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Abstract. We exhibit, for arbitrary ε > 0, subshifts admitting weakly mixing (probability)
measures with word complexity p satisfying lim sup p(q)/q < 1.5 + ε. For arbitrary
f (q) → ∞, said subshifts can be made to satisfy p(q) < q + f (q) infinitely often. We
establish that every subshift associated to a rank-one transformation (on a probability
space) which is not an odometer satisfies lim sup p(q) − 1.5q = ∞ and that this is optimal
for rank-ones.
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1. Introduction
Morse and Hedlund [MH38] initiated the study of word complexity of symbolic systems:
given an infinite word x ∈ AZ, on some finite set A—the alphabet—the word complexity
p(q) is the number of distinct subwords of x of length q; more generally, for a closed,
shift-invariant X ⊆ AZ, i.e. a subshift, the complexity p(q) is the number of distinct
subwords of length q appearing in any of the x ∈ X.

The same authors [MH40] established the first lower bound on the word complexity
in terms of the structure of the subshift: if x is aperiodic, then p(q) ≥ q + 1 for all q. A
natural question, considering aperiodicity to be a weak form of mixing-like behavior, is
to what extent mixing-type properties impose lower bounds on complexity, especially in
light of recent results (e.g. [CFPZ19, CK19, CK20a, CK20b, DDMP16, DOP21, OP19,
PS22]) regarding subshifts with low word complexity being highly structured.

Morse and Hedlund [MH40] also exhibited words with p(q) = q + 1, called Sturmian
words, which can be encoded by irrational rotations [CH73]. As irrational rotations are
totally ergodic, the natural question is whether weak mixing imposes any sort of stronger
lower bound on word complexity. Topological mixing properties were considered by Gao
and Ziegler [GZ19] (see also Gao and Hill [GH16a, GH16b]); here we address the
measure-theoretic question.
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The lowest previously known complexity for a subshift admitting a weakly mixing
(probability) measure, due to Ferenczi [Fer95], is a subshift with complexity satisfying
lim sup p(q)/q = 5/3 and lim inf p(q)/q = 1.5. We exhibit subshifts, admitting weakly
mixing (probability) measures, with lower complexity.

THEOREM A. (Theorem 6.9) For every ε > 0, there exists a weakly mixing rank-one
transformation (on a probability space) such that the associated subshift has complexity
lim sup p(q)/q < 1.5 + ε.

THEOREM B. (Theorem 6.9) For any f (q) → ∞, the subshifts can be made to satisfy
p(q) < q + f (q) infinitely often.

Naturally, one wonders whether these bounds are sharp. Cassaigne [Cas98] showed that
if p(q) = q + c for some constant c, then it is the image of a Sturmian word (so cannot
admit a weakly mixing measure); this implies p(q) < q + f (q) infinitely often is the best
possible (see Proposition 2.6 for specifics).

The analogous question for strong mixing was first explored by Ferenczi [Fer96] who
showed that the classical staircase transformation (proved mixing by Adams [Ada98]) has
quadratic complexity and conjectured that was the minimal possible. The author, Pavlov
and Rodock [CPR22] disproved this conjecture; recently, the author [Cre22] showed that
strong mixing manifests exactly at superlinear complexity: every strongly mixing subshift
satisfies lim p(q)/q = ∞ and for any f (q) → ∞, there exist strongly mixing subshifts
with lim p(q)/(qf (q)) = 0.

We establish that lim sup p(q)/q = 1.5 is optimal for rank-one transformations.

THEOREM C. (Theorem 4.3) Let T be a rank-one transformation (on a probability
space) which is not an odometer. Then the associated subshift has complexity satisfying
lim sup p(q) − 1.5q = ∞ (and lim inf p(q) − q = ∞).

While Sturmian words are encoded by irrational rotations (which are totally ergodic and
rank-one), Rote [Rot94] showed that the general word encoded by an irrational rotation has
complexity p(q) = 2q, so if one treats an irrational rotation as a rank-one subshift, then
the complexity satisfies p(q) ≥ 2q.

There appears to be a complexity distinction between totally ergodic and weakly
mixing rank-one subshifts, namely that we can exhibit examples of totally ergodic
rank-one subshifts with strictly lower complexity than any of our weakly mixing examples.
Specifically, Theorem C is optimal.

THEOREM D. (Theorem 6.12) For every f (q) → ∞, there exists a totally ergodic
rank-one transformation (on a probability space) such that the associated subshift satisfies
p(q) < 1.5q + f (q) for all sufficiently large q and p(q) < q + f (q) infinitely often.

It is worth remarking that lim sup p(q) − 1.5q = ∞ distinguishing behavior in sub-
shifts also appears in the work of Ormes and Pavlov [OP19] who showed that if
lim sup p(q) − 1.5q < ∞, then the words in question are necessarily uniformly recurrent
or bidirectionally eventually periodic. For rank-one transformations, having bounded
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spacers implies uniform recurrence, so their result and ours do not meaningfully overlap.
However, it is interesting that lim sup p(q) − 1.5q < ∞ is exactly the bound that rules out
total ergodicity for rank-one subshifts as it is well known that the lack of total ergodicity
for rank-ones is equivalent to factoring onto a finite cyclic permutation, which is similar in
spirit to their conclusion.

In connection with other properties often discussed with rank-one transformations, if we
replace p(q) < q + f (q) infinitely often with a slightly weaker condition, then the work
of Ryzhikov [Ryz13] gives the following theorem.

THEOREM E. (Theorem 6.10) For every ε > 0, there exists a subshift with complexity
satisfying lim sup p(q)/q < 1.5 + ε and lim inf p(q)/q < 1 + ε such that the associated
rank-one transformation is weakly mixing (on a probability space) and has minimal
self-joinings (hence also has trivial centralizer and is mildly mixing).

The proof of Theorem C is worth outlining briefly. First we establish that for a rank-one
subshift with lim sup p(q)/q < 2, there is a rank-one subshift which generates the same
language such that the spacer sequence eventually takes on at most two values. Not being
an odometer implies that both values must occur infinitely often and one can arrange for
both to occur at every level (this arranging can lead to the cut sequence growing very
rapidly).

The proof then proceeds by an analysis of all possible rank-one subshifts with exactly
two spacer values. We remark that finding our low complexity examples was a direct result
of this examination, which both indicated 1.5 ought to be the optimal bound and led to
which subshifts were the correct candidates.

There remain questions regarding the precise nature of the complexity of subshifts
admitting weakly mixing measures; we discuss these in §7. The main question left open
is whether there exists a subshift, necessarily not rank-one, admitting a weakly mixing
(probability) measure such that lim sup p(q)/q < 1.5. We tentatively conjecture that this
is not the case and a bit more: for every subshift admitting a weakly mixing (probability)
measure, we tentatively conjecture that lim sup p(q)/q > 1.5.

Section 5 where the examples are constructed (and §6 where weak mixing is proved)
may be read independently; the reader primarily interested in the examples may opt to skip
§§3 and 4 which are aimed at proving Theorem C.

2. Definitions and preliminaries
2.1. Symbolic dynamics

Definition 2.1. A subshift on the finite set A is any subset X ⊂ AZ which is closed in
the product topology and shift-invariant: for x = (xn)n∈Z ∈ X and k ∈ Z, the translate
(xn+k)n∈Z is also in X.

Definition 2.2. A word is any element of A� for some �, the length of w, written �en(w).
A word w is a subword of a word or biinfinite sequence x if there exists k so that wi = xi+k

for 1 ≤ i ≤ �en(w). A word u is a prefix of w if ui = wi for 1 ≤ i ≤ �en(u) and a word v
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is a suffix of w if vi = wi+�en(w)−�en(v) for 1 ≤ i ≤ �en(v). A subword (or prefix or suffix)
is proper when it is not the entire word.

For words v, w, we denote by vw their concatenation—the word obtained by following v
immediately by w. We also write such concatenations with product or exponential notation,
e.g.

∏
i wi or 0n.

Definition 2.3. The language of a subshift X is L(X) = {w : w is a subword of some
x ∈ X}.

Definition 2.4. The word complexity function of a subshift X over A is the function
pX : N → N defined by pX(q) = |L(X) ∩ Aq |, the number of words of length q in the
language of X.

When X is clear from context, we suppress the subscript and just write p(q).

2.1.1. Right-special words. All subshifts we consider are on the alphabet {0, 1} so it is
natural to consider the following definition.

Definition 2.5. The set of right-special words is LRS(X) = {w ∈ X : w0, w1 ∈ L(X)}.

Cassaigne [Cas97] showed the following well-known relationship: p(q) = p(m) +∑q−1
�=m |{w ∈ LRS : �en(w) = �}| for m < q.

2.1.2. Quasi-Sturmian words. An infinite x ∈ AN is Sturmian when px(q) = q + px(1).
Morse and Hedlund [MH40] exhibited examples of such words and showed that if
px(q) ≤ q or px(q + 1) = px(q) for any q, then x is periodic.

Cassaigne [Cas98] termed infinite words x such that px(q) = q + c for some constant
c and all sufficiently large q quasi-Sturmian, and showed such a word must be the image
of a Sturmian word under a morphism f : A∗ → A∗ which is non-periodic.

Indeed, his result quickly gives a bit more to obtain the following proposition.

PROPOSITION 2.6. Let X be an aperiodic subshift such that pX(q) ≤ q + d for some
constant d and infinitely many q. Then X is quasi-Sturmian (in the sense that all x ∈ X

are quasi-Sturmian), and hence cannot admit a weakly mixing measure.

Proof. By the Hedlund–Morse theorem, we may assume p(� + 1) − p(�) ≥ 1 for all �

since otherwise, the subshift is periodic. For infinitely many q,

q + d ≥ p(q) = p(1) +
q−1∑
�=1

(p(� + 1) − p(�))

≥ p(1) + q − 1 + |{� < q : p(� + 1) − p(�) ≥ 2}|
so for infinitely many q, we have |{� < q : p(� + 1) − p(�) ≥ 2}| < d, meaning
|{� : p(� + 1) − p(�) ≥ 2}| < d.
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Set c = p(1) − 1 + ∑∞
�=1(p(� + 1) − p(�) − 1), which must be finite as there are only

finitely many � with p(� + 1) − p(�) > 1. Then for all q > max{� : p(�+1)−p(�)≥2},

p(q) = p(1) + q − 1 +
q−1∑
�=1

(p(� + 1) − p(�) − 1) = q + c.

Since Sturmian words can be encoded by irrational rotations, Sturmian (and therefore
quasi-Sturmian) subshifts cannot admit weakly mixing measures.

2.2. Ergodic theory

Definition 2.7. A transformation T is a measurable map on a standard Borel or Lebesgue
measure space (Y , B, μ) that is measure-preserving: μ(T −1B) = μ(B) for all B ∈ B.

Definition 2.8. Two transformations T on (Y , B, μ) and T ′ on (Y ′, B′, μ′) are
measure-theoretically isomorphic if there exists a bijective map φ between full measure
subsets Y0 ⊂ Y and Y ′

0 ⊂ Y ′, where μ(φ−1A) = μ′(A) for all measurable A ⊂ Y ′
0 and

(φ ◦ T )(y) = (T ′ ◦ φ)(y) for all y ∈ Y0.

Definition 2.9. A transformation T is ergodic when A = T −1A implies that μ(A) = 0 or
μ(Ac) = 0.

Definition 2.10. A transformation T is totally ergodic when T k is ergodic for all k ∈ N.

Definition 2.11. A transformation T on a probability space is weakly mixing when any of
the following equivalent conditions hold:
• for all measurable sets A, B, there exists {tn} such that μ(T tnA ∩ B) → μ(A)μ(B);
• there exists a density one {tn} such that μ(T tnA ∩ B) → μ(A)μ(B) for all measurable

sets A, B;
• T × T is ergodic;
• for all measurable A, B, there exists n such that μ(T nA ∩ A)μ(T nA ∩ B) > 0.

2.3. Rank-one transformations. A rank-one transformation is a transformation T con-
structed by ‘cutting and stacking’. Here, Y represents a (possibly infinite) interval, B is
the induced σ -algebra from R and μ is Lebesgue measure. We give a brief description,
referring the reader to [FGH+21] or [Sil08] for more details and to [Fer97] for equivalent
definitions.

The transformation is defined inductively on increasingly larger portions of the space
through Rohlin towers or columns, denoted Cn. Each column Cn consists of levels In,j ,
where 0 ≤ j < hn is the height of the level within the column. All levels In,j in Cn are
intervals with the same length, μ(In), and the total number of levels in a column is the
height of the column, denoted by hn. The transformation T is defined on all levels In,j

except the top one In,hn−1 by sending each In,j to In,j+1 using the unique order-preserving
affine map.

Start with C1 = [0, 1) with height h1 = 1. To obtain Cn+1 from Cn, we require a cut
sequence, {rn}, such that rn ≥ 1 for all n. Make rn vertical cuts of Cn to create rn + 1
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subcolumns of equal width. Denote a sublevel of Cn by I
[i]
n,j , where 0 ≤ a < hn is the

height of the level within that column and i represents the position of the subcolumn, where
i = 0 represents the leftmost subcolumn and i = rn is the rightmost subcolumn. After
cutting Cn into subcolumns, add extra intervals called spacers on top of each subcolumn
to function as levels of the next column. The spacer sequence, {sn,i}, such that 0 ≤ i ≤ rn

and sn,i ≥ 0, specifies how many sublevels to add above each subcolumn. Spacers are the
same width as the sublevels, act as new levels in the column Cn+1 and are taken to be the
leftmost intervals in [1, ∞) not in Cn. After the spacers are added, stack the subcolumns
with their spacers right on top of left, i.e. so that I

[i+1]
n,0 is directly above I

[i]
n,hn−1. This gives

the next column, Cn+1.
Each column Cn defines T on

⋃hn−2
j=0 In,j and the partially defined map T on Cn+1

agrees with that of Cn, extending the definition of T to a portion of the top level of Cn

where it was previously undefined. Continuing this process gives the sequence of columns
{C1, . . . , Cn, Cn+1, . . .} and T is then the limit of the partially defined maps.

Though this construction could result in Y being an infinite interval with infinite
Lebesgue measure, Y has finite measure if and only if

∑
n(1/rnhn)

∑rn
i=0 sn,i < ∞, see

[CS10]. All rank-one transformations we define satisfy this condition and for convenience,
we renormalize so that Y = [0, 1). Every rank-one transformation is ergodic and invertible.

The reader should be aware that we are making rn cuts and obtaining rn + 1 subcolumns
(following Ferenczi [Fer96]), while other papers (e.g. [Cre21]) use rn as the number of
subcolumns.

2.4. Odometers

Definition 2.12. A rank-one transformation which can be constructed using a spacer
sequence such that there exists N so that sn,i = 0 for all n ≥ N and 0 ≤ i < rn is an
odometer.

Odometers have discrete spectrum and all their eigenvalues are rational in the sense that
they are of the form exp(2πiq) for q ∈ Q.

2.5. Symbolic models of rank-one transformations. For a rank-one transformation
defined as above, we define a subshift X(T ) on the alphabet {0, 1} which is
measure-theoretically isomorphic to T.

Definition 2.13. The symbolic model X(T ) of, or subshift associated to, a rank-one
transformation T is given by the sequence of words: B1 = 0 and

Bn+1 = Bn1sn,0Bn1sn,1 · · · Bn1sn,rn =
rn∏

i=0

Bn1sn,i

and X(T ) is the set of all biinfinite sequences such that every subword is a subword of
some Bn.

The words Bn are a symbolic coding of the column Cn: 0 represents C1 and 1 represents
the spacers, and hn = �en(Bn). There is a natural measure associated to X(T ).
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Definition 2.14. The empirical measure for a symbolic model X(T ) of a rank-one
transformation T is the measure ν defined by, for each word w,

ν([w]) = lim
n→∞

|{1 ≤ j ≤ �en(Bn) − �en(w) : Bn[j ; �en(w)] = w}|
�en(Bn) − �en(w)

,

where Bn[j ; �] denotes the subword of Bn starting at position j with length �.

Danilenko [Dan16] (combined with [dJ77]) proved that the symbolic model X(T )

of a rank-one subshift, equipped with its empirical measure, is measure-theoretically
isomorphic to the cut-and-stack construction (see [AFP17]; see [FGH+21] for the full
generality including odometers).

Due to this isomorphism, we move back and forth between rank-one and symbolic
model terminology as needed and write L(T ) for the language of X(T ), or simply L if
X(T ) is clear from context, and make the following definition.

Definition 2.15. A rank-one subshift is the symbolic model of a rank-one transformation.

Likewise, when the measure is clear from text, such as the empirical measure for a
rank-one subshift, we make the following definition.

Definition 2.16. A (measure-theoretically) weakly mixing subshift is a subshift for which
the measure is weakly mixing.

3. Properties of rank-one subshifts
LEMMA 3.1. For n < m, Bm has Bn as a prefix and Bn1sn,rn as a suffix.

Proof. This is immediate from the construction.

LEMMA 3.2. Bn has 0 as a prefix for all n.

Proof. By Lemma 3.1, Bn has B1 = 0 as a prefix.

We next need a result of Danilenko.

PROPOSITION 3.3. [Dan19, Lemma 1.10] Every rank-one subshift is measure-theoretically
isomorphic to a rank-one subshift with sn,rn = 0 and the two subshifts generate the same
language.

PROPOSITION 3.4. For a rank-one subshift on a finite measure space, (1/hn) inf{sn,i :
0 ≤ i < rn} → 0.

Proof. Suppose inf{sn,i : 0 ≤ i < rn} ≥ δhn infinitely often for some δ > 0. Then for such
n, we have μ(Cn+1) ≥ μ(Cn) + inf{sn,i : 0 ≤ i < rn}μ(In) ≥ (1 + δ)μ(Cn). So for any k,
if we choose N such that at least k values of n < N have inf{sn,i : 0 ≤ i < rn} ≥ δhn, then
μ(CN) ≥ (1 + δ)kμ(C0). Taking k → ∞ shows the measure would then be infinite.
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3.1. Rank-one subshifts with at least three distinct spacer values

PROPOSITION 3.5. For a rank-one subshift on a finite measure space with sn,rn = 0 for
all sufficiently large n, if the set {sm,i : m ≥ n, 0 ≤ i < rm} contains at least three distinct
values for infinitely many n, then lim sup p(q)/q ≥ 2.

Proof. Choose n such that tn = inf{sn,i : 0 ≤ i < rn} has the property that tn = inf{sm,i :
m ≥ n, 0 ≤ i < rm} (such an n must exist since otherwise, there is a sequence {mt } along
which inf{smt ,i : 0 ≤ i < rmt } is strictly decreasing, which would contradict that sm,i ≥ 0).

Let un, vn ∈ {sm,i : m ≥ n, 0 ≤ i < rm} such that tn < un < vn. Such must exist since
otherwise, |{sm,i : m ≥ n, 0 ≤ i < rm′ }| = 2, so the same holds for all n′ ≥ n.

The word Bn1tnBn is a subword of Bn+1. As Bn has 0 as a prefix, Bn1tn0 ∈ L. As
un > tn and Bn1un is a subword of Bm1un which is a subword of Bm+1, this shows
Bn1tn ∈ LRS . Likewise, Bn1un ∈ LRS .

Let N such that sn,rn = 0 for n ≥ N . Let c ≥ 1 such that BN has 01c−1 as a suffix (such
c ≤ hN must exist as BN has 0 as a prefix). Since sn,rn = 0 for n ≥ N , the word Bn, for all
n ≥ N , has BN as a suffix and hence has 01c−1 as a suffix.

Therefore, Bn1tn has 01c−1+tn as a suffix and Bn1un has 01c−1+un as a suffix meaning
that for every tn + c ≤ � < hn + tn, the suffixes of Bn1tn and Bn1un of length � are distinct
(as un > tn).

Then p(� + 1) − p(�) = |{w ∈ LRS : �en(w) = �}| ≥ 2 for tn + c ≤ � < hn + tn,
meaning that p(hn) ≥ 2(hn − tn − c) so, as Proposition 3.4 implies tn/hn → 0,
p(hn)/hn ≥ 2(1 − (tn + c)/hn) → 2.

3.2. Rank-one subshifts with the same language

LEMMA 3.6. Let T be a rank-one subshift with cut sequence {rn} and spacer sequence
{sn,i}.

Let N ∈ N. For n < N , set r̃n = rn and s̃n,i = sn,i .
Set r̃N = (rN + 1)(rN+1 + 1) − 1 and for 0 ≤ a ≤ rN+1, set s̃N ,a(rN+1)+b = sN ,b for

0 ≤ b < rN and set s̃N ,a(rN+1)+rN = sN ,rN + sN+1,a .
For n > N , set r̃n = rn+1 and s̃n,i = sn+1,i .
Then the rank-one subshift T̃ generates the same language as T.

Proof. Clearly, B̃n = Bn for n ≤ N . By design,

B̃N+1 =
rN+1∏
a=0

( rN∏
b=0

B̃N 1s̃N ,a(rN +1)+b

)

=
rN+1∏
a=0

(( rN−1∏
b=0

BN 1sN ,b

)
BN 1sN ,rN +sN+1,a

)
=

rN+1∏
a=0

BN+11sN+1,a = BN+2,

so B̃n = Bn+1 for all n > N .

PROPOSITION 3.7. Let T be a rank-one transformation such that sn,rn = 0 and sn,i = cn

for 0 ≤ i < rn for all sufficiently large n. If cn is not eventually constant, then there exists
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a rank-one subshift T̃ which generates the same language as T, with the property that
s̃n,r̃n = 0 and s̃n,i is not constant over 0 ≤ i < r̃n for infinitely many n.

Proof. If cn is not eventually constant, then there exist infinitely many n < m such that
cn = cm, so there exist infinitely many n such that cn = cn+1.

If we apply Lemma 3.6 at such an n, then s̃n,i is not constant over 0 ≤ i < r̃n since
s̃n,rn = sn,rn + sn+1,0 = 0 + cn+1 = cn = s̃n,0 and s̃n,r̃n = sn,rn + sn+1,rn+1 = 0.

Let N be a set of n such that cn = cn+1 such that N does not contain any pairs of
consecutive integers. Applying Lemma 3.6 for each n ∈ N gives the claim.

In fact, one can do a similar modification across multiple stages simultaneously.

LEMMA 3.8. Let T be a rank-one subshift with cut sequence {rn} and spacer sequence
{sn,i}, and let {nt } be a strictly increasing sequence with n1 = 1. For t ≥ 1, set

r̃t =
( nt+1−1∏

n=nt

(rn + 1)

)
− 1

and for 0 ≤ j < nt+1 − nt and 0 ≤ ij ≤ rnt+j ,

s̃t ,i0+i1(rnt +1)+i2(rnt +1+1)(rnt +1)+···+int+1−nt −1(rnt+1−1+1)···(rnt +1)

= snt ,i0 +
nt+1−nt−1∑

j=1

{
snt+j ,ij if ik = rnt+k for all 0 ≤ k < j ,

0 otherwise.

Then T and T̃ generate the same language: B̃t = Bnt for all t ≥ 1.

Proof. We have B̃1 = 0 = B1 = Bn1 , so we may assume B̃t = Bnt and then

B̃t+1 =
r̃t∏

a=0

B̃t1s̃t ,a

=
∏

i0,...,int+1−nt −1

Bnt 1
snt ,i0 1

∑nt+1−nt −1
j=1 snt +j ,ij 1ik=rnt +k for all k<j

=
∏

i1,...,int+1−nt −1

( rnt∏
i0=0

Bnt 1
snt ,i0

)
1snt +1,i1 1

∑nt+1−nt −1
j=2 snt +j ,ij 1ik=rnt +k for all k<j

=
∏

i1,...,int+1−nt −1

Bnt+11snt +1,i1 1
∑nt+1−nt −1

j=2 snt +j ,ij 1ik=rnt +k for all k<j

=
∏

i2,...,int+1−nt −1

( rnt +1∏
i1=0

Bnt+11snt +1,i1

)
1snt +2,i2 1

∑nt+1−nt −1
j=3 snt +j ,ij 1ik=rnt +k for all k<j

...

=
rnt+1−nt −1∏

int+1−nt −1=0

Bnt+1−11
snt+1−1,int+1−nt −1 = Bnt+1 .
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PROPOSITION 3.9. Let T be a rank-one subshift such that sn,rn = 0 for all sufficiently
large n and that there exists 0 ≤ i, i′ < rn such that sn,i = sn,i′ for infinitely many n. Then
there exists a rank-one subshift T̃ , which generates the same language, such that for all
sufficiently large n, s̃n,r̃n = 0 and there exists 0 ≤ i, i′ < r̃n with s̃n,i = s̃n,i′ .

Proof. Let n1 = 1 and {nt }t≥2 be the sequence of n for which sn,i = sn,i′ . Lemma 3.8 then
gives the claim since snt ,i being non-constant over 0 ≤ i < rnt implies s̃t ,a is non-constant
over 0 ≤ a < rnt and hence over 0 ≤ a < r̃t . Clearly, s̃t ,r̃t = 0 for sufficiently large t as
sn,rn = 0 for all sufficiently large n.

PROPOSITION 3.10. Let T be a rank-one subshift such that sn,rn = 0 for all sufficiently
large n and that for infinitely many n, sn,0 = sn,rn−1 = 0. Then there exists a rank-one
subshift, which generates the same language, such that s̃n,rn = 0 and s̃n,0 = s̃n,r̃n−1 =
s̃n+1,r̃n+1−1 = 0 for all sufficiently large n.

Proof. Let n1 = 1 and {nt }t≥2 be the sequence of n for which sn,0 = sn,rn−1 = 0.
Lemma 3.8 then gives the subshift since s̃t ,0 = snt ,0 = 0 and s̃t ,r̃t−1 has i0 = rnt − 1 so
s̃t ,r̃t−1 = snt ,rnt −1 = 0 and, likewise, s̃t+1,r̃t+1−1 = snt+1,rnt+1−1 = 0.

PROPOSITION 3.11. If a rank-one subshift has the property that sn,rn = 0 for all suffi-
ciently large n and there exist constant non-negative integers c < d such that sn,i ∈ {c, d}
for all 0 ≤ i < rn (with both occurring) for sufficiently large n, then there exists a rank-one
subshift which generates the same language such that sn,rn = 0 and sn,i ∈ {0, d − c} for all
0 ≤ i < rn (with both occurring) for all sufficiently large n.

Proof. For all n, set r̃n = rn. Let N such that for all n ≥ N , we have sn,i ∈ {c, d} for all
0 ≤ i < rn and sn,rn = 0. For n < N , set s̃n,i = sn,i .

Set s̃N ,i = sN ,i for 0 ≤ i < rN and s̃N ,rN = c. For n > N , set s̃n,i = sn,i − c for
0 ≤ i < rn and s̃n,rn = 0.

Clearly, B̃n = Bn for n ≤ N . Observe that

B̃N+1 =
( rN−1∏

i=0

BN1sN ,i

)
BN 1c = BN+11c.

If B̃n = Bn1c, then

B̃n+1 =
( rn−1∏

i=0

B̃n1s̃n,i

)
B̃n =

( rn−1∏
i=0

Bn1c1sn,i−c

)
Bn1c = Bn+11c,

so B̃n = Bn1c for all n > N , meaning they generate the same language.

3.3. Totally ergodic rank-one subshifts

PROPOSITION 3.12. Let T be a rank-one transformation such that there exists c so that for
all sufficiently large n, it holds that sn,i = c for all 0 ≤ i < rn and sn,rn = 0. Then T is an
odometer.
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Proof. Let N > 1 such that for all n ≥ N , sn,i = c for all 0 ≤ i < rn and sn,rn = 0.
Let S

[i]
n,j for 1 ≤ j ≤ c be the spacer levels added above C

[i]
n for 0 ≤ i < rn (we do

not add spacers above C
[rn]
n as sn,rn = 0). Since T (S

[i]
n,c) = I

[i+1]
n,0 for 0 ≤ i < rn, and

since In,0 ⊆ I
[0]
N ,0, we have that T (S

[i]
n,c) ⊆ I

[0]
N ,0 for all n ≥ N and all 0 ≤ i < rn. Since

I
[rN ]
N ,hN−1 = ⊔

n>N

⊔rn−1
i=0 I

[i]
n,hn−1, this means T hN+c(IN ,0) = IN ,0.

Define IN ,hN
= ⊔

n≥N

⊔
0≤i<rn

S
[i]
n,1. Then, T (IN ,hN−1) = IN ,hN

and T c(IN ,hN
) =

IN ,0. Define the column C′
N = ⊔hN−1

j=0 IN ,j � ⊔c−1
j=0 T j (IN ,hN

) and the columns C′
N+n

via cutting and stacking starting from C′
N using cut sequence r ′

N+n = rN+n and spacer
sequence s′

n,i = 0. The resulting odometer is the same map as X, so X is an odometer.

PROPOSITION 3.13. Let T be a rank-one transformation on a finite measure space which
is not an odometer. If lim sup p(q)/q < 2, then there exists a rank-one subshift, which
generates the same language as T, such that there exists a constant positive integer d so
that for all sufficiently large n, it holds that sn,rn = 0 and sn,i ∈ {0, d} for all 0 ≤ i < rn

and there exists 0 ≤ i, i′ < rn so that sn,i = 0 and sn,i′ = d .

Proof. By Proposition 3.3, T is measure-theoretically isomorphic to a transformation T̃

which generates the same language and has s̃n,r̃n = 0 for all n. By Proposition 3.12, T̃ has
the property that for every n and 0 ≤ i < rn, there exists m ≥ n and 0 ≤ i′ < rm such that
sm,i = sn,i′ .

By Proposition 3.5, if lim supN |{sn,i : n≥N , 0≤ i <rn}|≥3, then lim sup p(q)/q ≥2.
So there exists N such that |{sm,i : m ≥ N , 0 ≤ i < rm}| ≤ 2. Therefore, |{sm,i : m ≥
n, 0 ≤ i < rm}| = 2 for all sufficiently large n.

Proposition 3.7 gives a rank-one subshift generating the same language such that
sn,rn = 0 for all sufficiently large n and sn,i = sn,i′ for infinitely many n. Proposition 3.9
then gives a rank-one subshift generating the same language with that property for all
sufficiently large n. Finally, Proposition 3.11 gives a rank-one subshift, still generating the
same language, such that sn,i ∈ {0, d} and 0 ≤ i < rn, and sn,rn = 0 for all sufficiently
large n.

4. Subshifts with exactly one non-zero spacer value
THEOREM 4.1. Let p be the complexity function for a rank-one subshift such that for
all sufficiently large n, the spacer sequence satisfies sn,i ∈ {0, d} for some constant
positive integer d and sn,rn = 0, and that sn,i is not constant over 0 ≤ i < rn. Then,
lim sup p(q) − 1.5q = ∞.

This is a quick consequence of the following theorem.

THEOREM 4.2. Let p be the complexity function for a rank-one subshift such that for all
sufficiently large n, the spacer sequence satisfies sn,i ∈ {0, d} for some constant positive
integer d and sn,rn = 0, and that sn,i is not constant over 0 ≤ i < rn.

Then there exists a constant C such that for all sufficiently large n, there exists qn ≥ hn

such that p(qn) ≥ 1.5qn + (p(hn) − hn) − C.
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Proof of Theorem 4.1 from Theorem 4.2. Let N such that for all n ≥ N , there exists
qn ≥ hn such that p(qn) ≥ 1.5qn + (p(hn) − hn) − C. Let m > n such that hm ≥ qn. As
sn,i > 0 for i < rn implies aperiodicity, p(� + 1) − p(�) ≥ 1 for all � so p(hn) ≥ hn and
p(hm) − p(qn) ≥ hm − qn. Then,

p(hm) − hm = (p(hm) − p(qn)) + p(qn) − hm

≥ (hm − qn) + 1.5qn − C − hm = 0.5qn − C → ∞

and therefore p(qm) − 1.5qm ≥ p(hm) − hm − C → ∞.

Before proving Theorem 4.2, we show how Theorem 4.1 implies the following theorem.

THEOREM 4.3. Let T be a rank-one transformation (on a probability space) which is
not an odometer. Then the associated subshift has complexity satisfying lim sup p(q) −
1.5q = ∞ (and lim inf p(q) − q = ∞).

Proof. By Proposition 3.13, either lim sup p(q)/q ≥ 2 or there exists a rank-one subshift
which generates the same language with the property that there exists a constant
non-negative integer d such that for all sufficiently large n, sn,i ∈{0, d} for all 0≤ i <rn and
sn,rn = 0, and such that there exists 0 ≤ i, i′ < rn with sn,i = 0 and sn,i′ = d . Theorem 4.1
applied to that subshift then gives that lim sup p(q) − 1.5q = ∞. Proposition 2.6 ensures
lim inf p(q) − q = ∞ as otherwise, p(q) = q + c for a constant c for all sufficiently
large q.

The remainder of this section is the proof of Theorem 4.2.

4.1. Some notation and basic facts. Write 1̂ to represent 1d .
We use repeatedly the facts that 0 is a prefix of every Bn (Lemma 3.2) and that Bn is a

suffix of Bm for m ≥ n for sufficiently large n (due to sn,rn = 0).
We also use repeatedly the fact that BnBn and Bn̂1Bn are subwords of Bn+1 due to sn,i

not being constant over 0 ≤ i < rn.

LEMMA 4.4. There exists a constant c ≥ 1 such that for all n ≥ N , the words B2
n and

Bn̂1Bn differ on suffixes of length at least hn + c.

Proof. Choose c such that BN has 01c−1 as a suffix (possible as BN has 0 as a prefix).
Since BnBn has BNBn as a suffix, BnBn has 01c−1Bn as a suffix. As Bn̂1Bn has 1c−11dBn

as a suffix, this shows the words differ on the suffixes 01c−1Bn and 1cBn.

4.2. Counting via right-special words

LEMMA 4.5. Bn ∈ LRS for all n.

Proof. Bn+1 contains BnBn and Bn̂1 as subwords. Bn has 0 as a prefix, so Bn ∈ LRS .
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LEMMA 4.6. Write fn = p(hn) − hn.
If there are tn distinct right-special words, all of length at least hn and less than qn,

which are not suffixes of Bn+m for any m ≥ 1, then

p(qn) ≥ qn + fn + tn.

Proof. Since p(qn) − p(hn) = |{w ∈ LRS : hn ≤ �en(w) < qn}| and since, by
Lemma 4.5, we have at least qn − hn suffixes of some Bn+m of length at least
hn and less than qn which are right-special and distinct from the tn hypothesized,
p(qn) ≥ p(hn) + qn − hn + tn.

The proof of Theorem 4.2 will proceed by establishing the existence of right-special
words which are not suffixes of any Bn+m. To this end, rewrite the defining words as

Bn+1 =
( zn−1∏

j=1

B
an,j
n 1̂

)
B

an,zn
n ,

where an,j ≥ 1 and zn ≥ 2, and an,j ≥ 2 for at least one j as 0 and d both occur in {sn,i :
0 ≤ i < rn}.

4.3. The (straightforwardly) 5/3 cases. Throughout this section, let N such that
sn,i ∈ {0, d} and sn,rn = 0, and sn,i is not constant over 0 ≤ i < rn for all n ≥ N .

PROPOSITION 4.7. If, for n ≥ N , one of the following holds:
• an,zn ≥ 2 and an,1 = 1, i.e. Bn̂1 B2

n;
• an,zn = 1 and an,1 ≥ 2, i.e. B2

n 1̂Bn;
• an,zn = 1 and an,1 = 1, and an,j ≥ 3 for some j, i.e. Bn̂1 B3

n 1̂Bn,
then there exists qn ≥ hn such that p(qn) ≥ (5/3)qn + fn − c .

LEMMA 4.8. Words of the form Bn̂1Bn̂1
For n ≥ N , if an,1 = an,2 = 1, then Bn̂1Bn̂1Bn ∈ LRS .

Proof. Let j minimal such that an,j ≥ 2.
If j > 3, then Bn+1 has the subword B

an,j−3
n 1̂B

an,j−2
n 1̂B

an,j−1
n 1̂B

an,j
n = Bn̂1Bn̂1Bn̂1B

an,j
n ,

which has Bn̂1Bn̂1Bn̂1B2
n as a prefix.

If j = 3, then the word Bn+1̂1Bn+1 has the subword B
an,zn
n 1̂B

an,1
n 1̂B

an,2
n 1̂B

an,3
n as a

subword, which has Bn̂1Bn̂1Bn̂1B2
n as a subword.

Then, Bn̂1Bn̂1Bn ∈ LRS as Bn̂1Bn̂1Bn̂1 and Bn̂1Bn̂1BnBn are both subwords of
Bn̂1Bn̂1Bn̂1B2

n .

LEMMA 4.9. Words of the form Bn̂1B2
n B2

n

For n ≥ N , if an,zn ≥ 2 and an,1 = 1 and an,2 ≥ 2, then B2
n 1̂Bn ∈ LRS .

Proof. Bn+1̂1Bn+1 ∈ L implies B
an,zn
n 1̂B

an,1
n 1̂B

an,2
n ∈ L, so B2

n 1̂Bn̂1 ∈ L as an,zn ≥ 2 and
an,1 = 1.

Bn+1Bn+1 ∈ L implies B
an,zn
n B

an,1
n 1̂B

an,2
n ∈ L. Since an,2 ≥ 2, this gives B2

n 1̂B2
n , so

B2
n 1̂Bn0 ∈ L.
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LEMMA 4.10. Words of the form B2
n 1̂

For n ≥ N , if an,1 = 2, then Bn̂1B2
n ∈ LRS .

Proof. B
an,zn−1
n 1̂B

an,zn
n B

an,1
n ∈ L as it is a subword of Bn+1Bn+1 so, as an,zn−1 ≥ 1 and

an,zn + an,1 ≥ 3, also Bn̂1B3
n ∈ L. B

an,zn
n 1̂B

an,1
n 1̂ is a subword of Bn+1̂1Bn+1 so, as

an,zn ≥ 1, also Bn̂1B2
n 1̂ ∈ L.

LEMMA 4.11. Words of the form B3
n or B4

n

For n ≥ N , if an,1 > 2 or an,j > 3 for some j, then B3
n ∈ LRS .

Proof. If an,j ≥ 4, since B
an,j
n 1̂ is a subword of Bn+1, so is B4

n 1̂. If an,1 ≥ 3, then since
B

an,zn
n B

an,1
n 1̂ is a subword of Bn+1Bn+1 and an,zn + an,1 ≥ 4, also B4

n 1̂ ∈ L.

LEMMA 4.12. Words of the form Bn̂1 1̂B3
n 1̂ 1̂Bn

For n ≥ N , if an,1 = an,zn = 1 and an,j = 3 for some j > 1, then Bn̂1B2
n ∈ LRS .

Proof. The word Bn+1Bn+1 ∈ L so B
an,zn−1
n 1̂B

an,zn
n B

an,1
n 1̂ ∈ L so Bn̂1B2

n 1̂ ∈ L. As
B

an,j−1
n 1̂B

an,j
n ∈ L, also Bn̂1B3

n ∈ L.

Proof of Proposition 4.7. First consider when an,zn ≥ 2 and an,1 = 1. If an,2 = 1, then
Lemma 4.8 gives Dn = Bn̂1Bn̂1Bn ∈ LRS . Since Bn+1 has B2

n as a suffix, every suffix of
Dn of length at least hn + c is not a suffix of Bn+1 (Lemma 4.4) and is right-special. If
an,2 ≥ 2, then Lemma 4.9 gives Dn = B2

n 1̂Bn ∈ LRS which likewise has the property that
every suffix of Dn of length at least hn + c is right-special and not a suffix of Bn+1.

Now consider when an,zn = 1 and an,1 ≥ 2. If an,1 = 2, then Lemma 4.10 gives
Dn = Bn̂1B2

n ∈ LRS . As 1̂Bn is a suffix of Bn+1 in this case, again every suffix of Dn

of length at least hn + c is not a suffix of Bn+1 and is right-special. If an,1 > 2, then
Lemma 4.11 gives Dn = B3

n which has the same property.
Last consider the case when an,zn = 1 and an,1 = 1, and an,j ≥ 3 for some j. If an,j = 3,

then Lemma 4.12 gives Dn = Bn̂1B2
n ∈ LRS and as 1̂Bn is a suffix of Bn+1 in this case,

Dn has the same property as above. If an,j > 3, then Lemma 4.11 gives Dn = B3
n with the

same property.
In all cases, we have a word Dn of length at least 3hn with every suffix of length

at least hn + c being right-special and not a suffix of Bn+1, so 2hn − c right-special
words which are not suffixes of Bn+1 all of length less than 3hn. By Lemma 4.6, then
p(3hn) ≥ 3hn + fn + 2hn − c = (5/3)(3hn) + fn − c.

4.4. Words of the form B2
n B2

n

PROPOSITION 4.13. If an,1 ≥ 2 and an,zn ≥ 2 and an+1,zn+1 ≥ 2, then there exists qn ≥ hn

such that p(qn) ≥ 1.5qn + fn − 3c.

These subshifts include the examples studied in [Fer95] defined by Bn+1 = B
p
n 1B

q
n for

p, q > 1.

https://doi.org/10.1017/etds.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.47


1344 D. Creutz

The proof of Proposition 4.13 is a series of lemmas. Write

Bn+1 = Bα
n 1̂uBβ

n

for some word u which is either empty or ends in 1̂. Then, α, β ≥ 2.

LEMMA 4.14. If α = β, then there exists qn ≥ hn such that p(qn) ≥ 1.5qn + fn − c.

Proof. The word Bn+1Bn+1 has 1̂B
α+β
n 1̂ as a subword, so B

α+β−1
n ∈ LRS . The word Bn+1

has 1̂B
β
n as a suffix, so our word differs from Bn+1 on suffixes of length at least βhn + c

(Lemma 4.4, which we henceforth use implicitly) and so gives at least (α − 1)hn − c

right-special words which are not suffixes of Bn+1 with length less than (α + β − 1)hn.
Then by Lemma 4.6,

p((α + β − 1)hn) ≥ (α + β − 1)hn + fn + (α − 1)hn − c

= 3
2 (α + β − 1)hn + 1

2 (α − 1 − β)hn + fn − c.

If α ≥ β + 1, then 3
2 (α + β − 1)hn + 1

2 (α − 1 + β)hn + fn − c ≥ 3
2 (α + β − 1)hn +

fn − c.
Now consider when α < β. Let α′ minimal such that 1̂Bα′

n 1̂ is a subword of 1̂Bn+1.
Then, α′ ≤ α < β. If α′ < α, then Bα′

n 1̂Bα′
n 1̂ is a subword of Bn+1 as α′ is minimal so Bα′

n

must precede 1̂Bα′
n 1̂ in Bn+1. If α′ = α, then as α < β, the word Bα′

n 1̂Bα′
n 1̂ is a subword

of Bn+1̂1Bn+1 (with the first 1̂ in our word being the middle 1̂ in Bn+1̂1Bn+1). Since α′
is minimal, Bn+1 has Bα′

n 1̂B
β
n as a suffix and, as α′ < β, that word has Bα′

n 1̂Bα′
n Bn as a

subword. Then, Bα′
n 1̂Bα′

n ∈ LRS .
Since Bn+1 has Bα′+1

n as a suffix, our word gives at least α′hn + d − c right-special
words which are not suffixes of Bn+1 with length less than 2α′hn + d . Then by Lemma 4.6
(which we will henceforth use implicitly),

p(2α′hn + d) ≥ 2α′hn + d + fn + α′hn + d − c = 3
2 (2α′hn + d) + 1

2d − c + fn.

From here on, assume α = β.

LEMMA 4.15. If 1̂Bt
n̂1 is a subword of Bn+1 for some t = β and t = 2β, then there exists

qn ≥ hn such that p(qn) ≥ 1.5qn + fn − c.

Proof. As Bn+1 has B
β
n 1̂ as a prefix, there is some t ′ = β, 2β such that B

β
n 1̂Bt ′

n 1̂ is a
subword of Bn+1.

Suppose first that there is such a t ′ < β. As B
β
n 1̂B

β
n is a subword of Bn+1̂1Bn+1, then

B
β
n 1̂Bt ′

n ∈ LRS . Since Bt ′+1
n is a suffix of Bn+1 (as t ′ < β), this gives at least βhn + d − c

right-special suffixes that are not suffixes of Bn+1, all of length less than (β + t ′)hn + d .
Then, as t ′ < β,

p((β + t ′)hn + d) ≥ (β + t ′)hn + d + fn + βhn + d − c

= 3
2 ((β + t ′)hn + d) + 1

2 (β − t ′)hn + 1
2d + fn − c

> 3
2 ((β + t ′)hn + d) + fn − c.

So we may assume that for all t such that 1̂Bt
n̂1 is a subword of Bn+1, we have t ≥ β.
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Suppose now that β < t ′ < 2β. As Bn+1 has B
β
n 1̂B

β
n as a suffix (since we have ruled out

t < β), the word Bn+1Bn+1 has B
β
n 1̂B

2β
n as a subword. Then, B

β
n 1̂Bt ′

n ∈ LRS as t ′ < 2β.
This gives at least (β + t ′ − β)hn + d − c right-special suffixes which are not suffixes of
Bn+1 (which ends in 1̂B

β
n ) all of length less than (β + t ′)hn + d . Then as t ′ > β,

p((β + t ′)hn + d) ≥ (β + t ′)hn + d + fn + t ′hn + d − c

= 3
2 ((β + t ′)hn + d) + 1

2 (t ′ − β)hn + 1
2d − c + fn

> 3
2 ((β + t ′)hn + d) + 1

2d − c + fn.

If t ′ > 2β, then B
2β+1
n 1̂ ∈ L, so B

2β
n ∈ LRS , which gives at least βhn − c right-special

suffixes which are not suffixes of Bn+1, all of length less than 2βhn. Then,

p(2βhn) ≥ 2βhn + fn + βhn − c = 3
2 (2βhn) + fn − c.

We are left with the case when every 1̂Bt
n̂1 in Bn+1 has t = β or t = 2β.

LEMMA 4.16. If 1̂B
2β
n 1̂ is a subword of Bn+1, then there exists qn ≥ hn such that

p(qn) ≥ 1.5qn + fn − 2c.

Proof. First observe that B
2β−1
n ∈ LRS , which gives at least (β − 1)hn − c right-special

suffixes of length less than (2β − 1)hn which are not suffixes of Bn+1.
Choose x, y ≥ 1 so that Bn+1 has (B

β
n 1̂)xB

2β
n as a prefix and B

2β
n (̂1B

β
n )y as a suffix.

Then, Bn+1̂1Bn+1 has the subword (B
β
n 1̂)x+y+1B

2β
n , which means that (B

β
n 1̂)x+yB

β
n ∈

LRS . This gives at least x(βhn + d) − c right-special suffixes which are not suffixes of
Bn+1 of length less than (x + y + 1)βhn + (x + y)d. As there is no overlap between
these and the suffixes of B

2β−1
n , this gives a total of at least ((x + 1)β − 1)hn + xd − 2c

right-special suffixes of length less than (x + y + 1)βhn + (x + y)d which are not
suffixes of Bn+1. Then,

p((x + y + 1)βhn + (x + y)d) ≥ (x + y + 1)βhn + (x + y)d

+ fn + ((x + 1)β − 1)hn + xd − 2c

= 3
2 ((x + y + 1)βhn + (x + y)d) + 1

2 (x + 1 − y)βhn − hn + 1
2 (x − y)d − 2c + fn

and, as β ≥ 2, this means that if x ≥ y, then

p((x + y + 1)βhn + (x + y)d) ≥ 3
2 ((x + y + 1)βhn + (x +y)d)+ 1

2βhn −hn −2c+fn

≥ 3
2 ((x + y + 1)βhn + (x + y)d) − 2c + fn.

So we may assume from here on that x < y.
Write Bn+1 = ( ∏s

i=1(B
β
n 1̂)xi B

2β
n 1̂

)
(B

β
n 1̂)y−1B

β
n for some s ≥ 1 and xi ≥ 1 with

x1 = x. Choose i′ such that xi′ is minimal and i′ is the minimal such i.
First we consider the case when i′ > 1. Then, xi′ < x since otherwise, we would

have chosen i′ = 1. Since Bn+1̂1 has B
2β
n 1̂(B

β
n 1̂)xs B

2β
n 1̂(B

β
n 1̂)y−1B

β
n 1̂ as a suffix,

it also has (B
β
n 1̂)xi′+1B

2β
n (̂1B

β
n )y 1̂ as a suffix since xs ≥ xi′ . As y > xi′ , then

(B
β
n 1̂)xi′+1B

2β
n (̂1B

β
n )xi′+1̂1 ∈ L.

https://doi.org/10.1017/etds.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.47


1346 D. Creutz

Since i′ > 1, Bn+1 has (B
β
n 1̂)xi′−1B

2β
n (̂1B

β
n )xi′ 1̂B

2β
n as a subword. Then, (B

β
n 1̂)xi′+1

B
2β
n (̂1B

β
n )xi′ 1̂B

2β
n ∈ L as xi′−1 ≥xi′ +1 by the choice of i′, so (B

β
n 1̂)xi′+1B

2β
n (̂1B

β
n )xi′ 1̂B

β
n

is right-special.
Since xi′ < x < y implies xi′ < y − 1 and Bn+1 has 1̂(B

β
n 1̂)y−1B

β
n as a suffix, this

gives at least (xi′ + 2)βhn + (xi′ + 1)d − c right-special words which are not suffixes of
Bn+1, all of length less than (2xi′ + 4)βhn + (2xi′ + 2)d. Therefore,

p((2xi′ + 4)βhn + (2xi′ + 2)d)

≥ (2xi′ + 4)βhn + (2xi′ + 2)d + fn + (xi′ + 2)βhn + (xi′ + 1)d − c

= 3
2 ((2xi′ + 4)βhn + (2xi′ + 2)d) − c + fn.

Now consider when i = 1, i.e. xi ≥ x for all i. Here, Bn+1Bn+1 has B
2β
n 1̂(B

β
n 1̂)y−1

B
2β
n 1̂(B

β
n 1̂)x−1B

2β
n as a subword and Bn+1̂1 has (B

β
n 1̂)xs B

2β
n 1̂(B

β
n 1̂)y−1B

β
n 1̂ as a subword.

As x < y and x ≤ xs , this means (B
β
n 1̂)xB

2β
n 1̂(B

β
n 1̂)x−1B

β
n ∈ LRS .

This gives at least (x + 1)βhn + xd − c right-special words which are not suffixes of
Bn+1, all of length less than (2x + 2)βhn + 2xd. Therefore,

p((2x + 2)βhn + 2xd) ≥ (2x + 2)βhn + 2xd + fn + (x + 1)βhn + xd − c

= 3
2 ((2x + 2)βhn + 2xd) + fn − c.

4.4.1. Proof of Proposition 4.13

Proof of Proposition 4.13. By Lemmas 4.14, 4.15 and 4.16, we are left with the situation
when Bn+1 = (B

β
n 1̂)LB

β
n for some L ≥ 1.

Since Bn+2 has Bn+1Bn+1 as a suffix, and since Proposition 4.7 then covers the case
when Bn+2 has Bn+1̂1 as a prefix, we may assume that Bn+2 = B

αn+1
n+1 1̂uB

βn+1
n+1 for some

αn+1, βn+1 ≥ 2, where u is either empty or ends with 1̂. Lemmas 4.14 and 4.15 applied to
n + 1 mean we may assume αn+1 = βn+1.

As Bn+2Bn+2 ∈ L, the word B
2βn+1
n+1 1̂ ∈ L. Then, B2βn+1−1

n+1 ∈ LRS . As Bn+2 has 1̂B
βn+1
n

as a suffix, this gives at least (βn+1 − 1)hn+1 − c right-special words of length less than
(2βn+1 − 1)hn+1 which are not suffixes of Bn+2.

As Bn+2̂1Bn+2 ∈ L and Bn+2 has Bn+1Bn+1 as a prefix, Bn+2̂1Bn+2 has Bn+1̂1Bn+1B
β
n

as a subword. Then, Bn+1̂1Bn+1B
β
n = (B

β
n 1̂)2L+1B

2β
n ∈ L. Therefore, (Bβ

n 1̂)2LB
β
n ∈ LRS .

As Bn+2 has Bn+1Bn+1 as a suffix and that word has B
2β
n (̂1B

β
n )L as a suffix, this gives

at least (Lβ − 1)hn + Ld − c right-special words of length less than (2L + 1)(βhn + d)

which are not suffixes of Bn+2.
As B

2β
n 1̂ is a subword of Bn+1Bn+1, this means B

2β−1
n ∈ LRS which gives at least

(β − 1)hn − c right-special words of length less than (2β − 1)hn which are not suffixes
of Bn+1, and hence not of Bn+2 as Bn+1 has 1̂B

β
n as a suffix.

As none of these right-special words overlap with one another, the three cases above pro-
vide at least (βn+1 − 1)hn+1 + (Lβ − 1)hn + (β − 1)hn + Ld − 3c right-special words
which are not suffixes of Bn+2 all of length less than (2βn+1 − 1)hn+1.

Since hn+1 = (L+1)βhn +Ld, we then have (βn+1 −1)hn+1 + (Lβ −1+β −1)hn +
Ld − 3c = βn+1hn+1 − 2hn − 3c = βn+1hn+1 − (2/((L + 1)β))(hn+1 − Ld) − 3c extra
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right-special words of length at most (2βn+1 − 1)hn+1. Therefore, since L ≥ 1 and β ≥ 2
so (2/((L + 1)β)) ≤ 2/4, we have

p((2βn+1 − 1)hn+1) ≥ (2βn+1 − 1)hn+1 + fn + βn+1hn+1 − 2
(L + 1)β

hn+1 − 3c

= 3
2
(2βn+1 − 1)hn+1 + fn +

(
1
2

− 2
(L + 1)β

)
hn+1 − 3c

≥ 3
2
(2βn+1 − 1)hn+1 + fn − 3c.

4.5. Words of the form Bn̂1 1̂B2
n 1̂ 1̂Bn with B3

n never appearing. This
section handles the most difficult case, when an,1 = an,zn = 1 and an,j ≤ 2 for all j. This
difficulty is likely unavoidable as this case contains the examples we exhibit which are near
1.5q in complexity.

PROPOSITION 4.17. If, for infinitely many n ≥ N , it holds that an,1 = an,zn =
an+1,zn+1 = 1 and an,j ≤ 2 for all j and an,j = 2 for at least one j, then for all sufficiently
large n, there exists qn ≥ hn such that p(qn) ≥ 1.5qn + fn − 2c.

Let n ≥ N such that an,1 = an,zn = an,zn+1 = 1 and an,j ≤ 2 for all j, and an,j = 2 for
at least one j. Then we may write

Bn+1 = (Bn̂1)α(B2
n 1̂)βu(B2

n 1̂)κ(Bn̂1)γ−1Bn

for some word u, which has prefix Bn̂1 and suffix 1̂Bn̂1, and where α, β, γ , κ ≥ 1, or else
u is empty and κ = 0 and α, β, γ ≥ 1. Then,

Bn+1Bn+1 = B2
n 1̂(Bn̂1)γ−1B2

n 1̂(Bn̂1)α−1(B2
n 1̂)βBn̂1 ,

Bn+1̂1Bn+1 = B2
n 1̂(Bn̂1)γ+α(B2

n 1̂)βBn̂1 .

The proof of Proposition 4.17 is a series of lemmas.

LEMMA 4.18. There are at least α(hn + d) − c right-special words which are not suffixes
of Bn+1 and with length less than (α + γ + 1)(hn + d), all of which do not contain B2

n as
a subword.

Proof. Bn̂1(Bn̂1)γ+αB2
n is a subword of Bn+1̂1Bn+1 so (Bn̂1)γ+αBn ∈ LRS . Since Bn+1

has suffix B2
n 1̂(Bn̂1)γ−1Bn, every suffix of (Bn̂1)γ+αBn at least c longer than (Bn̂1)γ Bn

is not a suffix of Bn+1.

LEMMA 4.19. If α = 1 and γ = 1, then there exists qn ≥ hn such that p(qn) ≥ 1.5qn +
fn − 2c.

Proof. First consider the case when κ = 0 and u is empty. Here, Bn+1 = (Bn̂1)α(B2
n 1̂)β

(Bn̂1)γ−1Bn = Bn̂1(B2
n 1̂)βBn. Since an+1,zn+1 = 1 and an+1,j ≥ 2 for some j, we have

Bn+1Bn+1̂1 ∈ L. Since Bn+1Bn+1̂1 = Bn̂1(B2
n 1̂)2β+1Bn̂1, we then have Bn̂1(B2

n 1̂)2β

Bn ∈ LRS .
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Since Bn+2 has Bn+1̂1Bn+1 as a suffix, it has 1̂Bn̂1Bn̂1(B2
n 1̂)βBn as a suffix. This

means our right-special word gives at least (4β + 2)hn + (2β + 1)d − (2β + 2)hn −
(β + 1)d − c = 2βhn + βd − c right-special words which are not suffixes of Bn+2, all of
length less than (2β + 1)(2hn + d). As Lemma 4.18 gives at least hn + d − c additional
right-special words which are not suffixes of Bn+2 and do not contain B2

n , we conclude
that

p((2β + 1)(2hn + d)) ≥ (2β + 1)(2hn + d) + fn + (2β + 1)hn + (β + 1)d − 2c

= 3
2 (2β + 1)(2hn + d) + 1

2d + fn − 2c.

We now consider when κ ≥ 1 and u is non-empty.
Here, Bn+1Bn+1 = Bn̂1(B2

n 1̂)κ+1+βBn̂1 meaning that Bn̂1(B2
n 1̂)β+κ

Bn ∈ LRS . As Bn+1 has suffix 1̂Bn̂1(B2
n 1̂)κBn, every suffix of our word of length at least

(2κ + 2)hn + (κ + 1)d + c is not a suffix of Bn+1. So there are at least 2βhn + βd −
c right-special words of length less than 2(κ + β + 1)hn + (κ + β + 1)d which are not
suffixes of Bn+1.

Lemma 4.18 in this case also gives hn + d − c right-special words of length less than
3(hn + d) which are not suffixes of Bn+1 and do not contain B2

n . So,

p(2(κ + β + 1)hn + (β + κ + 1)d)

≥ 2(κ + β + 1)hn + (β + κ + 1)d + fn + (2β + 1)hn + (β + 1)d − 2c

= 3
2 (2(κ + β + 1)hn + (β + κ + 1)d) + fn + (β − κ)hn + 1

2 (β − κ + 1)d − 2c,

so if β ≥ κ , then

p(2(κ + β + 1)hn + (β + κ + 1)d) ≥ 3
2 (2(κ + β + 1)hn + (β + κ + 1)d) + fn − 2c.

So from here on, assume β < κ .
Observe that if (Bn̂1)4Bn ∈ L, then necessarily (Bn̂1)4B2

n ∈ L as γ = 1, so
(Bn̂1)3Bn ∈ LRS . As Bn+1 has B 2̂1Bn as a suffix, every suffix of our word of length
at least 2hn + d + c is not a suffix of Bn+1. This gives at least 2hn + 2d − c right-special
words of length less than 4hn + 3d which are not suffixes of Bn+1. Then,

p(4hn + 3d) ≥ 4hn + 3d + fn + 2hn + 2d − c = 3
2 (4hn + 3d) + fn + 1

2d − c.

So, from here on, we assume that 1̂Bn̂1Bn̂1Bn̂1 /∈ L.
Suppose that B2

n 1̂Bn̂1B2
n is a subword of Bn+1. Then, Bn̂1B2

n 1̂Bn̂1Bn0 ∈ L as the
initial B2

n 1̂ is preceded by Bn̂1. Also, Bn+1̂1Bn+1 has the subword Bn̂1B2
n 1̂Bn̂1Bn̂1,

where the next-to-last 1̂ is the 1̂ appearing between the Bn+1 in Bn+1̂1Bn+1. Then,
Bn̂1B2

n 1̂Bn̂1Bn ∈ LRS .
As Bn+1 has B2

n 1̂Bn as a suffix, our word gives at least 3hn + 2d − c right-special
words which are not suffixes of Bn+1, all of length less than 5hn + 3d . Therefore,

p(5hn + 3d) ≥ 5hn + 3d + fn + 3hn + 2d − c = 8
5 (5hn + 3d) + 1

5d + fn − c.
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So, from here on, assume also that B2
n 1̂Bn̂1B2

n is not a subword of Bn+1. Therefore, we
can write

Bn+1 = Bn̂1
( y∏

i=1

(B2
n 1̂)βi (Bn̂1)2

)
(B2

n 1̂)κBn

for some y ≥ 1 (since u is non-empty) and βi ≥ 1 and β1 = β < κ .
Suppose first that βy < β. Set m = min{βi}. Take i such that βi = m, then

βi ≤ βy < β so i > 1. Then, Bn̂1(B2
n 1̂)βi−1(Bn̂1)2(B2

n 1̂)βi Bn̂1 ∈ L. This means
Bn̂1(B2

n 1̂)m(Bn̂1)2(B2
n 1̂)mBn̂1 ∈ L as m ≤ βi−1.

Bn̂1(B2
n 1̂)βy (Bn̂1)2(B2

n 1̂)κBn is a suffix of Bn+1, so Bn̂1(B2
n 1̂)m(Bn̂1)2(B2

n 1̂)mB2
n ∈ L

since m ≤ βy and m < β < κ . Therefore, Bn̂1(B2
n 1̂)m(Bn̂1)2(B2

n 1̂)mBn ∈ LRS .
This gives at least (2m + 2)hn + (m + 2)d − c right-special words which are not

suffixes of Bn+1, all of length less than (4m + 4)hn + (2m + 3)d. Therefore,

p((4m+4)hn + (2m+3)d) ≥ (4m+4)hn + (2m+3)d +fn + (2m+2)hn + (m+2)d −c

= 3
2 ((4m + 4)hn + (2m + 3)d) + fn + 1

2d − c.

So, we may assume that βy ≥ β.
Bn+1̂1Bn+1 has the subword (B2

n 1̂)κBn̂1Bn̂1(B2
n 1̂)βBn̂1. As β <κ , Bn̂1(B2

n 1̂)βBn̂1Bn̂1
(B2

n 1̂)βBn̂1 ∈ L.
Bn+1Bn+1 has the subword Bn̂1(B2

n 1̂)βy (Bn̂1)2(B2
n 1̂)κBnBn which has Bn̂1(B2

n 1̂)βy

(Bn̂1)2(B2
n 1̂)βBnBn as a subword.

As βy ≥ β, then Bn̂1(B2
n 1̂)β(Bn̂1)2(B2

n 1̂)βBn ∈ LRS . Since β < κ , this gives at least
2(β + 1)hn + (β + 2)d − c right-special words which are not suffixes of Bn+1, all of
length less than (4β + 4)hn + (2β + 3)d. Therefore,

p((4β + 4)hn + (2β + 3)d) ≥ (4β +4)hn + (2β +3)d +fn +2(β +1)hn + (β +2)d −c

= 3
2 ((4β + 4)hn + (2β + 3)d) + fn + 1

2d − c.

LEMMA 4.20. If α = 1 and γ > 1, then there exists qn ≥ hn such that p(qn) ≥ 1.5qn +
fn − c.

Proof. In this case, Bn+1Bn+1 contains the subword B2
n 1̂(Bn̂1)γ−1(B2

n 1̂)β+1Bn and
Bn+1̂1Bn+1 contains B2

n 1̂(Bn̂1)γ (B2
n 1̂)βBn̂1. Therefore, (Bn̂1)γ (B2

n 1̂)βB2
n appears in

Bn+1Bn+1 and (Bn̂1)γ (B2
n 1̂)βBn̂1 in Bn+11Bn+1. As Bn+1 has 1̂Bn̂1Bn as a suffix (as

γ > 1), every suffix of (Bn̂1)γ (B2
n 1̂)βBn longer than 01c−1Bn̂1Bn is not a suffix of Bn+1

and is right-special. This gives at least (γ + 2β − 1)hn + (γ + β − 1)d − c right-special
words which are not suffixes of Bn+1 of length less than (γ + 2β + 1)hn + (γ + β)d .
Therefore, as γ + 2β − 3 ≥ 2 + 2 − 3,

p((γ+2β + 1)hn + (γ + β)d)

≥ (γ + 2β + 1)hn + (γ + β)d + fn + (γ + 2β − 1)hn + (γ + β − 1)d − c

= 3
2 ((γ + 2β + 1)hn + (γ + β)d)+ 1

2 (γ +2β −3)hn + 1
2 (γ +β −2)d +fn −c

> 3
2 ((γ + 2β + 1)hn + (γ + β)d) + fn − c.
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LEMMA 4.21. If α > γ ≥ 1, then there exists qn ≥ hn such that p(qn) ≥ 1.5qn + fn − c.

Proof. Lemma 4.18 states there are at least α(hn + d) − c right-special words which are
not suffixes of Bn+1 all of length less than (α + γ + 1)(hn + d). Since α ≥ γ + 1,

p((α + γ + 1)(hn + d)) ≥ (α + γ + 1)(hn + d) + fn + α(hn + d) − c

= 3
2 (α + γ + 1)(hn + d) + 1

2 (α − γ − 1)(hn + d) + fn − c

≥ 3
2 (α + γ + 1)(hn + d) + fn − c.

LEMMA 4.22. If α > 1 and γ > 1 and β > 1, then there exists qn ≥ hn such that
p(qn) ≥ 1.5qn + fn − 2c.

Proof. The word (Bn̂1)γ B2
n 1̂Bn̂1 is a subword of Bn+1Bn+1 since α > 1. The word

(Bn̂1)α+γ B2
n 1̂B2

n is a subword of Bn+1̂1Bn+1 since β > 1. Therefore
(Bn̂1)γ B2

n 1̂Bn ∈ LRS .
Since γ > 1, Bn+1 has suffix 1̂Bn̂1Bn so there are at least (γ + 1)hn + γ d − c

right-special words which are not suffixes of Bn+1 with length less than (γ + 3)hn +
(γ + 1)d. By Lemma 4.18, there are at least α(hn + d) − c right-special words which
are not suffixes of Bn+1 and with length less than (α + γ + 1)(hn + d) and all with suffix
1̂Bn̂1Bn and which do not contain B2

n so there is no overlap with the right-special words
already identified.

Therefore there are at least (γ + 1 + α)hn + (γ + α)d − 2c right-special words which
are not suffixes of Bn+1 all of length less than (γ + 1 + α)hn + (γ + α)d (as α ≥ 2
implies γ + 1 + α ≥ γ + 3). Then

p((γ + α + 1)hn + (γ + α)d) ≥ (γ + α + 1)hn + (γ + α)d

+ fn + (γ + 1 + α)hn + (γ + α)d − 2c

= 2((γ + α + 1)hn + (γ + α)d) + fn − 2c.

LEMMA 4.23. If α > 1 and γ > 1 and B2
n 1̂B2

n 1̂ ∈ L then there exists qn ≥ hn such that
p(qn) ≥ 1.5qn + fn − c.

Proof. If the word (B2
n 1̂)2 ∈ L then necessarily Bn̂1(B2

n 1̂)2Bn̂1 ∈ L since somewhere to
the right of (B2

n 1̂)2 in Bn+1 must be Bn̂1 as γ > 1. Then Bn̂1B2
n 1̂Bn ∈ LRS which gives at

least 2hn + d − c right-special words of length less than 4hn + 2d which are not suffixes
of Bn+1. Then

p(4hn + 2d) ≥ 4hn + 2d + fn + 2hn + d − c = 3
2 (4hn + 2d) + fn − c.

4.5.1. The 1 < α ≤ γ and B2
n 1̂B2

n /∈ L case. From here on, we assume B2
n 1̂B2

n /∈ L.
Therefore we can write

Bn+1 =
( L∏

t=1

((Bn̂1)αt B2
n 1̂)

)
(Bn̂1)γ−1Bn

for some αt ≥ 1 and L ≥ 1 where α1 = α and we write αL+1 = γ − 1.
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LEMMA 4.24. If 1 < α ≤ γ and αt < γ − 1 for some t ≥ 2 then there exists qn ≥ hn such
that p(qn) ≥ 1.5qn + fn − c.

Proof. Observe that Bn̂1(Bn̂1)αkB2
n 1̂(Bn̂1)αk+1B2

n ∈ L for all 1 ≤ k ≤ L since, in the case
when k > 1, it is a subword of Bn+1 and, in the case when k = 1, it is a subword of
Bn̂1Bn+1 which is a subword of Bn+1̂1Bn+1.

If αt+1 < αk+1 for some 1 ≤ t , k ≤ L then the word Bn̂1(Bn̂1)αkB2
n 1̂(Bn̂1)αk+1B2

n

has the subword Bn̂1(Bn̂1)αkB2
n 1̂(Bn̂1)αt+1Bn̂1. As Bn̂1(Bn̂1)αt B2

n 1̂(Bn̂1)αt+1B2
n ∈ L, this

implies that the word Bn̂1(Bn̂1)min(αt ,αk)B2
n 1̂(Bn̂1)αt+1Bn ∈ LRS .

Since Bn+1 ends in B2
n(̂1Bn)

γ , if αt+1 < γ − 1 then suffixes of our right-special word
which are longer than 01c−1Bn̂1(Bn̂1)αt+1Bn are not suffixes of Bn+1. This gives at least
(min(αt , αk) + 2)(hn + d) − d − c right-special words which are not suffixes of Bn+1

which have length less than (min(αt , αk) + αt+1 + 4)(hn + d) − 2d .
By hypothesis min{αt : t ≥ 2} < γ − 1. Let t such that αt+1 = min{αt : t ≥ 2}. Then

there exists k such that αt+1 < αk+1 since the last αk is followed by γ − 1 > αt+1. Write
m = min(at , ak). Then at+1 ≤ m since it is chosen to be minimal. We then have, as m −
αt+1 ≥ 0,

p((αt+1 + m + 4)(hn + d) − 2d)

≥ (αt+1 + m + 4)(hn + d) − 2d + fn + (m + 2)(hn + d) − d − c

= 3
2 ((αt+1 + m + 4)(hn +d)−2d)+ 1

2 (m−αt+1)(hn +d)+fn −c

≥ 3
2 ((αt+1 + m + 4)(hn + d) − 2d) + fn − c.

LEMMA 4.25. If 1 < α < γ and αt ≥ γ − 1 for all t ≥ 2 then there exists qn ≥ hn such
that p(qn) ≥ 1.5qn + fn − c.

Proof. The word Bn+1Bn+1 contains Bn(̂1Bn)
γ−1̂1B2

n 1̂(Bn̂1)α−1B2
n as a subword, so, as

α < γ , the word (Bn̂1)αB2
n 1̂(Bn̂1)α−1Bn0 ∈ L.

In the case L = 1, the word Bn+1̂1 = (Bn̂1)αB2
n(̂1Bn)

γ 1̂, so (Bn̂1)αB2
n 1̂(Bn̂1)α−1

Bn̂1 ∈ L since α < γ . In the case when L > 1, since αL ≥ γ − 1 ≥ α, the word Bn+1̂1
ends in (Bn̂1)αLB2

n(̂1Bn)
γ 1̂ which has (Bn̂1)αB2

n 1̂(Bn̂1)α−1Bn̂1 as a subword.
So, (Bn̂1)αB2

n 1̂(Bn̂1)α−1Bn ∈ LRS . As Bn+1 has (̂1Bn)
γ as a suffix, our word gives at

least (α + 1)(hn + d) − d − c right-special words which are not suffixes of Bn+1 all of
length less than (2α + 1)(hn + d) − d . Then,

p((2α + 1)(hn + d) − d) ≥ (2α + 1)(hn + d) − d + fn + (α + 1)(hn + d) − d − c

= 3
2 ((2α + 1)(hn + d) − d) + 1

2hn + fn − c.

LEMMA 4.26. If α = γ > 1 and αt ≥ γ − 1 for all t ≥ 2 and for some t ≥ 2, αt ≥ γ with
αt = 2γ , then there exists qn ≥ hn such that p(qn) ≥ 1.5qn + fn − 2c.

Proof. First consider the case when αt > 2γ . As B2
n 1̂(Bn̂1)αt B2

n is a subword of Bn+1

and αt ≥ 2γ + 1, this means (Bn̂1)2γ+2B2
n ∈ L. Then, (Bn̂1)2γ+1Bn ∈ LRS . Since Bn+1

has B2
n 1̂(Bn̂1)γ−1Bn as a suffix, there are at least (γ + 1)hn + (γ + 1)d − c right-special

suffixes of our word all of length less than (2γ + 2)hn + (2γ + 1)d. Then,
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p((2γ +2)hn + (2γ +1)d) ≥ (2γ + 2)hn + (2γ +1)d +fn + (γ +1)hn + (γ +1)d −c

= 3
2 ((2γ + 2)hn + (2γ + 1)d) + fn + 1

2d − c.

Next consider when αt < 2γ . Then, Bn̂1(Bn̂1)γ−1B2
n 1̂(Bn̂1)αt B2

n is a subword of Bn+1

since αt−1 ≥ γ − 1. As the word (Bn̂1)γ B2
n 1̂(Bn̂1)2γ is a subword of Bn+1̂1Bn+1, this

means (Bn̂1)γ B2
n 1̂(Bn̂1)αt Bn ∈ LRS . Since αt > γ − 1 and Bn+1 has B2

n 1̂(Bn̂1)γ−1Bn as
a suffix, our word gives at least (γ + 2 + αt + 1 − γ − 1)hn + (γ + αt − γ )d − c right-
special suffixes which are not suffixes of Bn+1, all of length less than (γ + αt + 3)hn +
(γ + αt + 1)d. Then as αt ≥ γ ,

p((γ + αt + 3)hn + (γ + αt + 1)d)

≥ (γ + αt + 3)hn + (γ + αt + 1)d + fn + (αt + 2)hn + (αt + 1)d − 2c

= 3
2 ((γ +αt +3)hn + (γ +αt +1)d)+ 1

2 (αt −γ +1)hn + 1
2 (αt −γ +1)d +fn −2c

≥ 3
2 ((γ + αt + 3)hn + (γ + αt + 1)d) + fn − 2c.

LEMMA 4.27. If α = γ > 1 and αt ∈ {γ − 1, 2γ } for all t and αt = 2γ for some t, then
there exists qn ≥ hn such that p(qn) ≥ 1.5qn + fn − 2c.

Proof. Here, we can write

Bn+1 = Bn̂1
( s∏

i=1

((Bn̂1)γ−1B2
n 1̂)yi (Bn̂1)2γ B2

n 1̂
)

((Bn̂1)γ−1B2
n 1̂)z(Bn̂1)γ−1Bn

for some s ≥ 1 and yi , z ≥ 0 and y1 ≥ 1 (as α = γ > 1). Rearranging the grouping and
writing Dn = (Bn̂1)γ Bn,

Bn+1 = Bn̂1
( s∏

i=1

((Bn̂1)γ−1Bn Bn̂1)yi (Bn̂1)2γ Bn Bn̂1
)

((Bn̂1)γ−1Bn Bn̂1)z(Bn̂1)γ−1Bn

=
( s∏

i=1

((Bn̂1)γ Bn)
yi (Bn̂1)2γ+1Bn

)
((Bn̂1)γ Bn)

z+1

=
( s∏

i=1

D
yi
n Dn̂1Dn

)
Dz+1

n = D
yi+1
n 1̂

( s∏
i=2

D
yi+2
n 1̂

)
Dz+2

n .

Write kn = �en(Dn).
First consider when y1 > z. Since Bn+1Bn+1 has the subword Dz+2

n D
y1+1
n 1̂ and Dn has

0 as a prefix (as Bn does), then D
y1+z+2
n ∈ LRS . Since Dn has Bn as a suffix, this word

disagrees with Bn+1 on suffixes longer than 1c−1Dz+2
n . We then have at least y1kn − c

right-special words of length less than (y1 + z + 2)kn which are not suffixes of Bn+1.
Lemma 4.18 states there are at least γ hn + γ d = kn − hn right-special words of length

less than (2γ + 1)hn + 2γ d which are not suffixes of Bn+1 and which do not contain B2
n

as a subword, and hence do not overlap with the words above.
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Then as y1 ≥ z + 1 (and kn ≥ 2hn since γ > 1),

p((y1 + z + 2)kn) ≥ (y1 + z + 2)kn + fn + y1kn − c + kn − hn − c

= 3
2 (y1 + z + 2)kn + 1

2 (y1 − z)kn − hn + fn − 2c

≥ 3
2 (y1 +z+2)kn + 1

2kn −hn +fn −2c≥ 3
2 (y1 +z+2)kn +fn −2c.

Now consider the case when yi < z for some 1 ≤ i ≤ s. Set m = min{yi : 1 ≤ i ≤ s}
so that m < z and take i minimal such that yi is minimal.

Since Bn+1 has D
ys+2
n 1̂Dz+2

n as a suffix, then Dm+2
n 1̂Dz+2

n ∈ L. When i > 1, as
D

yi−1+1
n 1̂D

yi+2
n 1̂ is a subword of Bn+1, then Dm+2

n 1̂Dm+2
n 1̂ ∈ L as yi−1 ≥ yi + 1 as i

was taken minimal. Then, Dm+2
n 1̂Dm+2

n ∈ LRS as m < z. As this word disagrees with
suffixes of Bn+1 on words longer than 1c−1Dm+2

n , this gives at least (m + 2)kn + d − c

right-special words of length less than 2(m + 2)kn + d which are not suffixes of Bn+1.
Then,

p(2(m + 2)kn + d) ≥ 2(m + 2)kn + d + fn + (m + 2)kn + d − c

= 3
2 (2(m + 2)kn + d) + 1

2d + fn − c.

When i = 1, as Bn+1 has D
ys+2
n 1̂Dz+2

n as a suffix (or D
y1+1
n 1̂Dz+2

n in the case s = 1),
we have Dm+1

n 1̂Dz+2
n ∈ L. The word Bn+1̂1Bn+1 has the subword Dz+2

n 1̂D
y1+1
n 1̂ which

has Dm+1
n 1̂Dm+1

n 1̂ as a subword. As m < z, this means Dm+1
n 1̂Dm+1

n ∈ LRS . This word
disagrees with suffixes of Bn+1 on words longer than 1c−1Dm+1

n , so there at least (m +
1)kn + d − c right-special words of length less than 2(m + 1)kn + d which are not suffixes
of Bn+1. Then,

p(2(m + 1)kn + d) ≥ 2(m + 1)kn + d + fn + (m + 1)kn + d − c

= 3
2 (2(m + 1)kn + d) + 1

2d + fn − c.

From here on, assume that yi ≥ z for all i. We are left with the case when y1 = z.
Since Bn+1̂1Bn+1 has the subword Dz+2

n 1̂D
y1+1
n 1̂ = Dz+2

n 1̂Dz+1
n 1̂ (as y1 = z) and

Bn+1 has suffix D
ys+2
n 1̂Dz+2

n which has the subword Dz+2
n 1̂Dz+1

n Dn (as ys ≥ z), this
gives Dz+2

n 1̂Dz+1
n ∈ LRS . This word disagrees with suffixes of Bn+1 on words longer than

1c−1Dz+1
n meaning there are at least (z + 2)kn + d − c right-special words of length less

than (2z + 3)kn + d which are not suffixes of Bn+1. Then,

p((2z + 3)kn + d) ≥ (2z + 3)kn + d + fn + (z + 2)kn + d − c

= 3
2 ((2z + 3)kn + d) + 1

2kn + 1
2d + fn − c ≥ 3

2 ((2z + 3)kn + d) + fn − c.

LEMMA 4.28. If α = γ > 1 and αt = γ − 1 for all t ≥ 2 and Bn+2 has Bn+1̂1Bn+1 as a
suffix, then there exists qn ≥ hn such that p(qn) ≥ 1.5qn + fn − 2c.

Proof. We are left with Bn+1 = (Bn̂1)γ B2
n 1̂((Bn̂1)γ−1B2

n 1̂)L−1(Bn̂1)γ−1Bn =
((Bn̂1)γ Bn)

L+1.
Since Bn+1Bn+1 must occur somewhere in Bn+2 and not as a suffix, Bn+1

Bn+1̂1 ∈ L, and since Bn+1Bn+1̂1 = ((Bn̂1)γ Bn)
2L+2̂1, we have ((Bn̂1)γ Bn)

2L+1 ∈ LRS .
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Since hn+1 = (L + 1)((γ + 1)hn + γ d), our right-special word has length

(2L + 1)((γ + 1)hn + γ d) = 2hn+1 − ((γ + 1)hn + γ d).

Since Bn+2 has Bn+1̂1Bn+1 as a suffix, this word disagrees with Bn+2 on suffixes of length
at least hn+1 + c. Therefore, there are at least hn+1 − ((γ + 1)hn + γ d) − c right-special
suffixes of our word which are not suffixes of Bn+2.

Lemma 4.18 states there are also at least γ (hn + d) − c right-special words which do
not have B2

n as a subword, and hence do not overlap with those above nor with suffixes of
Bn+2, all of length at most (2γ + 1)(hn + d). Then as γ > 1,

p(2hn+1 − ((γ + 1)hn + γ d))

≥ 2hn+1 − ((γ +1)hn +γ d)+fn +hn+1 − ((γ +1)hn +γ d)−c+γ (hn +d)−c

= 3
2 (2hn+1 − ((γ + 1)hn + γ d)) + 1

2 (γ − 1)hn + 1
2γ d + fn − 2c

> 3
2 (2hn+1 − ((γ + 1)hn + γ d)) + fn − 2c.

4.5.2. Proof of Proposition 4.17

Proof of Proposition 4.17. Lemma 4.19 gives qn ≥ hn such that p(qn) ≥ 1.5qn + fn − 2c

when α = γ = 1. Lemma 4.20 takes care of α = 1 and γ > 1. When α > γ ≥ 1, Lemma
4.21 gives such a qn.

We are left with the case when γ ≥ α > 1. Lemma 4.22 covers α, γ > 1 and β > 1,
so we proceed with β = 1. Lemma 4.23 covers the situation when B2

n 1̂B2
n 1̂ ∈ L, so we

can assume that word does not appear from here on, so Bn+1 is of the form written above
Lemma 4.24. Lemma 4.24 handles when αt < γ − 1, so we may assume αt ≥ γ − 1 for
all t.

Lemma 4.25 then covers the case when α < γ , so we may proceed with α = γ . Then
Lemma 4.26 shows that if αt ≥ γ with αt = 2γ for some t, then we have such a qn, so we
may assume αt ∈ {γ − 1, 2γ } for all t. Lemma 4.27 handles the case when αt = 2γ for
some t, so we can assume αt = γ − 1 for all t.

By hypothesis, an+1,zn+1 = 1, meaning that Bn+2 ends with Bn+11Bn+1. Lemma 4.28
then guarantees the existence of such a qn.

There are then qn ≥ hn with p(qn) ≥ 1.5qn + fn − 2c for infinitely many, and hence
all sufficiently large n.

4.6. Proof of Theorem 4.2

Proof of Theorem 4.2. Set C = 3c. Every n ≥ N satisfies one of: (1) an,1 = 1 and
an,zn ≥ 2; (2) an,1 ≥ 2 and an,zn = 1; (3) an,1 = an,zn = 1 and an,j ≥ 3 for some j; (4)
an,1, an,zn ≥ 2; or (5) an,1 = an,zn = 1, an,j ≤ 2 and an,j = 2 for some j. At least one of
those cases happens infinitely often. For cases (1)–(3), Proposition 4.7 gives the result.

For case (4), by Proposition 3.10, there exists a rank-one subshift generating the
same language such that an,1 ≥ 2 and an,zn ≥ 2, and an+1,zn+1 ≥ 2 for infinitely many n.
Proposition 4.13 applied to that subshift gives the claim.

If cases (1)–(4) all do not happen infinitely often, then for all sufficiently large n, we are
in case (5) in which case Proposition 4.17 gives the claim.
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5. Low complexity weakly mixing rank-one subshifts
Consider the following class of rank-one subshifts.

Definition 5.1. Let Ln > 1 and γn > 1 for all n. Define the rank-one subshift with B1 = 0
and

Bn+1 = ((Bn1)γnBn)
Ln .

Observe that hn+1 = Ln((γn + 1)hn + γn) and Bn+1Bn+1 = ((Bn1)γnBn)
2Ln and

Bn+11Bn+1 = ((Bn1)γnBn)
Ln−1(Bn1)2γn+1Bn((Bn1)γnBn)

Ln−1.

5.1. Right-special words

LEMMA 5.2. Let w ∈ LRS with 1Bn as a suffix. Then w is a suffix of (Bn1)2γnBn or w is
a suffix of Bn+1 or w has Bn+1 as a proper suffix.

Proof. Observe that 1Bn is always preceded by Bn, so w shares a suffix with Bn1Bn.
First consider when w has 0Bn1Bn as a suffix. As Bn1 is always preceded by Bn or 1,

in this case, w shares a suffix with B2
n1Bn. Since 1Bn0 only appears as a prefix of 1B2

n ,
having w0 ∈ L would then mean B2

n1B2
n ∈ L, but that word is not in L since γn > 1.

So w has 1Bn1Bn as a suffix (or else is a suffix of Bn1Bn which is a suffix of Bn+1)
and therefore shares a suffix with Bn1Bn1Bn. Following the same logic, if w shares a
suffix with 0(Bn1)tBn, then w0 shares a suffix with 0(Bn1)tBn0 which can only occur as
a subword of B2

n1(Bn1)t−1B2
n , requiring that t ≥ γn.

So, w shares a suffix with Bn1(Bn1)γn−1Bn = (Bn1)γnBn. As Bn1 is always preceded
by 1 or Bn, we have two cases to consider (if w is a suffix of (Bn1)γnBn, then it is a suffix
of Bn+1).

First consider when w has 1(Bn1)γnBn as a suffix. The only occurrence of that word is
in Bn+11Bn+1 and it is always preceded by (Bn1)γnBn, so w must share a suffix with
(Bn1)2γn+1Bn. Since 1(Bn1)2γnBn1 /∈ L as (Bn1)2γn+1 is always preceded by Bn (as
Ln > 1) and since w1 ∈ L, either w is a suffix of (Bn1)2γnBn or w has 0(Bn1)2γnBn as
a suffix. Since 0(Bn1)2γnBn0 /∈ L because Bn(Bn1)2γnBnBn = B2

n 1̂(Bn̂1)2γn−1B2
n /∈ L as

γn > 1, it must be that w is a suffix of (Bn1)2γnBn.
Now consider when w has 0(Bn1)γnBn as a suffix. Then w shares a suffix with

Bn(Bn1)γnBn. Since (Bn1)γnBn is always preceded by (Bn1)γnBn or 1, then w shares
a suffix with ((Bn1)γ Bn)

2. Then w1 shares a suffix with ((Bn1)γ Bn)
21 and since

((Bn1)γ Bn)
21 is always a suffix of Bn+11, this shows that w shares a suffix with Bn+1.

Then either w is a suffix of Bn+1 or w has Bn+1 as a proper suffix.

LEMMA 5.3. Let w ∈ LRS with 0Bn as a suffix. Then w is a suffix of ((Bn−11)γn−1

Bn−1)
Ln−1−1Bn and n > 1.

Proof. Since 0B1 = 00 and 000 = B3
1 /∈ L, we have n > 1.
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Every occurrence of Bn appears either as 1Bn1 or 1BnBn1. The word 0Bn is not
a subword of 1Bn1 and occurs as a subword of 1BnBn1 at Ln−1 + 1 distinct starting
locations.

The word 0Bn1 only appears as a suffix of 1BnBn1 since it must appear some-
where in 1BnBn1 and the only appearance of Bn1 in that word is as a suffix as
Bn1 = ((Bn−11)γn−1Bn−1)

Ln−1−1(Bn−11)γn−1+1, and (Bn−11)γn−1+1 is not a subword of
BnBn = ((Bn−11)γn−1Bn−1)

2Ln−1 .
So, w1 shares a suffix with BnBn1 so w shares a suffix with BnBn. Since Bn0 must be a

prefix of B2
n and B3

n /∈ L, then BnBn0 /∈ L. As w0 ∈ L, w is then a proper suffix of BnBn.
Suppose w has 0((Bn−11)γn−1Bn−1)

Ln−1−1Bn as a suffix. As that word only appears as
a subword of BnBn when the leading 0 is the tail 0 of the first (Bn−11)γn−1Bn−1 in the first
Bn of B2

n , the word 0((Bn−11)γn−1Bn−1)
Ln−1−1Bn0 /∈ L as 0((Bn−11)γn−1Bn−1)

Ln−1−1Bn

must be a suffix of BnBn and hence be followed by a 1. However, then w0 /∈ L.
Suppose that w has 1((Bn−11)γn−1Bn−1)

Ln−1−1Bn as a suffix. As 1Bn−1 is always
preceded by Bn−1, then w would share a suffix with Bn−11((Bn−11)γn−1Bn−1)

Ln−1−1Bn

but that contains (Bn−11)γn−1+1 as a subword which is not a subword of BnBn =
(Bn−11)γn−1Bn−1)

2Ln−1+.
Therefore, w must be a suffix of ((Bn−11)γn−1Bn−1)

Ln−1−1Bn.

PROPOSITION 5.4. Let w ∈ LRS with �en(w) > 1. Then there exists a unique n such that
exactly one of the following holds (and for m = n, none of them hold):
• w is a suffix of Bn+1 and hn < �en(w) ≤ hn+1;
• w is a suffix of (Bn1)2γnBn and (γn + 1)hn + γn < �en(w) ≤ (2γn + 1)hn + 2γn;
• w is a suffix of ((Bn−11)γn−1Bn−1)

Ln−1−1Bn and hn < �en(w) ≤ hn(2 − 1/Ln−1) and
n > 1.

In all three cases, hn < �en(w) ≤ hn+1.

Proof. As 11 /∈ L, w must end in 0. Let n be the largest integer such that w has Bn as a
proper suffix (such n exists since B1 = 0). Then w has either 0Bn or 1Bn as a suffix.

Lemma 5.2 states that if w has 1Bn as a suffix, then either w is a suffix of (Bn1)2γnBn

or is a suffix of Bn+1, which are the second and first cases of the proposition, respectively,
or else w has Bn+1 as a proper suffix which would contradict the choice of n.

Lemma 5.3 states that if w has 0Bn as a suffix, then n > 1 and w is a suffix of
((Bn−11)γn−1Bn)

Ln−1−1Bn. This puts us in the third case as (γn−1 + 1)hn−1 + γn−1 =
(1/Ln−1)hn.

Suffixes of (Bn1)2γnBn of length less than or equal to (γn + 1)hn + γn are suffixes of
(Bn1)γnBn which is a suffix of Bn+1, but all suffixes longer than that are not suffixes
of Bn+1 as Bn+1 has 0(Bn1)γnBn as a suffix. Suffixes of ((Bn−11)γn−1Bn−1)

Ln−1−1Bn of
length at least hn + 1 have 0Bn as a suffix, so are not suffixes of Bn+1 as Bn+1 has 1Bn as
a suffix. Clearly there is no overlap between the second and third cases as the second has
1Bn as a suffix and the third has 0Bn as a suffix. Therefore, the length restrictions make
the cases a partition of LRS .

Since (2 − 1/Ln−1)hn < (2γn + 1)hn + 2γn < 2((γn + 1)hn + γn) ≤ Ln((γn +
1)hn + γn) = hn+1, in all three cases, hn < �en(w) ≤ hn+1.
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5.2. The complexity function

PROPOSITION 5.5. The complexity function satisfies p(h2 + 1) = h2(1 + (1/L1)) + 1
and for q > h2, choosing n to be the unique integer such that hn < q ≤ hn+1,

p(q + 1) − p(q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2 when hn < q ≤ (2 − (1/Ln−1))hn,

1 when (2 − (1/Ln−1))hn < q ≤ (γn + 1)hn + γn,

2 when (γn + 1)hn + γn < q ≤ (2γn + 1)hn + 2γn,
1 when (2γn + 1)hn + 2γn < q ≤ hn+1.

Proof. In Proposition 5.4, there is no overlap among n since hn < �en(w) ≤ hn+1 for all
three cases.

Recall that p(q + 1) − p(q) = |{w ∈ LRS : �en(w) = q}|.
Let q and n such that hn < q ≤ hn+1. There is exactly one suffix of Bn+1 of

length q. There is a suffix of the second form in Proposition 5.4 of length q precisely
when (γn + 1)hn + γn < q ≤ (2γn + 1)hn + 2γn. There is a suffix of the third form in
Proposition 5.4 of length q precisely when hn < q ≤ (2 − (1/Ln−1))hn and n > 1.

For 1 < q ≤ h2, Proposition 5.4 applies with n = 1 and the third case is vacu-
ous. Then, p(q + 1) − p(q) = 1 for 1 < q ≤ (γ1 + 1)h1 + γ1 = 2γ1 + 1. For 2γ1 + 1 <

q ≤ (2γ1 + 1)h1 + 2γ1 = 4γ1 + 1, we have p(q + 1) − p(q) = 2 and for 4γ1 + 1 <

q ≤ h2, p(q + 1) − p(q) = 1. Therefore, as p(2) = 3 and h2 = L1((γ1 + 1)h1 + γ1) =
L1(2γ1 + 1),

p(h2 + 1)

= p(2)+ (p(2γ1 +1)−p(2))+ (p(4γ1 +1)−p(2γ1 +1)+ (p(h2 +1)−p(4γ1 +1))

= 3 + (2γ1 − 1) + 2(2γ1) + (h2 − 4γ1) = h2 + 2γ1 + 2 = h2 + 1
L1

h2 + 1.

THEOREM 5.6. The transformations in Definition 5.1 satisfy p(hn+1) = (1 + 1/Ln)hn+1.
If γn/hn → 0, then they also satisfy

lim inf
p(q)

q
= 1 + lim inf

1
max(Ln−1, γn + 1)

,

lim sup
p(q)

q
= 3

2
+ lim sup

1
4 min(Ln−1, γn + 1) − 2

.

Proof. For n ≥ 2, by Proposition 5.5,

p

((
2 − 1

Ln−1

)
hn + 1

)
− p(hn + 1) = 2

(
1 − 1

Ln−1

)
hn,

p((γn + 1)hn + γn + 1) − p

((
2 − 1

Ln−1

)
hn + 1

)
=

(
γn − 1 + 1

Ln−1

)
hn + γn,

p((2γn + 1)hn + 2γn + 1) − p((γn + 1)hn + γn + 1) = 2(γnhn + γn),

p(hn+1 + 1) − p((2γn + 1)hn + 2γn + 1) = hn+1 − (2γn + 1)hn − 2γn,
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and therefore

p(hn+1 + 1) − p(hn + 1)

=
(

2 − 2
Ln−1

+ γn − 1 + 1
Ln−1

+ 2γn − 2γn − 1
)

hn +γn +2γn −2γn +hn+1

= hn+1 +
(

γn − 1
Ln−1

)
hn + γn = hn+1 + (γn + 1)hn + γn − hn − 1

Ln−1
hn

= hn+1 + 1
Ln

hn+1 − hn − 1
Ln−1

hn,

which implies that

p(hn+1 + 1) = p(h2 + 1) +
n∑

m=2

(p(hm+1 + 1) − p(hm + 1))

= 1 +
(

1 + 1
L1

)
h2 +

n∑
m=2

((
1 + 1

Lm

)
hm+1 −

(
1 + 1

Lm−1

)
hm

)
= 1 +

(
1 + 1

Ln

)
hn+1.

Since p(hn+1 + 1) − p(hn+1) = 1, then p(hn+1) = (1 + 1/Ln)hn+1.
Combining this with our initial observations,

p(

(
2 − 1

Ln−1

)
hn + 1) − 1 =

(
1 + 1

Ln−1

)
hn + 2

(
1 − 1

Ln−1

)
hn =

(
3 − 1

Ln−1

)
hn,

(†)

p((γn + 1)hn + γn + 1) − 1 =
(

3 − 1
Ln−1

)
hn +

(
γn − 1 + 1

Ln−1

)
hn + γn

= (γn + 2)hn + γn,

p((2γn + 1)hn + 2γn + 1) − 1 = (γn + 2)hn + γn +2γnhn +2γn = (3γn +2)hn +3γn,
(‡)

and so

p(hn)

hn

= 1 + 1
Ln−1

,

p((2 − 1/Ln−1)hn + 1) − 1
(2 − 1/Ln−1)hn

= 3 − 1/Ln−1

2 − 1/Ln−1
= 3

2
+ 1/2 1/Ln−1

2 − 1/Ln−1
= 3

2
+ 1

4Ln−1 − 2
,

p((γn + 1)hn + γn + 1) − 1
(γn + 1)hn + γn

= (γn + 2)hn + γn

(γn + 1)hn + γn

= 1 + 1
γn + 1 + γn/hn

,

p((2γn + 1)hn + 2γn + 1) − 1
(2γn + 1)hn + 2γn

= (3γn + 2)hn + 3γn

(2γn + 1)hn + 2γn

= 3
2

+ 1/2
2γn + 1 + 2γn/hn

.

Now observe that, since 1 ≤ p(q + 1) − p(q) ≤ 2 for all q, the function p(q) is increasing
when p(q + 1) − p(q) = 2 and decreasing when p(q + 1) − p(q) = 1. Therefore, the
lim inf and lim sup are attained along sequences of the four above-mentioned values.
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Provided γn/hn → 0, then

lim inf
q

p(q)

q
= lim inf

n
min

(
1 + 1

Ln−1
, 1 + 1

γn + 1

)
and

lim sup
q

p(q)

q
= lim sup

n
max

(
3
2

+ 1
4Ln−1 − 2

,
3
2

+ 1
4γn + 2

)
.

5.3. Complexity nearing 1.5q

THEOREM 5.7. Let ε > 0 and f (q) → ∞. Then there exists γn = γ > 1 and Ln → ∞
such that the transformation in Definition 5.1 satisfies

lim sup
p(q)

q
<

3
2

+ ε and p(hn) < hn + f (hn).

Proof. Choose γ > 1 such that 1/(4γ + 2) < ε.
Given hn, choose qn such that for all q ≥ qn, we have f (q) > (γ + 1)hn + γ . Then

choose Ln such that Ln((γ + 1)hn + γ ) ≥ qn. Then by Theorem 5.6,

p(hn+1)=
(

1+ 1
Ln

)
hn+1 =hn+1 + (γ +1)hn +γ <hn+1 +f (qn)≤hn+1 +f (hn+1).

Since Ln → ∞, lim sup p(q)/q = 3/2 + 1/(4γ + 2) < 3/2 + ε.

6. Weak mixing for rank-one transformations
THEOREM 6.1. Let T be a rank-one transformation with bounded spacers (there exists
k such that sn,i ≤ k for all 0 ≤ i < rn and all n) and κ > 0 such that for all sufficiently
large n,

|{sn,i = 0 : 0 ≤ i < rn}| ≥ κ(rn + 1) and |{sn,i = 1 : 0 ≤ i < rn}| ≥ κ(rn + 1).

Then T is weakly mixing on a finite measure space.

We adapt the proof that Chacon’s transformation is weakly mixing from [Sil08].

LEMMA 6.2. [Sil08, Lemma 2.7.3] For any measurable set A and ε > 0, there
exists N such that for all n ≥ N , there exists Q ⊆ {0, . . . , hn − 1} such that
μ(A� ⋃

q∈Q In,q) < ε.

LEMMA 6.3. [Sil08, Lemma 3.7.3] For any positive measure set A and ε > 0, there exists
N such that for all n ≥ N , there exists 0 ≤ a < hn such that μ(A ∩ In,a) > (1 − ε)μ(In,a).

LEMMA 6.4. Let I a level and A a measurable set such that μ(A ∩ I ) ≥ (3/4)μ(I). For
any 0 < δ < 1, there exists N such that for all n ≥ N , if I = ⊔

q∈Q In,q is the partition of
I into sublevels in Cn, then |{q ∈ Q : μ(A ∩ In,q) ≥ δμ(In,q)}| ≥ (1/2)|Q|.
Proof. Choose α > 0 such that α < (1/4)(1 + (1/δ))−1, so that α/δ + α + 1/4 < 1/2.
Let A1 = A ∩ I . By Lemma 6.2, there exists N such that for any n ≥ N , there is
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Q′ ⊆ Q such that if we set I ′ = ⊔
a∈Q′ In,a , then μ(A1�I ′) < αμ(I). Now observe that

μ(I ′�I ) ≤ μ(I ′�A1) + μ(A1�I ) < αμ(I) + (1/4)μ(I).
Set Q′′ = {a ∈ Q′ : μ(In,a \ A1) < δμ(In,a)} and I ′′ = ⊔

a∈Q′′ In,a . Since δμ(In,a) ≤
μ(In,a \ A1) for a ∈ Q′ \ Q′′,

δμ(I ′�I ′′) = δμ(I ′ \ I ′′)

=
∑

a∈Q′\Q′′
δμ(In,a) ≤

∑
a∈Q′\Q′′

μ(In,a \ A1) ≤ μ(I ′ \ A1) < αμ(I),

so μ(I ′′�I ) ≤ μ(I ′′�I ′) + μ(I ′�I ) < (α/δ)μ(I) + (α + (1/4))μ(I) < (1/2)μ(I).
Then μ(I ′′ ∩ I ) ≥ (1/2)μ(I), which means |Q′′| ≥ (1/2)|Q|.
LEMMA 6.5. If T is on a finite measure space and there exists κ > 0 and {tn,�} such that
for any two levels I and J in Cn, with J being � levels below I, μ(T tn,�I ∩ I ) ≥ κ�μ(I) and
μ(T tn,�I ∩ J ) ≥ κ�μ(J ), then T is weakly mixing.

Proof. Let A and B be any positive measure sets. By Lemma 6.3, there exist levels I1 and
J1 in some column CN such that μ(A ∩ I1) > (3/4)μ(I1) and μ(B ∩ J1) > (3/4)μ(J1).
Let 0 ≤ � < hN such that I1 is � levels above J1 (interchanging the roles of A and B if
necessary).

Set δ = κ�/3. By Lemma 6.4, there exists n > N such that if I1 = ⋃
q∈Q1

In,q and
J1 = ⋃

q∈Q2
In,q , then |{q ∈ Q1 : μ(A ∩ In,q) ≥ (1 − δ)μ(In,q)}| ≥ (1/2)|Q1| and |{q ∈

Q2 : μ(B ∩ In,q) ≥ (1 − δ)μ(In,q)}| ≥ (1/2)|Q2|. Since I1 is � levels above J1, q ∈ Q1

if and only if q − � ∈ Q2 and |Q1| = |Q2|. Therefore,

|{q ∈ Q1 : μ(A ∩ In,q) < (1 − δ)μ(In,q) or μ(B ∩ In,q−�)

< (1 − δ)μ(In,q)}| < 1
2 |Q1| + 1

2 |Q2| = |Q1|,

meaning there exists q ∈ Q1 such that I = In,q and J = In,q−� satisfy μ(A ∩ I ) ≥
(1 − δ)μ(I) and μ(B ∩ J ) ≥ (1 − δ)μ(J ).

By hypothesis, μ(T tn,�I ∩ I ) ≥ κ�μ(I) = 3δμ(I) and μ(T tn,�I ∩ J ) ≥ κ�μ(J ) =
3δμ(I). Set A1 = A ∩ I and B1 = B ∩ J , so that μ(I \ A1) < δμ(I) and μ(J \ B1) <

δμ(I). Then

μ(T tn,�A1 ∩ B1) ≥ μ(T tn,�I ∩ J ) − μ(I \ A1) − μ(J \ B1)

≥ 3δμ(I) − δμ(I) − δμ(I) = δμ(I) > 0

and similarly

μ(T tn,�A1 ∩ A1) ≥ μ(T tn,�I ∩ I ) − μ(I \ A1) − μ(I \ A1)

≥ 3δμ(I) − δμ(I) − δμ(I) = δμ(I) > 0.

Hence, for all positive measure sets A and B, there exists t such that μ(T tA ∩
A) ≥ μ(T tA1 ∩ A1) > 0 and μ(T tA ∩ B) > 0, which is equivalent to weak mixing
[Fur81].

https://doi.org/10.1017/etds.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.47


Word complexity of weakly mixing rank-one subshifts 1361

LEMMA 6.6. Let κ > 0 and n ∈ N, and set tn,� = ∑�−1
t=0 hn+t . Assume

|{sn,i = 0 : 0 ≤ i < rn}| ≥ κ(rn + 1) and |{sn,i = 1 : 0 ≤ i < rn}| ≥ κ(rn + 1).

Let I and J be levels in Cn with J being � levels below I. Then

μ(T tn,�I ∩ I ) ≥ κ�μ(I) and μ(T tn,�I ∩ J ) ≥ κ�μ(J ).

Proof. Write I = In,a for some 0 ≤ a < hn. As T hnIn,a ⊃ ⊔
i<rn:sn,i=0 I

[i+1]
n,a , applying

this twice,

T hn+1+hnIn,a ⊃
⊔

i0:sn,i0=0

T hn+1I [i+1]
n,a ⊃

⊔
i0:sn,i0=0

⊔
i1:sn+1,i1=0

I [i0+1][i1+1]
n,a ,

where I
[i][j ]
n,a has the obvious meaning: it is the jth sublevel of the ith sublevel of In,a

meaning I
[i][j ]
n,a is a level in Cn+2. Continuing this process:

T
∑�−1

t=0 hn+t In,a ⊃
⊔

i0:sn,i0=0

⊔
i1:sn+1,i1=0

· · ·
⊔

i�−1:sn+�−1,i�−1=0

I
[i0+1][i1+1]···[i�−1+1]
n,a .

Therefore,

μ(T
∑�−1

t=0 hn+t In,a ∩ In,a) ≥
∑

i0:sn,i0=0

· · ·
∑

i�−1:sn+�−1,i�−1=0

μ(I
[i0+1]···[i�−1+1]
n,a )

≥
( �−1∏

t=0

κ(rn+t + 1)

)
μ(In+�,a)

=
( �−1∏

t=0

κ(rn+t + 1)

)( �−1∏
t=0

1
rn+t + 1

)
μ(In,a) = κ�μ(In,a).

Similarly, T hnIn,a ⊃ ⊔
i<rn:sn,i=1 I

[i+1]
n,a−1, so

T
∑�−1

t=0 hn+t In,a ⊃
⊔

i0:sn,i0=1

⊔
i1:sn,i1=1

· · ·
⊔

i�−1:sn+�−i,i�−1=1

I
[i0+1][i1+1]···[i�−1+1]
n,a−� .

As J = In,a−�, since J is � levels below I in Cn,

μ(T
∑�−1

t=0 hn+t In,a ∩ J ) ≥
∑

i0:sn,i0=1

· · ·
∑

i�−1:sn+�−1,i�−1=1

μ(I
[i0+1]···[i�−1+1]
n,a−� ) ≥ κ�μ(In,a−�).

PROPOSITION 6.7. Let T be a rank-one transformation. If there exists a constant k such
that sn,i ≤ k for all 0 ≤ i ≤ rn for all sufficiently large n, then T is on a finite measure
space.

Proof. Writing Sn for the spacers added above the nth column Cn, we have
μ(Sn) = ∑rn

i=0 sn,iμ(In+1) ≤ k(rn + 1)μ(In+1) = kμ(In) = (k/hn)μ(Cn). Since hn ≥∏n−1
j=1(rj + 1) ≥ 2n−1, then μ(Cn+1) ≤ (1 + (k/2n−1))μ(Cn) so lim μ(Cn) ≤ μ(C0)∏∞
n=0(1 + (k/2n)) < ∞.
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Proof of Theorem 6.1. Lemmas 6.5 and 6.6 and Proposition 6.7.

6.1. Weak mixing for low complexity transformations

COROLLARY 6.8. The subshifts in Definition 5.1 are weakly mixing (on finite measure
spaces) provided that lim sup γn < ∞.

Proof. Since Bn+1 = ((Bn1)γnBn)
Ln , we have |{0 ≤ i < rn : sn,i = 0}| = Ln − 1 and

|{0 ≤ i < rn : sn,i = 1}| = Lnγn. As rn + 1 = Ln(γn + 1), this means

|{0 ≤ i < rn : sn,i = 0}|
rn + 1

= Ln − 1
Ln(γn + 1)

≥ 1
γn + 1

1
2

.

Likewise, |{i : sn,i = 1}|/(rn + 1) = γn/(γn + 1). As γn is bounded, Theorem 6.1 gives
weak mixing.

THEOREM 6.9. For every ε > 0, there exists a weakly mixing rank-one transformation (on
a probability space) such that the associated subshift has complexity lim sup p(q)/q <

1.5 + ε.
For any f (q) → ∞, the subshifts can be made to satisfy p(q) < q + f (q) infinitely

often.

Proof. Corollary 6.8 and Theorem 5.7.

THEOREM 6.10. For every ε > 0, there exists a subshift with complexity satisfying
lim sup p(q)/q < 1.5 + ε and lim inf p(q)/q < 1 + ε such that the associated rank-one
transformation is weakly mixing (on a probability space) and has minimal self-joinings
(hence also has trivial centralizer and is mildly mixing).

Proof. For ε > 0, let γ > 1 such that 1/(γ + 1) < ε. Then the transformation in
Definition 5.1 with γn = γ and Ln = γ + 1 satisfies, by Theorem 5.6,

lim inf
p(q)

q
= 1 + 1

γ + 1
< 1 + ε and lim sup

p(q)

q
= 3

2
+ 1

4γ − 2
<

3
2

+ ε,

and Corollary 6.8 gives weak mixing. As {rn} is bounded, Ryzhikov’s theorem [Ryz13]
gives minimal self-joinings (the transformations are non-rigid since the sn,i are not
constant over 0 ≤ i < rn, and hence are not ‘flat’ in the sense of [Ryz13, Theorem 2]).

Remark 6.11. The examples with p(q) < q + f (q) such that Ln → ∞ are most likely
not mildly mixing, and hence do not have minimal self-joinings. In essence, any alter-
native construction of those examples (where f (q)/q → 0 so Ln → ∞) which has
bounded spacers necessarily involves constructing B ′

n+1 = ((Bn1)γ Bn)
�n with �n uni-

formly bounded followed by Bn+1 = (B ′
n+1)

Ln/�n . As the second step involves adding no
spacers, the construction is ‘flat’ and therefore should admit a rigid factor.
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6.2. Totally ergodic subshifts with lim sup p(q)/q = 1.5

THEOREM 6.12. For any f (q) → ∞, there exists a totally ergodic rank-one subshift (on a
probability space) satisfying p(q) < 1.5q + f (q) for all sufficiently large q and p(hn) <

hn + f (hn) for all n ≥ 2.

Proof. Let f ∗(q) = inf{f (q ′) : q ′ ≥ q}. Then f ∗(q) is non-decreasing and f ∗(q) → ∞.
Set γ1 = L1 = 2. Given γn−1 and Ln−1 (and therefore hn), choose γn such that

(1/2)hn < f ∗(γn). Then choose Ln = mn! for some mn > n such that (γn + 1)hn + γn <

f ∗(Ln).
As hn+1 = Ln((γn + 1)hn + γn), we then have (1/Ln)hn+1 < f ∗(Ln) ≤ f ∗(hn+1).

Theorem 5.6 gives that

p(hn) =
(

1 + 1
Ln−1

)
hn < hn + f ∗(hn) ≤ hn + f (hn).

The count (†) in the proof of Theorem 5.6 gives that

p

((
2 − 1

Ln−1

)
hn + 1

)
=

(
3 − 1

Ln−1

)
hn + 1 = 3

2

(
2 − 1

Ln−1

)
hn + 1

2
1

Ln−1
hn + 1

≤ 3
2

(
2 − 1

Ln−1

)
hn + 1

2
f ∗(hn) + 1

<
3
2

((
2 − 1

Ln−1

)
hn + 1

)
+ f ∗

((
2 − 1

Ln−1

)
hn + 1

)
and the count (‡) in the proof of Theorem 5.6 gives

p((2γn + 1)hn +2γn +1) = (3γn + 2)hn +3γn +1= 3
2
((2γn + 1)hn +2γn)+ 1

2
hn +1

≤ 3
2
((2γn + 1)hn + 2γn) + f ∗(γn) + 1

<
3
2
((2γn + 1)hn + 2γn + 1) + f ∗((2γn + 1)hn + 2γn + 1).

As p(q) − 1.5q is maximized at one of these two lengths in each range hn < q ≤ hn+1,
for all q > h2,

p(q) < 1.5q + f ∗(q) ≤ 1.5q + f (q).

It remains to show total ergodicity (as Proposition 6.7 puts it on a finite measure space).
Let A be a positive measure set and t ∈ N such that T tA = A. For ε > 0 and n > t such

that 2t/(γn + 1) < ε, define the sets

Qn(ε) = {0 ≤ j < hn : μ(In,j ∩ A) > (1 − ε)μ(In,j )}.
If for some fixed ε > 0, it holds that Qn,ε = ∅ for infinitely many n, then μ(A) = 0
(Lemma 6.3), so we can also define jn(ε) = min{j ∈ Qn(ε)} for sufficiently large n.

Observe that for j ≥ t ,

μ(In,j−t ∩ A) = μ(T −t In,j ∩ A) = μ(In,j ∩ T tA) = μ(In,j ∩ A)
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and so if j ∈ Qn(ε) with j ≥ t , then j − t ∈ Qn(ε). Therefore, jn(ε) < t . Now observe
that, for j > 0,

μ(T hnIn,j ∩ In,j−1) ≥
∑

i<rn:sn,i=1

μ(I
[i]
n,j−1) = |{0 ≤ i < rn : sn,i = 1}|

rn + 1
μ(In,j )

=
(

1 − 1
γn + 1

)
μ(In,j )

since sn,i = 1 for Lnγn values of i and rn + 1 = Ln(γn + 1). Then, for 1 ≤ s < t and
j ≥ s,

μ(T shnIn,j �In,j−s) ≤
s−1∑
u=0

μ(T (s−u)hnIn,j−u�T (s−u−1)hnIn,j−u−1)

=
s−1∑
u=0

μ(T hnIn,j−u�In,j−u−1) <
2s

γn + 1
μ(In,j )

and, therefore,

μ(T shnIn,j ∩ In,j−s)≥
(

1 − 2s

γn + 1

)
μ(In,j )≥

(
1 − 2t

γn + 1

)
μ(In,j )>(1−ε)μ(In,j ).

Since Ln−1 = mn−1! and Ln−1 divides hn = Ln−1((γn−1 + 1)hn−1 + γn−1) and mn >

n > t , we have that t divides hn so T shnA = A. Then for 1 ≤ s < t and 0 ≤ j < hn − s

with j ∈ Qε(n),

μ(In,j+s ∩ A) = μ(T shn(In,j+s ∩ A)) = μ(T shnIn,j+s ∩ A)

≥ μ(T shnIn,j+s ∩ In,j ∩ A) ≥ μ(T shnIn,j+s ∩ In,j ) − μ(In,j \ A)

> (1 − ε)μ(In,j ) − εμ(In,j ),

meaning that if j ∈ Qn(ε) with j < hn − s, then j + s ∈ Qn(2ε).
Since j ∈ Qn(ε) implies j ∈ Qn(2ε), this means that jn(ε) + kt + s ∈ Qn(2ε) for all

k ≥ 0 and 0 ≤ s < t such that jn(ε)+kt + s <hn. So Qn(2ε) contains all jn(ε)≤j <hn.
Then |Qn(2ε)| ≥ hn − t , so

μ(A) ≥
∑

j∈Qn(2ε)

μ(A ∩ In,j ) > |Qn(2ε)|(1 − 2ε)μ(In,j )

≥
(

1 − t

hn

)
(1 − 2ε)μ(Cn) → 1 − 2ε.

As ε > 0 was arbitrary, we conclude that μ(A) = 1.

Remark 6.13. Our proof of weak mixing does not apply when γn is unbounded and we
strongly suspect our transformations with γn → ∞ are not weakly mixing.

7. Attaining specific complexities
We conclude with a brief discussion of the main open question.
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Question 7.1. For what pairs of values 1 ≤ α ≤ β < 2 does there exist a weakly mixing
(rank-one or not) subshift with lim inf p(q)/q = α and lim sup p(q)/q = β?

Obviously, the most interesting question is whether there exists a weakly mixing
subshift, necessarily not rank-one, with β < 1.5. We tentatively conjecture that our
examples are the best possible.

Conjecture 7.2. Every subshift admitting a weakly mixing (probability) measure has
complexity such that lim sup p(q)/q > 1.5.

Heinis [Hei02] showed that β ≥ 3 − 2/α for every subshift with lim sup p(q)/q < 2.
Our work shows that β ≥ 1.5 is necessary for total ergodicity in the rank-one setting.

The values α = 1 and β = 1/(4γ + 2) for γ ∈ N, γ ≥ 2, are attained by our exam-
ples as they have complexity satisfying lim inf p(q)/q = 1 provided Ln → ∞, and
lim sup p(q)/q = 1.5 + 1/(4γ + 2).

Ferenczi [Fer95] showed that the weakly mixing rank-one subshift given by
Bn+1 = B2

n1B2
n has α = 1.5 and β = 5/3 (this is the example that was the previously

known lowest complexity).
Our examples can be adapted to attain more pairs: for all 2 ≤ m < M , by setting

γ = M − 1 and L = m, Theorem 5.6 gives a weakly mixing subshift such that

lim inf
p(q)

q
= 1 + 1

M
and lim sup

p(q)

q
= 3

2
+ 1

4m − 2
.

Since M ≥ 3 and m ≥ 2, all of these examples satisfy α ≤ 4/3 and β ≤ 5/3.
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prompted the realization that the results hold for all non-odometer rank-ones (rather than
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