POLYTYPISM OF MICAS. III. X-RAY DIFFRACTION IDENTIFICATION

Z. WEISS

Coal Research Institute, 716 07 Ostrava-Radvanice Czechoslovakia

A. WIEWIÓRA

Institute of Geological Sciences, Polish Academy of Sciences 02 089 Warszawa, Poland

Abstract—Classification and identification criteria of maximum-degree-of-order (MDO) polytypes of homo- and meso-octahedral micas based on the distribution of the intensities of 20*l* (13*l*) and 02*l* reflections are proposed. Calculated $|F(20l)|^2$ and $|F(02l)|^2$ values for single crystals of micas with different compositions are given for one-, two-, and three-layer polytypes. Transmission powder diffractometry is proposed as a suitable method for the identification of the different groups of mica polytypes from polycrystalline specimens. Calculated powder patterns and the characteristic properties of the diffraction patterns of random and highly oriented aggregates are employed for identification purposes. The individual MDO polytypes are designated by generalized Ramsdell symbols which also contain information about their position in the classification system.

Key Words-Crystal structure, Mica, Order-disorder, Polytype, Single crystal X-ray diffraction, X-ray powder diffraction.

Resümee—Klassifikations und Identifikationskriterien für alle maximaler Ordnungsgrad (MOG) Polytype von homo- und meso-oktaedrischen Glimmern, die auf den Intensitätenverteilungen von 20l (13l) und 02l Reflexen beruhen, wurden ausgearbeitet. Die berechneten $|F(20l)|^2$ und $|F(02l)|^2$ Werte für Glimmereinkristalle mit variabler Zusammensetzung und für alle Ein-, Zwei-, und Dreischicht-Polytypen sind angeführt. Als geeignete Methode zur Identifikation von verschiedenen Glimmergruppen in ihren polykristallinen Proben ist Transmissions-Diffraktometrie vorgeschlagen. Der Artikel enthält auch berechnete Pulverdiagramme und ihre Identifikations-charakteristische Eigenschaften für sowohl statistisch- als auch hochorientierte Aggregate. Die einzelnen MOG Polytype sind gekennzeichnet durch verallgemeinerte Ramsdellsche Symbole, die auch Information über ihre Stellung in dem Klassifikationssystem enthalten.

INTRODUCTION

In a recent publication (Ďurovič *et al.*, 1984) a classification system for mica polytypes was presented. This system is based on an order-disorder (OD) model of mica structures with ideal ditrigonalization of their tetrahedral sheets—the so-called Radoslovich model (Backhaus and Ďurovič, 1984). It is closely related to characteristic properties of X-ray diffraction patterns of individual mica polytypes because it is based on the following fundamental geometrical characteristics of their structures:

(1) Superposition structure—defined according to the OD theory as a hypothetical structure in which all possible positions of all OD layers are realized simultaneously (cf. Backhaus and Ďurovič, 1984). It is by definition three-dimensionally periodic, and, because its basic vector **B** in micas is b/3, it corresponds to sharp reflections with k = 3n (orthogonal indexing). All mica polytypes belonging to the same family (i.e., that have the same chemical composition and symmetry of their octahedral sheets) in which all the interlayer cat-

ions are octahedrally coordinated, have the same superposition structure and are said to belong to subfamily A. Their fully descriptive polytype symbols (Dornberger-Schiff et al., 1982) contain orientational characters, all of the same parity. The remaining polytypes of the family have all their interlayer cations in a trigonal prismatic coordination and are said to belong to subfamily B. The parity of orientational characters related to individual mica layers in their structures regularly alternates. An analogous parity rule holds also for the characters in the corresponding symbols proposed by Ross et al. (1966) in that only even-numbered characters apply to subfamily A and only odd-numbered characters apply to subfamily B. It follows that the X-ray diffraction patterns of all polytypes of the same subfamily have the same characteristic subset of sharp reflections with k = 3n and the same XZ projection of their structures.

(2) YZ projection of the structure.—All polytypes of the same family which have the same YZ projection have also the same set of the 0kl reflections in their

Copyright © 1986, The Clay Minerals Society

X-ray diffraction patterns. These reflections (except k = 3n) are sharp only for periodic polytypes; for non-periodic polytypes they appear as diffuse streaks, or they may be smeared-out completely.

From the geometrical considerations it follows that these two characteristics suffice to characterize unambiguously any polytype. Thus, it is necessary only to inspect reflections with k = 3n to identify the subfamily and then the reflections $0kl (k \neq 3n)$ to determine the polytype within it. It is the aim of the present paper to describe in detail how this can be done.

Reflections with k = 3n are sharp for all members of a subfamily, regardless of whether they are periodic (ordered) or non-periodic (disordered). Thus, the subfamily can always be determined. On the other hand, any periodic member has its own YZ projection and consequently its own characteristic set of $0kl \ (k \neq 3n)$ reflections. Of a theoretically infinite number of periodic polytypes from a given subfamily, however, only the polytypes with maximum degree of order (MDO) will be dealt with in this paper. These are the polytypes containing the smallest possible number of kinds of triples, quadruples etc. of OD layers (for their derivation in micas, see Backhaus and Ďurovič, 1984) and, as shown by Ďurovič *et al.* (1984) they are most frequently encountered in natural and synthetic micas.

The three octahedral positions M(1), M(2), and M(3)in the octahedral sheet of a mica polytype can be occupied in different ways. If all positions are occupied by the same cation, one speaks of a homo-octahedral family (commonly containing trioctahedral polytypes), and 6 non-equivalent MDO polytypes exist for it. If two sites are occupied by the same cation and the third by a different cation, a meso-octahedral family results (if the third position is a void, dioctahedral polytypes result), and 14 non-equivalent MDO polytypes exist for it. Finally, if all three sites are occupied by three different cations in an ordered manner, a hetero-octahedral family with 36 non-equivalent MDO polytypes results.

The three octahedral positions can be occupied in the meso-octahedral family in three, and in the heterooctahedral family, in six different ways. Thus, three meso-octahedral and six hetero-octahedral polytypes can, in general, be assigned to one homo-octahedral polytype. All these polytypes have the same framework of all atoms except those that are octahedrally coordinated, which have similar basic vectors. Their X-ray diffraction patterns are also closer to one another than to those of other polytypes. These relations have been called the *relations of homomorphy*.

All MDO polytypes of a family which have the same YZ projection are said to belong to the same MDO group. Five, eleven, and thirty MDO groups exist for homo-, meso-, and hetero-octahedral micas, respectively. Their homomorphic relations are shown in Ta-

ble 4 of Durovič *et al.* (1984) and are useful when identifying polytypes.

GENERALIZED RAMSDELL NOTATION

The relations of homomorphy indicate that the three mesooctahedral and the six hetero-octahedral mica polytypes related to one homo-octahedral family, may have the same number of layers per identity period. They commonly belong to the same crystal system and thus they may have the same Ramsdell symbol. It is, of course, possible to distinguish between them by using their respective fully descriptive polytype symbols. This distinction may not always be practical, and hence it may be advantageous to generalize the popular and widely used Ramsdell symbols, not just by formal subscripts but by identifiers which convey the position of a polytype in the classification system and the relations of homomorphy.

Table 1 is a "cross-reference" classification table for homoand meso-octahedral mica polytypes. This table differs from Table 4 of Ďurovič *et al.* (1984) not only by its deletion of the hetero-octahedral polytypes but also by its inclusion of the new indicative symbols for the polytypes. As shown in the table, the traditional Ramsdell symbols are combined with the present classification on the basis of the two fundamental structural characteristics mentioned above. The table therefore provides unambiguous polytype designations which are more informative than the traditional symbols alone.

The new notation (valid for all phyllosilicates) consists, as a rule, of three identifiers: The first identifier corresponds essentially to the traditional Ramsdell symbol indicating the number of layers and the crystal class $(A = triclinic (anorthic))^3$ M = monoclinic, O = orthorhombic, T = trigonal, H = hexagonal, R = rhombohedral). The second is a subscript denoting the subfamily, e.g., $2M_A$, $2M_B$ instead of $2M_1$, $2M_2$ used presently. The third, following the hyphen (-), stands for the appropriate MDO group. One, two, or three numbers may be present, separated by commas (,) for homo-, meso-, and hetero-octahedral families, respectively. The MDO groups in the homo-octahedral family are labelled by roman, and others by arabic numerals; e.g., $1M_{A}$ -I,1 denotes a one-layer monoclinic polytype belonging to the subfamily A and the mesooctahedral MDO group 1 homomorphous to the homo-octahedral group I, that is, the polytype with fully descriptive symbol |3.3|.

The first two identifiers are also meaningful for non-MDO periodic polytypes. Most of these polytypes (Baronnet et al., 1981) belong to subfamily A, and thus the symbols have the form: $3M_A$, $3A_A$, $8M_A$, etc. For highly unprobable polytypes in which both subfamilies intermix, only the first identifiers identical with the traditional Ramsdell symbol can be used. The symbol should also be reduced if diffuse streaks preclude determination of the MDO groups and number of layers by X-ray diffraction methods, but the subfamily can be determined. Such samples should be described merely as a disordered mica polytype of the subfamily A or B. With few exceptions, only these generalized Ramsdell symbols will be used in this paper. The corresponding fully descriptive symbols can be found using Table 1 of the present paper, Table 4 of Durovič et al. (1984), and Tables 7 and 9 of Backhaus and Durovič (1984).

¹ These abbreviations are in keeping with the recent recommendation of the *Ad hoc* Committee on the Nomenclature of Disordered, Modulated and Polytype Structures of the International Union of Crystallography (Guinier *et al.*, 1984).

		Subfai	nily A		Subfamily B					
Homomorph. MDO group	Homo-oc	tahedral	MDO group	Meso- octahedral	Homo-oc	tahedral	MDO group	Meso- octahedral		
I	1 <i>M</i> _A -I	(1 <i>M</i>) ¹	1 2 3	$1M_{A}$ -I,1 $1M_{A}$ -I,2 $2M_{A}$ -I,3	2 <i>О</i> _в -І	(20)	1 2 3	$2O_{\rm B}$ -I,1 $2O_{\rm B}$ -I,2 $2O_{\rm B}$ -I,3		
II III	2 <i>M</i> _A -II	$(2M_1)$	1	$2M_{\rm A}$ -II,1	– 2 <i>M</i> _B -III	$(2M_2)$	1	— 2 <i>M</i> _B -III,1		
IV	3 <i>T</i> _A -IV	(3 <i>T</i>)	1 2 3	$3T_{A}$ -IV,1 $3T_{A}$ -IV,2 $3T_{A}$ -IV,3	_			_		
v	_			-	6 <i>H</i> _в -V	(6 <i>H</i>)	1 2 3	$6H_{\rm B}$ -V,1 $6H_{\rm B}$ -V,2 $6H_{\rm B}$ -V,3		

Table 1. Classification of MDO polytypes of homo-octahedral and meso-octahedral micas.

¹ Traditional Ramsdell symbols are in parentheses.

PRINCIPLES OF POLYTYPE IDENTIFICATION

The identification of a polytype of a family is influenced not only by the nature of the investigated sample (e.g., disorder), but also by the experimental technique used. Identifications can be made by: (1) refinement of the polytype structure using a complete set of singlecrystal data; (2) visual comparison of the observed and calculated distribution of intensities of selected reflections (e.g., 20/ and 02/) obtained by single-crystal techniques; and (3) comparison of the observed and calculated X-ray powder diffraction (XRD) patterns of polytypes, possibly using special preparation techniques of polycrystalline samples and special methods of recording the patterns.

The resolution of these methods and also the quality of the results vary considerably. The aim of the present paper is to establish identification criteria for MDO polytypes utilizing their classification elaborated earlier. We shall deal with XRD techniques only, but it is obvious that similar approaches can also be obtained for neutron- and electron-diffraction techniques (see e.g., Zvyagin, 1967; Zvyagin *et al.*, 1979).

The application of approach (1) is obvious and need not be discussed here. It should only be emphasized that this approach is absolutely necessary for the determination of hetero-octahedral polytypes, because the approach requires the refinement of occupancy factors of the three octahedral sites and dimensions of the corresponding coordination octahedra. The following concentrates upon the determination of homo- and meso-octahedral polytypes by means of a comparison of observed XRD data with those calculated for a limited number of model structures—here for MDO polytypes with chemical composition close to that of in-

Mica family	Type of lattice	Polytype	(Å)	(Å)	(Å)	a (°)	в (°)	ð	Transformation of indices
Phlogopite	a	1 <i>M</i> _A -I	5.32	9.21	10.24	90	100	90	$l_6 = 6l + 2h$
	b	$2M_{A}$ -II	5.32	9.21	20.48	90	100	90	$l_6 = 3l + h$
	с	$2M_{\rm B}$ -III	5.32	9.21	21.08	107	90	90	$l_{6} = 3l + k$
	d	$3T_{A}$ -IV	5.32	5.32	30.25	90	90	120	$l_{6} = 2l$
	e	2 <i>О</i> _в -І	5.32	9.21	20.17	90	90	90	$l_{6} = 3l$
Muscovite	а	$1M_{A}$ -I,1; $1M_{A}$ -I,2	5.19	8.95	10.06	90	100	90	$l_6 = 6l + 2h$
	b	$2M_{\rm A}$ -II,1; $2M_{\rm A}$ -I,3	5.19	8.95	20.12	90	100	90	$l_6 = 3l + h$
	с	$2M_{\rm B}$ -III,1	5.19	8.95	20.69	107	90	90	$l_{6} = 3l + k$
	d	$3T_{A}$ -IV,1; $3T_{A}$ -IV,2; $3T_{A}$ -IV,3	5.19	5.19	29.72	90	90	120	$l_{6} = 2l$
	e	$2O_{B}$ -I,1; $2O_{B}$ -I,2; $2O_{B}$ -I,3	5.19	8.95	19.81	90	90	90	$l_{6} = 3l$
Zinnwaldite	a	$1M_{A}$ -I,1; $1M_{A}$ -I,2	5.30	9.14	10.07	90	100	90	$l_6 = 6l + 2h$
	b	$2M_{\rm A}$ -II,1; $2M_{\rm A}$ -I,3	5.30	9.14	20.14	90	100	90	$l_6 = 3l + h$
	с	$2M_{\rm B}$ -III,1	5.30	9.14	20.75	107	90	90	$l_{6} = 3l + k$
	d	$3T_{A}$ -IV,1; $3T_{A}$ -IV,2; $3T_{A}$ -IV,3	5.30	5.30	29.75	90	90	120	$l_{6} = 2l$
	e	$2O_{B}$ -I,1; $2O_{B}$ -I,2; $2O_{B}$ -I,3	5.30	9.14	19.83	90	90	90	$l_{6} = 3l$

Table 2. Lattice parameters of the individual MDO polytypes that were used for calculation of their diffraction patterns.¹

¹ Equations for calculation of l_6 indices (corresponding to the six-layer orthogonal cell) with respect to the different types of lattice geometry are given in last column. The h, k, l indices correspond to the real lattice geometry of the individual MDO polytype.

Family		Phlogopite			Zinnwaldite		Muscovite			
Subfamily -		4	В	·	4	B	A		В	
20/	+1	-1	±l	+1	-1	± <i>l</i>	+1	-1	±1	
0			52			3			148	
2		478			268			709		
3			593			594			581	
4	1041			1428			728			
6			152			317			53	
8		24			0			94		
9			351			349			343	
10	1197			1589			862			
12			344			565			183	
14		54			158			7		
15			115			113			109	
16	859			1169			581			
18			414			635			237	
20		360	_		564	_		201	_	
21			5			5			5	
22	124			247			41			
24			64			157			12	
26		183			82			315	o / -	
27			868			859			847	
28	2677		0.00	3113		1000	2198		700	
30		1015	969		1000	1238		754	/09	
32		1015			1282			/54		

Table 3. Calculated |F|² values for characteristic 201 reflections of three different mica families and their classification into A and B subfamilies.¹

¹ The indexing and $|F|^2$ values refers to six-layer orthogonal unit cell; $|F|^2$ values are given as $|F|^2/360$. For calculation of indices of A subfamily the equation corresponding to the a-type lattice was used (see Table 2).

Family

Family			Phlogopite		
MDO group	I	п	I	II	ĪV
02/	±1	±1	+1	-1	±l
0	200	50			66
2			32		47
3		63			
4				141	11
6	10	3			3
8			441		54
9		221			
10				163	148
12	711	176			236
14			729		275
15		601			
16				823	243
18	491	122			163
20			66		79
21		103			
22				235	22
24	3	1			1
26			19		2
27		11 .			
28				7	6
30	12	3			4
32			11		0

Table 4.	Calculated F	² values for cha	racteristic 02/ reflec-
tions of p	hlogopite and	its classification	into MDO groups. ¹

Table 5. Calculated $|F|^2$ values for the characteristic 02lreflections of zinnwaldite and its classification into MDO groups.1

28				7	6
30	12	3			4
32			11		0

unit cell; $|F|^2$ values are given as $|F|^2/360$.

Family								
MDO group	I,1	I,2	I,3	II,1	п	I, 1	IV,1 IV,2	IV,3
02/	±l	±l	±l	$\pm l$	+1	-1	<u>+</u>	±l
0	275	171	166	21			57	91
2					65		59	30
3			5	63				
4						88	8	22
6	32	8	4	1			3	11
8					549		67	36
9			4	222				
10						108	133	184
12	586	778	774	245			258	195
14					605		253	322
15			4	599				
16						962	266	202
18	596	442	438	76			147	198
20					105		91	57
21			4	101				
22						169	17	35
24	0	11	7	9			4	0
26					40		6	0
27			3	11				
28						0	5	13
30	2	22	19	13			7	1
32					27		1	2

¹ The indexing and $|\mathbf{F}|^2$ values refers to six-layer orthogonal unit cell; $|F|^2$ values are given as $|F|^2/360$.

vestigated samples. For this reason a special DIFK (Weiss *et al.*, 1983) program was written to calculate X-ray diffraction patterns of both single crystals and powders. Atomic positions within one OD packet in standard orientation were needed for the input to the program; the other positions were generated automatically using the fully descriptive symbol for the particular polytype. Non-MDO polytypes necessitated a special approach similar to that used for complex polytypes of close-packed structures. This approach will not be dealt with in this paper.

X-RAY DIFFRACTION IDENTIFICATION OF POLYTYPES FROM SINGLE-CRYSTAL DATA

General remarks

As mentioned above, the determination of an MDO polytype requires a determination of its subfamily and its MDO group. Because only two mica subfamilies are possible it sufficed to calculate the distribution of intensities along selected rows of reflections with $\mathbf{k} =$ 3n for these two subfamilies only. Experience showed that the 20/ and 13/ reflections were best suited for this purpose. Moreover, due to the symmetry of the two superposition structures (subfamily A trigonal, subfamily B hexagonal) and to the validity of Friedel's law, $|F(13l)|^2$ values are related to those of $|F(20l)|^2$. Thus, it was sufficient to calculate the latter values only. For the determination of the MDO group it was necessary to calculate the distribution of intensities along selected rows of reflections $0kl (k \neq 3n)$ for all MDO groups within the given family. The rows 02l and 04l are best suited for this purpose, but here again, the symmetry of the corresponding projection may give rise to some simplifications and provide a valuable means for checking the results. Our experience (also with other phyllosilicates) showed that the idealized Pauling model could be used for calculation of identification diagrams which consist of rows of circles whose areas are proportional to the $|F(hkl)|^2$ values of the individual reflections: rows of $|F(20l)|^2$ circles for determination of the subfamily and rows of $|F(02l)|^2$ circles for determination of the MDO group. The sizes of the circles within any such row were normalized to the strongest reflection.

Examples

To demonstrate the identification procedure, three different models of mica families were chosen for the calculation of identification diagrams. Their chemical composition and lattice parameters (Table 2) are artificial, but they approximate typical values in their respective families;

i.e., homo-trioctahedral family (phlogopite) (K_{0.9}Na_{0.1})Mg_{3.0}(Si_{3.0}Al_{1.0})O₁₀(OH)₂,

Table 6. Calculated $|F|^2$ values for the characteristic 02l reflections of muscovite and its classification into MDO groups.¹

Family	,							
				Mus	covite			
MDO group	I,1	I,2	I,3	II,1	I	[] ,1	IV,1 IV,2	IV,3
02/	±ī	±l	$\pm l$	±l	+1	-1	±l	±l
0	442	147	110	0			49	147
2					157		90	7
3			36	62				
4						23	13	52
6	101	35	0	28			12	33
8					754		97	12
9			33	218				
10						36	115	253
12	400	913	882	385			303	133
14					426		224	405
15			21	592				
16						1210	308	142
18	783	385	358	24			128	260
20					189		119	29
21			25	100				
22						87	17	63
24	16	44	20	41			14	5
26					93		17	3
27			22	11				
28						8	8	31
30	3	58	37	48			20	1
32					70		8	11

¹ The indexing and $|F|^2$ values refers to six-layer orthogonal unit cell; $|F|^2$ values are given as $|F|^2/360$.

meso-trioctahedral family (zinnwaldite) $(K_{0.9}Na_{0.1})(Al_{1.0}Fe_{1.2}Li_{0.8})(Si_{3.2}Al_{0.8})O_{10}F_2$

(with the following occupation of octahedral sites: $M1 = Al_{1,0}$ and $M1 = M2 = Fe_{0,6}Li_{0,4}$), and

 $\begin{array}{l} \mbox{meso-dioctahedral family (muscovite)} \\ (K_{0.9}Na_{0.1})Al_{2.0}(Si_{3.0}Al_{1.0})O_{10}(OH)_2. \end{array}$

Table 3 lists the calculated $|F(20l)|^2$ values for the subfamilies A and B. The indexing refers to orthogonal six-layer cell $(a, b, 6c_0)$ which is the smallest common supercell for all MDO polytypes. The transformation of indices for the actual lattice geometries is given in Table 2. It can be seen that both subfamilies are readily distinguishable. The calculated $|F(02l)|^2$ values for the identification of MDO groups (except for the MDO group V containing six-layer polytypes which have not yet been observed) are listed in Tables 4-6. The calculations revealed that the complete XRD patterns of the meso-octahedral MDO polytypes $3T_A$ -IV,1 and $3T_{A}$ -IV,2 are so similar that it is impossible to distinguish between them visually; the determination of the remaining meso-octahedral MDO groups is less problematic and is easier if the occupancies of two octahedral sites are close to one another and if they differ considerably from the remaining one.

Three mica polytypes with reliably determined and refined structures were chosen to show how the visualcomparison technique works: (1) Meso-dioctahedral Almica $2M_B$ -III, 1 (2M₂). The crystal structure of this mica was determined by Zhoukhlistov et al. (1973). The characteristic $|F|^2$ values calculated from their data and the theoretical values calculated for the model polytype $2M_{\rm B}$ -III,1 are shown in Figure 1. The determination of the polytype is straightforward. (2) Heterodioctahedral muscovite 3T_A-IV,1,1. Visual comparison of the characteristic $|F|^2$ values calculated from the data published by Güven and Burnham (1967) with the theoretical values for meso-octahedral muscovites (Figure 2) indicates the MDO polytype $3T_A$ -IV,1 or $3T_A$ -IV,2. This polytype was to be expected because the structure refinement, suggests that the structure is almost meso-octahedral. The M(1) position is vacant, and the M(2) and M(3) positions contain 11.5 and 12.5 electrons, respectively. (3) Hetero-trioctahedral zinnwaldite $1M_A$ -I,2,1. The crystal structure of this mica was determined by Guggenheim and Bailey (1977).

Figure 1. Comparison of the characteristic $|F(20l)|^2$ and, $|F(02l)|^2$ values calculated from the structure data published by Zhoukhlistov *et al.* (1973) (obs.) and theoretical values calculated for MDO polytype $2M_{\rm B}$ -III, 1 of muscovite (calc.). Indexing refers to the orthogonal six-layer unit cell. $|F|^2$ values are normalized to the strongest diffraction intensity.

Table 7. Calculated absolute powder intensities¹ of selected reflections which are decisive for the identification of subfamilies A and B of the MDO polytypes of phlogopite.²

A	1		f _A -I	2 <i>M</i> _A -II		3TA	-IV	d		20	_B -I	2M _B -III	
(Å)	$\nu_{\rm hk}$	hk/	I _{abs} ¹	hk/	Iaba	hk/	Iabs	(Å)	$\nu_{\rm hk}$	hk/	Iabs	hk/	Iste
2.65	85.0	2 01	82	2 02	82	111	246	2.66	90.0	200	10	200	10
		130	164	130	164					130	20	132	20
2.62	80.0	200	173	200	173	Ī22	517	2.64	82.5	201	200	201	200
		Ī31	344	Ĩ32	344					131	400	133	200
2.51	70.6	2 02	5	2 04	5	114	11		97.5			131	200
		131	6	132	6			2.57	75.2	202	48	202	48
2.44	66.3	201	169	202	169	Ī25	506			132	96	130	48
		Ī32	337	Ī34	337							134	48
2.27	58.4	2 03	6	2 06	6	117	19	2.47	68.4	203	104	203	104
		132	13	134	13					133	208	131	104
2.18	54.9	202	94	204	94	Ĩ28	281					135	104
		Ī33	187	Ī36	187			2.35	62.2	204	90	204	90
2.00	48.7	2 04	32	2 08	32	11.10	96			134	180	132	90
		133	64	136	64	, -						136	90
1.91	46.0	203	10	206	10	Ī2,11	30	2.22	56.6	205	27	205	27
		Ī34	20	ī 38	20	<i>,</i>				135	54	133	27
												137	27
								2.09	51.6	206	82	206	82
										136	164	134	82
												138	82

¹ In electron units multiplied by 100, without correction for absorption.

² Indexing refers to the actual unit cells of the polytypes (see Table 2). For calculations the idealized symmetry and chemical compositions were used.

Figure 2. Comparison of the characteristic $|F(20l)|^2$ and $|F(02l)|^2$ values calculated from the structure data published by Güven and Burnham (1967) (obs.) and theoretical values calculated for MDO polytype $3T_A$ -IV,1 of muscovite (calc.). Indexing refers to the orthogonal six-layer unit cell. $|F|^2$ values are normalized to the strongest diffraction intensity.

Visual comparison of the characteristic $|F|^2$ values calculated from the published data with theoretical values for model meso-trioctahedral zinnwaldite (Figure 3) indicates the polytype $1M_A$ -I,2.

It is interesting to note that even relatively rough structural models (i.e., idealized symmetry, artificial meso-octahedral occupation schemes with $M1 = Al_{1.0}$ and $M2 = M3 = Fe_{0.6}Li_{0.4}$) led to the polytype with noncentrosymmetric mica layers and not to one with centrosymmetric layers $1M_A$ -I,1. The symbol of the actual polytype is $1M_A$ -I,2,1, and the three octahedral positions are occupied by 15.0, 11.5 and 13.5 electrons, respectively.

From these examples it can be concluded that the visual-comparison technique can be used for the determination of the subfamily as well as for the MDO group of homo- and meso-octahedral mica polytypes, provided that the identification diagrams are calculated for a chemical composition which is similar to that of the investigated samples. From these comparisons it

Figure 3. Comparison of the characteristic $|F(20l)|^2$ and $|F(02l)|^2$ values calculated from the structure data published by Guggenheim and Bailey (1977) (obs.) and theoretical values calculated for MDO polytype $1M_A$ -I,2 of zinnwaldite (calc.). Indexing refers to the orthogonal six-layer cell. $|F|^2$ values are normalized to the strongest diffraction intensity.

is also apparent that the desymmetrization of the structure causes minor changes in the distribution of the $|F(02l)|^2$ values, but more significant changes in the distribution of the $|F(20l)|^2$ values. These changes were found to be more pronounced in muscovites (e.g., tetrahedral-rotation angles $\alpha = 11.2^{\circ}$ and 11.8° in real structures—examples 1 and 2), than in zinnwaldite with $\alpha = 5.8^{\circ}$. In these structures relatively good fits between observed intensities and identification diagrams were achieved because the theoretical and real compositions were similar.

IDENTIFICATION OF POLYTYPES FROM X-RAY POWDER DIFFRACTION DATA

General remarks

Identification of mica polytypes using XRD data is more complicated and less effective in comparison with single-crystal methods because: (1) XRD patterns contain, in addition to the 20*l*, 02*l*, and 04*l* reflections, strong 13*l*, 11*l*, 00*l*, and other reflections. The latter

Table 8. Calculated absolute powder intensities¹ of selected reflections which are decisive for the identification of MDO groups² together with overlapping reflections of the MDO polytypes of phlogopite.³

d		1 <i>M</i> _A -I		2 <i>O</i> _B -I		2 <i>M</i> _A -II		2 <i>M</i>	_B -III	3T _A -IV	
(Å)	V _{hk}	hk/	I _{abs} '	hk/	I _{abs}	hk/	Iabs	hk/	I _{abs}	hk/	Iabs
4.61	90.0	020	112	020	112	020	28			Ī10	56
				110	55					100	56
4.59	85.6					111	148	111	148		
4.55	81.3	110	151			110	38	110	38	101	75
								<u>022</u>	75	<u>Ī11</u>	75
4.49	77.1	_		111	130	021	67				
4.41	73.1	Ī11	31			Ĩ12	8	112	8	102	16
								020	16	<u>112</u>	16
4.31	69.1			· 		111	2				
4.19	65.5	<u>021</u>	9	022	9	<u>022</u>	2			<u>113</u>	5
	<i></i>			112	4	T				103	5
4.07	61.9					113	40	113	40		
3.94	58.7	111	129			112	32	112	32	104	66
2 80	5.5 <i>(</i>			110	226	000	1.00	024	66	<u>114</u>	66
3.80	55.6 52.7	110	205	113	326	$\frac{023}{114}$	166	174	-		
3.67	52.7	112	305			114	/6	114	/6	105	153
2 5 2	60.1					112	200	$\frac{022}{112}$	153	<u>115</u>	153
3.33	JU.I	022	400	024	420	024	280	115	280	116	210
3.40	47.0	022	420	$\frac{024}{114}$	420	024	104			$\frac{110}{106}$	210
2 77	15 3			114	208	115	221	115	201	100	210
3.27	43.3	1 #2	400			114	102	114	102	107	204
5.15	73.2	112	-09			114	105	036	204	107 117	204
3 04	41 7			115	550	025	278	020	204	<u>117</u>	204
2.04	39.4	ī13	307	115	550	$\frac{025}{\bar{1}16}$	278	116	77	108	153
2.72	57.4	115	507			110	//	024	153	100 ī18	153
2 82	37 7					115	180	115	180	<u></u>	155
2.72	36.1	023	177	026	177	026	44	115	100	ī19	89
	20.1	020		116	88					109	89
2.62	34.7					Ī17	89	117	89	107	07

¹ In electron units multiplied by 100, without correction for absorption.

² Their indices are underlined.

³ Indexing refers to the actual unit cells of the polytypes (see Table 2). For calculations the idealized symmetry and chemical composition were used.

commonly overlap the former. In addition, the resolution of reflections is poor due also to the special lattice geometry of mica polytypes which can be described in terms of a common six-fold hexagonal cell. (2) The distribution of intensities can be strongly influenced by the texture of the sample, which is commonplace when the classical (reflection arrangement) diffractometer technique is used. This technique enhances the 00/ reflections that are useless for polytype identification and suppresses reflections that are necessary.

At present, four basic variants of XRD methods are available that yield qualitatively different results concerning identification of polytypes;

(1) A transmission method that uses samples with highly oriented crystallites and axial texture as described by Plançon *et al.* (1982). In this method it is possible to scan along the generating rods of selected (hk) cylinders in reciprocal space. Thus, a scan along the (20,13) and (11,02) rods provides data for the determination of the subfamily and the MDO group, respectively. Although the preparation of a textured sample is relatively simple, this method necessitates a diffractometer without a θ -2 θ coupling. Samples are examined by a step-scan technique where the settings for the sample and the counter must be calculated in advance.

(2) A transmission method that uses samples with random orientation of crystallites. This method can be realized by using either diffractometer or film techniques, such as Guinier method, classical Debye-

ı		1M 1M	$1M_{A}$ -I,1 $1M_{A}$ -I,2		2 <i>M</i> _A -I,3 2 <i>M</i> _A -II,1		3 <i>T</i> _A -IV,1 3 <i>T</i> _A -IV,3			201 201 201	-I,1 -I,2 -I,3	2 <i>M</i> _B	-III, 1
(Å)	$\nu_{\rm hkl}$	hk/	Iabs ¹	hk/	I_{abs}	hkl	I_{abs}	(Å)	$\nu_{\mathbf{hk}l}$	hk/	I _{abs}	hk/	I_{abs}
2.58	85.0	2 01	132	<u>2</u> 02	132	111	395	2.59	90.0	200	28	200	28
		130	263	130	263					130	56	132	56
2.55	80.1	200	132	200	132	Ī22	392	2.57	82.5	201	105	201	105
		Ī31	260	ĩ32	260					131	210	133	105
2.45	70.8	2 02	15	2 04	15	114	45		97.5			131	105
		131	30	132	30			2.50	75.3	202	9	202	9
2.37	66.4	201	133	202	133	Ī25	396			132	18	130	9
		Ī32	263	Ī34	263							134	9
2.21	58.6	Ž 03	1	Ž06	1	117	3	2.40	68.6	203	54	203	54
		132	2	134	2					133	108	131	54
2.13	55.1	202	69	204	69	Ī28	206					135	54
		Ī33	137	Ī36	137			2.29	62.4	204	26	204	26
1.95	48.9	2 04	20	$\bar{2}08$	20	11,10	59			134	52	132	26
		133	39	136	39	,						136	26
1.87	46.2	203	4	206	4	Ī2,11	11	2.16	56.8	205	14	205	14
		Ī34	7	Ī38	7	,				135	28	133	14
												137	14
								2.03	51.8	206	26	206	26
										136	52	134	26
												138	26

Table 9. Calculated absolute powder intensities¹ of selected reflections which are decisive for the identification of subfamilies A and B of the MDO polytypes of muscovite.²

¹ In electron units multiplied by 100, without correction for absorption.

² Indexing refers to the actual unit cells of the polytypes (see Table 2). For calculations the idealized symmetry and chemical composition were used.

Scherrer method, etc. The preparation of samples is more difficult than in (1), but the method yields a diffraction pattern with all reflections, commonly overlapping, but with correct relative intensities.

(3) A transmission method that uses samples with highly oriented crystallites and axial texture as described by Krinari (1975). This method makes it possible to obtain a diffraction pattern with enhanced intensities of reflections belonging to certain cones (see below). An enhancement of the superposition-structure and MDO group reflections is possible. The most important advantage of this method is the possibility of using a conventional diffractometer with a θ -2 θ coupling.

(4) The classical "reflection" diffractometric method that uses textured sample is useless, as mentioned above. It can be improved by using a sample with random orientations of crystallites. The preparation of such a sample, however, is more difficult than the preparation of transparent samples as in (2).

The identification proper can then be made by a comparison of experimental patterns with those calculated for the appropriate technique and chemical composition.

Only the identification of mica polytypes using variants (2) and (3) are discussed below. They employ experimental conditions that are commonplace in most laboratories and that yield satisfactory results.

Calculation of XRD patterns

The XRD intensity can be expressed by the following formula

$$I(hkl) = K \cdot V^{-2} \cdot Lp \cdot m \cdot |F|^2 \cdot A \cdot E, \qquad (1)$$

where K is a constant that includes only physical and instrumental constants, V is the volume of unit cell, Lp, m, and F(hkl) are the Lorentz-polarization factor, multiplicity factor, and structure factor, respectively, A is an absorption factor, and E is an enhancement factor. The last two factors are of special importance.

Absorption factor. The absorption correction in the transmission method is given by the general formula from Crohe (1976):

$$A = \frac{1}{\mu} \left[\frac{\sin \psi}{\sin \phi - \sin \psi} \right]$$
$$\cdot \left[\exp\left(-\frac{\mu t}{\sin \phi} \right) - \exp\left(-\frac{\mu t}{\sin \psi} \right) \right], \quad (2)$$

where $\phi = \nu_0 + \theta$ is the angle between the incident beam and the sample plane, ν_0 is the initial position angle of the sample, adjusted when the detector counter stays at $2\theta = 0^\circ$, $\psi = \phi - 2\theta$, t is the thickness of the sample, and μ is the linear-attenuation coefficient.

Table 1	Calculated	absolute p	owder intensit	ies1 o	f selected	reflections	which	are decisive	for the	identification	of MDO
groups ²	together with	overlappin	g reflections of	the M	ADO poly	ytypes of m	uscovit	e. ³			

			1 <i>M</i> _A - I,1	1 <i>M</i> _A - I,2		20 ₈ - I,1	20 _в - 1,2	20 _в - І,3	_	2 <i>M</i> _A - I,3	2 <i>M</i> _A - II,1		2 <i>M</i> _B - III,1		3 <i>T</i> _A - IV,1	3 <i>T</i> _A - IV,3
(Å)	V _{hk/}	hk <i>l</i>	Labs	I _{abs}		Iabs	Inte	Iabs	hk/	Iabs	Iaba	hk/	Iabs	hkl	Iabs	Labs
4.48	90.0	020	268	90	020	268	90	67	020	67			-	Ī10	45	134
					110		181	135						100	45	134
	85.7								ī11	45	160	111	160			
4.43	81.4	110	26	318					110	274	196	110	196	101	159	13
												<u>02</u> 2	13	<u>111</u>	159	13
4.37	77.4				111	144	144	229								
					021			42	021	42	72					
4.30	73.2	Ī11	172	46					Ī12	5	20	112	20	102	23	86
												<u>020</u>	86	<u>Ī12</u>	23	86
4.20	69.3								111	38	2					
4.08	65.7	021	100	36	022	100	36		022		28			<u>113</u>	18	50
					112	56	124	52						103	18	50
3.97	62.1								Ī13	33	44	113	44			
3.84	58.9	111	30	254					112	224	150	112	150	104	127	15
												<u>02</u> 4	15	<u>114</u>	127	15
3.71	55.9				113	360	360	410								
					<u>023</u>			27	023	27	179	_				
3.58	52.9	112	574	260					114	234	12	114	12	105	130	287
												<u>022</u>	287	<u>115</u>	130	287
3.45	50.3								113	23	303	113	303	_		
3.32	47.9	<u>022</u>	260	590	024	260	590	574	<u>024</u>	574	249			<u>116</u>	295	130
					114	510	174	132	_			-		106	295	130
3.20	45.5								115	18	348	115	348			
3.09	43.4	112	660	366					114	350	34	114	34	107	183	330
												<u>026</u>	330	<u>117</u>	183	330
2.97	41.5				115	606	606	636								
		.			025			15	$\frac{025}{\overline{2}}$	15	300					
2.86	39.6	113	196	428					116	414	180	116	180	108	214	98
												<u>024</u>	99	<u>118</u>	214	98

¹ In electron units multiplied by 100, without correction for absorption.

² Their indices are underlined.

³ Indexing refers to the actual unit cells of the polytypes (see Table 2). For calculations the idealized symmetry and chemical composition were used.

Enhancement factor. It is well known that the diffraction condition for a set of hkl planes of a crystal is fulfilled if their common normal bisects the angle $180^{\circ} - 2\theta^{\circ}$ formed by the incident and the diffracted beam; hence, the θ -2 θ geometry used in current commercial diffractometers. Deviations from this geometry influence the intensity of the diffracted beam which decreases with increasing angle between the normal to hkl planes and the bisectrice.

In a highly oriented sample that has Z^* as a texture axis, the hkl normals of individual crystallites with random azimuthal orientation form a conus co-axial with Z^* . The hk0 normals lie in a plane which can be considered as a special case of the above conuses. Here, the corresponding hk0 planes evidently form a zone. It follows that the diffraction condition is most favorable for these zonal reflections if $v_0 = 90^\circ$. The intensities of all other reflections during the following $\theta - 2\theta$ scan were reduced by the factor E whose general form, determined empirically by the present authors, reads:

$$\mathbf{E} = \exp[-\mathbf{g} \cdot \sin^2(\nu_0 - \nu_{\rm hk/})], \qquad (3)$$

where g is a coefficient characterizing the degree of orientation of the aggregate and $v_{hk/}$ is the angle between Z* and the surface line of the conus formed by all hk/normals. For randomly oriented crystallites, g = 0; hence E = 1.

If $\nu_0 \neq 90^\circ$ (oblique-texture geometry), another conus of hk/ planes is in the most favorable diffraction position (E = 1). The corresponding hk/ planes can be

Figure 4. Calculated powder diffraction patterns of MDO polytypes of phlogopite (conditions: diffractometer, transmission, Cu-radiation, random-orientation geometry). Idealized symmetry and chemical composition were used for the calculation.

determined by using the lattice geometry of the investigated substance. The reduction of intensities (E < 1) of the remaining reflections depends again on the difference, $v_0 - v_{hkl}$.

From the above considerations, the DIFK computer program (Weiss *et al.*, 1983) was modified, and the diffraction profile was approximated by the following Lorentz function:

$$\mathbf{J}(\theta) = \sum \frac{\mathbf{a}_1 \mathbf{I}(\mathbf{h} l l)}{\pi \mathbf{H}_i(\theta)} \left[1 + \mathbf{a}_2 \left(\frac{\theta - \theta_i}{\mathbf{H}_i(\theta)} \right)^2 \right]^{-\mathbf{a}_3}, \qquad (4)$$

where I(hkl) is the intensity of the reflection at the position θ_i , $H_i(\theta)$ is the half-width, a_1 , a_2 , a_3 are optional coefficients, and Σ is the sum over all contributing reflections (Weiss *et al.*, 1983).

Identification powder patterns

Random-orientation geometry. To obtain a general survey of identification powder patterns, XRD patterns for all homo- and meso-octahedral MDO mica poly-

Figure 5. Calculated powder diffraction patterns of MDO polytypes of muscovite (conditions: diffractometer, transmission, Cu-radiation, random-orientation geometry). Idealized symmetry and chemical composition were used for the calculation.

types (except for six-layer polytypes), using idealized Pauling models of their structures, were calculated. Representative phlogopites (homo-octahedral) and muscovites (meso-octahedral) whose chemical compositions and lattice parameters were given above, were selected for study. Calculated absolute intensities (in electron units, without correction for absorption) of selected reflections which are decisive for the identification of subfamilies and MDO groups together with reflections that commonly overlap the former are given

Figure 6. Calculated powder diffraction patterns of selected MDO polytypes of muscovite (conditions: diffractometer, transmission, Cu-radiation, random-orientation geometry). The real geometry of crystal structures given by Sidorenko *et al.* (1975), Güven (1971), Zhoukhlistov *et al.* (1973) and Güven and Burnham (1967) for $1M_A$ -I,1, $2M_A$ -II,1, $2M_B$ -III,1, $3T_A$ -IV,1, respectively and idealized chemical composition were used for the calculation.

in Tables 7-10. Calculated identification powder patterns (including all possible reflections) of phlogopite and muscovite polytypes are given in Figures 4 and 5. Some MDO polytypes have *practically indistinguishable* XRD powder patterns, including:

(1) homo-octahedral MDO polytypes (phlogopite) $1M_A$ -I and $3T_A$ -IV, and

(2) meso-octahedral MDO polytypes (muscovite) $1M_A$ -I,1 and $3T_A$ -IV,3; $1M_A$,-I,2, $3T_A$ -IV,1, and $2M_A$ -I,3; $2O_B$ -I,1, $2O_B$ -I,2, and $2O_B$ -I,3. (XRD pattern for the polytype $3T_A$ -I,2 was not calculated because, as mentioned above, even its single-crystal pattern was indistinguishable from that of $3T_A$ -I,1. Thus, there was no possibility of distinguishing these two polytypes by their XRD powder patterns.) The results for the homo-octahedral family are in agreement with those of Smith and Yoder (1956).

As shown above, real structures significantly influ-

Figure 7. Calculated powder oblique texture diffraction patterns for $\nu_0 = 55^\circ$ (conditions: diffractometer, transmission, Cu-radiation, oblique-texture geometry) of selected MDO polytypes of muscovite. The real geometry of crystal structures (as well as in Figure 6) and idealized chemical composition were used for the calculation.

ence the distribution of intensities compared with the corresponding Pauling model. Therefore, the calculation of XRD patterns was repeated for the following MDO polytypes of muscovite using idealized chemical composition and atomic coordinates resulting from the refinements of their structures: $1M_A$ -I,1 (Sidorenko et al., 1975), $2M_A$ -II,1 (Güven, 1971), $2M_B$ -III,1 (Zhoukhlistov et al., 1973), and $3T_A$ -IV,1 (Güven and Burnham, 1967). Their XRD powder patterns are shown in Figure 6 and listed in Table 11. A comparison with analogous patterns in Figure 5 reveals significant differences in the distribution of intensities. The differences suggest that identification of polytypes is more reliable when identification powder patterns are calculated using atomic coordinates derived from real structures. This should be kept in mind when working with micas having high values of the tetrahedral-rotation angle α , as well as with paragonite which has one of the highest values of α among the micas. Accordingly, the identification powder patterns of parago-

Polytypism of micas

Table 11. Calculated transmission diffraction powder patterns of selected MDO polytypes of muscovite corresponding to randomly oriented aggregate (R) and oblique-texture geometry ($\nu_0 = 90^\circ$, $\nu_0 = 55^\circ$) for highly oriented aggregates.¹

		1 <i>M</i> ,	-I,1		2 <i>M</i> _A -II,1					2 <i>M</i> _B	-III,1		3T _A -IV,1			
		_	I _{rel}				I _{rel}				I _{rel}		·		Irel	
(Å)	hk/	R	90°	55°	hk/	R	90°	55°	hk/	R	90°	55°	hk/	R	90°	55°
9.91–9.99 4.95–4.99	001 002	46 22		2	002 004	53 23		3 2	002 004	62 29		32	003 006	58 26		6 3
4.45–4.48	020	63	100	12	020 110 111 021	82	93	56	$\frac{110}{\overline{1}11}$	83	88	39	100 101	75	91	40
4.34 4.29	Ī11	36	42	19	111	19	15	22	2 02	25	21	18	102			9
4.27	021	27	10	22	022	15	0	24	111	29	22	25	103	22	12	24
4.08–4.10 3.96	021	21	19	22	112	15	0 4	24 19	110	26	12	40	103	22 56	15	24
3.86-3.88	111	6	2	6	113	41	14	74	202	30 8	12	49 12	104	50	20	12
3.73	ī12	100	29	100	023	42	11	/8	2 04	67	14	96	105	49		66
3.57 3.49		• •		•	113 114	57	10	100	Ī14	72	12	100	106	100		100
3.31-3.34	022 003	50	6	31	024	66	5	67	006	44		5	009	100		100
3.18–3.20 3.10–3.13					$\frac{114}{115}$	54 8	6 1	83 12	$\frac{114}{115}$	62 11	6 1	77 13	107	63		74
3.04 2.93–2.99	112	93	10	77	025	54	4	73	204 206	54 15	4 1	62 16				
2.90 2.85–2.88	<u>1</u> 13	28	3	21	115	36	3	45	115	37	2	38	108	69		72
2.79–2.80 2.66–2.68	023	36	4	22	Ĩ16	29	2	34	Ī16	37	2	36	109	9		11
2.59					130 131 200	49	55	80					ĪĪ1	44	55	22
2.57-2.56	130 131	68	96	24	116 202	100	100	00	312 021	100	100	53	112	86	100	49
2.52 2.48–2.50	004 202	15	10	6	Ī17 008	12	0	9	117 022 008	13 12		8	00,12	10		5
2.46 2.43–2.44	113	16	13	10	133 202	22 15	16 10	28 20	<u>3</u> 14	28	17	27	īī4	28	22	24
2.41	131				027				023	24	14	25				
2.38-2.39	Ī32	21	16	16	204 133	27	15	42	312 208	25	13	28	115	28	17	29
2.33-2.35	Ī14 201	16	9	13					315 024	5	2	5				
2.30	=		• •						024 313	8	4	9	• • •			
2.24–2.25	221 040	13	20	4	040 221 220 041 135	11	12	13	402 220	15	16	6	200		6	

¹ For calculations the real geometry of crystal structures in Figure 6 and idealized chemical composition were used. The indexing refers to the actual unit cells.

nite polytypes were calculated using the following idealized chemical composition

$$Na_{0.9}K_{0.1}(Al_{2.0})(Si_{3.0}Al_{1.0})O_{10}(OH)_2$$

and the following atomic coordinates resulting from the refinements of their structures: $1M_A$ -I,1 (Soboleva

et al., 1977), $2M_A$ -II,1 (Sidorenko et al., 1977b), and $3T_A$ -IV,1 (Sidorenko et al., 1977a). The results of the calculations are given in Table 12.

Oblique-texture geometry. From the general features of method (3) described above it follows that the individual superposition-structure reflections and the

		1 <i>M</i>	A-I, 1			2 <i>M</i> _A	-11,1		3 <i>T</i> _A -IV,1				
A			I _{rel}				I.eel				I _{rel}		
(Å)	hk/	R	90°	55°	hk/	R	90°	55°	hk/	R	90°	55°	
9.66–9.57	001	55		3	002	70		6	003	45		7	
4.83-4.79	002	37		2	004	31		3	006	21		3	
4.45-4.33	020	87	100	25	110		73		100	73	76	47	
	110				Ī11			99	101				
	7				021	100	100		100	16			
4.28-4.24	111	59	44	52	111	11	7	26	102	16		14	
4.13	021	15	o	10	022	10	/	20					
3.04	021	15	o	10	112	10	9	10					
3 79-3 77	111	3		3	112	23	7	57	104	18		29	
3.66		5		2	023	16	4	40					
3.51	Ī12	67	12	93		•••	•		105	33		56	
3.37					Ī14	29	4	66					
3.27-3.26	022	26	3	28	024	42	4	80	106	65		100	
3.22-3.20	003	73		6	006	84		2					
3.19-3.17					114	53	5	100	009	70		16	
3.03-3.01	112	87	7	100	Ī15	4		6	107	46		67	
2.92					025	42	3	77					
2.83	.	•			115	29	2	50	100			~	
2.79	113	20		19	110	22	•	~ ~ ~	108	47		61	
2.09	022	20		21	110	22	2	33	100	22		22	
2.00	103	39 45	46	22	200	42	43		109	22 44	46	22	
2.50-2.55	201	45	40	22	113	72	45		111		40	21	
2.53	200	100	99	58	116	93	86	98	Ī12	100	100	69	
	Ī31				131								
					2 02								
2.43					202	41	27	71					
2.42	113				<u>1</u> 33				114	53	35	62	
	131	70	45	69	117	51	30	88					
	202	• •		• •							• •		
2.35-2.34	201	24	12	28	133	34	17	68	115	34	18	44	
	132				027 304								
1 15 2 22	ī14	4		2	204 221								
2.23-2.22	- 114 	5	4	3	221	5	4						
2.18-2.17	132	16	5	21	204		_		117	17		27	
2.1.0 2.1.7	203	15	6	13	221	23	5	21		• •			
	041				135		7	55					
					042								
2.14-2.12					223	8	5	14	204	2		9	
					222								
2.10-2.09					043	40	11	96	118	43	9	74	
					135	10							
2.08-2.06	133	42	12	57	206	19	4	46					
2.02	221	3		4	223	0 7	3	15	204	n		0	
1.02	042	3		4	044 225	5	3	13	200	2		7	
1.70					ī19	5		,					

Table 12. Calculated transmission diffraction powder patterns of selected MDO polytypes of paragonite corresponding to randomly oriented aggregate (R) and oblique-texture geometry ($\nu_0 = 90^\circ$, $\nu_0 = 55^\circ$) for highly oriented aggregates.¹

¹ For calculations the real geometry of crystal structures given by Soboleva *et al.* (1977), Sidorenko *et al.* (1977b) and Sidorenko *et al.* (1977a) for $1M_A$ -I,1, $2M_A$ -II,1, $3T_A$ -IV,1, respectively and idealized chemical composition were used. The indexing refers to the actual unit cells.

MDO-group reflections cannot be enhanced separately. Thus, compromise v_0 angle which would lead to XRD patterns *typical* for individual polytypes was found experimentally. Several attempts with different v_0 angles led eventually to the value $v_0 = 55^\circ$ which turned out to be the best choice. The identification powder patterns were thus calculated using this value. The results of calculations for muscovite are given in Figure 7 and Table 11 and for paragonite in Table 12. To facilitate mutual comparisons, they are given for $\nu_0 = 55^\circ$ and $\nu_0 = 90^\circ$ as well as for the randomorientation geometry (R). It can be seen that, as far as identification of polytypes is concerned, the possibilities of the oblique-texture geometry after Krinari (1975)

Figure 8. Diffraction patterns of $1M_A$ -I phlogopite (conditions: diffractometer, transmission, Cu-radiation): (a) experimental pattern from sample with randomly oriented crystallites, (b) calculated pattern for sample with randomly oriented crystallites and for the real geometry of crystal structure given by Hazen and Burnham (1973), (c) experimental oblique texture pattern for $\nu_0 = 55^\circ$ and sample with highly oriented crystallites, (d) calculated oblique texture pattern for $\nu_0 = 55^\circ$, real geometry of crystal structure, as mentioned in (b) and for sample with highly oriented crystallites.

and of the random-orientation geometry are about the same.

Examples

To demonstrate the identification of mica polytypes by transmission methods (2) and (3), three samples of natural micas were chosen: phlogopite from Korea, muscovite from Strzegom (Poland) and paragonite from the Urals (U.S.S.R.). The self-supporting specimens with random orientation of crystallites were prepared on an X-ray transparent Mylar foil. The textured specimens were prepared by adding a fixed volume of a suspension containing a determined mass of the investigated powder (in the dry state) onto a well-stretched Mylar foil sealed in a glass tube container. The suspension was allowed to settle onto the foil, and supernatant water was sucked out or dried in vacuum at

Figure 9. Diffraction patterns of $2M_A$ -II,1 muscovite (conditions: diffractometer, transmission, Cu-radiation): (a) experimental pattern from sample with randomly oriented crystallites, (b) calculated pattern for sample with randomly oriented crystallites and for the real geometry of crystal structure given by Güven (1971), (c) experimental oblique texture pattern for $\nu_0 = 55^\circ$ and sample with highly oriented crystallites, (d) calculated oblique texture pattern for $\nu_0 = 55^\circ$, real geometry of crystal structure, as mentioned in (b) and for sample with highly oriented crystallites.

 \leq 40°C. After drying, the aggregate was separated from the glass tube and mounted in a standard window.

A comparison of the calculated and experimental diffraction patterns is given in Figures 8, 9, and 10 for phlogopite, muscovite, and paragonite, respectively. Note that the experimental patterns have been reproduced via computer in order to bring them on the same scale as the calculated ones. A close similarity of observed and calculated patterns is evident at once and indicates that the phlogopite is the $1M_A$ -I polytype, the moscovite is the $2M_A$ -II, 1 polytype, and the paragonite is the $3T_A$ -IV, 1 (or $3T_A$ -IV, 2) polytype.

ACKNOWLEDGMENTS

The authors are greatly indebted to Dr. S. Durovič for critical reading of the work and for helpful discussions. The authors thank Dr. Bielkovskii for a sample

Figure 10. Diffraction patterns of $3T_A$ -IV,1 paragonite (conditions: diffractometer, transmission, Cu-radiation): (a) experimental pattern from sample with randomly oriented crystallites, (b) calculated pattern for sample with randomly oriented crystallites and for the real geometry of crystal structure given by Sidorenko *et al.* (1977a), (c) experimental oblique texture pattern for $\nu_0 = 55^\circ$ and sample with highly oriented crystallites, (d) calculated oblique texture pattern for $\nu_0 = 55^\circ$, real geometry of crystal structure as mentioned in (b) and for sample with highly oriented crystallites.

of paragonite, Dr. Kozlowski for a sample of phlogopite and Mr. Pelc for a sample of muscovite.

REFERENCES

- Backhaus, K.-O. and Durovič, S. (1984) Polytypism of micas. I. MDO polytypes and their derivation: Clays & Clay Minerals 32, 453-463.
- Baronnet, A., Pandey, D., and Krishna, P. (1981) Application of the faulted matrix model to the growth of polytype structures in mica: J. Crystal Growth 52, 963-968.
- Croche, R. (1976) Étude expérimentales et théoriques des corrections d'aberration instrumentales d'un diagramme de diffraction des rayons X: Thèse presentée à la Conservatoire Nationale des Arts et Métiers, Paris, 128 pp.
- Dornberger-Schiff, K., Backhaus, K.-O., and Durovič, S. (1982) Polytypism of micas: OD interpretation, stacking

symbols, symmetry relations: Clays & Clay Minerals 30, 364–374.

- Durovič, S., Weiss, Z., and Backhaus, K.-O. (1984) Polytypism of micas. II. Classification and abundance of MDO polytypes: Clays & Clay Minerals 32, 464–474.
- Guggenheim, S. (1981) Cation ordering in lepidolite: Amer. Mineral. 66, 1221–1232.
- Guggenheim, S. and Bailey, S. W. (1977) The refinement of zinnwaldite-1*M* in subgroup symmetry: *Amer. Mineral.* 62, 1158–1167.
- Guinier, A., Bokij, G. B., Boll-Dornberger, K., Cowley, J. M., Ďurovič, S., Jagodzinski, H., Krishna, P., De Wolf, P. M., Zvyagin, B. B., Cox, D. E., Goodman, P., Hahn, Th., Kuchitsu, K., and Abrahams, S. C. (1984) Nomenclature of polytype structures: Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures: Acta Crystallogr. A40, 399-404.
- Güven, N. (1971) The crystal structure of $2M_1$ phengite and $2M_1$ muscovite: Z. Kristallogr. **134**, 196–212.
- Güven, N. and Burnham, C. W. (1967) The crystal structure of 3*T* muscovite: *Z. Kristallogr.* **125**, 163–183.
- Hazen, R. M. and Burnham, C. W. (1973) The crystal structures of one-layer phlogopite and annite: *Amer. Mineral.* 58, 889–900.
- Krinari, G. A. (1975) On possibilities of using the oriented preparations of clay minerals for registration of non-basal X-ray diffractions: in *Kristallokhimiya Mineralov i Geologicheskie Problemy*, A. G. Kossowskaya, ed., Nauka, Moscow, 132–138 (in Russian).
- Plançon, A., Rousseaux, F., Tchoubar, D., Tchoubar, C., Krinari, G. A., and Drits, V. A. (1982) Recording and calculation of hk rods intensities in case of diffraction by highly oriented powders of lamellar samples: J. Appl. Crystallogr. 15, 509-512.
- Ross, M., Takeda, H., and Wones, D. R. (1966) Mica polytypes: systematic description and identification: *Science* 151, 191–193.
- Sidorenko, O. V., Zvyagin, B. B., and Soboleva, S. V. (1975) Refinement of the crystal structure of dioctahedral mica 1*M*: Kristallografiya 20, 543–549 (in Russian).
- Sidorenko, O. V., Zvyagin, B. B., and Soboleva, S. V. (1977a) Crystal structure of paragonite 3T: Kristallografiya 22, 976– 981 (in Russian).
- Sidorenko, O. V., Zvyagin, B. B., and Soboleva, S. V. (1977b) Refinement of the crystal structure of paragonite $2M_1$ by high-voltage electron diffraction: *Kristallografiya* **22**, 971– 975 (in Russian).
- Soboleva, S. V., Sidorenko, O. V., and Zvyagin, B. B. (1977) Crystal structure of paragonite 1*M*: *Kristallografiya* **22**, 510– 514 (in Russian).
- Smith, J. V. and Yoder, H. S. (1956) Experimental and theoretical studies of the mica polymorphs: *Mineral. Mag.* 31, 209–235.
- Weiss, Z., Krajiček, J., Smrčok, L., and Fiala, J. (1983) A computer X-ray quantitative phase analysis: J. Appl. Crystallogr. 16, 493–497.
- Zhoukhlistov, A. P., Zvyagin, B. B., Soboleva, S. V., and Fedotov, A. F. (1973) The crystal structure of the dioctahedral mica $2M_2$ determined by high-voltage electron diffraction: *Clays & Clay Minerals* **21**, 465–470.
- Zvyagin, B. B. (1967) Electron Diffraction Analysis of Clay Mineral Structures: Plenum Press, New York, 364 pp.
- Zvyagin, B. B., Vrublevskaya, Z. V., Zhoukhlistov, A. P., Sidorenko, O. V., Soboleva, S. V., and Fedotov, A. F. (1979) High-Voltage Electron Diffraction in the Investigation of Layered Minerals: Nauka, Moscow, 224 pp. (in Russian).

(Received 31 August 1984; accepted 30 May 1985; Ms. 1409)