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Abstract

A Banach space is an Asplund space if every continuous gauge has a point where the subdifferential
mapping is Hausdorff weak upper semi-continuous with weakly compact image. This contributes towards
the solution of a problem posed by Godefroy, Montesinos and Zizler.
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1. Introduction

A continuous convex function φ on a nonempty open convex subset A of a Banach
space (X, ‖ · ‖) is said to be strongly subdifferentiable at x ∈ A if, given ε > 0, there
exists δ > 0 such that

0≤ φ(x + y)− φ(x)− φ′+(x)(y)≤ ε‖y‖ for all ‖y‖< δ,

and was the subject of an interesting study in [11]. The function φ is Fréchet
differentiable at x if also φ′+(x)(y) is linear in y.

A Banach space X is an Asplund space if every continuous convex function φ on a
nonempty open convex subset A of X is Fréchet differentiable at the points of a dense
Gδ subset of A. It is known that X is an Asplund space if X possesses an equivalent
strongly subdifferentiable norm; see [5, Theorem 5.1, p. 68] and [9, Proposition 8,
p. 64]. Further, if X is separable then it is an Asplund space if every equivalent norm
has a nonzero point where it is strongly subdifferentiable [12, Theorem 1, p. 494]. It
has remained an open question whether this last result can be extended to nonseparable
spaces [12, Problem 6(v), p. 501]. Our aim here is to work towards such an extension.

Given a continuous convex function φ on a nonempty open convex subset A of a
Banach space X , the subdifferential of φ at x ∈ A is the nonempty weak∗ compact
convex subset

∂φ(x)≡ { f ∈ X∗ : f (y)≤ φ′+(x)(y) for all y ∈ X}.
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The set-valued subdifferential mapping x 7→ ∂φ(x) is always Hausdorff weak∗ upper
semi-continuous on A; that is, given x ∈ A and weak∗ open neighbourhood W of 0
in X∗, there exists δ > 0 such that

∂φ(B(x; δ))⊆ ∂φ(x)+W

by [13, Proposition 2.5, p. 19]. Further, φ is strongly subdifferentiable at x ∈ A if and
only if, given ε > 0, there exists δ > 0 such that

∂φ(B(x; δ))⊆ ∂φ(x)+ εB(X∗)

by [8, Theorem 3.2, p. 28]. We work with the slightly weaker property; we say that
the subdifferential mapping x 7→ ∂φ(x) is Hausdorff weak upper semi-continuous at
x ∈ A if, given a weak open neighbourhood V of 0 in X∗, there exists δ > 0 such that

∂φ(B(x; δ))⊆ ∂φ(x)+ V .

This has been studied in [1] and for subdifferentials of the norm in [10]. Contreras
and Payá showed that X is an Asplund space if it possesses an equivalent norm whose
subdifferential mapping is Hausdorff weak upper semi-continuous on its unit sphere [3,
Theorem 1.2, p. 453]. Here we show that X is an Asplund space if every continuous
gauge p on X has a point in its domain where the subdifferential mapping x 7→ ∂p(x)
is Hausdorff weak upper semi-continuous with weakly compact image. (We note that
every continuous gauge p on a Banach space X is always strongly differentiable at 0
so is always Hausdorff weak upper semi-continuous there but the subdifferential ∂p(0)
is not in general weakly compact.)

2. The density property

We explore the effect of Hausdorff weak upper semi-continuity on higher dual
spaces. Consider a bounded closed convex set K with 0 ∈ int K in a Banach space X .
The gauge p of X defined by

p(x)≡ inf{λ > 0 : x ∈ λK }

is a continuous positive sublinear functional on X . The polar of K is the subset K 0 of
X∗ defined by

K 0
≡ { f ∈ X∗ : f (x)≤ 1 for all x ∈ K }

and is weak∗ compact convex and 0 ∈ int K 0. The gauge p∗ of K 0 on X∗ is
continuous and weak∗ lower semi-continuous. We denote by K 00 the polar of K 0

in X∗∗ and by p∗∗ the gauge of K 00 on X∗∗, and note that K 00
= K̂

ω∗

and p∗∗|X̂ = p,
[7, Lemma 3.1(i), p. 255].

We now characterize Hausdorff weak upper semi-continuity by a density property.
Such a characterization for subdifferentials of norms was given in [6, Theorem 3.1,
p. 103] and was proved more generally for subdifferentials of proper lower semi-
continuous convex functions in [1, Theorem 3.1, p. 98]. Since our theorem in
Section 3 concerns gauges of bounded closed convex sets we include a direct proof
for subdifferentials of gauges.
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THEOREM 2.1. Consider a Banach space X and a bounded closed convex subset K
with 0 ∈ int K . The continuous gauge p of K has subdifferential mapping x 7→ ∂p(x)
Hausdorff weak upper semi-continuous at x ∈ X if and only if

∂̂p(x) is weak∗ dense in ∂p∗∗(x̂).

PROOF. Suppose that the density property does not hold. Then there exists F0 ∈

∂p∗∗(x̂) which we can strongly separate from ∂̂p(x)
ω∗

by a weak∗ continuous linear
functional F0 ∈ S(X∗∗). So there exists a weak∗ neighbourhood N

∗

F0
of 0 in X∗∗∗

generated by F0 such that
F0 /∈ ∂̂p(x)+ N

∗

F0
.

Since K̂ 0 is weak∗ dense in K 000, for each n ∈ N there exists fn ∈ K 0 such that

|( fn − F0)(x̂)|<
1
n

and |( fn − F0)(F0)|<
1
n
.

Since F0 ∈ ∂p∗∗(x̂) then F0(x̂)= p∗∗(x̂) and F0(F)≤ p∗∗(F) for all F ∈ X∗∗. Then
| fn(x̂)− p∗∗(x̂)|< 1/n and, since fn ∈ K 0, fn(y)≤ p(y) for all y ∈ X . So fn(x̂)≥
p∗∗(x̂)− 1/n = p(x)− 1/n and fn(y − x)≤ p(y)− p(x)+ 1/n for all y ∈ X . By
the Brøndsted–Rockafellar theorem for each n ∈ N there exist yn ∈ X and fyn ∈

∂p(yn) such that

‖ fn − fyn‖ ≤
1
√

n
and ‖x − yn‖ ≤

1
√

n

by [13, Theorem 3.17, p. 48]. But if the subdifferential mapping x 7→ ∂p(x) is
Hausdorff weak upper semi-continuous at x , then, for sufficiently large n ∈ N,

fyn ∈ ∂p(x)+ NF0

where NF0 is the weak neighbourhood of 0 in X∗, the restriction of N
∗

F0
in X∗∗∗.

However,

|( fyn − F0)(F0)| ≤ ‖ fyn − fn‖ + |( fn − F0)(F0)| ≤
1
√

n
+

1
n
,

which contradicts our original separation.
Conversely, suppose that

∂̂p(x) is weak∗ dense in ∂p∗∗(x̂).

Consider a weak neighbourhood V of 0 in X∗. Now V is the restriction of a weak∗

neighbourhood V ∗ of 0 in X∗∗∗. Since the subdifferential mapping F 7→ ∂p∗∗(F) is
Hausdorff weak∗ upper semi-continuous at x̂ ∈ X∗∗, there exists δ > 0 such that

∂p∗∗(B(x̂, δ))⊆ ∂p∗∗(x̂)+ 1
2 V ∗ but ∂p∗∗(x̂)⊆ ∂̂p(x)+ 1

2 V ∗

so ∂p(B(x, δ))⊆ ∂p(x)+ V . 2

It is instructive to see how the density property has implications for the density of
extreme points.
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COROLLARY 2.2. A continuous gauge p on a Banach space X with subdifferential
mapping x 7→ ∂p(x) Hausdorff weak upper semi-continuous at x ∈ X satisfies:

(i) ∂p∗∗(x̂)= co ext ∂̂ p(x)
ω∗

;

(ii) ext ∂p∗∗(x̂)⊆ ext ∂̂ p(x)
ω∗

.

PROOF. Consider F0 an extreme point of ∂p∗∗(x̂). Choquet’s theorem [4, p. 77], gives
us that weak∗ slices of ∂p∗∗(x̂), sets of the form

Sl(∂p∗∗(x̂), F, δ)≡ {F ∈ ∂p∗∗(x̂) : F(F) > sup ∂p∗∗(x̂)(F)− δ},

containing F0 form a weak∗ neighbourhood base for F0. It then follows from
Theorem 2.1 that there exists an element of ∂̂p(x) in the slice and, moreover, an
extreme point of ∂̂p(x) . Since by the Krein–Milman theorem we have that ∂p∗∗(x̂)=
co ext ∂ p∗∗(x̂)

ω∗
, we deduce that

∂p∗∗(x̂)= co ext ∂̂ p(x)
ω∗

.

But further, since ∂̂ p(x)⊆ ∂p∗∗(x̂), it follows that

ext ∂p∗∗(x̂)⊆ ext ∂̂ p(x)
ω∗

by [4, Theorem 3.41, p. 78]. This concludes the proof. 2

3. The continuity characterization

A Banach space X is an Asplund space if and only if its dual x∗ has the Radon–
Nikodým property [13, Theorem 5.7, p. 82]. We exploit the following characterization
of the Radon–Nikodým property to establish our theorem.

PROPOSITION 3.1 [2, Corollary 3.76, (1)⇔ (3), p. 67]. A Banach space X has the
Radon–Nikodým property if and only if every bounded closed convex subset K of X

contains an extreme point of K̂
ω∗

.

THEOREM 3.2. A Banach space X is an Asplund space if every continuous gauge p
on X has a point x0 ∈ X where the subdifferential mapping x 7→ ∂p(x) is Hausdorff
weak upper semi-continuous and the subdifferential ∂p(x0) is weakly compact.

PROOF. Consider K a bounded closed convex subset of X∗. We may assume that
0 ∈ K . The support function p of K on X is

p(x)= sup{ f (x) : f ∈ K }.

Since K is bounded, p is continuous. Further, p is the gauge of the set

{x ∈ X : p(x)≤ 1} = K0 ≡ {x ∈ X : f (x)≤ 1 for all f ∈ K }
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which is a bounded closed convex subset of X and 0 ∈ int K0. Now the polar of K0
in X∗,

K 0
0 ≡ { f ∈ X∗ : f (x)≤ 1 for all x ∈ K0},

is a bounded weak∗ closed convex subset of X∗ and K 0
0 = K

ω∗

, by [4, Theorem 4.32,
p. 119]. Consider p∗ the gauge of K 0

0 on X∗ and the polar of K 0
0 in X∗∗,

K 00
0 ≡ {F ∈ X∗∗ : F( f )≤ 1 for all f ∈ K0

0
}.

Finally, consider p∗∗ the gauge of K 00
0 = K 0 on X∗∗. If the subdifferential mapping

x 7→ ∂p(x) is Hausdorff weak upper semi-continuous at x0 ∈ X , then, by Theorem 2.1,

∂p∗∗(x̂0)= ∂̂p(x0)
ω∗

.

But if also ∂p(x0) is weakly compact in X∗ then

∂p∗∗(x̂0)= ∂̂p(x0)⊆ X̂∗.

Now by the Krein–Milman theorem, ∂p∗∗(x̂0) has an extreme point, some f̂0 ∈

∂̂p(x0). However, ∂p∗∗(x̂0) is an extreme subset of K 000
0 = K 00

= K̂
ω∗

, so f̂0 is an

extreme point of K̂
ω∗

. Suppose that f0 /∈ K . Then we can separate f0 and K by

a weakly closed hyperplane. Then we can separate f̂0 and K̂
ω∗

by a weak∗ closed

hyperplane. But this contradicts f̂0 ∈ K̂
ω∗

. So then K̂
ω∗

has an extreme point in K .
By Proposition 3.1 we have that X∗ has the Radon–Nikodým property and it follows
that X is an Asplund space. 2

4. Remarks

Our Theorem 3.2 goes some way towards an extension of the result of Godefroy
et al. [12, Theorem 1, p. 494]. However, it is apparent that the weakly
compact condition on the subdifferential, although satisfying the requirements of
Proposition 3.1, is more stringent than is necessary. So, any advance with our line
of argument requires us to explore further the relations given in Corollary 2.2.

References

[1] J. Benítez and V. Montesinos, ‘Restricted weak upper semicontinuous differentials of convex
functions’, Bull. Aust. Math. Soc. 63 (2001), 93–100.

[2] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon–Nikodým Property, Springer
Lecture Notes in Mathematics, 33 (Springer, New York, 1983).

[3] M. D. Contreras and R. Payá, ‘On upper semicontinuity of duality mappings’, Proc. Amer. Math.
Soc. 121 (1994), 451–459.

[4] M. Fabian, P. Habala, P. Hájek, V. M. Santalucía, J. Pelant and V. Zizler, Functional Analysis and
Infinite-Dimensional Geometry, CMS Books in Mathematics (Springer, New York, 2001).

https://doi.org/10.1017/S0004972710001978 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001978


[6] A continuity characterization of Asplund spaces 455

[5] C. Franchetti and R. Payá, ‘Banach spaces with strongly subdifferentiable norm’, Boll. Unione
Mat. Ital. 7 (1993), 45–70.

[6] J. R. Giles, D. A. Gregory and B. Sims, ‘Geometrical implications of upper semi-continuity of the
duality mappings on Banach space’, Pacific J. Math. 79 (1978), 99–109.

[7] J. R. Giles and W. B. Moors, ‘A continuity property related to Kuratowski’s index of non-
compactness, its relevance to the drop property, and its implications for differentiabilty theory’,
J. Math. Anal. Appl. 178 (1993), 247–268.

[8] J. R. Giles and W. B. Moors, ‘Generic continuity of restricted weak upper semi-continuous set-
valued mappings’, Set-Valued Anal. 4 (1996), 25–39.

[9] G. Godefroy, ‘Some applications of Simons’ inequality’, Serdica. Math. J. 26 (2000), 59–78.
[10] G. Godefroy and V. Indumathi, ‘Norm-to-weak upper semi-continuity of the duality and pre-

duality mappings’, Set-Valued Anal. 10 (2002), 317–330.
[11] G. Godefroy, V. Indumathi and F. Lust-Piquard, ‘Strong subdifferentiability of convex functionals

and proximinality’, J. Approx. Theory 116 (2002), 397–415.
[12] G. Godefroy, V. Montesinos and V. Zizler, ‘Strong subdifferentiability of norms and geometry of

Banach spaces’, Comment Math. Uni. Carolin. 36 (1995), 493–502.
[13] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, 2nd edn, Lecture

Notes in Mathematics, 1364 (Springer, New York, 1993).

J. R. GILES, School of Mathematical and Physical Sciences,
The University of Newcastle, New South Wales 2308, Australia
e-mail: John.Giles@newcastle.edu.au

https://doi.org/10.1017/S0004972710001978 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001978

