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Representation Stability of Power Sets and
Square Free Polynomials

Samia Ashraf, Haniya Azam, and Barbu Berceanu

Abstract. The symmetric group Sn acts on the power set P(n) and also on the set of square free poly-
nomials in n variables. These two related representations are analyzed from the stability point of view.
An application is given for the action of the symmetric group on the cohomology of the pure braid
group.

1 Introduction

The symmetric group Sn acts naturally on the power set P(n) of the set n =
{1, 2, . . . , n} as follows:

if π ∈ Sn and A ∈ P(n), then π · A = π(A).

It is obvious that the orbits of this action are Pk(n) = {A ⊂ n | card(A) = k}
for k = 0, 1, . . . , n. More interesting is the linear representation of the symmetric
group on the linear space LP(n), the Q-span of the power set: the Sn-submodules
LPk(n) are not irreducible. We decompose them into irreducible Sn-modules and we
describe their bases using the isomorphic representation of Sn onto the quotient ring
of square free polynomials in n variables

S f (n) = Q[x1, x2, . . . , xn]�〈x2
1, x

2
2, . . . , x

2
n〉.

Next we analyze the sequences of these representations, (P(n))n≥0 and (S f (n))n≥0,
and some related sequences from the stability point of view introduced by Church
and Farb [CF] for the representation ring R(Sn). We define an analogue of this sta-
bility for the Burnside ring Ω(Sn) and analyze the stability of the action of Sn on P(n);
see Section 4.

For the irreducible Sn-modules (in characteristic 0 these can be defined over Q)
we will use the standard notation: Vλ corresponds to the partition λ = (λ1 ≥ λ2 ≥
· · · ≥ λt ≥ 1) of n, and the stable notations of Church and Farb ([CF, C]) V (µ)n =
V(n−

∑
µi ,µ1,µ2,...,µs) for µ = (µ1 ≥ µ2 ≥ · · · ≥ µs ≥ 1) satisfying the relation

n −
∑s

i=1 µi ≥ µ1. Similarly, Uλ is the permutation module (see [J]) and U (µ)n

is the permutation module U(n−
∑

µi ,µ1,µ2,...,µs). See [FH, J, K] for references for the
representation theory of Sn.
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Following [CF, C], we say that a sequence

X∗ = (X0

ϕ0

−→ X1

ϕ1

−→ . . . −→ Xn

ϕn

−→ Xn+1 −→ . . . ),

where Xn is an Sn-module, is consistent if ϕn is Sn-equivariant with respect to the nat-
ural inclusions Sn ↪→ Sn+1. The sequence is injective if ϕn is eventually injective and
S∗-surjective if for n large Sn+1 ·Im(ϕn) = Xn+1. The sequence X∗ is representation sta-
ble if it satisfies the above conditions and also, for any stable type µ = (µ1, µ2, . . . , µs)
of Sn modules, the sequence (cµ,n)n of multiplicities of V (µ)n in Xn is eventually con-
stant. The sequence is uniformly representation stable if there is a natural number N,
independent of µ, such that for any µ and any n ≥ N, cµ,n = cµ,N . We say that a
consistent sequence is monotone if for each Sn submodule U ∼= V (µ)⊕c

n in Xn, the
Sn+1-span of the image of U in Xn+1 contains V (µ)⊕c

n+1 as a submodule. See [CF, C]
for other versions of representation stability.

In the Sections 2 and 3, using new geometric ideas we give a completely differ-
ent proof of the next theorem: the decomposition is a classical result of Specht and
representation stability are recent results of [CF, C, H].

Theorem A ([CF, C, H]) The sequence of S∗-modules (LPk(n))n≥0 with

LPk(n) = V (0)n ⊕V (1)n ⊕ · · · ⊕V (k)n

(for n ≥ 2k) is consistent, uniformly representation stable, and monotone.

For the proof we introduce an increasing Sn-filtration; it will be used in Section 5
to describe an algorithm that will give bases of the irreducible Sn modules of the
square free polynomials. The proof in [CF] relies on a result in [H].

Now we introduce the notion of action stability for a sequence Xn of Sn-sets and
maps X0−→ϕ0 X1−→ϕ1 X2−→ϕ2 · · · . Here we define the really new notions, the
obvious ones are defined in Section 4.

Definition 1.1 The transitive Sn-set Sn�H is of the type λ∗ = (λ1, λ2, . . . , λt ),
λ1 ≥ λ2 ≥ · · · ≥ λt ≥ 1,

∑
λi = n, if the action of H on the set n = {1, 2, . . . , n}

has t orbits and their cardinalities are λ1, λ2, . . . , λt . The Sn-set Sn�H is of stable
type (µ∗)n = (µ1, . . . , µs)n if it is of type (n−

∑s
i=1 µi , µ1, . . . , µs) (the same condi-

tions are required: n−
∑s

i=1 µi ≥ µ1 ≥ µ2 ≥ · · · ≥ µs ≥ 1).

For a given sequence µ∗ = (µ1, . . . , µs), µ1 ≥ · · · ≥ µs ≥ 1, and an Sn-set Xn, we
denote by µ∗(Xn) the number of Sn orbits in Xn of stable type (µ∗)n and by Xn(µ∗)
the union of all these orbits.

Definition 1.2 A consistent sequence of Sn-sets (Xn, ϕn)n≥0 is action stable if for
any sequence µ∗ = (µ1, . . . , µs) there is a natural number Nµ∗ such that, for any
n ≥ Nµ∗ the following conditions are satisfied:

(i) ϕn is injective and Sn+1-surjective: Sn+1 · ϕn(Xn) = Xn+1;
(ii) µ∗(Xn) = µ∗(Xn+1).

The sequence (Xn, ϕn) is uniformly action stable if it is action stable and one can
take Nµ∗ independent of µ∗.
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The sequence is strongly action stable if it is action stable and we have, for n ≥ Nµ∗ ,
the equality

(iii) Sn+1 · ϕn(Xn(µ∗)) = Xn+1(µ∗).

We will prove the following theorem.

Theorem B

(i) The sequences (Pk(n))n≥0 are uniformly and strongly action stable.
(ii) The sequence (P(n))n≥0 is action stable.

In the next section we transfer the results from LPk(n) and LP(n) into the corre-
sponding results for S fk(n) and S f (n), the algebra of square free monomials. The
Viète polynomials σn

k =
∑

1≤i1≤···≤ik≤n xi1 xi2 · · · xik give a basis for the invariant part

S f (n)Sn . Our Proposition 5.10 is a generalization of this classical result: we describe
canonical bases for all the irreducible Sn-submodules of the square free polynomial
algebra. A different approach for the representation theory of nilpotent quotients of
Q[x1, x2, . . . , xn] is presented in [MWW].

In Section 6 we apply some of the previous results to find the irreducible Sn-mod-
ules of the first graded components of the Arnold algebra, the cohomology algebra of
the ordered configuration space of n points in the plane. The stable cases, n ≥ 4 for
the first decomposition and n ≥ 7 for the second, are given by the following theorem.

Theorem C ([CF]) The degree 1 and 2 components of the Arnold algebra decompose
as

A1(n) = V (0)n ⊕V (1)n ⊕V (2)n,

A2(n) = 2V (1)n ⊕ 2V (2)n ⊕ 2V (1, 1)n ⊕V (3)n ⊕ 2V (2, 1)n ⊕V (3, 1)n.

These decompositions are given in [CF] without proofs; a different proof, using the “two
combinatorial types” contained in A2(n), is presented in [AAB].

The new contribution is the description of explicit bases of the irreducible Sn

modules in the previous decompositions. We denote by {wi j}1≤i< j≤n the canoni-
cal basis of degree one component of the Arnold algebra, A1(n); we will also use the
following notation:

Ωn = w12 + w13 + · · · + wn−1,n,

Ωn
i j =

∑
k 6=i, j

(wik − w jk),

Ωi jkl = wil − wik + w jk − w jl.

Theorem D The following list gives bases of the three irreducible components of
A1(n):

B(n) ={Ωn},
B(n− 1, 1) ={Ωn

12,Ω
n
13, . . . ,Ω

n
1n},
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B(n− 2, 2) ={Ω1234,Ω1324,

Ω1235,Ω1325,Ω1425,

Ω1236,Ω1326,Ω1426,Ω1526,

· · ·
Ω123n,Ω132n,Ω142n, . . . ,Ω1,n−1,2,n}.

The precise descriptions of these bases are used in [AAB] for cohomological com-
putation of the Križ algebra, a model for the configuration space of n-points of a
smooth complex projective variety.

To the list of computations present in [CF], we add the stable decomposition of
the cubic part of the Arnold algebra.

Theorem E For n ≥ 12, the degree 3 component of the Arnold algebra decomposes
as

A3(n) ∼= 2V (1)n ⊕ 3V (2)n ⊕ 5V (1, 1)n ⊕ 4V (3)n ⊕ 7V (2, 1)n ⊕ 3V (1, 1, 1)n

⊕V (4)n ⊕ 6V (3, 1)n ⊕ 2V (2, 2)n ⊕ 4V (2, 1, 1)n ⊕ 2V (4, 1)n

⊕ 2V (3, 2)n ⊕ 2V (3, 1, 1)n ⊕V (2, 2, 1)n ⊕V (4, 1, 1)n ⊕V (3, 3)n.

2 Canonical Sn Filtration on LPk(n)

For 0 ≤ k ≤ n, we will define a canonical filtration

F∗LPk(n) : 0 < F0LPk(n) ≤ F1LPk(n) ≤ · · · ≤ FkLPk(n) = LPk(n)

with Sn-submodules as follows: for A ∈ Pi(n), 0 ≤ i ≤ k, denote by σn
k (A) the

element of LPk(n) given by

σn
k (A) =

∑
B∈Pk−i (n\A)

A t B

and define the Sn-submodule FiLPk(n) as the span Q〈σn
k (A) | card(A) = i〉.

Example 2.1

F0LP2(4) = Q
〈
{1, 2} + {1, 3} + {1, 4} + {2, 3} + {2, 4} + {3, 4}

〉
,

F1LP2(4) = Q
〈
{1, 2} + {1, 3} + {1, 4}, {1, 2} + {2, 3} + {2, 4},

{1, 3} + {2, 3} + {3, 4}, {1, 4} + {2, 4} + {3, 4}
〉
,

F2LP2(4) = Q
〈
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

〉
.

In this example, 0 < F0LP2(4) < F1LP2(4) < F2LP2(4) = LP2(4).

https://doi.org/10.4153/CJM-2014-029-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-029-2


1028 S. Ashraf, H. Azam, and B. Berceanu

Example 2.2

F0LP3(4) = Q
〈
{1, 2, 3} + {1, 2, 4} + {1, 3, 4} + {2, 3, 4}

〉
,

F1LP3(4) = Q
〈
{1, 2, 3} + {1, 2, 4} + {1, 3, 4}, {1, 2, 3} + {1, 2, 4} + {2, 3, 4},

{1, 2, 3} + {1, 3, 4} + {2, 3, 4}, {1, 2, 4} + {1, 3, 4} + {2, 3, 4}
〉
,

F2LP3(4) = Q
〈
{1, 2, 3} + {1, 2, 4}, {1, 2, 3} + {1, 3, 4}, {1, 2, 4} + {1, 3, 4},

{1, 2, 3} + {2, 3, 4}, {1, 2, 4} + {2, 3, 4}, {1, 3, 4} + {2, 3, 4}
〉

F3LP3(4) = Q
〈
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}

〉
.

In this example, 0 < F0LP3(4) < F1LP3(4) = F2LP3(4) = F3LP3(4) = LP3(4).

Lemma 2.3 For any 0 ≤ k ≤ n, the sequence {FiLPk(n)}0≤i≤k is an increasing
filtration of Sn-submodules.

Proof The group Sn permutes the generators of Fi : π · σn
k (A) = σn

k (π(A)). The
inclusion Fi ≤ Fi+1, i ≤ k− 1, is a consequence of the equality

(k− i)σn
k (A) =

∑
b /∈A

σn
k (A t {b}).

Lemma 2.4 For any n
2 ≤ k ≤ n, we have

Fn−kLPk(n) = Fn−k+1LPk(n) = · · · = FkLPk(n) = LPk(n).

Proof In order to prove that LPk(n) ≤ Fn−kLPk(n), we will find, for any subset
A ∈ Pk(n), rational numbers {ci}0≤i≤n−k such that

A =
n−k∑
i=0

cisi(A), where si(A) =
∑

B∈Pn−k(n)
|A∩B|=i

σn
k (B).

This is done by (decreasing) induction on i. In the right-hand side, the set A is
contained only in sn−k(A),

( k
n−k

)
times, and this gives the first coefficient

cn−k =
(n− k)!(2k− n)!

k!
.

A k-set D ∈ Pk(n) \ {A} has an intersection with A of cardinality |A∩D| = i, where
2k − n ≤ i ≤ k − 1. Let us denote by µ j the number of appearances of D in the
sum s j(A). It is clear that µn−2k+i ≥ 1 (take B = E t (D \ A), where E ⊂ A ∩ D
has the cardinality n − 2k + i ≤ i) and also that µ j = 0 if j ≤ n − 2k + i − 1 (any
set in σn

k (B), |B ∩ A| ≤ n − 2k + i − 1, |B| = n − k, contains at least k − i + 1
elements in the complement of A). Looking for the coefficients of D in the equation

A =
∑n−k

i=0 cisi(A) we find

0 = cn−kµn−k + cn−k−1µn−k−1 + · · · + cn−2k+iµn−2k+i ,

and this gives a solution cn−2k+i ∈ Q . The equation A =
∑

cisi(A) is symmetric in
k-sets D with |A ∩ D| = i, so the solution cn−2k+i does not depend on D.
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We introduce two natural linear maps:

tn : LPk−1(n− 1)→ LPk(n), A 7→ A t {n},

res : LPk(n)→ LPk(n− 1), A 7→

{
A if n /∈ A,

0 if n ∈ A.

A semi-exact sequence of vector spaces (or a chain complex) is a sequence of linear
morphisms (Vi→ fi Vi+1)i∈I in which fi ◦ fi−1 = 0 for any i ∈ I.

Lemma 2.5 For any 0 ≤ i ≤ k ≤ n, the following sequence is semi-exact:

Sn,k,i : 0→ Fi−1LPk−1(n− 1)
tn−→ FiLPk(n)

res−→ FiLPk(n− 1)→ 0;

the map tn is injective and the map res is surjective. In particular,

dim FiLPk(n) ≥ dim Fi−1LPk−1(n− 1) + dim FiLPk(n− 1).

Proof The map tn : LPk−1(n− 1)→ LPk(n) is injective and its restriction to Fi−1

takes values in Fi :

tn(σn−1
k−1 (A)) = σn

k (A t {n}).
The restriction of the second map is well defined and surjective:

res(σn
k (A)) =

{
σn−1

k (A) if n /∈ A,

0 if n ∈ A.

It is obvious that res ◦(tn) = 0, but in general ker(res) is bigger than Im(tn).

Now we compute the dimension of FiLPk(n), describe a basis of this space, and
we show that the filtration Fi is strictly increasing, with the exception described in
Lemma 2.4.

Proposition 2.6 For any n ≥ 1 we have:

(Bn) for any 0 ≤ k ≤ n and 0 ≤ i ≤ min(k, n− k) or i = k, the set {σn
k (A)}A∈Pi (n) is

a basis of FiLPk(n);
(Dn) for any 0 ≤ k ≤ n,

dim FiLPk(n) =

{(n
i

)
for 0 ≤ i ≤ min(k, n− k),(n

k

)
for n− k ≤ i ≤ k;

(En) the sequence Sn,k,i is exact with the unique exception k > n
2 and i = n− k;

(Fn) for any 0 ≤ k ≤ n the filtration {FiLPk(n)}0≤i≤min(k,n−k) is strictly increasing.

Proof The implications (Bn) ⇔ (Dn) ⇒ (Fn) are obvious as are the statements
FkLPk(n) = LPk(n) (from definition) and, for k > n

2 , the equality Fn−kLPk(n) =
LPk(n) (from Lemma 2.4). We will show, by induction on n, that (Dn−1) ⇒
(Dn) and (En).

For n = 1 we have the equalities

F0LP0(1) = Q〈∅〉, F0LP1(1) = F1LP1(1) = Q〈{1}〉,
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two exact sequences

S1,0,0 : 0→ 0→ Q〈∅〉 → Q〈∅〉 → 0,

S1,1,1 : 0→ Q〈∅〉 → Q〈{1}〉 → 0→ 0,

and one semi exact, but not exact:

S1,1,0 : 0→ 0→ Q〈{1}〉 → 0→ 0.

Now we suppose that the dimension formula is correct for n−1, and we compute the
dimension of FiLPk(n) and check the exactness of Sn,k,i by cases, according to “small
values” of k, i.e., k ≤ n

2 , and “large values”, k > n
2 . We have to analyze eight cases

because k small (or large) for the central term in Sn,k,i does not imply k− 1 small (or
large) in the first term or k small (or large) in the last term. In fact, there are only
two proofs: a simple one, when i = min(k, n− k), in which case we use Lemma 2.4:
dim FiLPk(n) =

(n
i

)
, and the other cases, where a sequence of inequalities gives the

dimension of FiLPk(n) and the exactness of Sn,k,i .

Case 1: 0 ≤ i ≤ k < n
2 . This implies i − 1 ≤ k − 1 ≤ n−1

2 , i ≤ k ≤ n−1
2 , and, from

the semi exact sequence

0→ Fi−1LPk−1(n− 1)→ FiLPk(n)→ FiLPk(n− 1)→ 0,

we obtain(
n

i

)
≥ dim FiLPk(n) ≥ dim Fi−1LPk−1(n− 1) + dim FiLPk(n− 1)

=

(
n− 1

i − 1

)
+

(
n− 1

i

)
=

(
n

i

)
,

hence the expected dimension of FiLPk(n) and the exactness of the sequence.

Case 2: 0 ≤ i < k = n
2 . In this case, i − 1 ≤ k − 1 ≤ n−1

2 , i ≤ n−1
2 − k =

min(k, n−1
2 − k), and we obtain the same sequence of inequalities as in the previous

case.

Case 3: i = k = n
2 . This is obvious: FkLPk(n) = LPk(n), and the sequence is exact.

Case 4: n+1
2 < k ≤ n, i ≤ n − k − 1. This implies i − 1 ≤ (n − 1) − (k − 1) =

min(n − k, k − 1), i ≤ (n − 1) − k = min(n − 1 − k, k), and the same sequence of
inequalities gives the correct dimension and the exactness.

Case 5: n+1
2 < k = n, i = n − k. From Lemma 2.4, dim Fn−kLPk(n) =

(n
k

)
, which is

strictly bigger than the sum of the two other dimensions:(
n− 1

n− k− 1

)
+

(
n− 1

k

)
=

(
n− 1

k

)
+

(
n− 1

k

)
.

The sequence is not exact.

Case 6: k = n+1
2 , 0 ≤ i ≤ k − 2. In this case, i − 1 ≤ k − 1 ≤ n−1

2 , i ≤ n−1
2 − k =

min( n−1
2 − k, k), and, as in the case 1, we have dim FiLPk(n) =

(n
i

)
and exactness.
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Case 7: k = n+1
2 , i = k−1. By Lemma 2.4, Fk−1LPk(2k−1) = LPk(2k−1), a space of

dimension
(2k−1

k−1

)
=
(2k−1

k

)
, strictly bigger than the sum of dimensions of the other

two terms:
(2k−2

k−2

)
+
(2k−2

k

)
. The sequence is not exact.

Case 8: k = n+1
2 , i = k. Again this is simple. FkLPk(n) = LPk(n), and the counting

of dimensions gives the exactness of Sn,k,i .

From now on we can assume k ≤ b n
2 c, because of the next obvious proposition.

Proposition 2.7 (i) For any k, 0 ≤ k ≤ n, the complementary map C is Sn-equi-
variant:

C : Pk(n)→ Pn−k(n), A 7→ n \ A.

(ii) The Sn representations LPk(n) and LPn−k(n) are isomorphic.

Lemma 2.8 (i) The Sn-module F0LPk(n) is trivial.
(ii) For 0 ≤ i ≤ k ≤ n

2 , the Sn representations FiLPk(n) and LPi(n) are isomorphic.

Proof (i) The space F0LPk(n) is generated by the invariant element

σn
k = σn

k (∅) =
∑

A∈Pk(n)
A.

Using Proposition 2.6 the map ϕ(σn
k (A)) = A is well defined; the maps

ϕ : FiLPk(n) � LPi(n) :ψ,

where ψ(A) = σn
k (A), are Sn-equivariant and inverse to each other.

The Sn-module LPk(n) is isomorphic with a classical object, the permutation
module U(n−k,k), the span of tabloids of type (n − k, k) (see [J]). We will give a
new proof for its decomposition into irreducible pieces.

Proposition 2.9 For 0 ≤ k ≤ n
2 , the Sn-modules LPk(n) and U(n−k,k) are isomorphic.

Proof At the level of sets we have the equivariant bijective map:

Pk(n)→ {tabloids of type (n− k, k)}

given by

A -�
�

�

the entries from n \ A

the entries from A

To describe the structure of the Sn-modules LPk(n) and FiLPk(n) we will use only
the fact that the Sn-module U(n−k,k) contains V(n−k,k) (with some multiplicity).
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Proposition 2.10 ([J]) The irreducible decompositions of the Sn-modules LPk(n) and
FiLPk(n) (0 ≤ i ≤ k ≤ n

2 ) are given by

LPk(n) = V(n) ⊕V(n−1,1) ⊕ · · · ⊕V(n−k,k),

FiLPk(n) = V(n) ⊕V(n−1,1) ⊕ · · · ⊕V(n−i,i).

Proof The proof is by induction on k. We have LP0(n) = V(n) and, using the
imbedding V(n−k,k) < U(n−k,k)

∼= LPk(n) and Lemma 2.8, we obtain

V(n) ⊕V(n−1,1) ⊕ · · · ⊕V(n−k+1,k−1)
∼= LPk−1(n) ∼= Fk−1LPk(n) < LPk(n).

Using the hook formula [FH], we have dim V(n−k,k) =
( n

k−1

)
n−2k+1

k , and counting
the dimensions we find

dim Fk−1LPk(n) + dim V(n−k,k) =

(
n

k− 1

)
+

(
n

k− 1

)
n− 2k + 1

k
=

(
n

k

)
,

and this gives the direct sum

LPk−1(n)⊕V(n−k,k)
∼= Fk−1LPk−1(n)⊕V(n−k,k)

∼= LPk(n).

Corollary 2.11 The Sn-decomposition of the module LP(n) is given by

LP(n) = (n + 1)V(n)⊕ (n−1)V(n−1,1)⊕· · ·⊕ (n−2k + 1)V(n−k,k)⊕· · ·⊕ rV(d n
2 e,b

n
2 c),

where r = d n
2 e − b

n
2 c + 1.

A natural operation on the power set P(n) satisfies π(A∗B) = π(A)∗π(B) for any
permutation π ∈ Sn. Given a natural operation ψ on P(n) (such as ∪,∩,∆, . . . ), we
can linearize the map ψ : P(n)× P(n)→ P(n) and obtain an Sn-map Lψ : LP(n)⊗
LP(n) → LP(n). Irreducible decomposition of the tensor product LP(n)⊗2 will add
more irreducible representations of Sn: V(n−2,1,1), V(n−3,2,1), V(n−3,1,1,1), . . . ; each of
them is contained in the kernel of Lψ.

3 Representation Stability

Using the stable notation, Proposition 2.10 gives the stable decompositions

LPk(n) = V (0)n ⊕V (1)n ⊕ · · · ⊕V (k)n (for n ≥ 2k),

FiLPk(n) = V (0)n ⊕V (1)n ⊕ · · · ⊕V (i)n (for n ≥ 2k ≥ 2i).

The natural maps

P(n)
ϕn→ P(n + 1) and Pk(n)

ϕk,n→ Pk(n + 1)

and their linearizations

LP(n)
Lϕn

−→ LP(n + 1) and LPk(n)
Lϕk,n

−→ LPk(n + 1)

are induced by the inclusion map n ↪→ n + 1. The sequences (LPk(n))n≥0,
(FiLPk(n))n≥0 are consistent, uniformly representation stable, and monotone in the
sense of [C] and [CF]. Identifying the Sn-representations LPk(n) ∼= IndSn

Sk×Sn−k
V(k),
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the uniform representation stability is a special case of [H, Theorem 2.4] and mono-
tonicity is a consequence of [C, Theorem 2.8]. We will give new proofs for these
results, including also similar results for the sequences

FiLPk(n)→ Fi+1LPk(n + 1)→ · · · → Fk−1LPk(n + k− i − 1)

→ LPk(n + k− i)→ LPk(n + k− i + 1)→ · · ·

First we prove some “polynomial” identities.

Lemma 3.1 (i) For an element A in Pi(n), 0 ≤ i ≤ k ≤ n, we have

σn
k (A) = σn+1

k (A)− σn+1
k

(
A t {n + 1}

)
.

(ii) For 0 ≤ i ≤ k− 1, k ≤ n, we have

σn+1
k (i + 1) =

1

(n− i)!(n− k + 1)

∑
π∈S≥i+1

n+1

π · σn
k (i)− (i + 1, n + 1) · σn

k (i),

where S≥i+1
n+1 is the subgroup of permutations fixing the elements 1, 2, . . . , i.

Proof (i) The first equality is obvious. A term A t B, B ⊂ n is contained in σn
k (A)

and σn+1
k (A) but not in the last sum, and a term A tC t {n + 1} is contained in the

last two sums but not in the first one.
(ii) All the sets in this formula contain {1, . . . , i}. In the left-hand side all the

terms contain {i + 1}, the sum
∑

π∈S≥i+1
n+1

π · σn
k (i) is symmetric in the elements i +

1, i+2, . . . , n, n+1, and therefore all its terms have the same multiplicity. Multiplicity
of the term k = i t {i + 1, . . . , k}, k ≤ n, equals the number of permutations π in
S
≥i+1
n+1 sending a k − i subset of {i + 1, i + 2, . . . , n} into {i + 1, . . . , k} (because any

sum π · σn
k (i) contains k at most once), and this number is given by(

n− i

k− i

)
(k− i)!(n + 1− k)! = (n− i)!(n + 1− k).

Using the symmetry of the left-hand side and the different symmetry of the right-
hand side, it is sufficient to show that the coefficients of the set k = i + 1 t {i +
2, . . . , k} = i t {i + 1, . . . , k} on the left hand side and the right hand side coincide,
and the same for the coefficients of the set i t {i + 2, i + 3, . . . , k, n + 1}. Now the
term

k = i t {i + 1, . . . , k} = i + 1 t {i + 2, . . . , k}
appears in the average of the sum

∑
π∈S≥i+1

n+1
π · σn

k (i) with coefficient 1, as in

σn+1
k (i + 1), and does not appear in the sum σn

k (i) modified by the transposition
(i + 1, n + 1). The term i t {i + 2, i + 3, . . . , k, n + 1} appears in the average of
the sum

∑
π∈S≥i+1

n+1
π · σn

k (i) with the same coefficient 1 and has also the coefficient 1

in (i + 1, n + 1) · σn
k (i).

Lemma 3.2 (i) For 0 ≤ i ≤ k− 1, k ≤ n we have

Lϕk,n(FiLPk(n)) < Fi+1LPk(n + 1),

Sn+1 · Lϕk,n(FiLPk(n)) = Fi+1LPk(n + 1).
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(ii) For i = k ≤ n we have

Lϕk,n(FkLPk(n)) < FkLPk(n + 1),

Sn+1 · Lϕk,n(FkLPk(n)) = FkLPk(n + 1).

Proof Part (ii) is obvious at the set level: ϕk,n(Pk(n)) is part of Pk(n + 1), and Sn+1

acts transitively on Pk(n + 1). For part (i), the first inclusion is a consequence of
Lemma 3.1(i), and this inclusion implies

Sn+1 · Lϕk,n(FiLPk(n)) < Fi+1LPk(n + 1).

For the reverse inclusion it is enough to show that σn+1
k (i + 1) belongs to the Sn+1

span of the image of FiLPk(n), and this is a consequence of Lemma 3.1(ii).

Remark 3.3 From Lemma 3.1(i), it is also clear that the image of FiLPk(n) is not
contained in FiLPk(n + 1) for i ≤ k− 1.

Proposition 3.4 ([C, H])

(i) The sequences (LPk(n), Lϕk,n)n≥0 are consistent, uniformly representation stable
(with stable range 2k), and monotone.

(ii) For 0 ≤ 2i ≤ 2k ≤ m, the sequence Fmin(i+n−m,k)LPk(n)n≥m is consistent, uni-
formly representation stable, and monotone.

Proof (i) It is obvious that the maps Lϕk,n : LPk(n) → ResSn+1
Sn

LPk(n + 1) are in-
jective, Sn-equivariant, and also that Sn+1 · Im(ϕk,n) = Pk(n + 1). The sequence of
multiplicities of V (µ)n in LPk(n) is constant 1 for µ = (i), 0 ≤ i ≤ n/2, and 0 for
the other irreducible modules, by Proposition 2.10.

(ii) By Lemma 3.2, the injective map Lϕk,n has restrictions Fmin(i+n−m,k)LPk(n)→
Fmin(i+n+1−m,k)LPk(n + 1), which are S∗-surjective. The multiplicities are eventually
stable, as in part (i).

The proof of monotonicity will be given at the end of Section 5.

Remark 3.5 The sequence (LP(n), Lϕn)n≥0 is consistent but not representation
stable.

4 Stability of the Symmetric Group Actions

We give a set-theoretical analogue of the representation stability for a (direct) se-
quence of finite Sn-sets Xn and maps X0→ϕ0 X1→ϕ1 X2→ϕ2 · · · . The following def-
initions are obvious.

Definition 4.1 (i) The sequence (Xn, ϕn)n≥0 of Sn-sets is consistent if and only

if the map Xn
ϕn→ ResSn+1

Sn
(Xn+1) is Sn-equivariant.

(ii) The sequence is injective if ϕn is (eventually) injective.
(iii) The sequence is S∗-surjective if Sn+1 · ϕn(Xn) = Xn+1 for large n.

To define “stability” we need a “stable notation” for transitive Sn-sets. These are
of the form Sn�H, where H is a subgroup of Sn defined up to conjugation.
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Definition 4.2 A transitive Sn-set Xn has type (λ1, . . . , λt ) if it is equivalent to
Sn�H as Sn-sets and the action of H on n has t orbits of cardinalities λ1, . . . , λt .

Remarks 4.3 (a) If H and K are conjugate in Sn, then Sn�H and Sn�K have the
same type.

(b) If Sn�H is of the type (λ1, λ2, . . . , λt ), then (up to conjugation) H is a subgroup
of Sλ1 × Sλ2 × · · · × Sλt ; if pri is the projection of Sλ1 × Sλ2 × · · · × Sλt onto Sλi ,
then pri(H) < Sλi acts transitively on the set λi of cardinality λi .

(c) In general there are many non-equivalent transitive Sn-sets of the same type
(λ1, λ2, . . . , λt ). There is a minimal one corresponding to the largest sub-
group, Sλ1 × Sλ2 × · · · × Sλt . Its linearization, L(Sn�Sλ1 × Sλ2 × · · · × Sλt ),
is the permutation module U(λ1,λ2,...,λt ) containing the irreducible representation
V(λ1,λ2,...,λt ) (with multiplicity one).

Example 4.4 The sequence (Sn/An = Z2, Id) is uniformly and strongly action
stable. More generally, any consistent, injective and S∗-surjective sequence of transi-
tive actions whose isotopy groups act transitively on {1, 2, . . . , n} is strongly action
stable.

Example 4.5 The sequence of Sn-sets, n = {1, 2, . . . , n} (with natural action of Sn

and canonical inclusion in : n ↪→ n + 1) is uniformly and strongly action stable.

Theorem B generalizes this last example.

Proof of Theorem B (i) As in Section 2, we take n ≥ 2k. The group Sn acts on
Pk(n) transitively and its corresponding subgroup is Sn−k × Sk; Pk(n) is of a unique
stable type (k)n, with multiplicity 1. Obviously the canonical inclusions Pk(n) ↪→
Pk(n + 1) are consistent, injective, and S∗-surjective.

(ii) The orbits of P(n) are {Pk(n)}0≤k≤n, with corresponding subgroups Sn−k ×
Sk; the stable types are (k)n with multiplicity 2 for n ≥ 2k + 1, hence the sequence is
not uniformly stable. Moreover, condition (iii) of Definition 1.2 is not satisfied: for
µ∗ = (k), n ≥ 2k + 1,

Xn(µ∗) = Pk(n) t Pn−k(n), Xn+1(µ∗) = Pk(n + 1) t Pn+1−k(n + 1),

and Sn+1 · ϕn(Xn(µ∗)) = Pk(n + 1) t Pn−k(n + 1).

5 Canonical Polynomial Basis

Now we translate the power set representations into a quotient representation of
the polynomial algebra Q[x1, . . . , xn]; we compute canonical basis for the irre-
ducible components in this isomorphic algebraic model. The set of squares sq(n) =
{x2

1, . . . , x
2
n} is Sn-invariant, hence the ideal generated by sq(n) is Sn-invariant and

we obtain a quotient representation of Sn on the space of “square free” polynomials
(i.e., the Q-span of monomials in which the exponents of x1, x2, . . . , xn are≤ 1.)

S f (n) = Q[x1, . . . , xn]�〈sq(n)〉 ∼= Q〈xA | A ∈ P(n)〉
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where xA = xa1 xa2 · · · xak is the square free monomial corresponding to the subset
A = {a1, . . . , ak} ∈ Pk(n).

Lemma 5.1 The power set LP(n) and the space of square free polynomials S f (n) are
isomorphic Sn-modules.

Proof The power set P(n) and the canonical basis {xA | A ∈ P(n)} are isomorphic
as Sn-sets.

In the new setting we have a Sn-decomposition by grading S f (n) =
⊕n

k=0 S fk(n),
the Sn-filtration (0 ≤ k ≤ b n

2 c)

F∗S fk(n) : 0 < F0S fk(n) < F1S fk(n) < · · · < FkS fk(n) = S fk(n),

and also the irreducible components.

Corollary 5.2 For any i, k, n satisfying 0 ≤ i ≤ k ≤ b n
2 c we have

S fk(n) ∼= S fn−k(n),

FiS fk(n) = V(n) ⊕V(n−1,1) ⊕ · · · ⊕V(n−i,i),

S fk(n) = V(n) ⊕V(n−1,1) ⊕ · · · ⊕V(n−k,k),

S f (n) = (n + 1)V(n) ⊕ · · · ⊕ (n− 2k + 1)V(n−k,k) ⊕ · · · ⊕ rV(d n
2 e,b

n
2 c),

where r = d n
2 e − b

n
2 c + 1.

Remark 5.3 For k ≥ b n
2 c we have

FiS fk(n) =

{
V(n) ⊕V(n−1,1) ⊕ · · · ⊕V(n−i,i) for 0 ≤ i ≤ n− k,

V(n) ⊕V(n−1,1) ⊕ · · · ⊕V(k,n−k) for n− k ≤ i ≤ k.

Corollary 5.4 The sequences (S fk(n))n≥0 and (Fmin(i+n−m,k)S fk(n))n≥m (for m ≥
2k) are consistent, uniformly representation stable, and monotone.

Using the isomorphism of Lemma 5.1, we will use the same notation for elements
in LP(n) introduced in Section 2 and the corresponding polynomials in S f (n) (the
first ones are elementary symmetric polynomials in n variables):

σn
k =

∑
1≤i1<···<ik≤n

xi1 xi2 · · · xik ,

σB
k =

∑
C∈Pk(B)

xC =
∑

bi∈B
b1<b2<···<bk

xb1 xb2 · · · xbk
,

σn
k (A) = xAσ

A′

k−|A| = xa1 · · · xai

( ∑
b j 6∈A

xbi+1 · · · xbk

)
.

(In the last two formulae, card(B) ≥ k ≥ card(A), A = {a1, . . . , ai}, and A′ = n\A).
If |A| = k, then σA

k = xA = σn
k (A). We will use new polynomials

δh j = xh − x j (1 ≤ h < j ≤ n)

δH∗ J∗ = δh1 j1δh2 j2 . . . δhs js ,
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where H∗ = (h1, h2, . . . , hs), J∗ = ( j1, j2, . . . , js), hα < jα and H∗ ∪ J∗ contains
2s elements. Using this notation, {σn

k (A) | card(A) = i} is a basis of FiS fk(n) for
0 ≤ i ≤ k ≤ n

2 . Now we will describe bases for the irreducible Sn-submodules
V(n−i,i) contained in S fk(n). For this, the following facts are important:

Remark 5.5 (i) The space S f (n) (like LP(n)) has a canonical inner product, i.e.,

〈xA, xB〉 = δA,B

and the natural representation of Sn is an orthogonal representation.
(ii) The homogenous components S fk(n) are pairwise orthogonal.
(iii) The isotypic components are pairwise orthogonal, i.e., if W (λ) and W (µ) are

two isotypic components of an Sn-module W corresponding to the irreducible
modules Vλ and Vµ respectively (λ 6= µ), Pλ and Pµ are the corresponding
projections Pλ : W →W (λ), Pµ : W →W (µ), and x ∈W (λ), y ∈W (µ), then

〈x, y〉 = 〈x, Pµy〉 =
1

n!
dim Vµ

∑
π∈Sn

χVµ
(π)〈x, πy〉

=
1

n!
dim Vµ

∑
π∈Sn

χVµ(π)〈π−1x, y〉

=
1

n!
dim Vµ

∑
π∈Sn

χVµ
(π−1)〈π−1x, y〉 = 〈Pµx, y〉 = 0

(We used the projection formula, the fact that W is a real or rational represen-
tation, the equality πt = π−1 because π is an orthogonal transformation, and
also the equality χ(π) = χ(π−1) because π and π−1 are conjugate in Sn).

(iv) In the case of S f (n), in any isotypic component S f (n)(λ) we can find irre-
ducible Sn-modules given by homogenous polynomials and for a given degree
k, there is at most one irreducible Sn-module Vλ. As a consequence we have a
canonical orthogonal decomposition of S f (n) into irreducible Sn-modules.

Our method is to find vectors in Fi−1S fk(n)⊥, the orthogonal complement of
Fi−1S fk(n) in FiS fk(n), because this complement corresponds to the irreducible com-
ponent V(n−i,i) of S fk(n). We then describe an independent subset of these vectors,
and finally the computation of cardinality and dimension will give the basis.

Lemma 5.6 For k ≤ n
2 , the following vectors from S fk(n) are orthogonal to

Fk−1S fk(n):

{δH∗ J∗ | H∗ = (h1, h2, . . . , hk), J∗ = ( j1, . . . , jk), hα < jα, card(H∗ ∪ J∗) = 2k}.

Proof Obviously δH∗ J∗ ∈ S fk(n). The canonical basis of Fk−1S fk(n) is given by
{σn

k (A) | card(A) = k − 1}. Computing 〈xA · σA′
1 , δh1 j1δh2 j2 · · · δhk jk

〉 we obtain the
following.

(i) If A * H∗ ∪ J∗, there is no match between the monomials of these two polyno-
mials, hence the inner product is zero.

In the next cases A ⊂ H∗ ∪ J∗ :
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(ii) if there is an index s ∈ {1, . . . , k} such that {hs, js} ⊂ A, there is no match
between the monomials of the two polynomials;

(iii) If A containsα elements Hα ⊂ H∗ and β elements Jβ ⊂ J∗ (henceα+β = k−1
and the indices of these elements are disjoint), there are precisely two common
monomials of the given polynomials, xAxhs and xAx js , where the index s is the
unique index from 1 to k that does not appear as an index in Hα ∪ Jβ . The two

monomials have coefficients (1,1) in the first polynomial, xA ·σA′
1 , and (±1,∓1)

in the second one, δH∗ J∗ .

Therefore, in all three cases the inner product is zero.

In the following two lemmas we generalize the last result.

Lemma 5.7 For 0 ≤ i ≤ k ≤ n
2 , the following vectors are in FiS fk(n):

{δH∗ J∗σ
L
k−i | H∗ = (h1, . . . , hi), J∗ = ( j1, . . . , ji),H∗ t J∗ t L = n}.

Proof Translating Lemma 2.8 into polynomial notation we obtain a linear isomor-
phism

ψ : S fi(n)
∼=→ FiS fk(n), xA 7→ xAσ

A′

k−i .

A direct computation shows that

ψ(δH∗ J∗) = ψ
( ∑
αtβ=i

(−1)|β|xHα
x Jβ

)
=

∑
αtβ=i

(−1)|β|xHα
x Jβσ

(Hαt Jβ)′

k−i .

Using the decomposition formula

σXtY
p = σX

p + σY
p +

∑
q+q′=p
q,q′≥1

σX
q σ

Y
q′ ,

the symmetric sum σ
(Hαt Jβ)′

k−i splits into

σ(H∗t J∗)′

k−i + σ
Hα′t Jβ′
k−i +

∑
q+q′=k−i

q,q′≥1

σ
Hα′t Jβ′
q · σ(H∗t J∗)′

q′ ,

where (H∗ t J∗)′ = n \ (H∗ t J∗) = L, Hα′ = H∗ \Hα, and Jβ′ = J∗ \ Jβ . The first
sum in this splitting gives the desired result:∑

αtβ=i
(−1)|β|xHα

x Jβσ
(H∗t J∗)′

k−i = δH∗ J∗σ
L
k−i .

To show that the second sum ∑
αtβ=i

(−1)|β|xHα
x Jβσ

Hα′t Jβ′
k−i

and the third sum∑
αtβ=i

[
(−1)|β|xHα

x Jβ

∑
q+q′=k−i

σ
Hα′t Jβ′
q′ · σ(H∗t J∗)′

q′
]

=

∑
q+q′=k−i

[ ∑
αtβ=i

(−1)|β|xHα
x Jβσ

Hα′t Jβ′
q

]
· σ(H∗t J∗)′

q′
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are zero, it is enough to prove that for any q in the interval [1, k− i−1] the following
sum is zero

S =
∑

αtβ=i
(−1)|β|xHα

x Jβσ
Hα′t Jβ′
q .

This sum contains monomials from two disjoint sets of variables, {xh1 , . . . , xhi} and
{x j1 , . . . , x ji} (H∗ = (h1, . . . , hi), J∗ = ( j1, . . . , ji)). Therefore, in such a monomial
m = xHα

x JβxM (M is a q-subset of Hα′ t Jβ′), there are indices p such that xhp and
x j p are both contained in m. On the other hand, precisely one of them is in the “first
part” and the other is in the “second part”: either hp ∈ Hα, j p ∈ M, or hp ∈ M,
j p ∈ Jβ . We define an involution (without fixed points) on the set of monomials m
in S, choosing the maximal common index p and changing the places of xhp and x j p

(hp ∈ Hα):

m = xHα
x JβxM ↔ m′ = xHα\{hp}x Jβt{ j p}xMt{hp}\{ j p}.

In S, these two monomials have coefficients (−1)|β|m and (−1)|β|+1m′, hence the
total sum is zero.

Lemma 5.8 For 0 ≤ i ≤ k ≤ n
2 , the following vectors from FiS fk(n) are orthogonal

to Fi−1S fk(n):

{δH∗ J∗σ
L
k−i | H∗ = (h1, . . . , hi), J∗ = ( j1, . . . , ji),H∗ t J∗ t L = n}.

Proof Choose two elements

V = σn
k (A) =

∑
B∈Pk−i+1(A′)

xAxB ∈ Fi−1S fk(n),

W = δH∗ J∗σ
L
k−i =

∑
αtβ=i,Lγ∈Pk−i (L)

(−1)|β|xHα
x JβxLγ ,

where |A| = i − 1,H∗ t J∗ t L = n, |H∗| = | J∗| = i,Hα ⊆ H∗, Jβ ⊆ J∗ and Hα is
determined by Jβ . If ρ : H∗ → J∗ is the bijection given by δH∗ J∗ =

∏
h∈H∗

(xh−xρ(h)),
then Hα = H∗ \ ρ−1( Jβ). Modifying W by a permutation, one can suppose that
H∗ = {1, . . . , i}, J∗ = {i + 1, . . . , 2i}.

We have to show that 〈V,W 〉 = 0, which means to count the number of their
common monomials and to identify their signs. We will use the following notation:

Hα1 = A ∩H∗, Jβ1 = A ∩ J∗, Lγ1 = A ∩ L.

A monomial xHα
x JβxLγ , which is also contained in V , should satisfy the relations

Hα1 ⊆ Hα, Jβ1 ⊆ Jβ , Lγ1 ⊆ Lγ .

Therefore, we have the decompositions

Hα = Hα1 tHα2 , Jβ = Jβ1 t Jβ2 , Lγ = Lγ1 t Lγ2 .

Let us denote the cardinalities of Hα,Hα1 , . . . , Lγ2 by a, a1, . . . , c2 respectively; for a
common monomial xHα

x JβxLγ , the numbers a1, b1, c1 are uniquely defined by V and
W . For a fixed b, b1 ≤ b ≤ i−a1, a common monomial xHα

x JβxLγ (| Jβ | = b) is given
by an arbitrary subset Jβ2 ⊆ J∗ \ ( Jβ1 t ρ(Hα1 )) of cardinality b2 = b − b1 and an
arbitrary subset Lγ2 ⊆ n \ (A∪H∗ ∪ J∗) of cardinality k− 2i + a1 + b1 + 1 (of course,
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the set Hα2 is equal to H∗ \ (Hα1 t ρ−1( Jβ1 t Jβ2 )) ). Now we can compute the inner
product

〈V,W 〉 =
i−a1∑
b=b1

(−1)b

(
i − a1 − b1

b− b1

)(
n− 3i + a1 + b1 + 1

k− 2i + a1 + b1 + 1

)
= (−1)b1

(
n− 3i + a1 + b1 + 1

k− 2i + a1 + b1 + 1

)
i−a1−b1∑

b2=0

(
i − a1 − b1

b2

)
=

= (−1)b1

(
n− 3i + a1 + b1 + 1

k− 2i + a1 + b1 + 1

)
(1− 1)i−a1−b1 = 0,

where in the last equality we use the hypothesis a1 + b1 ≤ |A| = i − 1 < i.

Lemma 5.9 For 2 ≤ 2k ≤ n, the set

{δH∗ J∗ ∈ S fk(n) | H∗ = (h1, . . . , hk),

J∗ = ( j1, . . . , jk), hα < jα, card(H∗ ∪ J∗) = 2k}

contains a linearly independent set of cardinality
(n

k

)
−
( n

k−1

)
.

Proof By induction on n, starting with n = 2, ∆12 ∈ S f1(2). Suppose we have a
linearly independent subset of polynomials in S fk(n − 1), ∆n−1

k , having cardinality
δn−1

k =
(n−1

k

)
−
(n−1

k−1

)
and a second set, ∆n−1

k−1 , of linearly independent polynomials in

S fk−1(n− 1) with cardinality δn−1
k−1 =

(n−1
k−1

)
−
(n−1

k−2

)
. Then we can define a subset in

S fk(n) taking δn−1
k and all polynomials δr,n ·δL∗M∗ with δL∗M∗ in δn−1

k−1 , where the index
r is the smallest element in the complement of L∗tM∗t{n}. These polynomials are
linearly independent:

∑
cr,L∗M∗δr,n · δL∗M∗ +

∑
cH∗ J∗δH∗ J∗ = 0 implies cr,L∗,M∗ = 0

(look at the coefficient of xn) and next, by induction, cH∗ J∗ = 0. Their total number
is

δn−1
k + δn−1

k−1 =

(
n− 1

k

)
+

(
n− 1

k− 1

)
−
(

n− 1

k− 1

)
−
(

n− 1

k− 2

)
=

(
n

k

)
−
(

n

k− 1

)
.

Proposition 5.10 For 0 ≤ i ≤ k ≤ n
2 , there is a set of pairs

B = {(H∗, J∗) | H∗ = (h1, h2, . . . , hi), J∗ = ( j1, j2, . . . , ji),H∗ t J∗ ⊂ n}

such that the following set is a basis of the irreducible component V(n−i,i) of S fk(n)

{δH∗ J∗σ
L
k−i | (H∗, J∗) ∈ B,H∗ t J∗ t L = n}.

Proof The irreducible component V(n−i,i) of S fk(n) is the orthogonal complement
of Fi−1S fk(n) in FiS fk(n). Its dimension is

(n
i

)
−
( n

i−1

)
; by Lemma 5.6, any poly-

nomial ∆H∗ J∗σ
L
k−i belongs to V(n−i,i). From Lemma 5.9 there is a set of linearly

independent polynomials {δH∗ J∗ ∈ S fi(n)} of cardinality
(n

i

)
−
( n

i−1

)
. The image of

this set through the isomorphism ψ : S fi(n)→ FiS fk(n) gives the required basis.

An Algorithm Using the proofs of Lemma 5.9 and Proposition 5.10 we can describe
an algorithm to compute bases of the irreducible modules V(n−i,i) of S fk(n), 0 ≤ i ≤
k ≤ n

2 .
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(a) If i = 0, the elementary symmetric polynomial σn
k gives a basis of V(n).

For i ≥ 1, the component V(n−i,i) in S fk(n) is given by the orthogonal com-
plement of Fi−1S fk(n) in FiS fk(n) < S fk(n).

(b) First part of the algorithm: we construct a basis ∆n
i of Fi−1S fk(n)⊥ in FiS fi(n) =

S fi(n), by induction on n. We start with x1 − x2 ∈ F0S f1(2)⊥; after the con-
struction of the bases ∆n−1

i−1 , ∆n−1
i of Fi−2S fi−1(n − 1)⊥ and Fi−1S fi(n − 1)⊥

respectively, take the basis ∆n
i = ∆n−1

i t (x∗ − xn)∆n−1
i−1 , where the index r in

(xr − xn)∆L∗M∗ is the smallest element in n− 1 \ (L∗ tM∗).
(c) Second part of the algorithm: let i = k, ∆n

i be a the basis of the V(n−k,k) compo-

nent. If 1 ≤ i ≤ k− 1, multiply each polynomial ∆H∗ J∗ ∈ ∆n
i with σn\(H∗t J∗)

k−i .

Example 5.11 Using the previous algorithm, we find the following basis of the
component V(5,2) of S f3(7):

(x3 − x4)(x1 − x2)(x5 + x6 + x7), (x2 − x6)(x1 − x4)(x3 + x5 + x7),

(x2 − x4)(x1 − x3)(x5 + x6 + x7), (x2 − x6)(x1 − x5)(x3 + x4 + x7),

(x3 − x5)(x1 − x2)(x4 + x6 + x7), (x3 − x7)(x1 − x2)(x4 + x5 + x6),

(x2 − x5)(x1 − x3)(x4 + x6 + x7), (x2 − x7)(x1 − x3)(x4 + x5 + x6),

(x2 − x5)(x1 − x4)(x3 + x6 + x7), (x2 − x7)(x1 − x4)(x3 + x5 + x6),

(x3 − x6)(x1 − x2)(x4 + x5 + x7), (x2 − x7)(x1 − x5)(x3 + x4 + x6),

(x2 − x6)(x1 − x3)(x4 + x5 + x7), (x2 − x7)(x1 − x6)(x3 + x4 + x5).

Proof of Proposition 3.4: monotonicity In order to show that Sn+1·Lϕk,n(V (i)n) ⊇
V (i)n+1, it is enough to prove that for P∗ tQ∗ t R = n + 1, |P∗| = |Q∗| = i we have

δP∗Q∗σ
R
k−i ∈ Sn+1 · {δH∗ J∗σ

L
k−i | H∗ t J∗ t L = n, |H∗| = | J∗| = i}.

One can suppose that n + 1 ∈ R; otherwise, choose an index j ∈ R (|R| = n + 1−
2i > 0) and take ( j, n+1) ·δP∗Q∗σ

R
k−i . If we multiply the equality (n+1 > 2k ≥ k+ i)

σR
k−i =

1

n + 1− k− i

∑
t∈R

(t, n + 1) · σR\{n+1}
k−i

by δP∗Q∗ , we obtain

δP∗Q∗σ
R
k−i =

1

n + 1− k− i

∑
t∈R

(t, n + 1) · δP∗Q∗σ
R\{n+1}
k−i

(the “transposition” (n + 1, n + 1) is the identity permutation).

6 An Application to the Arnold Algebra

V. I. Arnold [A] computed the cohomology algebra of the pure braid group Pn, de-
scribing the first nontrivial cohomology algebra of a complex hyperplane arrange-
ment, later generalized by Orlik-Solomon [OS] to arbitrary hyperplane arrange-
ments. We denote this algebra by A(n).

Definition 6.1 (Arnold) The Arnold algebra A(n) is the graded commutative al-
gebra (over Q) generated in degree one by

(n
2

)
generators {wi j} having the following
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defining relations of degree two (the Yang-Baxter or the infinitesimal braid relations)
Y Bi jk:

A(n) = 〈wi j , 1 ≤ i < j ≤ n | Y Bi jk : wi jwik−wi jw jk+wikw jk, 1 ≤ i < j < k ≤ n〉.

With the convention wi j = w ji (i 6= j), we define the natural action of the sym-
metric group Sn on the exterior algebra Λ∗(wi j) by π · wi j = wπ(i)π( j). The set of
infinitesimal braid relations {Y Bi jk} is invariant (up to a sign) so we have a natural
action of Sn on the Arnold algebra A(n). Church and Farb [CF] proved the repre-
sentation stability of A(n) (see also [H]). We will use some results of the previous
sections to describe the irreducible Sn submodules of A1(n), A2(n), and A3(n). We
also use the results of Section 5 to describe bases of the irreducible representations
appearing in A1(n) and A2(n).

Proof of Theorem C (degree 1) This is a consequence of the isomorphism of
Sn-modules A1(n) ∼= LP2(n), wi j 7→ {i, j}, and of Proposition 2.10.

In the same way we obtain the unstable decomposition.

Proposition 6.2 In the unstable cases the decompositions are

A1(2) = V(2), A1(3) = V(3) ⊕V(2,1).

Proof of Theorem D This is a consequence of the inductive method for construct-
ing bases of the different pieces of S f2(n) ∼= LP2(n) ∼= A1(n). For instance, the
polynomial

δ12σ
(12)′

n = (x1 − x2)(x3 + x4 + · · · + xn)

corresponds to the linear combination of sets(
{1, 3} + {1, 4} + · · · + {1, n}

)
−
(
{2, 3} + {2, 4} + · · · + {2, n}

)
,

and this corresponds to Ωn
12. Similarly, the polynomial δi jδlk = (xi − x j)(xl − xk)

corresponds to Ωi jkl.

The vector space LP3(n) is isomorphic to I2(n), the degree two component of the
ideal of the infinitesimal braid relations

{i, j, k} ↔ Y Bi jk : wi jwik − wi jw jk + wikw jk,

but they are not isomorphic as Sn-modules, since the symmetric group action on
I2(n) involves signs. For instance, (12)·Y B123 = w12w23−w12w13+w23w13 = −Y B123.

Proposition 6.3 For n ≥ 4 the degree two component of the ideal of relations decom-
poses as

I2(n) = V (1, 1)n ⊕V (1, 1, 1)n.

For n = 2 we have I2(2) = 0 and for n = 3 we have I2(3) = V(1,1,1).

Proof The characters of the irreducible modules V(n−2,1,1) and V(n−3,1,1,1) can be
computed using the Frobenius formula and are given in the character table in the
proof of the next lemma. We obtain the character of I2(n) by direct computation.
The symmetric group acts on the canonical basis {Y Bi jk} of I2(n) by permuting the
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elements of this basis and adding a± sign due to graded commutativity. The relation
Y Bi jk is invariant (up to sign) by a permutation π if and only if {i, j, k} is a union of
cycles of π. If the permutation π has type (i1; i2; . . . ; in) (iq is the number of cycles
of length q), then π leaves invariant the elements Y Bi jk corresponding to three fixed

points i, j, k (the number of relations of this first type is
(i1

3

)
) and also elements Y Bpqr

corresponding to a three cycle (p, q, r) (and the number of relations of this second
type is i3). In the last case, if {i} is a fixed point of π and (u, v) is a two-cycle, we have
π · Yiuv = −Yiuv (and the total number of such relations is i1i2). Therefore the value
of the character on π is

χI2(n)(i1; i2; . . . ; in) =

(
i1

3

)
+ i3 − i1i2,

and this is equal to χV (n−2,1,1)(i1; i2; . . . ; in) + χV (n−3,1,1,1)(i1; i2; . . . ; in).

Lemma 6.4 For n ≥ 7 the degree two component of the exterior algebra Λ2(n) =
Λ∗(wi j)1≤i< j≤n decomposes as

Λ2(n) = 2V (1)n⊕ 2V (2)n⊕ 3V (1, 1)n⊕V (3)n⊕ 2V (2, 1)n⊕V (1, 1, 1)n⊕V (3, 1)n.

The unstable cases have the following decompositions:

Λ2(2) = 0,

Λ2(3) = V(2,1) ⊕V(1,1,1),

Λ2(4) = 2V(3,1) ⊕V(2,2) ⊕ 2V(2,1,1) ⊕V(1,1,1,1),

Λ2(5) = 2V(4,1) ⊕ 2V(3,2) ⊕ 3V(3,1,1) ⊕V(2,2,1) ⊕V(2,1,1,1),

Λ2(6) = 2V(5,1) ⊕ 2V(4,2) ⊕ 3V(4,1,1) ⊕V(3,3) ⊕ 2V(3,2,1) ⊕V(3,1,1,1).

Proof These decompositions are obtained from the expansion

Λ2(A1) = Λ2(V (0)n ⊕V (1)n ⊕V (2)n)

= Λ2V (1)n ⊕ Λ2V (2)n ⊕V (1)n ⊕V (2)n ⊕ (V (1)n ⊗V (2)n),

where

V (1)n ⊗V (2)n = V (1)n ⊕V (2)n ⊕V (1, 1)n ⊕V (3)n ⊕V (2, 1)n,

Λ2V (1)n = V (1, 1)n,

Λ2V (2)n = V (1, 1)n ⊕V (2, 1)n ⊕V (1, 1, 1)n ⊕V (3, 1)n.

The decomposition of the tensor product is from [M] (and can be checked using
Littlewood–Richardson rule or using the characters from the following table). For the
degree two exterior algebra one can use the following character table ((i1; i2; . . . ; in)
stands for the conjugacy class with iq cycles of length q):
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χV (i1; . . . ; in) χV ((i1; . . . ; in)2) χΛ2V (i1; . . . ; in)

V (1)n i1 − 1 i1 + 2i2 − 1
(i2−1

2

)
− i2

V (1, 1)n

(i1−1
2

)
− i2

V (2)n
i1(i1−3)

2 + i2
(i1+2i2)(i1+2i2−3)

2 + 2i4
i1(i1−3)(i2

1−3i1−2)
8

+ (i2
1−5i1+3)i2−i2

2
2 − i4

V (3)n
i1(i1−1)(i1−5)

6

+ i2(i1 − 1) + i3

V (2, 1)n
i1(i1−2)(i1−4)

3 − i3

V (1, 1, 1)n

(i1−1
3

)
+ i2(1− i1) + i3

V (3, 1)n
i1(i1−1)(i1−3)(i1−6)

8

+ i2

(i1−1
2

)
−
(i2

2

)
− i4

The entries in the second column are computed using the Frobenius formula; in the
third column we used

(i1; i2; i3; i4; . . . )2 = (i1 + 2i2; 2i4; i3; . . . ),

and in the last column we used the formula

χΛ2(V )(π) =
1

2

[
(χV (π))2 − χV (π2)

]
(see [K]).

Proof of Theorem C (degree 2) This is a consequence of Proposition 6.3 and Lem-
ma 6.4.

Similarly we have the following proposition.

Proposition 6.5 In the unstable cases we have

A2(2) = 0,

A2(3) = V(2,1),

A2(4) = 2V(3,1) ⊕V(2,2) ⊕V(2,1,1),

A2(5) = 2V(4,1) ⊕ 2V(3,2) ⊕ 2V(3,1,1) ⊕V(2,2,1),

A2(6) = 2V(5,1) ⊕ 2V(4,2) ⊕ 2V(4,1,1) ⊕V(3,3) ⊕ 2V(3,2,1).

These decompositions coincide with the formulae from [CF]. The last proposi-
tion is refined in [AAB], using the “type” decomposition of the Križ model for the
configuration space of a complex projective manifold. The results of this section are
necessary for the cohomological computations of [AAB].

Proof of Theorem E For the degree three part of the Arnold algebra, we compute
the character polynomial directly. For an arbitrary permutation σ ∈ Sn of type
(i1; i2; . . . ; in), any 6-tuple of 1-cycles (i)( j)(k)(l)(m)(p), 1 ≤ i < j < k < l < m <
p ≤ n, fixes the monomials having six distinct indices from {i, j, k, l,m, p} and there
are 15

(i1

6

)
such monomials. The permutations (i, j) (k) (l) (m) (p) have non-zero
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contribution to the character for the monomials wi jwklwmp,wi jwkmwlp,wi jwlmwkp.
For a permutation involving (i, j)(k, l,m) for i < j and k < l < m the monomial in
the Arnold basis

wi jwklwlm → wi jwlmwkm = −wi jwkmwlm = −wi jwklwlm + wi jwklwkm

contributes −1 to the character giving in total −i2i3; similar computations for other
permutations give the character of A3(n):

χA3(n)(i1; i2; . . . ; in)

= 15

(
i1

6

)
+ 3

(
i1

4

)
i2 −

(
i1

2

)(
i2

2

)
− 5

(
i2

3

)
+ 3

(
i3

2

)
−
(

i1

2

)
i4 − i2i4

+ i6 + 20

(
i1

5

)
+ 2

(
i1

3

)
i2 − i2i3 −

(
i1

2

)
i3 + 6

(
i1

4

)
− 2

(
i2

2

)
.

Using the characters of the corresponding irreducible modules given explicitly in [S]
we get the decomposition.
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