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ABSTRACT

The formulation of generalized linear models in Klugman, Panjer and Will-
mot (2004) is a bit more general than is often seen, in that the residuals are
not restricted to following a member of the exponential family. Some of the
distributions this allows have potentially useful applications. The cost is that
there is no longer a single form for the likelihood function, so each has to be
fit directly. Here the use of loss distributions (frequency, severity and aggregate)
in generalized linear models is addressed, along with a few other possibilities.

1. INTRODUCTION

The paradigm of a linear model is multiple regression, where the dependent
variables are linear combinations of independent variables plus a residual term,
which is from a single mean-zero normal distribution. Generalized linear mod-
els, denoted here as GLZ1, allow nonlinear transforms of the regression mean
as well as other forms for the distribution of residuals.

Since many actuarial applications of GLZ are to cross-classified data, such
as in a loss development triangle or classification rating plan, a two dimensional
array of independent observations will be assumed, with a typical cell’s data
denoted as qw,d. That is easy to generalize to more dimensions or to a single one.

Klugman, Panjer and Willmot (2004) p. 413f provide a fairly general defi-
nition of GLZs. To start with, let zw,d be the row vector of covariate observations
for the w, d cell and b the column vector of coefficients. Then a GLZ with that
distribution models the mean of qw,d as a function j of the linear combination
zw,d b, where all the other parameters, including b, are constant across the cells.

It appears that their intention is that j does not take any of the parame-
ters of the distribution as arguments, although this is not explicitly stated.
An interesting special case is where j is the identity function, so the mean of
qw,d is zw,d b. Another key case is where j is exp, so E [qw,d ] = exp(zw,d b). This is
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1 Often GLM is used but with more restrictions on distributional form, typically the exponential family.
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a multiplicative model in which the mean is the product of the exponentiated
summands in zw,d b.

Standard regression sets the mean zw,d b to the m of a normal distribution,
which has another parameter s that is constant across the cells. But almost any
distribution that has a mean could be re-parameterized so that the mean is
one of the parameters. This allows virtually any distribution to be used for
the residuals. The mean-parameter will be referred to as m hereafter.

Usual GLM requires the distribution to be from the exponential family.
Mildenhall (1999) defines this as a distribution that can be written in the form
f(x; m,ƒ) = c(x,ƒ)/exp[d(x; m) /(2ƒ)] where d(x; m) = 2w

m V t
x tx -#
] g

for a strictly pos-
itive function V(t) and weighting constant w. The tricky part is that m appears
only in the exponent and is constrained in how it combines with ƒ. For any m,
c has to make the integral unity. While quite a few models are possible with
this family and various j functions, expanding the universe of distributions leads
to other interesting models. Some of the simplicity of exponential models is lost,
however.

Standard theory shows the mean of an exponential model is m and the vari-
ance is ƒV(m)/w. The V function defines the exponential model uniquely. Using
w = 1 and V = m j with j = 0,1,2,3 gives the normal, Poisson, gamma, and inverse
Gaussian distributions, respectively. The ratio of the coefficient of skewness to
the coefficient of variation (or CV, which is the standard deviation divided by
mean) for these distributions is also 0,1,2,3, respectively. Renshaw (1994) has
a formula that implies more generally that skewness/CV is m∂ lnV/∂m whenever
w = 1.

The relationship of variance to mean is one of the issues in selecting a dis-
tribution for GLZs. The relationship no longer uniquely defines the distribution,
however. For the normal and t-distributions2 the mean and variance are not
related, which could be expressed as the variance being proportional to m0.
The Poisson has variance proportional to m1, and quite a few distributions have
variance proportional to m2. Other relationships of mean and variance will be
discussed below. One advantage of GLZs is that distributions with the same
relationship of variance to mean might have different tail properties, includ-
ing different skewnesses and higher moments, giving more flexibility in fitting
models to data.

In linear regression the failure of the observations to match the predictions
of constant variance is called heteroscedasticity. Often this occurs because the
variance is smaller for smaller observations. In such a case using a distribution
with variance proportional to a power of the mean might solve the hetero-
scedasticity problem. A simple example is the Poisson, where m is the l para-
meter, which then gets set to j(zw,d b) for each cell and then is the mean and
variance of the cell.

346 G.G. VENTER

2 Having t-distributed residuals is one of the many possibilities this formulation of GLZ allows. Also
the Laplace, which has exponential tails in both directions from the origin, or the logistic, which is
like a heavy-tailed normal, could be used for symmetric residuals.
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Virtually any distribution can be used in a GLZ. Specific examples of fre-
quency, severity, and aggregate loss distributions in GLZs are discussed next,
followed by estimation issues and examples from modeling loss development
triangles. Choosing the distribution to use can be done by comparing maximized
loglikelihood functions penalized for the number of parameters. Often quasi-
likelihood is used in GLM, but using true MLE is shown to be possible in many
cases.

2. FREQUENCY DISTRIBUTIONS IN GLZ

For the Poisson in l, the mean and variance are both l = j(zw,d b). The negative
binomial is more interesting. In the usual parameterization, the variance is a
fixed multiple of, but greater than, the mean. Negative binomial distributions
are in the (a,b,0) class, which means that for k > 0, there are values a and b
so that probabilities follow the recursive relationship pk = (a + b/k)pk – 1. The
negative binomial has two positive parameters, r and b, with mean = rb and
variance = rb (1+ b ). Skewness/CV is 1+ b / (1+ b ), which is between 1 and 2.
Probabilities start with p0 = (1+ b )– r and in the recursion a = b /(1+ b ) and b =
(r – 1) a.

There are two simple ways to express the negative binomial mean as a para-
meter. First, keeping the parameter b, replace r by m/b, so there are two para-
meters b and m and the mean is m. The variance rb (1 + b ) becomes m (1 + b ).
In a GLZ the mean is m = j(zw,d b ) and the variance is j(zw,d b) (1+ b ), which
is proportional to the mean. On the other hand if you keep r and replace b by
m/r, the parameters are r and m, and the mean is again m, but the variance
rb (1+ b ) is m(1 + m/r), which is quadratic in m. This form is in the exponential
family. Thus depending on how you parameterize the negative binomial, its vari-
ance can be either linear or quadratic in the mean.

The parameterization chosen does not make any difference for a single dis-
tribution. Suppose for example that X has r = 3 and b = 10 and so mean m = 30
and variance 330. The variance is m(1+ b) in the first formulation and m(1 + m/r)
in the second, both of which are 330. A difference comes when modeling other
variables while keeping parameters other than m constant. Suppose Y has mean
100. If b is kept at 10, m(1+ b) = 1100, while if r is kept at 3, m(1 + m/r) = 3433.
The parameterization to choose would be the one that best captures the way
the variance grows as the risk size increases. This same idea is applied to sever-
ity distributions next.

3. SEVERITY DISTRIBUTIONS IN GLZ

A parameter q of a distribution of X is a scale parameter if the distribution
of a multiple of X is obtained by substituting that multiple of q into the orig-
inal distribution. The kth moment of the distribution is then proportional to qk.
Thus if the mean m is a scale parameter, the variance is proportional to m2.
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3.1. Inverse Gaussian

As an example, consider the inverse Gaussian distribution with density

ig1(x; m, a) = .
ax

e
p

m

2 3

/ /
a

x xm m
2

2- -

Here m is a scale parameter, with EX = m and VarX = am2. However it is more
usual to parameterize the inverse Gaussian with l = m/a, so a is replaced by m/l:

ig2(x; m, l) = .e
xp

l

2 3
/

/ /x x
m l
m m

2
2- -

Now m is no longer a scale parameter, even though it is still the mean. The vari-
ance is m3/l, and so is proportional to m3 instead of m2. This is in the exponential
family as m is just in the exponent. Both forms meet the requirements to be
GLZs, so either variance assumption can be accommodated. The choice would
depend on how the squared deviations from the cell means tend to vary with
the means j(zw,d b). If they seem to grow proportionally to the square of the
mean, ig1 would be indicated, but if they grow with the mean cubed, ig2 would
be preferred.

How the variance relates to the mean is thus not a fundamental feature of
the inverse Gaussian, but is a result of how it is parameterized. A character-
istic constant of this distribution, not dependent on parameterization, is the
ratio of the skewness to the CV. In ig1, with m a scale parameter, the third cen-
tral moment is 3m3a2 while it is 3m5/l2 in ig2. Thus in ig1 the CV is a† and the
skewness is 3a†, so the ratio is 3. In ig2 these coefficients are (m/l)† and 3(m/l)†,
so the ratio is again 3.

3.2. Gamma

Substituting alternative parameters can be done for other distributions as
well. For instance the gamma distribution is usually parameterized F(x;q,a) =
G(x /q;a) with the incomplete gamma function G. This has mean aq and vari-
ance aq2. To get the mean to be a parameter, set F (x;m,a) = G(xa /m;a). Then
the variance is m2/a and m is still a scale parameter. But other parameterizations
are possible. Similarly to the inverse Gaussian, setting F(x; m,l) = G(xl /m2; l /m)
still gives mean m but now the variance is m3/l. Other variance functions can
be reached by this method. For instance F(x; m,l) = G[x /(lmp); m1 – p/l ] has
mean m and variance m1+ pl. This works for any real p, so the gamma variance
can be made to be proportional to any power of the mean, including zero.
This will be called the gamma p.

Hewitt (1966) noted that if larger risks were independent sums of small
risks, the variance would grow in proportion to the mean. He found in fact that
aggregate loss distributions for some insurance risks can be modeled by gamma

348 G.G. VENTER
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distributions, and that the gamma variance grows by about m1.227. This relation-
ship could be modeled by the gamma p with p = 0.227.

As with the inverse Gaussian, the ratio of skewness to CV is a character-
istic constant of the gamma distribution. With power p, the third central
moment is 2l2m1+2p. This gives skewness of 2l0.5m0.5p – 0.5, which is twice the CV,
so the ratio is 2 for the gamma regardless of p. Thus an inverse Gaussian is
50% more skewed than the gamma with the same mean and variance.

3.3. Lognormal

The lognormal density can be parameterized as:

f (x; q, t) =

2

.
x

e
pt2

/ /log x q t2- ] ]g g5 ?

Here q is a scale parameter. The mean is qet/2 and the variance is q2et(et – 1).
Taking a = et/2 and m = aq, the mean and variance are m and m2(a2 – 1) and

f (x; m, a) =

2

.
logax

e
p2

/ /log loga ax m 4- ] ]g g5 ?

For the lognormal a characteristic constant is the ratio of skewness to CV
minus the CV-squared. This is always 3, regardless of parameterization.

The usual parameterization of the lognormal is: f (x;m,s) = N( log x

s

m-] g ).
This has mean em+s2/2 and variance e2m+ s2(es2 – 1). Now reparameterize with two
parameters m and s:

F (x; m, s) =
/

/ /

log

log
N

s m

x m s m

1

1
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It is not hard to see that m has been replaced by log
s m

m
2 2

2

+
d n and s2 has been

replaced by log
m

s m
2

2 2
+

d n. Thus em is 
s m

m
2 2

2

+
and es2

is 
m

s m
2

2 2
+ . From this it follows

that the mean is m and the variance is s2. This parameterization makes the
mean and variance completely unrelated. By the way, skewness is then also a
fairly simple function of the parameters: skewness = 3 m

s

m

s
3

3

+ . As with the
gamma, other reparameterizations of the lognormal are possible, and can give
any relationship of variance and mean. In fact,

F (x; m, s, p) =
/

/ /

log

log
N

s m

x m s m

1

1

p
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has mean m, variance s2mp, and skewness 3t + t3, where t = smp /2 – 1. Here m has

been replaced by log
s m

m

1 p2 2
+

-

J

L

K
K

N

P

O
O and s2 by .log s m1 p2 2

+
-

b l

3.4. Pareto

The Pareto is another interesting case. Consider F (x; q,a) = 1 – (1 + x /q )–a.
This has mean q/(a –1). Taking m = (a – 1)q gives F(x;m,a) = 1 – (1+ x /(ma – m))–a.
This has mean m and variance m2/ (a – 2) if a > 2. But if a ≤ 1 this does not
work, as the mean does not exist. There does not seem to be any reason not
to extend the GLZs to this case. Perhaps the easiest way to do this is to model
qw,d as j(zw,d b) for each cell. Or the median m = q(21/a – 1) could be the para-
meter modeled, by setting F(x;m,a) = 1 – (1+ x(21/a – 1)/m)– a, with m = j(zw,d b).
This is median regression in the GLZ framework.

The skewness for the gamma, inverse Gaussian and lognormal distribu-
tions can be expressed as 2CV, 3CV, and 3CV + CV3, respectively. For the
Pareto, if the skewness exists, CV2 is in the range (1,3). Then the skewness is

CV2a

a

CV CV

CV2
3
1

3

3
2

2

=-

+

-

-
-

. This is less than the lognormal skewness when CV2 < 2
and less than the inverse Gaussian skewness when CV 2 < 0.5 + /11 12 .
1.4574. This illustrates the different tail possibilities for GLZs with the same
means and variances.

3.5. Origin Shifting

Severity distributions have their support on the positive reals, so all fitted
values have to be positive. Frequency and aggregate distributions extend the
support to include zero, but not negative values. However, any of the positive
distributions can be location shifted to allow the possibility of negative values or
even negative means. For instance, the shifted gamma has F(x) = G[(x – b)/q,a],
with mean b + aq and variance aq2. Making the mean a parameter gives the
distribution F(x) = G[(a(x – b) / (m – b), a]. The variance is then (m – b)2/a, which
is still quadratic in m.

4. AGGREGATE DISTRIBUTIONS IN GLZ

Aggregate distributions can be especially useful for residuals that are continuous
on the positive reals but also could take a positive probability at zero. This is
often seen out in late lags of a development triangle, for example.

4.1. Poisson-Gamma Aggregates

An example of an aggregate loss model in the exponential family is the Tweedie
distribution. This starts by combining a gamma severity in a and q that has

350 G.G. VENTER
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mean aq and variance aq2 with a Poisson frequency in l. Then the aggregate
distribution has mean m = laq and variance = laq2(a + 1) = mq(a + 1). Since
this can also be written as l(aq)2(1/a + 1), it is clear that the variance is linear
in the frequency mean and quadratic in the severity mean.

If the restriction l = k(aq)a is imposed, then m = k(aq)a+1, and the vari-
ance is kaa+1qa+2(1 + a), or m1+1/(a+1)(1 + 1/a)k–1/(a+1). This is the Tweedie dis-
tribution. The variance is proportional to a power of the mean between 1 and 2,
which is often realistic for sums of claims. The link between frequency and
severity is problematic, however. It would seem unusual for the observations
with the smaller number of claims to also have the smaller claim sizes.

Kaas (2005) expresses the Tweedie by replacing the three parameters l,a,q
of the Poisson-Gamma with three others m, c, and p by the formulas:

l = m2–p/ [c(2 – p)] a = (2 – p) / (p – 1) q = c(p – 1) m p–1

This looks like a 3 for 3 swap of parameters, so it is not clear that a relation-
ship between the frequency and severity means has been imposed. But (aq )a

in this notation is:

(aq )a = l [c(2 – p)]1/(p –1).

Thus taking k = [c(2 – p)]1/(1– p) gives l = k(aq)a, which is the restriction orig-
inally imposed above. This k is not a function of m and can also replace c by
c = k1–p/ (2 – p). This gives a parameterization of the Tweedie in terms of k,
p, and m:

l = m(m/k)1–p a = (2 – p) / (p – 1) q = (m/k)p–1 /a

The mean is still m, the frequency mean is k times the severity mean raised to
the power (2 – p) / (p – 1), and the aggregate variance is now mpk1–p/(2 – p). Since
p is (a + 2) / (a + 1), it is between 1 and 2. The parameters are a bit simpler than
Kaas’ but the variance is more complicated than his cmp. In any case skewness/
CV is p, consistent with Renshaw’s formula.

Not requiring the exponential family form gives other possibilities. With-
out imposing any relationship between frequency and severity, as noted above,
the Poisson-gamma can be parameterized with mean m and variance mq(a + 1).
This has replaced l with m / (aq). A somewhat different relationship between
frequency and severity can be established by setting l = (aq)k. This gives mean
m = (aq)k+1 and variance (aq)k+2(1+ 1/a) = m(k+2)/(k+1)(1+ 1/a), which is again
proportional to a power of the mean between 1 and 2.

4.2. Poisson-Normal

A limiting case is the Poisson-normal. This has a point mass at zero but could
have some negative observations. For the normal in m and s2 it has mean m = lm,

GENERALIZED LINEAR MODELS BEYOND THE EXPONENTIAL FAMILY 351

0345-07_Astin37/2_08  28-11-2007  15:17  Pagina 351

https://doi.org/10.2143/AST.37.2.2024071 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.2.2024071


variance l(m2 + s2) = mm[1 + (s/m)2] and skewness (1 + 3CV2)l–†(1 + CV2)–1.5.
Fixing m and s and setting lw,d to mw,d /m makes the variance proportional to
the mean. Another possibility is to make l and s constant and set mw,d to mw,d /l.
Then the variance of each cell is m2

w,d /l + ls2. This is quadratic in mw,d and any
mw,d can be negative. This is possible for the normal regression as well, but for
the Poisson-normal, homoscedasticity is not required (or possible).

4.3. Poisson-Constant Severity Aggregates

The simplest aggregate loss distribution is probably Poisson frequency with
a constant severity, called the PCS distribution. If q is the severity, a cell with
frequency l has mean ql = j(zw,d b) and variance q2l = qj(zw,d b). This is
sometimes called the over-dispersed Poisson distribution, but PCS may be more
descriptive, especially if q < 1. Some authors define the over-dispersed Poisson
more broadly as any distribution in the exponential family for which the
variance is proportional to the mean. But by uniqueness properties of the
exponential family the PCS is the only such distribution, and so is the unique
over-dispersed Poisson.

If X is the total loss random variable, X/q is Poisson in l = EX/q = m/q.
Thus Pr(X /q = n) = e–m/q(m /q)n /n!. For x = qn, Pr(X = x) = e–m/q(m /q)x/q/(x /q)!.
If x is not an integer multiple of q, Pr(X = x) = 0. If m is modeled by covari-
ates and parameters, say mw,d = Uwgd , with q fixed, then an observation of Xw,d,
say qw,d, with qw,d /q a non-negative integer, has Pr(Xw,d = qw,d) = p (qw,d) =
e–mw,d /q(mw,d /q)qw,d /q/(qw,d /q)!, and p(qw,d) is zero otherwise. The PCS is a discrete
distribution with positive probability only at integer multiples of q. By its
uniqueness, there is no continuous over-dispersed Poisson distribution in the
exponential family. Thus over-dispersed Poisson probabilities are always zero
except at integer multiples of q.

In the more usual case where all losses are not a multiple of q, the continu-
ous analogue of the PCS from Mack (2002)3 can be used. This can be described
as a zero-modified continuous scaled Poisson, or ZMCSP. To specify it, start
by using p(x) /q as a density on the positive reals, extending the factorial by the
gamma function, i.e., defining a! / G(1 + a). But this density gives total prob-
ability above unity. Mack’s solution is to reduce the probability mass at zero.

The ZMCSP is defined by the density f(x; m,q) = e–m /q(m /q)x /q / [q(x /q)!] for
x > 0 and by setting the point mass at x = 0 enough to make the total proba-
bility 1. To see how much probability is needed at 0, define the function
pois(x,l) = lxe–l /x! and the function zm(l) = 1 – 

0+
pois

3
# (x,l)dx. Then with

a change of variable in f (x) to y = x /q and defining l = m /q, it is easy to see
that 

0
f

3
# (x; m,q)dx is 1 – zm(l). Thus the point mass needed at zero is zm(m/q).

The function zm(l) is less than the Poisson’s point mass of e–l but is strictly
positive.

352 G.G. VENTER
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There is an extra q in the denominator of f that is not in p, but that will not
affect the MLE of m or the components of m if m is a function of covariates.
This is interesting because setting mw,d = Uwgd in the PCS and estimating by
MLE is known to give the chain-ladder reserve estimates. Since the estimates
of Uw and gd for Mack’s ZMCSP will be the same as for the PCS (as long as
there are not any zero observations), this looks like it extends the match of the
chain ladder to the continuous case — no longer requiring that all cells in the
triangle are integer multiples of q. It turns out however that this is approximately
but not exactly so.

The divergence arises from the fact that the ZMCSP expected value is not
exactly m. Integrating xf (x) shows that the mean is actually:

EX = m[1 – zm(m /q ) +
1-
pois

0
# (x, m /q )dx].

This is greater than m, but not by much, unless l is small, as Table 1 shows.
Since the function of m needed to produce the mean depends on the parameters
of the distribution, the ZMCSP is probably not a GLZ. As with the Pareto with
infinite mean, extending the definition of GLZ a bit to include linear modeling
of a parameter that is not the mean may make sense. Whether or not this is
considered a GLZ, it is still a useful model.

The variance is a bit less than qm for small values of l. Integrating x2f (x)
shows that EX2 = q2l

0+
pois

3
# (x – 1,l)xdx. For large values of l the integral

is l + 1, but it is different for smaller l.

GENERALIZED LINEAR MODELS BEYOND THE EXPONENTIAL FAMILY 353

TABLE 1

POINT MASS AND MOMENT ADJUSTMENT BY l

l = m /q zm(m /q) EX/m – 1 EX2/ [q2l(l + 1)] – 1 Var/q2l – 1

0.2 .48628 .33861 .03976 – 0.11066
1 .16619 .03291 – 8.73e-04 – 0.06865
5 .00216 9.43e-05 – 3.75e-06 – 0.00097

25 3.19e-12 1.96e-14 – 7.00e-13 – 1.9E-11

In a recent study of a fairly noisy runoff triangle, m/q was less than 2 for just one
observation and less than 5 for five observations, out of 55. Thus a few small
observations would have fitted means a percent or two different from the chain
ladder’s. While the noted match of the PCS and chain-ladder reserve estimates
holds exactly only when all probability is concentrated on integer multiples of q,
the ZMCSP comes close to having this relationship in the continuous case.

4.4. Geometric – Exponential 

The geometric frequency distribution can be described with a parameter a by
pk = a(1 – a)k for k ≥ 0. This has mean (1 – a) /a and variance (1 – a) /a2, which
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is higher than the mean. With an exponential severity in mean q, the aggregate
distribution has mean q (1 – a) /a and variance q 2(1 – a2) /a2. The aggregate
survival function is known4 to be S(x) = (1 – a)e–xa /q. Both the frequency and
aggregate distributions have a point mass of a at 0.

Either a or q can be replaced by the mean m, but probably keeping a con-
stant q would be useful more often. This replaces a by q /(m + q ). Thus when
m is higher, the probability a of an observation of zero is lower, which would
make sense in many cases. The aggregate mean and variance become m and
m(m+2q) with survival function S(x)=m/(m+q)e–x/[m+q]. The variance is quadratic
in the mean but with the linear term it increases more slowly than m2. For MLE
the aggregate density is f (x) = m /(m + q)2e–x / [ m+q ] for x > 0 and p0 = q/ (m + q).

5. ESTIMATION ISSUES

Key to estimation is having an efficient optimizer to estimate the likelihood
function including the covariates. Advances in computing power and the avail-
ability of optimization algorithms, even as spreadsheet add-ins, is what makes
it possible to go beyond the exponential family and to use full MLE estimation.

The modified distributions like gamma p and lognormal basically substitute
formulas for the usual parameters. For example in the gamma p, F (x; m, l) =
G[x/(lmp); m1–p/l] can be written as F(x) = G(x /q;a) with q = lmp and a = m1 – p/l.
Thus a routine that searches for optimal gamma parameters can be used to esti-
mate the gamma p by first expressing the gamma parameters in terms of l, m,
and p and then searching for the best values for these three parameters. Since
m will be a function of covariates involving several parameters, this is the part
where efficient algorithms come in.

As long as there are no zero observations the ZMCSP loglikelihood function is 

! .log log logl
q q

q q
m

q
m

q q, , , ,w d w d w d w d
= - - -!

J

L

K
K f ^

N

P

O
Op h The last two terms in the

sum can be omitted when maximizing for m. In fact the function to maximize can
be reduced to l* = logq m m, , ,w d w d w d-!^ h. Taking the derivative shows that this

is maximized when .
q
m0 1

,

,

w d

w d
= -! f p Thus the average relative error should

be zero. If m is a function of covariates and the vector b is being estimated,
the derivative of l* wrt the j th element of b, bj, gives the n equations 0 =

j
.

qm
m 1,

,

,w d

w d

w d

2

2
-b! f p This could be considered a series of weighted average rel-

ative errors, all of which should be 0. After finding the estimates of the bj, the
likelihood can be maximized for q. The Poisson is analogous to the normal dis-
tribution case where the loglikelihood reduces to minimizing q m, ,w d w d

2
-!^ h .
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4 See Klugman, Panjer and Willmot (2004), page 154.
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This gives the n equations 
j

.q
m

m0 ,
, ,

w d
w d w d2

2
= -b! ^ h Here the weighted aver-

age errors should be 0.
In non-parametric estimation, it is common to adopt the criterion of min-

imizing the sum of the squared errors, regardless of distribution. This treats a
fixed squared error in any observation as equally bad – basically incorporating
a constant variance assumption. This reduces to the normal distribution when
in the exponential family, so minimizing squared error is a normal non-parametric
approach. It sets the sum of weighted errors to 0. This is called unbiased, which
sounds like something you want to be, but is not always that important.

If the same weighted relative error is equally bad across observations this is
more of a Poisson assumption. This could also be used in a non-parametric
context, where the weighted sums of relative errors are set to 0. This could be
done without assuming the form of the distribution, so could be a Poisson
non-parametric approach. The reasoning above shows that this results from
finding the parameters that minimize S( fitted – actual log fitted ). This forces
the actual/fitted toward 1.

For the Poisson-gamma aggregate and its special cases (Tweedie, etc.) the
density for the likelihood function can be calculated by inverting the charac-
teristic function f(t) = exp[–1 + l(1 – itq)–a]. Mong (1980) worked out a purely
real integral for this in terms of l, a, q and the aggregate standard deviation s:

l ,cosf x e xt k t dtsp s l
1 j t

0
= -

3

#^
]

^h
g

h< F

where j (t) = d(t) cos[r(t)] – 1; k(t) = d(t) sin[r(t)]; d(t) = [1+ (tq /s)2]–a /2; r(t) =
atan–1(tq /s). The scaling by s is probably done for numerical efficiency. With
covariates, m /qa could replace l in the characteristic function and its inversion.
For the Tweedie it is also possible to express the density using an infinite sum,
as in Clark and Thayer (2004).

The gamma characteristic function is fG(t) = (1 – itq)–a, and fG(t /s) – 1 =
j(t) + ik(t). For the normal distribution in m and s2 the characteristic function is
fN(t) = exp(itm – 0.5(st)2). Scaling by s instead of s gives fN(t /s) – 1 = j(t) + ik(t)
where j (t) = exp(–0.5t2)cos(tm /s) – 1 and k(t) = exp(–0.5t2) sin(tm /s). These
can be used in the integral above to give the Poisson-normal density if s is
replaced by s.

Mong’s comments are: “(The) formula and its consequent computations may
seem complex in the form shown above. However, the implementation is quite sim-
ple. Any standard numerical integration technique would handle the computa-
tion effectively; for example, the extended Simpson’s rule is adequate to calcu-
late the integration and is easy to code in any scientific programming language.”

The extended Simpson’s rule breaks down a finite range of integration into
2n intervals of length h, with 2n + 1 endpoints x0, …, x2n. The function to be
integrated is evaluated at each of the 2n + 1 points and multiplied by h. Then these
are weighted by the following factors and summed: x0 and x2n get weight 1/3;
odd points x1, x3, …, x2n–1 get weight 4/3; even points x2, …, x2n–2 get weight 2/3.
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FIGURE 1: Integrand for Poisson-gamma density.

Figure 1 shows an example of the integrand for the Poisson-gamma density.
This is for an x that is more than six standard deviations below the mean for
a positively skewed distribution, so the integrated probability is low (7.5e-19).
This makes the integration a bit more difficult as the dampening cycles have
to get quite small before it stabilizes. However this occurred by about t = 10.
Less remote probabilities have cycles that damp out more quickly.

There is a problem with this integral, however. The integration for f (x)
does not converge5 ! For both the gamma and normal severities, as t gets large
j(t) → –1 and k(t) → 0. Thus the integrand becomes e–lcos(xt /s) / (xs), which
fluctuates and does not go to 0. If l is sufficiently large, this fluctuation is well
beyond any reasonable degree of accuracy, and so is not a problem. Otherwise
an alternative is to use the inversion formula for the distribution function to
calculate [F(x + e) – F(x – e)] /2e for some appropriate e, perhaps 1⁄2 . According
to Mong that inversion is:

l

,sinF x t
e xt k t dtp s l2

1 1 j t

0
= + -

3

#^

]

^h

g

h< F

which does converge.

6. DEVELOPMENT FACTOR EXAMPLE

Venter (2007) fit the development triangle in Table 2 by a regression model
for the incremental losses at lags 1 and above. The independent variables were
the cumulative losses at lags 0 through 4, a dummy variable equal to 1 for the

356 G.G. VENTER

5 My colleague John Major pointed this out.
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4th diagonal and 0 elsewhere, a dummy variable equal to 1 on the 5th, 8th, and
10th diagonals, –1 on the 11th diagonal, and 0 elsewhere, and a constant term. The
diagonals are numbered starting at 0, so the 4rd is the one beginning with 8,529
and the 10th starts with 19,373. The cumulative loss independent variables are
set to 0 for incremental losses that are not in the immediately following column.

This is a loss development model with a constant term and calendar-year
adjustments up through lag 5, but for lags 6 and beyond the constant term
and the calendar-year adjustments operate but there are no development fac-
tors. The late development appears to be random in time and not dependent on
the level of the accident year. There are heteroscedasticity issues, however.
The smaller incremental losses at the end tend to have lower residuals – which
actually seems desirable. Also the 0 to 1 development factor fits unreasonably
well, so the residuals are also lower for the large increments at lag 1.

To address these issues the same model was fit using Mack’s ZMCSP distri-
bution and the gamma p, where p was –0.29. The other parameters, negative
loglikelihood, and AICc/2 are shown in Table 3.
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TABLE 2

CUMULATIVE LOSS DEVELOPMENT TRIANGLE

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11

11,305 30,210 47,683 57,904 61,235 63,907 64,599 65,744 66,488 66,599 66,640 66,652
8,828 22,781 34,286 41,954 44,897 45,981 46,670 46,849 47,864 48,090 48,105 48,721
8,271 23,595 32,968 44,684 50,318 52,940 53,791 54,172 54,188 54,216 54,775
7,888 19,830 31,629 38,444 43,287 46,032 47,411 47,677 48,486 48,498
8,529 23,835 35,778 45,238 51,336 53,574 54,067 54,203 54,214

10,459 27,331 39,999 49,198 52,723 53,750 54,674 55,864
8,178 20,205 32,354 38,592 43,223 44,142 44,577

10,364 27,878 40,943 53,394 59,559 60,940
11,855 32,505 55,758 64,933 75,244
17,133 45,893 66,077 78,951
19,373 50,464 75,584
18,433 47,564
20,640

TABLE 3

PARAMETERS AND FIT STATISTICS

lag0 lag1 lag2 lag3 lag4 diag4 5+–11 const q,l,s –lnL AICc/2

ZMCPS 1.618 0.508 0.223 0.103 0.026 –2072 107.1 487.9 306.1 637.8 646.9
Gamma p 1.624 0.504 0.217 0.102 0.027 –1922 132.0 499.8 3,969.0 630.3 642.0
Normal 1.601 0.499 0.211 0.102 0.021 –1832 801.6 527.8 1,387.7 662.2 671.2
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FIGURE 2.

FIGURE 3.
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For N observations and p parameters, taking half of the small sample AIC,
denoted AICc, penalizes the negative loglikelihood by Np /(N – p – 1). For small
samples (N < 40p) this is growing in popularity as the best way to penalize
for extra parameters. Usually all parameters are penalized but for comparing
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FIGURE 4.

FIGURE 5.

fits maybe parameters that do not affect the fit can be ignored. Here for the nor-
mal and ZMCSP, p was set to 8, as q and s do not affect the fit. However for
gamma p it was set to 10, as l and p do. Still it gave the best AICc. N is 77 for
this data.

The fit is clearly worse for the normal regression, reflecting the hetero-
scedasticity issue. The variance for the gamma p is m0.71. Usually a power less
than 1 is not anticipated, thinking of losses coming from a compound frequency-
severity distribution. The abnormally good fit for the 0 to 1 factor, which has
the largest observations, may be pushing the power down. The regression
coefficients are quite similar for all the models, reflecting the common wisdom
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that heteroscedasticity does not greatly distort regression estimates. The distri-
bution of possible results will vary among the models, however.

Figures 2 and 3 compare PP Plots for the normal and gamma p fits.
The gamma p looks more reasonable. Figures 4 and 5 look at standardized
residuals vs. fitted for the two distributions. They both look positively skewed,
which they should be for gamma p but not for normal. Also the normal
extremes are more extreme. The small fitted values have standardized residuals
more like the other values for the gamma p, but not for the normal. Overall
the gamma p seems to fit better.

7. MULTIPLICATIVE MODEL ISSUES

Multiplicative fixed-effects models can be treated in the GLZ framework. Take
the case where mw,d = Eqw,d =Uw gd hw+d. The covariates are 0, 1 dummies picking
out which factors apply to each cell, and the vector of coefficients b is the log
of all the accident year factors Uw followed by the log of all the delay factors gd

followed by the log of all the calendar year factors hw+d in the model. Let zw,d

be the vector that has zero in all positions except for ones for the positions of
the wth row, d th column and w + d th diagonal. Then j(zw,d b) = exp(zw,d b) is Emw,d.
This can be used in any of the distributions discussed above. However the
factors all have to be positive to take the logs, even though some observations
can be negative with the right choice of distribution around the mean. However
if negative means are needed for some columns, mw,d = Eqw,d = Uw gd hw+d with
some negative g’s can be used directly as the mean of any of the distributions
discussed. This could be fit by MLE, but it would not really be considered a
linear model any more, unless b is allowed to have complex coefficients which
become negative reals when exponentiated. The line between GLZ and truly non-
linear models is thus a bit imprecise, but the labeling is not really very important
anyway.

Fu and Wu (2005) provide an iterative scheme, using constants labeled here
as r and s, that can in some cases help in the estimation of multiplicative models.
The Fu-Wu iteration for the row-column model can be expressed as6:
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The idea is to start with reasonable guesses for the U’s and then alternatively
apply the two formulas to get new g’s and U ’s until they converge. Often this
iteration gives the MLE for some model. For instance, taking r = 2 and s = 1
gives the normal regression. The case r = s = 1 gives the estimate where qw,d is
Poisson in Uw gd . Both of these cases work fine if some column of q’s tends to
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6 They also include weighting factors that here are set to unity.
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be negative and so its mean g is as well. Mildenhall (2005) shows that there is
a model for each r and s for which this iteration gives a reasonable estimate.
The cases s = 1, r = –1, 0, 1, and 2 are the inverse Gaussian, gamma, Poisson,
and normal distributions, respectively, and the estimates are MLE for the b’s
if the other parameters are known or do not affect the estimates of the b’s.

With arbitrary s the power transforms of these distributions are realized.
Taking r = 0 gives the transformed gamma or inverse transformed gamma,
depending on the sign of s, and so a wide range of distribution shapes. If 1 <
r < 2 and s = 1, the Tweedie with p = r is produced. If p and c are known, the
iteration gives the MLE for the b’s. This could be done within an optimization
routine that is looking for the MLE values for p and c, so would only require
a routine that works for two variables.

For the multiplicative models with diagonal factors E [qw,d ] =Uw gd hw+d, the
Fu-Wu iterative estimates become:
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8. MULTIPLICATIVE MODEL EXAMPLE

Table 4 is a development triangle from Taylor-Ashe (1983). Venter (2007) fit a
form of the PCS multiplicative effects model to this data. Each cell mw,d was set
to the product of row, column, and diagonal effects, but some parameters are
used more than once. Accident year 0, a low year, gets its own parameter U0.
Accident year 7 also gets its own parameter U7 as it is high. All the other years
get the same parameter Ua, except year 6 which is a transition and gets the aver-
age of Ua and U7. Thus there are three accident year parameters.

The years are divided into high and low payment years with parameters ga

and gb for fraction of total loss paid in the year. Delay 0 is a low year as pay-
ments start slowly. Delays 1, 2, and 3 are the higher payment lags and all get gb.
Delays 5, 6, 7, and 8 are again low getting ga. Delay 4 is a transition and gets
the average of ga and gb. Finally delay 9 gets the rest, i.e., 1 – 5.5ga – 3.5gb.
Thus there are only two delay parameters. Three of the diagonals were mod-
eled as high or low, getting factors 1 + c or 1 – c. The 7th diagonal is low and
the 4th and 6th are high. Thus only one diagonal parameter c is used. The diag-
onals are numbered from 0, so the 7th starts with 359,480.
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Fitting the PCS is done by maximizing l* = lnq m m, , ,w d w d w d-!^ h , where
mw,d =Uw gd hw+d. This pretends that every observation qw,d is a multiple of q,
as in fact the PCS probability is zero otherwise. This is the same function to
be maximized for fitting the ZMCSP which does not require observations to
be multiples of q. Thus the row, column and diagonal parameters are the same
for both models. The difference is that q is fit by an ad hoc method for the PCS
and by MLE for ZMCSP. The loglikelihood function is

! ,log log logl
q q

q q
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and now q is the only parameter needed to maximize over. The MLE estimate of

q is 30,892. Estimating it by a moments method q N p
q1 ,
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g
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^ h

gives 37,184.
Just changing q makes a difference in the estimated runoff distribution and

parameter errors. The estimated parameters and their PCS standard errors
from the information matrix with the moment and MLE q ’s are in Table 5.
The runoff variance separated into process and parameter is in Table 6.
The moments estimator of q is usually treated as if it were a constant in the
PCS model because it is hard to estimate its variance. To compare the effect
of a different estimate of q, this was done here for the MLE estimate as well.
However the MLE method also allows for the inclusion of q in the information
matrix, which would be appropriate for comparison with different models.

So far this is all from keeping the PCS framework and replacing the estimated
q from the moment method by that from MLE from ZMCSP. The ability to
estimate q by MLE is actually the main difference between the two distributional
assumptions. In this case the MLE q is quite a bit lower, which gives a lower
variance. It is also useful to have an optimized negative loglikelihood to compare
to other models, as in the development factor example. Here that is 725.

362 G.G. VENTER

TABLE 4

INCREMENTAL TRIANGLE TAYLOR-ASHE (1983)

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9

357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046
290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405
310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286
443,160 693,190 991,983 769,488 504,851 470,639
396,132 937,085 847,498 805,037 705,960
440,832 847,631 1,131,398 1,063,269
359,480 1,061,648 1,443,370
376,686 986,608
344,014
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Recall that the mean and variance of each cell differs a little from m and
qm in the ZMCSP model for the smaller cells. In this case only the last pro-
jected column has low values of l = m /q and these are around 3. This has only
a very slight effect on the projected mean and variance. The estimated reserve
of 19,334,000 increases by about 1,000 and the standard deviation of 1,230,500
decreases by about 100. Thus in this case that is a very minor impact. Only the
change in the estimated q has any significant influence on the projections.

A good starting point for investigating other possible distributions for the
same models structure is fitting the gamma p. Aggregate losses are often approx-
imately gamma distributed, and the value of p gives an indication of how the
variance can be expressed as a multiple of the mean.

For this data the MLE of p is –0.136 which gives the variance as propor-
tional to the mean raised to 0.864. This is not suggestive of any other popu-
lar models, however. The negative loglikelihood is 723.06 compared to 725.00
for the ZMCSP. With 8 parameters compared to 7 for the ZMCSP, the AICc’s
come out as 732.6 and 733.2, so the gamma p is a little lower. However if only
6 parameters are counted for the ZMCSP under the view that q does not affect
the fit, its AICc reduces to 731.9. Thus there is some ambiguity as to which is
the best fit. Better ways of counting the degrees of freedom a model uses up
would be helpful. In any case the variance is close to proportional to the mean
in either model.

Another model with that property is the Poisson-normal. MLE using Mong’s
formula for f (x) gives m = 35,242 and s = 3,081, with l’s ranging from 2 to 35.
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TABLE 5

PARAMETER SE’S WITH TWO ESTIMATES OF q

Parameter U0 U7 Ua ga gb c

Estimate 3,810,000 7,113,775 5,151,180 0.067875 0.173958 0.198533
se 37,184 372,849 698,091 220,508 0.003431 0.005641 0.056896
se 30,892 339,846 636,298 200,989 0.003127 0.005142 0.051860

TABLE 6

RUNOFF VARIANCE WITH TWO ESTIMATES OF q

Model Moment 37,184 MLE 30,892

Parameter Variance 1,103,569,529,544 916,846,252,340
Process Variance 718,924,545,072 597,282,959,722
Total Variance 1,822,494,074,616 1,514,129,212,061
Parameter Std Dev 1,050,509 957,521
Process Std Dev 847,894 772,841
Standard Deviation 1,349,998 1,230,500
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The negative loglikelihood is 722.4, which is the best so far. The resulting AICc
for 8 parameters is 732.0, which is still ambiguous in comparison to the
ZMCSP. The integral for f (x) for the one cell with l = 2 is of limited accuracy,
so there is a slight degree of additional ambiguity in the value of the AICc.

9. CONCLUSIONS

GLM’s provide a powerful modeling tool, but the exponential family has some
limitations. By not requiring this form, even familiar distributions can be re-
parameterized to provide different relationships between the mean and variance
of the instances of the fitted dependent variable. When fitting aggregate loss
distributions, the gamma is often a good starting point for the shape of the
distribution, and so fitting the gamma p, which is a gamma but allows for the
variance to be any desired power of the mean, is often a good way to get an
indication of the form of the variance to mean relationship. Other distributions
can then be tried which have approximately that relationship.

Even when using exponential family distributions, computing power is usu-
ally sufficient to calculate the full likelihood function, instead of approximations
sometimes used in GLMs. GLZs thus expand the limitations of GLMs, yet there
are still situations where it may be useful to use strictly non-linear models.
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