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Similar Sublattices of Planar Lattices

Michael Baake, Rudolf Scharlau, and Peter Zeiner

Abstract. The similar sublattices of a planar lattice can be classified via its multiplier ring. The latter is

the ring of rational integers in the generic case, and an order in an imaginary quadratic field otherwise.

Several classes of examples are discussed, with special emphasis on concrete results. In particular, we

derive Dirichlet series generating functions for the number of distinct similar sublattices of a given

index, and relate them to zeta functions of orders in imaginary quadratic fields.

1 Introduction

Lattices in d-space (by which we mean co-compact discrete subgroups of Rd) are

important objects with increasingly many applications throughout mathematics and

various applied sciences; see [11] for a comprehensive study. Among the sublattices

of a lattice Γ ⊂ Rd are interesting special classes, such as similar sublattices (SSL) or

coincidence site lattices (CSL); see [2,6,7] and references therein. Their classification

has important applications in crystallography, materials science, and coding theory,

but is also interesting in its own right. Here, we look at the special case of planar

lattices and derive a rather complete picture of their SSLs by using a suitable blend of

well-known results from quadratic forms, imaginary quadratic number fields, com-

plex multiplication, and zeta functions. For known results on the related case of

planar Z-modules (in general non-discrete), we refer the reader to [3, 13, 19].

The classification of similar sublattices is closely related to that of coincidence

sublattices, and analogously for modules, via the underlying (generalised) symmetry

groups [13,14,16,27]. We will thus use a formulation via the (orientation preserving)

similarity mappings of a lattice into itself, which form a ring in our case. Beyond the

planar situation, various results are known in 3- and 4-space (via quaternions; see

[4, 5, 7, 10, 27]). General results are still sparse and restricted to rather special cases;

see [10, 16] and references therein.

In this article, we use complex numbers throughout, with [12] being one of our

main references. For completeness and readability, we give a brief account of the

setting in Section 2, followed by a section on Dirichlet series generating functions in

this context. Section 4 establishes the link between SSLs and principal ideals, which

is then explored in the remaining sections with examples of increasing complexity.

2 General Setting and Basic Tools

Since we only consider planar lattices in this paper, we employ complex numbers.

Two planar lattices Γ ⊂ C and Γ ′ ⊂ C are called (properly) similar (or complex ho-

Received by the editors August 18, 2009.
Published electronically March 8, 2011.
This work was supported by the German Research Council (DFG), within the CRC 701.
AMS subject classification: 11H06, 11R11, 52C05, 82D25.

1220

https://doi.org/10.4153/CJM-2011-019-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-019-9


Similar Sublattices of Planar Lattices 1221

mothetic), written as Γ ∼ Γ ′, when Γ ′
= aΓ for some nonzero a ∈ C. Similarity is

an equivalence relation, and we denote the equivalence class of a lattice Γ by sim(Γ ).

More generally, one can (and should) also consider orientation reversing similarities,

then defining similar lattices in the wider sense. In this paper, apart from some brief

comments, we restrict ourselves to orientation preserving mappings.

Each planar lattice can be written as the integer span of two nonzero complex

numbers u, v, denoted as Γ = 〈u, v〉Z, where the ratio v/u is a number in the open

upper half-plane (and thus not real). This has an interesting and well-known conse-

quence, which follows from a multiplication by 1/u.

Fact 2.1 Each planar lattice is similar to a lattice of the form Γτ := 〈1, τ〉Z, where τ
is a complex number in the open upper half-plane H := {z ∈ C | Im(z) > 0}.

One can further restrict τ to the region given by the conditions |τ | ≥ 1, |τ ± 1| ≥
|τ | (compare [1, Fig. 2.1 and Thm. 2.2]), which define a fundamental domain for the

action of the modular group PSL(2,Z). In this sense, knowing the similar sublattices

for all lattices Γτ with τ in this region is sufficient to solve the classification problem.

Given a planar lattice Γ ⊂ C, let us consider the set

(2.1) MR(Γ ) := {a ∈ C | aΓ ⊂ Γ},

which will be the central object for the study of planar SSLs below. Clearly, MR(Γ ) is

closed under addition and multiplication and contains 1, so it is a ring (a subring of

C). This ring is called the multiplier ring of Γ . In particular, it always contains Z as

a subring. For our further analysis of MR(Γ ), we recall the following concepts from

elementary algebraic number theory (see [8, 18] for details).

Fact 2.2 For a complex number c, the following properties are equivalent:

(i) There exists a finitely generated additive subgroup M of C with cM ⊂ M.

(ii) The number c is a root of a monic polynomial with integer coefficients.

Such a number is called an algebraic integer.

For instance, the golden ratio (
√

5 + 1)/2 is an algebraic integer, since it is a root

of x2 − x − 1. Clearly, an algebraic integer is algebraic over Q (in the sense of field

extensions). Notice that it is not required, but is a consequence of (ii), that the min-

imal polynomial of an algebraic integer has integral coefficients. Notice also that the

group M in (i) need not be a lattice, though it is isomorphic to Zn as a group, for

some n ∈ N. Assuming (i), the polynomial equation of (ii) can be obtained from

a matrix representation of the linear map induced by c on the rational vector space

generated by M. For the converse implication, one observes that the subgroup M

generated by 1, c, c2, . . . , cn−1, where n is the degree of the assumed polynomial, is

mapped into itself by c, since c · cn−1
= −mn−1cn−1 − · · · − m0 for appropriate

integers m0, . . . ,mn−1.

A subring O of C is called an order if it is finitely generated as a group. All elements

of an order are algebraic integers (take M = O in Fact 2.2). The quotient field K of

O is then a number field, meaning a finite extension of Q (the degree of K over Q

coincides with the rank of O). One often starts with K and speaks of an order in K,

https://doi.org/10.4153/CJM-2011-019-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-019-9


1222 M. Baake, R. Scharlau, and P. Zeiner

now refering to a full module in K that is also a ring containing 1 (which is consistent

with the above definition). The set of all algebraic integers in a given number field

K is also an order, the maximal order of K, denoted by OK , where “maximal” means

that it is not contained in any larger order of K.

Let us return to the discussion of the multiplier ring MR(Γ ), as defined in (2.1).

It is clear that all elements in this ring are algebraic integers (take M = Γ in Fact 2.2).

Similar lattices have the same multiplier ring because the multiplication in C is com-

mutative. By Fact 2.1, it is thus sufficient to restrict to lattices of the shape Γτ , with

τ ∈ H. A planar lattice Γ is called generic when MR(Γ ) = Z and non-generic oth-

erwise. The following determination of MR(Γ ) in the non-generic case (which is

the one we are mainly interested in) is well-known from the theory of elliptic func-

tions. For the convenience of the reader, we recall the result in some detail, since it is

fundamental for everything that follows in this paper.

Proposition 2.3 If Γ is a non-generic planar lattice, its multiplier ring MR(Γ ) is an

order in an imaginary quadratic field. Explicitly, if Γ ∈ sim
(

〈1, τ〉Z

)

with τ ∈ C \ R

is non-generic, the number τ is algebraic of degree 2 over Q , and one has

MR(Γ ) = 〈1, sτ〉Z

for an appropriate non-zero integer s.

Proof As MR(Γ ) is the same for all elements of sim(Γ ), let Γ = 〈1, τ〉Z be non-

generic and consider an element a ∈ MR(Γ ) \ Z, which exists by assumption. By

Fact 2.2, a is an algebraic integer. To expand on this, observe that a = a · 1 ∈ Γ ,

so a = u + vτ for some u, v ∈ Z with v 6= 0. Moreover, a · τ = uτ + vτ 2 ∈
Γ implies uτ + vτ 2

= k + ℓτ for some k, ℓ ∈ Z. This gives a quadratic equation

vτ 2 + (u − ℓ)τ − k = 0 over Z (and Q ) for τ , which is thus algebraic.

Slightly changing the notation, there is then an equation

(2.2) sτ 2 + pτ + q = 0, with s, p, q ∈ Z, s > 0, and gcd(s, p, q) = 1,

where s, p, q are uniquely determined by τ . Lemma 1 in [8, Kap. 2, §7.4] (derived

from similar, easy computations) now shows that MR(Γ ) is as claimed in the propo-

sition, with s from (2.2). In particular, it is itself a planar lattice, and thus an order in

the quadratic field Q (τ ).

If, in the above proof, one writes τ = α + iβ with α, β ∈ R and β > 0 (so that

τ ∈ H), the non-genericity of Γτ leads to an explicit necessary and sufficient criterion

for α and β, which follows from a straightforward calculation.

Corollary 2.4 Consider Γτ with τ = α+ iβ, where α, β ∈ R and β > 0. This lattice

is non-generic if and only if both α and β 2 are rational numbers.

Let us briefly mention that τ =
1
3

+ iβ defines a lattice Γ with 3Γ ⊂ Γ , which

shows the possibility of sublattices that are (only) similar to Γ in the wider sense.

More generally, for τ = α+iβ, this happens if and only if 2mα+n(α2 +β2) is integer

for some m, n ∈ Z, not both 0. This integrality condition is always satisfied in the
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non-generic case. The existence of an orientation reversing similarity for Γ does not

lead to new sublattices precisely when the symmetry group of Γ contains a reflection.

We skip further details in this direction and concentrate on proper similarities.

When a basis B = {b1, b2} for a planar lattice Γ ⊂ R2 is chosen, we denote by

GB = (gi j) the corresponding Gram matrix, where gi j is the Euclidean inner product

of bi and b j . A Gram matrix is called rational when some 0 6= α ∈ R exists such

that αGB has rational entries only. Otherwise, it is called irrational. The rationality

or irrationality of the Gram matrix (in this sense) is not affected by the choice of the

basis, and is shared by all lattices similar to Γ .

Corollary 2.5 Let Γ be a planar lattice, with basis B and associated Gram matrix GB.

The condition of Corollary 2.4 is then equivalent to GB being rational. This condition is

independent of the actual choice of basis.

Closely related to the (properly) similar sublattices of a lattice Γ is the correspond-

ing set of orientation preserving (linear) similarity isometries, defined as

SOS(Γ ) = {z ∈ S
1 | αzΓ ⊂ Γ for some α > 0}.

It is immediate that SOS(Γ ) is a subgroup of S1; compare [14, 16] and references

therein. Its elements are referred to as the special orthogonal similarities (SOS) of

Γ , although, strictly speaking, we consider only the rotational parts of the actual

similarities here. Note that the latter only form a monoid, which was investigated in

some detail in [6]; see also [13, 14] and references therein.

Theorem 2.6 Let Γ be a planar lattice. If it is generic, it has multiplier ring MR(Γ ) =

Z and SOS-group SOS(Γ ) = {±1} ≃ C2. Otherwise, one has

SOS(Γ ) =
{

w
|w| | 0 6= w ∈ O

}

,

where MR(Γ ) = O = MR(O) is an order in an imaginary quadratic number field K.

Its explicit form follows from Proposition 2.3. Moreover, one has

SOS(Γ ) = SOS(O) = SOS(OK ) =
{

w
|w| | 0 6= w ∈ OK

}

,

where OK is the maximal order of K and thus contains O. Finally, the group SOS(Γ ) is

the same for all lattices in sim(Γ ).

Proof In view of Proposition 2.3, the claims follow from the observation that the

SOS-group precisely consists of the directions w/|w| with w 6= 0 in the multiplier

ring of Γ , expressed as numbers on the unit circle. Clearly, O is also its own multiplier

ring, and every direction in O is a direction in OK . On the other hand, O has finite

index in OK , say n, so that nz ∈ O for all z ∈ OK , and the claim on the orders follows.

The final property is a simple consequence of the commutativity of C.

Let us mention in passing that SOS(Γ ) remains unchanged for each lattice that is

commensurate with Γ (meaning that there is a common sublattice), but also for all

elements of sim(Γ ) (and thus for all lattices commensurate with any of the latter).

This is a special feature of the planar situation (and trivially true for d = 1), but does

not hold in higher dimensions, as one loses commutativity of the special orthogonal

group.
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Example 2.7 (SOS(Z[i]) and SOS(Z[ 1+i
√

3
2

])) As Z[i] is a principal ideal domain

(and even Euclidean), its arithmetic can be used to derive G = SOS(Z[i]) explicitly.

If z =
w
|w| ∈ G, then so is z2

= w2/|w|2. Using the unique prime decomposition [15]

up to units in Z[i] together with the fact that |w|2 ∈ N, one finds

z2
= ε

∏

p≡1 (4)

( ωp

ωp

) np

= ε
∏

p≡1 (4)

( ω2
p

p

) np

,

where ε = ik with k ∈ {0, 1, 2, 3} is a unit in Z[i] and the product runs over the

splitting primes of the field extension Q (i)/Q . Here, all np ∈ Z, at most finitely

many of them non-zero, and p = ωpωp is the splitting of p ≡ 1 mod 4 into two

non-associate Gaussian primes; for details of this derivation, we refer to [2, 19] and

references therein. Clearly, one then has

z =

( 1 + i√
2

) ℓ ∏

p≡1 (4)

( ωp√
p

) np

for some ℓ ∈ {0, 1, . . . , 7} and the np ∈ Z with the restrictions as above. Noting

that (1 + i)/
√

2 is a primitive eighth root of unity, one concludes SOS(Z[i]) ≃ C8 ×
Z(ℵ0). Explicit choices of the corresponding generators can be read from the previous

formula.

An analogous result holds for the triangular lattice, where the SOS-group is C12 ×
Z(ℵ0), with a primitive twelfth root of unity as generator for the cyclic group C12

and ωp/
√

p with p ≡ 1 mod 3 as generators for the infinite cyclic groups, where ωp

is a (complex) Eisenstein prime in the Euclidean ring Z[(1 + i
√

3)/2]; see [15] for

background.

3 Generating Functions

IfΓ is a planar lattice, we denote the number of distinct SSLs ofΓ of index m by f (m).

The integer-valued arithmetic function f is super-multiplicative, which means that

one has f (mn) ≥ f (m) f (n) for coprime m, n ∈ N; see [5] and references therein

for details. An example for genuine super-multiplicativity is given by the rectangular

lattice 〈1, τ〉Z with τ = 3i/2; further examples will follow below.

In many interesting cases, however, f is a multiplicative function (for instance,

when the multiplier ring is a principal ideal domain). This motivates the use of

Dirichlet series as their generating functions. We thus define

(3.1) DΓ (s) :=

∞
∑

m=1

f (m)

ms
.

As [Γ : mΓ ] = m2, a lower bound for f (m) is given by the function that takes

the value 1 on all squares of N and the value 0 otherwise. This lower bound gives

the Dirichlet series of the function ζ(2s), which converges absolutely for all s with
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Re(s) > 1/2. An upper bound is the number of all sublattices of Γ of index m, which

is given by the divisor function σ1(m) =

∑

d|m d; see [2, Appendix] or [21, p. 99,

Lemma 2]. It defines the Dirichlet series of ζ(s)ζ(s − 1), with absolute convergence

for all s with Re(s) > 2. This implies that all Dirichlet series DΓ (s) of planar lattices

converge absolutely at least in the open right half-plane {s ∈ C | Re(s) > 2}.

Recall from [5] that a sublattice Λ of Γ is called primitive in Γ when xΛ ⊂ Γ with

x ∈ Q implies x ∈ Z. It is advantageous to distinguish SSLs that are primitive from

those that are not. In fact, each sublattice of Γ can be uniquely written as kΛ with

k ∈ N and Λ a primitive sublattice. If we count the number of primitive SSLs of Γ by

the function f pr(m) and define D
pr
Γ (s) :=

∑∞
m=1 ( f pr(m))/ms in analogy to (3.1), it

is clear that one always has the relation

(3.2) DΓ (s) = ζ(2s) D
pr
Γ (s).

The determination of the generating function is thus reduced to finding its primitive

part, the Dirichlet series D
pr
Γ (s).

Fact 3.1 If Γ is a planar lattice with generic multiplier ring, which is Z, one has

D
pr
Γ (s) = 1 and thus DΓ (s) = ζ(2s).

In previous articles, the generating functions have been calculated for a variety of

examples in the plane (see [3, 6] and references therein) and in higher dimensions

(compare [5–7, 10]). Standard results such as Delange’s Theorem [24, Thm. II.15]

then yield the asymptotic growth of
∑n

m=1 f (m) for large n, which is one further

benefit of using generating functions. It is now our aim to develop a general approach

for the calculation of the generating functions in the planar case.

4 Similar Sublattices and Principal Ideals

Let Γ be a planar lattice with non-trivial multiplier ring MR(Γ ), which is thus an

order O in an imaginary quadratic field K. Note that O itself is a planar lattice and

its own multiplier ring, though it need not be similar to Γ (we will see examples for

this below). Nevertheless, the rotation symmetry group of Γ is canonically isomor-

phic with the unit group O×, which is C2, C4 (when Γ is similar to the standard

square lattice, Γ ∈ sim(Z2)) or C6 (when Γ is similar to the regular triangular lattice,

Γ ∈ sim(A2)). Observe that the linear mapping z 7→ az in C has determinant aā.

Consequently, one has [Γ : aΓ ] = aā for any non-zero a ∈ O by a standard argu-

ment involving areas of fundamental domains. In other words, aΓ is an SSL of Γ of

index aā = N(a), where N denotes the field norm of K and the non-trivial Galois

automorphism needed here is complex conjugation z 7→ z̄.

Proposition 4.1 If Γ is a planar lattice with multiplier ring MR(Γ ) = O 6= Z, one

has an index-preserving bijection between the SSLs of Γ and the principal ideals of O.

The Dirichlet series generating function for the number of SSLs of Γ of a given index is

thus given by the Dirichlet series for the non-zero principal ideals of O.

Proof The latticeΓ is similar to a latticeΓτ for some τ in the fundamental domain of

the modular group, as discussed above. By assumption and an application of Propo-

sition 2.3, K = Q (τ ) is then an imaginary quadratic field, and the multiplier ring of
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both Γτ and Γ is an order O in K. Observe that aO is a principal ideal of O of index

N(a). Since aΓ = bΓ for non-zero a, b ∈ O implies b−1aΓ = Γ , one has ba−1 ∈ O

with N(ba−1) = 1, whence b−1a must be a unit in O. Furthermore, any unit ε ∈ O

satisfies εΓ = Γ due to [Γ : εΓ ] = N(ε) = 1. This establishes the bijectivity as

claimed.

The generating function then satisfies

DΓ (s) =

∞
∑

m=1

f (m)

ms
=

∑

0 6=a⊂O

a is principal

1

N(a)s
,

where a = aO for some a ∈ O when a is principal. Since N(a) = [O : a] = N(a) in

this case, the second claim follows.

For the remainder of the article, we will now use our approach to treat concrete

classes of examples, in increasing order of complexity.

5 Orders of Class Number 1

A particularly nice and simple situation emerges when the multiplier ring O of Γ is

a principal ideal domain (PID), or when at least all proper ideals are principal (see

below for more). In this case, the Dirichlet series DΓ (s) is just the zeta function of O

itself, which is the Dirichlet series generating function for all non-zero ideals of O. To

continue, it is easier to make the distinction whether the order O is maximal or not.

5.1 Maximal Orders

Let K be an imaginary quadratic field of class number 1, with discriminant dK (we

follow the notation of [12]), and let O = OK be the maximal order of K, which is

the ring of integers in K and a PID due to the assumption on the class number. The

following result is classic, compare [12, Thm. 7.30].

Fact 5.1 There are precisely 9 imaginary quadratic fields with class number 1, which

means that their maximal orders are PIDs. These are the fields K = Q (ω0) for

ω0 ∈
{

1+i
√

3
2

, i, 1+i
√

7
2

, i
√

2, 1+i
√

11
2

, 1+i
√

19
2

, 1+i
√

43
2

, 1+i
√

67
2

, 1+i
√

163
2

}

,

which are fields of discriminant dK ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163}.

In this formulation, the maximal order is OK = Z[ω0], while Q (ω0) = Q (
√

dK ).

The zeta function of OK is the Dedekind zeta function of the quadratic field K. It

is known [26] to factorise as

(5.1) ζK (s) = ζ(s) L(s, χ),

where L(s, χ) is the L-series of the non-trivial character χ = χdK
of the field K. The

latter is a totally multiplicative arithmetic function and thus given by χdK
(1) = 1

https://doi.org/10.4153/CJM-2011-019-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-019-9


Similar Sublattices of Planar Lattices 1227

together with its values on rational primes,

χdK
(p) =











0, p | dK ,
(

dK

p

)

, 2 6= p ∤ dK ,
(

dK

2

)

, p = 2 ∤ dK .

Here, (dK/p) and (dK/2) denote the Legendre and the Kronecker symbol, the latter

defined as

( dK

2

)

=











1, dK ≡ 1 (8),

−1, dK ≡ 5 (8),

0, dK ≡ 0 (4).

This permits a direct calculation of the zeta function via its Euler product, as the

character χ(p) takes only the values 0, −1, or 1, depending on whether the rational

prime p ramifies, is inert, or splits in the extension from Q to K. The general formula

reads

ζK (s) =
∏

p∈P

1

(1 − p−s)(1 − χ(p)p−s)

=

∏

p∈P

χ(p)=0

1

1 − p−s

∏

p∈P

χ(p)=−1

1

1 − p−2s

∏

p∈P

χ(p)=1

1

(1 − p−s)2
,

(5.2)

where P denotes the set of rational primes.

Let us recall that equation (5.1) implies the relation fK (m) =
∑

ℓ|m χdK
(ℓ) for the

number of principal ideals of norm m in OK . This is also the number of representa-

tions, counted modulo the unit group of OK , of the norm form N(x + yω0), where ω0

is as in Fact 5.1. This number can be derived by elementary means as well; compare

[26, Thm. 8.3]. Either way, one can now calculate the contributions from primitive

lattices by means of equation (3.2). An Euler factor that will show up repeatedly in

these zeta functions is

(5.3)
1 + p−s

1 − p−s
= 1 +

2

ps
+

2

p2s
+

2

p3s
+ · · · .

The result on the generating functions now reads as follows.

Proposition 5.2 Let K be any of the 9 imaginary quadratic fields of Fact 5.1, and

let pram be its ramified prime, which is the unique rational prime that divides dK . The

Dirichlet series generating function for the number of SSLs of OK is given by D
OK

(s) =

ζK (s) with the Dedekind zeta function of K according to eqaution (5.2).

Moreover, the generating function for the primitive SSLs of OK is

D
pr
OK

(s) =
D

OK
(s)

ζ(2s)
= (1 + p−s

ram)
∏

p splits

1 + p−s

1 − p−s
,

where the product runs over all rational primes p that split in the extension to K. The

same generating function also applies to any planar lattice Γ ∈ sim(OK ).
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If we write D
pr
OK

(s) =

∑∞
m=1 f pr(m) m−s, the arithmetic function f pr satisfies

f pr(m) = 0 for any m ∈ N that is divisible by p2
ram or by an inert prime. Other-

wise, it takes the value 2a, where a is the number of distinct splitting primes that

divide m.

dK norm form dK norm form dK norm form

−3 x2 + xy + y2 −8 x2 + 2y2 −43 x2 + xy + 11y2

−4 x2 + y2 −11 x2 + xy + 3y2 −67 x2 + xy + 17y2

−7 x2 + xy + 2y2 −19 x2 + xy + 5y2 −163 x2 + xy + 41y2

Table 1: Norm forms for the 9 maximal orders O = Z[ω0] of class number 1 in imaginary

quadratic number fields, labelled with the field discriminant dK .

It remains to formulate a characterisation of the index spectrum and the primitive

index spectrum, meaning the integers m for which f (m) 6= 0 or f pr(m) 6= 0. The

result can be phrased by means of the norm form of K (or OK ), which is given in

Table 1.

Corollary 5.3 Let Γ be a planar lattice with MR(Γ ) = OK for one of the 9 imaginary

quadratic fields K of Fact 5.1. Then, the indices of the SSLs of Γ are precisely the positive

integers that can be represented by the norm form of K, while those of the primitive SSLs

form the subset of primitively representable integers.

Example 5.4 (Square and triangular lattices) The square lattice Z[i] and the tri-

angular lattice Z[(1 + i
√

3)/2] are the most prominent examples, and also (up to

similarity) the only ones with a larger point symmetry, as mentioned above. Since

they have been analysed explicitly in various other sources (see [2, 3, 6] and refer-

ences therein), we omit details of the derivation and simply state the result. For any

lattice Γ ∈ sim
(

Z[i]
)

, Proposition 5.2 leads to the generating function

D
pr
�

(s) =

∞
∑

m=1

f
pr
�

(m)

ms
= (1 + 2−s)

∏

p≡1 (4)

1 + p−s

1 − p−s
.

Here, f
pr
�

(m) = 0 whenever m is divisible by 4 or by any prime p ≡ 3 mod 4, while

one has f
pr
�

(m) = 2a otherwise, where a is the number of distinct primes p ≡ 1 mod

4 that divide m.

Similarly, for any Γ ∈ sim
(

Z[(1 + i
√

3)/2]
)

, one obtains

D
pr
△(s) =

∞
∑

m=1

f
pr
△ (m)

ms
= (1 + 3−s)

∏

p≡1 (3)

1 + p−s

1 − p−s
.

In variation of the previous case, one now has f
pr
△ (m) = 0 for all m that are divisible

by 9 or by any prime p ≡ 2 mod 3, and otherwise f
pr
△ (m) = 2a, this time with a

being the number of distinct primes p ≡ 1 mod 3 that divide m.
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5.2 Non-Maximal Orders

An application of the general class number formula for orders (see [20, Part I,

Thm. 7] or [12, Thm. 7.24]) shows that there are precisely 4 non-maximal orders

of class number 1 in imaginary quadratic fields. Note, however, that a non-maximal

order O fails to be Dedekind, hence is never a PID in the usual sense. Here, the ideal

class group only refers to the proper (or invertible) ideals, see [12, §7] for a nice sum-

mary. In particular, all principal ideals are proper, wherefore we still have a useful

connection with the zeta function of O. The basic data for our purposes are sum-

marised in Table 2.

D K O norm form p|D conductor

−12 Q (i
√

3 ) Z[i
√

3 ] x2 + 3y2 2, 3 2

−16 Q (i) Z[2i] x2 + 4y2 2 2

−27 Q (i
√

3 ) Z[ 1
2
(1 + i3

√
3 )] x2 + xy + 7y2 3 3

−28 Q (i
√

7 ) Z[i
√

7 ] x2 + 7y2 2, 7 2

Table 2: Basic data for the 4 non-maximal orders of class number 1 in imaginary quadratic

number fields, labelled with their discriminant D.

In our present situation, it turns out that the generating function for O still pos-

sesses an Euler product over all primes. This is clear for all but finitely many primes,

due to the bijection property between ideals of O and those of OK with norms co-

prime to the conductor; see [12, Prop. 7.20], and [26, Ex. 8.8] for an explicit expres-

sion in terms of characters. For the finitely many remaining primes, namely the ones

dividing the conductor, one has to do some extra calculations, which then give the

remaining Euler factors constructively. This will be outlined in the explicit treatment

of the examples below, where we actually show this for all primes that divide the dis-

criminant. As before, we focus on the Dirichlet series for the primitive SSLs, because

the others simply follow by multiplication with ζ(2s), as in equation (3.2).

Example 5.5 (D = −12) The primes that need special attention are p = 2 and

p = 3. The quadratic form x2 + 3y2 cannot represent 2, while congruence arguments

(mod 8 and 9) show that it cannot primitively represent any integer that is divisible

by 8 or 9. On the other hand, 3 = 0 + 3(±1)2 and 4 = (±1)2 + 3(±1)2 are the

only possibilities to represent 3 and 4, respectively. Counted modulo the unit group

O× ≃ C2, this amounts to a single solution for m = 3 and to two solutions for

m = 4. All other primes can be extracted from the general formula (5.1). The

multiplicativity of the counting function (by the relation to OK ) is inherited for the

combination of all primes except p = 2. By another congruence argument (mod 4),

which in essence explores the different unit groups of O and OK , one sees that any

primitive representation x2 +3y2
= 4m with m odd can be split into one of 4 and one
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of m, so that multiplicativity holds also for this prime factor. Together, this results in

the Dirichlet series

D
pr
O

(s) =
(

1 +
2

4s

)(

1 +
1

3s

)

∏

p≡1 (3)

1 + p−s

1 − p−s
.

Example 5.6 (D = −16) Here, the only special prime is p = 2. When m = x2 +4y2

is divisible by 16, congruence arguments mod 4 and 16 show that x and y cannot

be coprime, so that no primitive solutions are possible. As 2 is not representable

at all, it remains to count the solutions for m = 4 and m = 8, where one observes

4 = 02+4(±1)2 and 8 = (±2)2+4(±1)2, which (again mod the unit group O×≃ C2)

amounts to 1, resp. 2 solutions. As in the previous example, the multiplicativity of

the counting function needs to be extended here to cover powers of p = 2. It follows

from a congruence argument mod 8, resp. mod 16. Together with the standard Euler

factor (5.3) for all other primes, one thus has the Dirichlet series

D
pr
O

(s) =

(

1 +
1

4s
+

2

8s

)

∏

p≡1 (4)

1 + p−s

1 − p−s
.

Example 5.7 (D = −27) Here, the kind of reasoning of the previous example has

to be repeated for the prime p = 3, though for a slightly more complicated quadratic

form. One can check that 3 is not representable by x2 + xy + 7y2, while

9 = 12 + 1 · 1 + 7 · 12
= 22 − 2 · 1 + 7(−1)2 and

27 = 42 + 4 · 1 + 7 · 12
= 12 − 1 · 2 + 7(−2)2

= 52 − 5 · 1 + 7(−1)2

provide a complete list of representatives (mod units) for the primitive representa-

tions of 9 and 27. To see that no primitive representation of integers of the form 81m

with m ∈ Z exists, one first observes

x2 + xy + 7y2
=

(

x + 1
2

y
) 2

+ 27
4

y2,

and concludes via congruence considerations mod 81.

Moreover, a refined congruence argument (mod 27) also shows that, as in the

previous two examples, we get an extension of multiplicativity to cover contributions

from powers of p = 3. Invoking the standard Euler factor once more for all other

primes, one gets

D
pr
O

(s) =

(

1 +
2

9s
+

3

27s

)

∏

p≡1 (3)

1 + p−s

1 − p−s
.

Example 5.8 (D = −28) In the last example of this section, the primes p = 2 and

p = 7 need special attention, this time for the quadratic form x2 + 7y2. Clearly, there

is only one way (mod units) to represent 7 and no primitive way to represent any
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integer that is divisible by 49, which follows once more by a congruence argument

(here, mod 49).

For the positive powers of the prime 2, one quickly finds that 2 and 4 are not prim-

itively representable (and 2 not at all). The primitive representations of the higher

powers of 2 can be derived from the factorisation 2 = ππ̄ with π = (1 + i
√

7 )/2,

where π is a prime in the maximal order (which is OK = Z[π]) but not an element

of O. Observe next that the only ideals of OK of norm 2r are the principal ideals gen-

erated by πℓπ̄r−ℓ for 0 ≤ ℓ ≤ r. We need to select the generating elements that also

lie in O and are primitive there. It is not difficult to check that this requires r ≥ 3

together with either ℓ = 1 or r − ℓ = 1. These two cases are not related by units, so

that always precisely two primitive representations (up to units) exist for r ≥ 3.

Now, one needs the identity

1 +
∑

m≥3

2

2ms
= 1 +

2

8s

1

1 − 2−s
= (1 − 21−s + 21−2s)

1 + 2−s

1 − 2−s
,

while all remaining primes work as in the previous examples. Here, multiplicativity

of the counting function is once again clear for all primes except p = 2. For the latter,

we observe that an integer in OK with odd norm is automatically an element of O,

so that we can factorise any represented integer into powers of 2 and its odd part.

Together, this yields

D
pr
O

(s) =
(

1 − 2

2s
+

2

4s

)(

1 +
1

7s

)

∏

p≡1,2,4 (7)

1 + p−s

1 − p−s
.

6 Euler’s Convenient Numbers

Similar results can be obtained for a larger, though still finite, list of discriminants.

These are the numbers D such that every genus of (positive definite, binary) quadratic

forms of discriminant D consists of one class only. The crucial property of such single

class genera is that, for the corresponding forms, it only depends on a congruence

condition modulo D whether a natural number is represented by the form or not. By

definition, two quadratic forms (in any number of variables) are in the same genus if

they are equivalent modulo N for every modulus N ∈ N. In this case, the forms have

the same discriminant, and the number of classes in one genus is thus always finite.

Here, we deal with binary quadratic forms where the theory of genera has several

special features (and is, in fact, a well established part of classical algebraic num-

ber theory, independent of the general theory of quadratic forms; compare [9, 12,

26]). As before, the distinction between fundamental and non-fundamental discrim-

inants is relevant. For a given fundamental discriminant D, the equivalence classes of

quadratic forms bijectively correspond to the ideal classes in the maximal order OD.

For a quick description of the partition of classes into genera, one can take advantage

of the group structure on the set CD of ideal classes of OD: two ideal classes are in

the same genus if they give the same element in the factor group CD/C
2
D. All genera

are of the single class type if and only if C2
D is the trivial group, which is tantamount
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to saying that the class group is a finite Abelian 2-group. For non-fundamental dis-

criminants, there are certain complications to this approach (which works only for

invertible ideals). We therefore briefly summarise the main facts in a different way,

which is more suitable for our purposes.

The different genera of binary forms q of some fixed discriminant D are separated

by the values m = q(x, y) represented by the form. Together with an individual

m ∈ Z coprime to D, also its whole square class in (Z/DZ)× is represented by the

genus. Already one square class represented by q determines the genus of q. This

square class, in turn, is determined by the values of all quadratic (or ‘real’) characters

χ : (Z/DZ)× → {±1}. Let us mention in passing that precisely half of the elements

of (Z/DZ)× are represented by some form of discriminant D. These are the elements

of the kernel of a certain ‘principal’ character χD; compare [9, 12, 26].

Following our earlier discussion, we are primarily interested in the principal

genus, which contains the norm form of the order OD. The elements of (Z/DZ)×

represented by this genus form a subgroup of (Z/DZ)× that contains the group of all

squares as another subgroup of index at most 2; compare [17, Lemma 3.17].

Let h be the class number of OD. Using the previously mentioned general formula

RD(m) :=

h
∑

i=1

Rqi
(m) =

∑

k|m
χD(k)

for the total (weighted) representation number of a number m by all forms qi of

discriminant D, one can derive explicit results also in the present case, where h > 1,

but all h forms qi lie in different genera. Our previous discussion implies that the

supports of the various Rqi
in (Z/DZ)× are disjoint and cover the kernel of χD. Notice

that all representations are counted in this formula, not just the primitive ones.

The list of the known discriminants of positive definite binary single class genera

is given (without further explanation) in [9, Sec. 5.2]. Among the discriminants ≡ 0

mod 4, there are presently 65 such numbers known, which were already studied by

Gauss and Euler; see [23, Sequence A000926]. These numbers are also given in a

Table on p. 60 of [12], sorted according to the class number, which also goes back

to Gauß. Among the remaining discriminants, namely those ≡ 1 mod 4, further 36

cases are known [9, Sec. 5.2]. As before, they contain both fundamental and non-

fundamental ones, and the figures contain the cases of our Tables 1 and 2.

The total list is believed to be complete, and it has been a long standing challenge

of the ‘analytic theory of algebraic numbers’ to actually prove this. For a first general

approach and a non-constructive finiteness result (naturally not for today’s state of

matters), see the classic lecture notes by Siegel [22, Thm. 25.5]. The known list of

fundamental discriminants is complete if the generalised Riemann hypothesis is true

[17]. By [25], there is at most one further fundamental discriminant with only one

class in each genus. The case of arbitrary discriminants can be reduced relatively

easily to the case of fundamental discriminants, for instance by the method explained

in [9, Sec. 7.1], or by using the relative class number formula, as explained in [20],

see also [12, Ex. 7.3].

When the class number fails to be 1, we will generally lose multiplicativity of the

counting function f . This relates to the fact that the product of two non-principal
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ideals in the corresponding order is principal. However, due to the structure of

the ideal class group, we have a natural binary grading on the ideals, depending on

whether they are principal or not. If the order under investigation is still principal,

one can derive the generating function quickly from the zeta function.

Example 6.1 (Z[i
√

6 ]) The discriminant is D = −24, which is fundamental, with

class number 2, hence ideal class group C2. The norm form is x2 + 6y2, which is the

norm of principal ideals in the maximal order O, while the non-principal ideals have

a norm of the form 2x2 + 3y2. The relevant totally multiplicative character χ−24 is

defined by

χ−24(p) =











0, if p = 2 or p = 3,

1, if p ≡ 1, 5, 7, 11 mod 24,

−1, if p ≡ 13, 17, 19, 23 mod 24,

which leads to the zeta function ζK (s) = ζ(s) L(s, χ−24); compare [26]. Extracting

the contribution from primitive ideals then gives the factorisation

ζK (s) = ζ(2s)

(

(1 + 2−s)(1 + 3−s)
∏

p≡5,11 (24)

1 + p−s

1 − p−s

)

∏

p≡1,7 (24)

1 + p−s

1 − p−s
.

The bracketed term contains the contributions from primitive ideals that are them-

selves not principal, while the last product covers the principal ones. Our Dirichlet

series thus reads

Dpr(s) =
∏

p≡1,7 (24)

1 + p−s

1 − p−s

∞
∑

m=1

b(m)

ms

with b(1) = 1 and b(m) = 0 whenever p|m for some p ≡ 1, 7, 13, 17, 19, 23 mod 24.

What remains are the integers of the form m = 2α3β
∏

p≡5,11 (24) pℓp with α, β ∈
{0, 1} and ℓp ∈ N0, only finitely many of them 6= 0. For them, the grading implies

b(m) =
(

1 + (−1)α+β+
∑

ℓp
) card{p>3|ℓp 6=0}

,

which, together with the contribution from primes ≡ 7 mod 24, results in

Dpr(s) = 1 +
1

6s
+

2

7s
+

2

10s
+

2

15s
+

2

22s
+

2

25s
+

2

31s
+

2

33s
+

2

42s
+

4

55s
+ · · ·

thus illustrating the calculation explained above.

The general situation for non-fundamental discriminants is more complicated.

To work out further examples, it is advantageous to start from an order O and its

SOS-group, which only depends on the quadratic field K by Theorem 2.6. Then,

for each element of this group, one has to determine the index of the corresponding

primitive SSL of O, which can be linked to the results for the maximal order OK .

Defining the denominator of z ∈ SOS(Γ ) for a planar lattice Γ as

denΓ (z) = min{α > 1 | αzΓ ⊂ Γ},
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which exists by a standard discreteness argument on the basis of the lattice property

of Γ , one sees that z gives rise to a primitive SSL of Γ of index (denΓ (z))2. Since

the latter is an integer, the denominator itself is either an integer or a quadratic irra-

tionality.

Example 6.2 (Z[3i] and Z[5i]) Let p be a prime and consider Z[pi], which is an

order in the field Q (i), with conductor p in the maximal order Z[i]. The case p = 2

was treated in Example 5.6 as a special case with class number 1. Two further primes

lead to convenient numbers, namely p = 3 and p = 5. By Theorem 2.6, we have

SOS(Z[ni]) = SOS(Z[i]) ≃ C8 × Z
(ℵ0),

for arbitrary n ∈ N, with the group and generators as described in Example 2.7.

To determine the SSLs of Z[pi], it is again sufficient to concentrate on the primi-

tive ones, meaning (by Proposition 4.1) the principal ideals of Z[pi] that are primitive

as sublattices. They can be obtained from the rotations of the SOS-group (which does

not depend on p) by determining the corresponding denominators (which depend

on p). If p is prime, the denominator of any z ∈ SOS(Z[i]) for Z[pi] is either the

same as for Z[i], or it gets multiplied by p. Each primitive SSL of Z[i], labelled by

some z = w/|w| with w = m + ni and m, n coprime, gives rise to two distinct SSLs

of Z[pi] whose indices might differ by a factor of p2. This follows from the different

point symmetries, because z and iz define the same SSL of the square lattice, but dis-

tinct ones for Z[pi]. Let us thus consider Gaussian integers w = m + in with m, n

coprime, compare it with iw, and distinguish the possible cases.

For p = 3, a Gaussian integer w = m + 3ni with 3 ∤m results in |w|2 ≡ 1 mod 3,

while w = m + in with 3 ∤ n gives either |w|2 ≡ 1 mod 3 (when 3 | m) or |w|2 ≡
2 mod 3 (when 3 ∤m). Of these possibilities, only w = m + 3ni leaves the index of the

resulting SSL unchanged (in comparison to the square lattice), while all other indices

have to be multiplied by 9. This gives the generating function

D
pr
Z[3i](s) =

∑

m>1
m≡1 (3)

(1 + 9s)
f

pr
�

(m)

(9m)s
+

∑

m>1
m≡2 (3)

2 f
pr
�

(m)

(9m)s

with the arithmetic function f
pr
�

of Example 5.4. There is no meaningful Euler prod-

uct expansion in line with the non-multiplicativity of the total number of SSLs of a

given index in this case.

Similarly, for p = 5, one has |w|2 ≡ ±1 mod 5 when w = m + 5ni with 5 ∤m or

when w = m + in with 5 |m and 5 ∤n, while |w|2 ≡ 0 or ±2 mod 5 when w = m + in

with both m and n coprime to 5. This time, the generating function reads

D
pr
Z[5i](s) =

∑

m>1
m≡±1 (5)

(1 + 25s)
f

pr
�

(m)

(25m)s
+

∑

m>1
m≡0,±2 (5)

2 f
pr
�

(m)

(25m)s

with an interpretation analogous to the previous case.
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7 General Case

Beyond the cases described so far, one loses the possibility to express the results via

simple congruence conditions on the rational primes. Instead, one needs a criterion

for the representability of a given prime by the norm form via a specific polynomial

congruence, as explained in [12]. When we are dealing with lattices that are simi-

lar to the maximal order in an imaginary quadratic field, we may employ the main

result of Cox [12], as extracted from his Theorems 9.2 and 13.23. It is formulated

for discriminants of the form −4n, with class number h(−4n). Its extension to the

remaining discriminants is mentioned in [12, Ex. 9.3].

Fact 7.1 For n ∈ N, there exists an effectively computable polynomial fn(x) of degree

h(−4n) such that, for any odd prime p not dividing n, the equation p = x2 +ny2 has an

integer solution if and only if
( −n

p

)

= 1 and fn(x) ≡ 0 mod p has an integer solution.

The corresponding statement also holds for negative discriminants D ≡ 1 mod 4,

then for the representation of p by the form x2 + xy + 1−D
4

y2. Here, the conditions are
(

m
p

)

= 1 with m =
1−D

4
, and the polynomial has degree h(D).

One possible choice of the polynomial is the class equation, which can be ex-

pressed as a product over the classes and involves the j-invariants of its represen-

tatives; see [12, p. 298] for an example. For fundamental discriminants, there are

simpler, more efficient alternatives for the class polynomials.1

Unfortunately, this approach does not easily seem to lead to closed expressions as

soon as we are beyond the situation with one class per genus. As in the second part of

the previous chapter, it is thus usually easier to employ the denominator of a rotation

to come to concrete results. Let us illustrate this with one final example.

Example 7.2 (Z[pi] with p an odd prime) As in Example 6.2, we have

SOS
(

Z[pi]
)

= SOS
(

Z[i]
)

≃ C8 × Z
(ℵ0),

and, in principle, we can proceed as above. In particular, using the same conventions

for ω = m + in as above, z = ω/|ω| has denominator |ω| or p|ω|, depending on

whether p divides n or not. Indeed, z has denominator p|ω| if |ω|2 = m2 + n2 is

not a quadratic residue modulo p, or if |ω|2 is divisible by p. If |ω|2 is a quadratic

residue, both denominators may occur. Clearly, if z has denominator |ω|, then iz

has denominator p|ω|, since m and n are relatively prime. Hence, for fixed |ω|2, the

number of primitive SSLs with index |ω|2 is at most the number of primitive SSLs

with index p2 |ω|2. Thus, in terms of the arithmetic function f
pr
�

of the square lattice,

we may write

D
pr
Z[pi](s) =

∑

(

m
p

)

=1

f
pr
�

(m)

p2sms
(b(m) + a(m) p2s) +

∑

(

m
p

)

6=1

2 f
pr
�

(m)

p2sms
,

where a(m) and b(m) are still to be determined. They satisfy a(m)+b(m) = 2 together

with a(m) ≤ b(m) and f
pr
�

(m)a(m) ∈ N0 (we have seen above that a(m) = b(m) = 1

for p = 3 or p = 5).

1For instance, see http://www.uni-due.de/zahlentheorie/polynomials de.shtml
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The determination of a(m) depends on the prime factorisation of m and is rather

tedious in general. As an example, we discuss p = 7, where the quadratic residues are

1, 2, and 4. Here, we have three different types of prime numbers q = (m+in)(m−in)

(we only need to consider primes q ≡ 1 (mod 4)), namely

q ≡ 1, 2, 4 (mod 7) and either 7 | m or 7 | n

q ≡ 1, 2, 4 (mod 7) and 7 ∤ m, 7 ∤ n, which implies m2 ≡ n2 (mod 7),

q ≡ 3, 5, 6 (mod 7), which implies 7 ∤ m, 7 ∤ n, and m2 6≡ n2 (mod 7).

Note that a(q) = 1 in the first case, and a(q) = 0 in the other two. To handle

composite numbers m, let m =

∏

i qri

i be the prime decomposition of m and define

s(m) :=
∑

i tiri , where ti is 4, 2, or 1, according to whether qi is of type 1, 2, or 3,

respectively. One can check that s(m) is even if and only if m ≡ 1, 2, 4 (mod 7).

Such numbers m can be divided into three equivalence classes, namely

N1: all prime factors qi ≡ 3, 5, 6 (mod 7) have even power and s(m) ≡ 0 (mod 4),

N2: all prime factors qi ≡ 3, 5, 6 (mod 7) have even power and s(m) ≡ 2 (mod 4),

N3: there are at least two prime factors qi ≡ 3, 5, 6 (mod 7) with odd power.

Both a(m) and b(m) are constant on these equivalence classes, with the following

values.

m N1 N2 N3

a(m) 1 0 1
2

b(m) 1 2 3
2

This gives the generating function

D
pr
Z[7i](s)

=

∑

m∈N1

f
pr
�

(m)

49sms
(1 + 49s) +

∑

m∈N2

2 f
pr
�

(m)

49sms

+
∑

m∈N3

f
pr
�

(m)

49sms

(

3

2
+

49s

2

)

+
∑

m≡3,5,6 (7)

2 f
pr
�

(m)

49sms

=

2

49s
D

pr
Z[i](s) +

∑

m∈N1

f
pr
�

(m)

49sms
(49s − 1) +

∑

m∈N3

f
pr
�

(m)

49sms

(

49s

2
− 1

2

)

= 1 +
1

49s
+

2

50s
+

2

53s
+

2

58s
+

2

65s
+

2

74s
+

2

85s
+

2

98s
+

2

113s
+

2

130s
+ · · · ,

which illustrates the higher complexity of this case.
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