as in A and multiplication defined by

+
x.y = %(xy+yx) , where juxtaposition denotes the product in 4 . Hence A

is a commutative algebra which is power-associative if A is
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power-associative.

The proof of the theorem will proceed as follows. We begin by letting

A Ybe a power-associative p-ring of characteristic not 2 and show that

+
A is a Jordan ring. The argument used here is similar to the one

employed by Albert which showed that for any finite strictly
power-associative division ring D , p* is a Jordan algebra [5, p. 133].

Next we shall show that A+ is associative. For this purpose we first
apply the Shirshov-Cohn Theorem and then the Vandermonde determinant
arguhent employed by Forsythe and McCoy which showed that associative
p-rings are commutative [3, p. 1k4]. The proof is completed by showing
that if 4 1is a power-associative algebra of characteristic not 2 such
that for every a in A there exists an integer n(a) > 1 , depending on

n(a)

+
a , with a =a , then A 1is commutative and associative provided A

is associative.

2. Proof

+
In order to show that A is a Jordan algebra, it is necessary to

show that (x, Y, z?) , the associator in x, y , and x? , is zero for
+

every x and y in A . For this purpose we look at the ring (x)

generated by «x . Clearly we may suppose that « # 0 . Since 4 is

power-associative, then (x) 1is associative. Also since- A 1is a p-ring,
it follows that (x) is a finite, semi-simple algebra over GF(p) . Thus,

{(x) is equal to the direct sum of a finite number of copies of GF(p)

n
Hence if (x)= )} F. , with F,= GF(p) for every ©i =1, ..., n , then
2y

there are elements Ai and uj €GF(p) , 2,4 =1, ..., n , with
n 2 n
x = Z A.e. and x = U.e. , where e. is the identity of F. .
, i1 . JJ 1 1
1=1 J=1
+
Also it is clear that {ei}2=1 is a set of orthogonal idempotents in A4 .

Now with this representation for =z and z?2 it follows that

https://doi.org/10.1017/5000497270004733X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270004733X

Power-associative periodic rings 359

5 n n
o2 [ e o)
n

Z A.u.(e., Y, e.)
i,51 “I I

n

z A.u.(e., Y e.) .
ig=r LITE T
1#g

+
since A is commutative and hence flexible. However, Albert has shown
that in a commutative, power-associative algebra R , (e, r, ') =0 for

every r € R and every pair of orthogonal idempotents e, e¢' [5, Lemma

+
5.2, p. 133]. Thus, indeed (x, y, 22) =0 , and A4 is Jordan.

+ . . .
Next we claim that the Jordan algebra A is associative. First of
all note that because A+ has no nonzero nilpotent elements, it suffices

to show that A+ is alternative. This is the case due to the well-known
fact that any commutative, alternative ring without nonzero nilpotent

elements is associative [4, Lemma 3, p. 1175]. Hence, we only need show
that if A+ is generated by two elements, then it is associative.
+
Therefore, we can suppose by the Shirshov-Cohn Theorem that 4 is a
special Jordan algebra.
+ +
Let [S(A }, Ou] be the special universal envelope of A . Then we

+
have that ou is an injection mapping and A4 can be assumed to be

contained in SLA+)+ . Now S(A+) has the following properties. It is an
associative algebra with identity generated by {x : x € at u GF(p)} .

Also if =z, y € 4" witn x.y their product in a* and zxy their product
in S(A+) , then zx.y = %(xy+yx) . Therefore, to show that A+ is
associative it suffices to show that SCA+) is commutative, since in this
case A' isa subalgebra of S(A+]+ = S(A+). Clearly S(A+) is

+
commutative if and only if xy = yx for every x, y € 4 .

https://doi.org/10.1017/5000497270004733X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270004733X

360 J.A. Loustau

Now with &« and y in a* s we have in S(A+)
(1) (xylP = 2P + P .

Therefore in S(A+) »

A+ a4y 4o v =0,

where Ai is the sum of all words in the expansion of (x+y)p in which y

appears % times and x appears (p-i) times. Then substituting My
for y in (1) for any X € GF(p) we have

2 p-1 =
(2) My #2344 + =0

Thus, if m denotes the determinant of the matrix

1 1 e 1
2 P
2 -1
(p-1) (p-1)° ... (p-1)P
and if Mys «evs mp—l denote the co-factors of the elements of the first

column of the above matrix, then by multiplying the A-th equation in (2)

by my and adding we have from an elementary property of determinants that
mAl = 0 . But since the sbove determinant is a Vandermonde determinant it
follows that m and p are relatively prime. Hence Al =0 . Now by an

easy calculation we have

0= xAl - Alx = xpy - yxp =Ty ~ yx .

+ + .
Therefore S(A } is commutative, and hence A is associative.

+
It remains to show that A4 is commutative, since then A4 =4 and

the result will follow. For this purpose we have the following lemma.

LEMMA. Let R be a power-agssociative algebra of characteristic not
2 such that for every a in R there exists a positive integer

n(a) > 1 , depending on a , with an(a) =a . Then R 4is commutative and
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.. , + . ..
associative tf R is associative.

Proof. As above, it suffices to show that R is commutative. Let =

and y be in R and look at the ring B generated by x and y . Since
+ . .
B is a finitely generated, associative, commutative ring, without nonzero

+
nilpotent elements and satisfying the hypothesis of the lemma, then B is

the direct sum of a finite number of Galois fields, that is,

n

+

B = Z Fi where each Fi is a finite field. Hence to show that A4 is
%=1

commutative it suffices to show that st = ts for every s € Fi and
t € Fj for some choice of ¢ and J . Also, we can suppose that neither

s nor t is zero. If < = 4 , then there is a 2z € B and positive

integers a and B with 2% =5 and zB =t . So by the

power-associativity of B, st =ts . If 7 # j , then we look at the
following identity which holds in any power-associative algebra not of

characteristic 2
(3) {a.b, e¢] + [a.e, b] + [b.c, al = 0O
for every a, b, ¢ € B [5, p. 129]. (Here a.b denotes the product in

+ +
B and [u, v] is the commutator in B of u and v .) Since B is
the direct sum of the fields Fi s, 2 =1, «.., n , then u.,v =0 for

sn(s)—l

every u € Fi’ v € Fj’ 1 #j . Then by setting a =8, b = e =t

in (3) it follows that the last two commutators in (3) are zero. Hence

0= [6.6")Y, t] = (s, ¢ .

Therefore, B 1is indeed commutative, and since & and Yy were chosen
arbitrarily, R 1is also commutative. This completes the proof of the

lemma and also the proof of the theorem.
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