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FINITE CLONES CONTAINING ALL PERMUTATIONS 

L. HADDAD AND I. G. ROSENBERG 

ABSTRACT. Let A be a finite set with \A\ > 2. We describe all clones on A containing 
the set SA of all permutations of A among its unary operations. (A clone on A is a 
composition closed set of finitary operations on A containing all projections). With a 
few exceptions such a clone C is either essentially unary or cellular i.e. there exists a 
monoid M of self-maps of A containing S4 such that either C = M (= all essentially 
unary operations agreeing with some/ 6 M) or C = ML) T^ where 1 < h < \A\ and 
Tfj consists of all finitary operations on A taking at most h values. The exceptions are 
subclones of Burle's clone or of its variant (provided \A\ is even). 

1. Introduction. Let A be a finite non-empty set. Without loss of generality we 
shall assume that A = k := {0 ,1 , . . . , k — 1}. For a positive integer n an n-ary operation 
on k is a map/: kn —* k. The set of all n-ary operations on k is denoted 0(w). Put O := 
LÇij 0^n\ A clone on k is a composition-closed subset of O containing all the projections 
or, equivalently, the set of all term operations of an algebra on k (for a more precise 
definition cf. 2.0 below). A clone is thus a multivariable analogy of a transformation 
monoid or a permutation group on k whereby the projections play the role of id^. The 
clones on k, ordered by Ç, form an algebraic lattice L .̂ The meet of an arbitrary set of 
clones on k is their intersection. For F Ç O denote F the least clone containing F. 

Already in 1941 E. Post [Po 41] completely described Lr Note that L2 is the lattice 
of clones of boolean (or switching or truth functions and so pertains to the propositional 
logic, electrical circuits and discrete optimization). The lattice L2 is countably infinite and 
quite exceptional among the lattices L and their variants (the lattices of clones of partial 
operations, multioperations or delayed operations). Indeed, \L\ = 2**° for k > 2 [Ja-Mu 
59]; this has been recently refined by exhibiting an interval of L order isomorphic to 
the boolean lattice (P(N), Ç) of all subsets of N := {0,1,...} [Ha-Ro 86, 88, 88a] and 
so e.g. L contains a chain order isomorphic to the set R (of the reals) and an antichain 
of size 2**°. The lattices L are in general unknown and so on the whole the efforts have 
been concentrated on special parts of L mostly the top (all coatoms or dual atoms are 
known, cf. [Ja 58], [Ro 65, 70]), some clones covered by coatoms [La 82] and all such 
clones for k = 3 [La 82a], or the bottom (some atoms are known for k > 3 and all atoms 
for k = 3 [Cs 83]). 

The foundation of a clone C is the set C*^ := CHO(1) of its unary operations. Clearly 
C ^ is a submonoid of the (full) symmetric semigroup U := (<9(1); o, idk). 
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The foundation may carry a lot of information about C. For example, the foundations 
were used as the main tool in the classification of clones of boolean functions [Po 41]. 

P. P. Pâlfy completely described the clones whose foundation consists of permutations 
or constants [Pa 84], a result which provided a starting point for the tame congruence 
theory [Ho-Mck 88]. 

At the 1988 Ames conference on Algebraic Logic and Universal Algebra in Theoret­
ical Computer Science, S. Comer asked us about the characterization of clones C on k 
whose foundation contains all permutations on k. This problem belongs to the area aris­
ing from Slupecki's remarkable 1939 result [SI 39] which may be formulated as follows. 
For k > 2 the only maximal clone (= coatom of L ) with foundation 0 (1) is the Slupecki 
clone Mk~\ of all essentially unary operations or non-surjective operations (Le. missing 
at least one value from k). This result has been improved. Call 5 Ç 0 (1 ) basic if the Slu­
pecki clone Mjç-i is the only maximal clone whose foundation contains B. It is known 
that the symmetric group Sk of all permutations on k is basic [Sa 60] Theorem 11.1, [Sa 
60a]. The alternating group Ak and 0 (1) \ Sk are also basic [Sa 62]; [la 58]. A character­
ization of basic sets is in [Ro 70a]. (For k = 2 the analog of the Slupecki clone is the 
clone of all linear (mod 2) operations. We mention in passing that for |A| = Ho there are 
exactly two maximal clones with foundation <9(1) and each clone with foundation 0 (1) 

extends to one of them [Ga 64,64a,65] but the situation seems to be much more complex 
for |A| > Ho [Da-Ro 85]. Moreover, for any clone C we may ask the same question: 
What are the clones covered by C in L with foundation C^?) 

A. I. Mal'tsev improved Slupecki's result [Ma A 67] as follows. For 0 < h < k let 
M/, consist of all operations/ that are essentially unary or with | im/ | < h (e.g. M\ is the 
clone 0 (1) of all essentially unary operations while Mk-\ is the above Slupecki clone). 
Then Mi C M3 C • • • C Mk-\ C O is the unique increasing maximal (i.e. unrefinable) 
chain in L starting from M2. Burle [Bu 67] showed that 

M1 C B' C M2 C • • • C M*_! C O 

where {M\, B1, M2,.. . , Mk-\, 0} is the interval of all clones with foundation 0 ( 1 \ B' := 
M\ U B and B is the following set of all quasilinear operations on k. Call / E 0 (n) 

quasilinear if there are fo: 2 —• k and <j>c. k —• 2 (i = 1 , . . . , n) such that 

(1. 1) f(xU. . . ,Xn) = <£o(<M*l)) + • • • + <t>n(Xn)) 

holds for all x\,..., xn 6 k where + denotes the sum mod 2 on 2. The clone B' is a 
maximal TC or abelian clone [Be-McK 84]. 

We determine the clones whose foundation contains S^. They can be described as 
follows. For h = 1 , . . . , k — 1 set 

n := if € O : I im/| < /i}, V := {f € 0(1) : | im/ | < 2}, 

and let Ve consist of a l l / EV such that [Z*-1^)! is even for all a E k (notice that Ve is 
nonempty only for k even and then consists of the constant maps and those/ with ker/ 
having two blocks of even size). Finally denote by Be the set of all quasilinear operations 
having a representation (1.1) with all <i>\,..., <£„ E Ve- Our main result is: 
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THEOREM. Let k > 2, k := {0, ...,& — 1} and C be an essential clone containing 
the set Sk of all permutations ofk. Then either 

(i) there exists a submonoid M of (<9(1); o, id^) containing Sk such that 
a) C = M U IT/ for some 2 < i < k or 
b) C = MUBor 

(ii) k is even and C = Sk U Be. 

Denote by V the set of all M such that M is a submonoid of (0 (1); o, idk) containing 
Sk U V. The set V is described in Lemma 2.2 in terms of number-theoretical partitions 
of k (corresponding to ker/ for/ E M). The diagram of the interval [Sk, O] of LR is on 
Figure 1 for k odd and on Figure 2 for k even. Its main part is the direct product of the 
chain SkUV cTkU B cTkUT2 C - -~S~kU IVi and the lattice (V, Ç). For k even we 
just insert S^ U Ve and Sk U Be near the bottom. 

FIGURE 1 (k odd) FIGURE 2 (k even) 

The elementary proof is essentially combinatorial and based on the techniques from 
[MaA67]. 
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2. Preliminaries. 

2.0. For \ < i < n the /-th n-ary projection e" is defined by e?(x\,. ..,xn) fc* JC/. 
(Here and in the sequel the symbol means that both sides are equal for all x\,..., xn G k). 

The following definition of a clone, due essentially to Mal'tsev [Ma A 66], is based 
on a monoid * on 0 and three unary operations £ r and A on 0. First we define a binary 
operation * on 0. For/ G 0(n), g G 0(m) and r := m + n — 1 define/ * g G 0 ( r ) by 

(f*g)(xu...,xr) :&f(g(xu...,xm),xm+\,...9xr). 

It is easy to see that (0; *, e\ ) is a monoid (i.e. * is associative and e\ * / = / * e\ =f 
for al l / G 0 where e} is the identity selfmap of k). For n > 1 define Cf G 0 ( n ) ,T / G 0(n) 

and A/ G 0 ( n _ 1 ) by 

«0(*i» • ..»*«) w / ( * 2 , * 3 , • • • ,*n.*i), 

(T/)(JC1, . . . ,Xn) » / (*2 ,* l . *3 , . . . ,*„), 

(A/)(*i, . . . ,Xn_i) « / (* l ,Xl ,*2 , • • • ,*n-l), 

while forn = 1 put </ = rf = A/ := / . 
The algebra P := ( 0 ; * , £ , T , A , e2) (where e2—the first binary projection—is a 

nullary operation, i.e. a distinguished element) is called Mal'tsev's postiterative alge­
bra on O. A clone on k is a subuniverse of P , i.e. a submonoid C of (0, *) containing 
the binary projection e\ and satisfying CJ^C) Ç C, r(C) Ç C and A(C) Ç C. It is known 
(cf. [Ma A 66]) that clones coincide with the sets of term operations of universal algebras 
onk. 

2.1. Let Ek denote the set of all equivalence relations on k and Sk the set of all 
permutations of k. For e G Ek and n G Sk set 

e^ := {(x,y) G k2 : (TT(JC), 7r(y)) G e}. 

Call a subset 7 of Ek symmetric if 7 ^ Ç T for all 7r G Sk (i.e. if e(7r) G T whenever e ET 
and 7T G S*)- Consider e G Ek. Order the blocks (/.e. equivalence classes) B\,...,Bi of 
e so that fy := |£,| (j = 1 , . . . , £) satisfy &i > • • • > bt. Clearly e# := (6, , . . .,bt) 
is a partition of k (i.e. an integer sequence (b\,..., /?̂ ) such that fri > • • • > bi > 0 
and b\+ •-- +bt = k). Denote Pk the set of all partitions of k and for /3\, /?2 € P* put 
/?i ^ Pi if A = ef (i = 1,2) where ei Ç e2 (here the inclusion is between binary 
relations and means that each block of e is included in a block of 62). Clearly (Pk, <) is 
an ordered set. As usual, an up-set (or order filter) in an ordered set (P, <) is a subset 
Q of P such that /? G Q whenever /? > 7 for some 7 G Q. For a map/: k —• B put 
ker/ := {(a, a') G k2 :f(a) = /(a ')}. For 7 Ç Ek put 

M r := {/ G 0 (1) : ker/ G T}, 

and for a subset P of P* put 

OF := if E 0 (1) : (ker/)# G P}. 

Denote by u the least element {(JC, JC) : x Ek} of Ek. We need the following easy and 
most likely known: 
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LEMMA 2.2. The following are equivalent for a subset S of0^l): 
(i) S is a subsemigroup of the symmetric semigroup (0^\ o) containing S^. 

(ii) S = Mjfor a symmetric subset T ofEk such that u ET and T \ {u} is an up-set 
of(Ek,C). 

(Hi) S = Qp for a set P of partitions ofk such that J , : = ( 1 , 1 , . . . , 1 ) 6 P and P \ {J_} 
is an up-set of(Pk, <). 

PROOF, (i) => (ii). Put T := {kerf : / ES}. Let/ € S and n E Sk. Then n E Sk C S 
and so g :==/ o n E S. Put 0 := ker/ and r := ker g. Now for all JC, y E Ek 

(x,y) E T^/(TT(JC)) = /(TT(V)) & (x,y) E 0^. 

Thus r = 0(7r) and T is symmetric. Clearly u E T due to ex E Sk Ç S. Let fc E 0(i) 

be such that ker/i = 0. Then there exists I E Sk such that h = I of and hence /i € 5 
proving M = MT. It remains to prove that T' := 7 \ {a;} is an up-set. Let 0 E T' 
and let B\,..., Bi be the blocks of 0. Without loss of generality we may assume that 
b — \B\\ > 1 and Pi = {0 , . . . ,b - 1}. Further for i = 1, . . . , I denote by bt the least 
element of Bi (in the natural order on k, e.g. b\ — 0). Let 1 < / < j < t and let & be 
obtained from 0 by fusing the blocks P, and Py. Define/ € 0 (1) as follows: 

a) Put/(x) := 0 for every x E Bi and/(x) := 1 for every x E P/, b) f(x) := bi for every 
x E B\ provided / > 1 and c) f(x) = bm for all m E {2, . . . , £} \ {ij} and every JC E Bm. 
Clearly ker/ = 0 and s o / E M. Finally let g E 0(1) be defined by setting g(x) := bm for 
all m E {1,..., £} and every x E Bm. Again ker g = 0 and so g E M. Consider h := g of. 
For x E Bi we have h(x) = g(Q) = b\ and for x E P/ we have h(x) = g(l) = b\ , hence 
g(x) = 0 for all xEBiU Bj. If i > 1 then for all JC E Pi we have h(x) = g(6/) = bt ^ 0 
and for m € {2, . . . , £} \ {/j} and x E Bm we have /J(JC) = g(6m) = frm. Since all the 
values bo,..., &/_i, bj+\ ,...,bi are distinct, we have ker h = 0'. In view of /i € M we 
have 0' E T as required. If i = 1 then for m E {2, . . . ,€} \ {/} and JC G Pm we have 
/(JC) = Z?m and h(x) = g(/"(*)) = g(bm) = £m. Again ker/* = 0' and so 0' E T. 

(ii) => (iii). Evident. 
(iii) => (i). Clearly Sk C gp- Let/, g G g/>- Put <£ := ker/;<5 := ker g and h:=fog. 

If ^# = 1 (i.e. g 6 Skl then (ker/i)# = (£# and so h E QP. Thus let £# ^ J, In view of 
6 Ç ker/*, we have that (kerhf E P (because P \ {1} is an up-set) and so h E Qp. m 

2.3. An fl-ary operation/ on k depends on its i-th variable (or the i-th variable is 
essential) if 

f(a\,..., an) ^ f(a\,..., at-\, bh ai+i , . . . ,«„) 

for some a\,...,anjbi E k. If/ does not depend on its f-th variable, the i-th variable is 
fictitious (also called non-essential or dummy). The operation/ is essential if it depends 
on at least two variables. Clearly/ depends at most on its i-th variable if/(jci,..., xn) & 
g(xi) for some g E 0 (1). A clone C is unary if all its operations depend on at most one 
variable. The essentially unary clones containing Sk are of the form 

S = {s * en
t : s E 5,1 < / < n} 
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where S Ç 0 (1) satisfies the conditions of Lemma 2.2. 
Consider a non unary clone C with C D Sk. It will turn out that the maximum size 

of imf (i.e. the maximum number of values/ takes) of essential operations/ E C de­
termines the nonunary part of C. Following [Ma I 73] for 1 < h < k the /z-cell is the 
set 

n := {feO: \imf\<h} 
of all at most h-valued operations on k; e.g. T\ is the set of all constant operations on k 
while T/c = O. A clone Con k is cellular if C = SUT^ for some 1 < h < k and S Ç 0(1). 
The following lemma describes the cellular clones containing Sk. 

For h = 1 , . . . , k put 
Uh:={feO(l):\imf\<h} 

(e.g. U\ is the set of all constant selfmaps of k while Uk = 0(1)). 

LEMMA 2.4. A clone C onk containing Sk is cellular if and only if C = QpUTh 
where 1 < h < k and P is an up-set of(Pk, <) consisting ofall(b\,...,b{) E Pk with 
either \<£<horl = k. 

PROOF. (=>). Let C = SUFh for some 1 < h < k and Sk Ç S Ç 0(1) and let C D Sk. 
Note that Th contains the set £//, . We may assume that S is a subsemigroup of (0 (1); o) 
containing Sk\JUh. Now it suffices to apply Lemma2.2. 

(<=). Let C satisfy the condition. We must show that C is a clone. It is easy to see that 
(C = rC= C, AC Ç C and e] E QP Ç C. Let/, g E C. 1) Let/ E 2^. If g E <2P then 
/ * # € Ô F Ç C. Thus let g E T .̂ Then | im(f * g)\ < \img\ <h proves/* g eThÇC. 
2) Let/ E IV From | im(f * g)\ < \ im/| < h we get/ * g E T/, Ç C. • 

REMARK 2.5. It is easy to see that for a cellular clone on k containing Sk the up-set 
P and integer h from Lemma 2.4 are unique. 

2.6. Our aim is to show that the clones on k containing Sk are (i) unary, (ii) cellular 
and (iii) the Burle's clone and, if k is even, a particular subclone of it. Note that the 
clones from (i) are fully described in Lemma 2.2, the clones from (ii) in Lemma 2.4 and 
the two clones listed in (iii) will be discussed in §4. To prove this claim it suffices to 
consider the clone C := {f}USk for an arbitrary essential n-ary operation/ on k. Set 
t := | im/|. For 2 < I < k we show that C is cellular. For (, = 2 we obtain a cellular 
clone, Burle's clone or its particular subclone (if k is even). The key is the following 
Iablonskii's basic lemma [la 58], in Mal'tsev's formulation [Ma A 67] §2, (it has another 
part, due to Salomaa, which is not needed here). For/, g E 0(n) call g an isomer off if 
there is a permutation 7r of { 1 , . . . , n} such that g(x\,..., xn) ^ / ( J C ^ D , ...,x^n))-

LEMMA 2.7. Letf E 6>(n) be essential and I := | im/| > 2. Then there arep\,... ,/?„, 
q\,..., qn E k and an isomer g off such that 

(2.1) g(pu .. • ,pn) = a0, g(q\,Pi,.. • ,pn) = au g(P\,qi, ...,qn) = a2 

where im/ = {aç>,..., ai-\}. • 

For the key Theorem 2.9 we need the following statement whose proof and that of 
Theorem 2.9 are essentially taken from [Ma A 67] §3. 
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LEMMA 2.8. IfhE 0(2) satisfies 

(2.2) ft(0,0) = 0, A(1,0)=1, A(0,1) = W , 1 ) 

then G := {h} U U2 U S* contains T2. 

PROOF. We show that there exists a binary operation h1 EG whose restriction to 2 
is the disjunction {i.e. h'(a, b) — max(a, b) for all a,b E 2). Set (2 := /i(0,1). 1) Suppose 
a > 0. Define m E 0 (1) by setting ra(0) := 0) and m(x) := 1 otherwise. Clearly m E 
U2 Ç G; hence h'(x,y) :& m(h(x,yj) belongs to G and V is the restriction of h' to 2. 
2) Thus let a = 0. Define n E 0 (1) by setting rc(0) := 1 and n(x) := 0 otherwise. Again 
n E G and a direct verification shows that h'(x,y) :» m h{n(x), yj ) E G and A'|2 = V. 
Clearly n\2 is the usual negation '. It is well known that the algebra (2; V/ ) is primal 
(i.e. complete) and so every boolean function b: 2n —• 2 extends to some b* E G (i.e. b* 
agrees with b on 2rt). Now let c E 6>(m) satisfy imc Ç 2. Define the following elements 
of 2*: 

a(0) := (1,0, . . . ,0), a(l) := (0,1,0,. . . ,0) , . . . ,a(k - 1) := (0, . . . ,0,1). 

Moreover let d: 2mk —> 2 be defined by d(a(x\),... ,a(xm)) := c(xi,... ,xm) for all 
;ti , . . . , xm Ek and d(b\,..., Z?w)t) := 0 otherwise. As observed above, d extends to some 
d* EG. A straight-forward verification shows that 

c(xu... ,xm) w d*(no(x\),..., fijfe_i(^i),..., n0(xm),..., n*_i(.x;m)) 

proving that c E G. Thus G contains all c with imc Ç 2 and, in view of Sk Ç G also 
r2. • 

THEOREM 2.9. / / / « essential and i := | im/| > 2, then the clone 

D:=if}UU2USk 

contains T^. 

PROOF. Let a0,.. .,ai-\,p\,... ,pn,q\, • • • ,#n and g be as in Lemma 2.7. For / = 
1,.. . ,n define mt E 0(1) by setting m,(0) := pt and m/(jc) := #, otherwise. Set t := 
g(#i, ...,qn) and define r € 0(1) by setting r(#o) •= 0, r(a2) := min(f, 1) and r(jc) := 1 
otherwise. Clearly m\,...,mn,r E U2 and so h E 0(2) defined by 

h(xux2) :w r^(mi(xi), m2(x2),..., m„(x2)) J 

belongs to D. A straight-forward check shows that h satisfies (2.2) and so T2 Ç D by 
Lemma 2.8. 

By induction on / = 2, . . . , £ , we prove that T, Ç D. Suppose 2 <i < £ and T; Ç D. 
Let z E Ti+\ be a/?-ary with imz = {ao,.. . ,# ,}. Put Z7 := z~l{aj) for all j = 0, . . . ,1. 
By assumption for j = 3, . . . , £ , we have g(rj\,..., ryw) = a} for some r / i , . . . , r7-n € k. 
Let 5i map Zo U Z2 onto /?i, Z\ onto gi and Z/ onto rn for £ = 3 , . . . , /. Similarly for 
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j — 2 , . . . , n let Sj map ZQUZ\ ontopjf Z^ onto q} and Zi onto r# for £ = 3 , . . . , /. Clearly 
s\,...,sn EVi CD. A straight verification shows 

Z(X\, . . . ,Xp) & g(s\(Xi, . . . ,Xp), . . . ,Sn(xU . . . ,*,?)) 

and so z E D. Thus r,-+i Ç D. This concludes the inductive step and hence the proof of 
the theorem. • 

2.10. We eliminate right away the case £ = k. Indeed for im/ = k, Salomaa [Sa 
62] showed that C = O. This is also an easy consequence of a general completeness 
criterion [Ro 65, 70] cf also [Ro 70a]. The proof below also applies if we add the fol­
lowing combinatorial fact. If/ is essential and idempotent (i.e. f(x,... ,x) & x) then 
f(a\,..., an) = f(b\ ,...,bn) for some at, b[ E k, at ^ bi(i = 1 , . . . , n). (Lemma 2.7 may 
be used for the proof.) 

Similarly in the case £ = 1 we have directly C = S^ U T\. In the sequel we assume 
\<£<k. 

2.11. In view of Theorem 2.9 for 2 < £ < k it suffices to show that U2 Q C = 
{fyUSic for every essential/ E O with | im/| = £. This is done in §3 while §4 is 
devoted to the special case £ = 2. In the sequel it will be convenient to put 

U := {\h~l(a)\ : h E Ôl\imh = {a,b}}. 

Note that / 6 U if for some h E C ^ the equivalence ker h has exactly two blocks of size 
/ and k — i\ in particular i E U <=> k — i E U. Our aim is to show that U = {1 , . . . ,£— 1}. 
We need two lemmas. 

LEMMA 2.12. The clone C contains all unary constant operations. 

PROOF. Define r E 0(1) by r{x) :&f(x,... ,x). As im r Ç im/ clearly r E &X) \ Sk. 
Denote by P the set of partitions of k from Lemma 2.2.(iii) corresponding to &l\ As 
kerr E P, the set P \ { (1 , . . . , 1)} is nonempty which implies (k) E P. • 

LEMMA 2.13. The set U is nonempty. 

PROOF. We may assume that/ depends on its first variable. This means that there 
exist C2,...,cn E k such that r E 0(1) defined by r(x) :&f(x, c^,..., cn) is non-constant. 
Now by Lemma 2.12 all constants are in C and thus r EC. Proceeding as in the proof of 
Lemma 2.11 we obtain ( 7 ^ 0 . • 

LEMMA 2.14. If £ > 2 then a E U for some 1 < a < k — 1. 

PROOF. We argue the contrapositive. Suppose U = {1,/c— 1}. Let p\,.. .,/?„, 
q\,...,qn and g be as in Lemma 2.7. Define <j>\,...,<j>n E 0 (1) by setting <j>\ (0) := q\, 
$/(l) := qj (j = 2 , . . . ,n) and <j>t(x) := pt otherwise; notice that every <j)t is either con­
stant or ker<£, has two blocks of sizes 1 and k — 1, and so <j>\,..., </>n E C. It follows 
that h E 0(1), defined by h(x) & g((j)i(x),..., (j>n(xfj belongs to C. From (2.1) we get 
h(0) = ai, h(\) = «2 and h(x) = ao otherwise. If we fuse the blocks {a\} and {#2}, w e 

get 2 E U, a contradiction. • 
In the sequel let k! represent the largest integer not exceeding ^k. 
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3. Essential operations with more than 2 values. 

3.1. In this section/ E 0(n) is essential, | im/| = I where 2 < I < k and C := 
{f}USk. The set U was defined in 2.11 as the set of all \h~](a)\ where h E &l) and 
im /z = {a, &}. We have: 

LEMMA 3.2. IfO<r< k' and r EU then 

(3.1) l , 2 , . . . , 2 r - l EU. 

PROOF. Fix s E {r,k — r} and 0 < t < r. Let ao,..., <2̂ _i, p\,...,pn,q\,---,qn and 
g be as in Lemma 2.7. Set 

A0 : = { 0 , . . . , f - 1 } , Ax :={t,...,k-s- 1}, 

A2 := {k-s, ...,k-t- 1}, A3 := {k-t, ...,k- 1}. 

Note that 

(3.2) |A0| = /, \Ai\ = k-s-t, \A2\ = s-t9 \A3\ = t 

Next define g\ E 0(1) by setting g\(x) := p\ for JC E Ao U A 2 and gi(;t) := q\ otherwise. 
For j = 2 , . . . , n define gj E 0(1) by setting gj(x) := pj for x e Ao U A\ and gj(x) = qj 
otherwise. Note that 

IA0UA2I = t + k — s — t — k — s, |A0UAi| — t->tk — t — k + s = s 

and so for ally = 1, . . . , n the equivalence ker gj has exactly two blocks of size s and k—s\ 
whence by our choice of s and r E U we have g\,..., gn E &l\ Now define h E 0(1) by 

h(x) :» g(gi(s),£2(*), • • • >£«(-*))• 

As g e Cclearly h E C*1}. Set d := g(gi,. . . ,qn). We need: 

CLAIM 1. There exists r E &l) with r(Ai) = {a,-} (1 = 0,1,2) and r(A3) = {aj}for 
some 0 <j <2. 

PROOF (OF THE CLAIM). Ifd E {<2o>#i>tf2}> choose r := h. Thus let d ^ {ao,«i,«2}-
Then Ao,... , A3 are the blocks of ker h and 4 < £ <k. Let r satisfy r(Ao U A3) := {#0} 
and r(Ai) = {#/} for i = 1,2. From Lemma 2.2 we have r E C*1*. • 

We distinguish three cases according to j — 0,1,2 in Claim 1. 
(i) Let j = 0. According to (3.2) the equivalence ker r has 3 blocks of sizes 2t,k—s—t 

and s — t. Applying again Lemma 1.2 we can fuse the first and the last block to obtain 
u E C*̂  having kerw with two blocks of sizes s + t and £ — s — t. We have obtained 
s + t EU. 
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CLAIM 2. Ifs + te U for all s e{r,k — r} and 0 < t < r then (3.1) holds. 

PROOF (OF THE CLAIM). Choose s = r and t = 1, . . . , r - 1 to get 

(3.3) r + l , . . . , 2 r - l E U. 

Similarly, for s = k — r and f = 1, . . . , r — 1 we have k — r + t € U and so r — t E £/ 
proving 

(3.4) l , 2 , . . . , r - l EU. 

Together with r E U this proves Claim 2. • 
(ii) Let 7 = 1. Then ker r has 3 blocks of sizes t,k — s and s — t. Fusing the last two 

blocks we obtain k — t EU. Thus t E U for all 0 < t < r. Fusing the first two blocks we 
get k — s +1 e U. The choice s = k — r gives r + fG U for all 0 < t < r. Together this 
yields (3.1). 

(iii) Finally let y = 2. Then ker r has 3 blocks of sizes t,k — s — t and s. Fusing the 
first and the last block we get t + s E U and so Claim 2 applies. • 

LEMMA 3.3. U = {l,...,k-l}. 

PROOF. According to Lemma 2.14 the set U contains an element 1 <a <k— 1. By 
the symmetry of U the set 

V:= £ /n{ l , . . . ,& '} . 

is nonempty. Denote by v the largest element of V. If v = k' we are done. Thus let 
1 < v < k'. By Lemma 3.2 we have 1, . . . , 2v — 1 E U. However, v + 1 < 2v — 1, hence 
v + 1 E U in contradiction to the choice of v. • 

4. Two-valued operations. 

4.11. As mentioned in 2.11 the case t = 2 requires special treatment. In this section 
C := 5jt U {/"} where/ E 6>(n) is a 2-valued essential operation. 

The following operations—introduced in [Bu 67]—are exceptional. Denote by + the 
sum mod 2 on 2. (The operation +, called exclusive or in logic, satisfies 0 + 0 = 1 + 1 = 
0, 0 + 1 = 1 + 0 = 1 . ) For n > 1 an operation g E 0 (n) is quasilinear if there exist a 
map <f>Q\ 2 —• k and maps <f>\,..., <j>n: k —• 2 such that 

(4. 1) g f o , . . . ,*„) « <£o(<M*l) + ' ' ' + <£n(*n)). 

The following lemma is an adaption of Lemma 2.7 to nonquasilinear essential 2-valued 
operations. 

LEMMA 4.2. Iff E 0 (n) w essential, nonquasilinear and \ im/ | = 2, £/*en 

f(ai"-->an) =f(bu...,bi-uahbi+u...,bn) 
(4.2) 

= f(bu. ..,bn) ?f(au... ,0/_i, 6j,fl/+i,... ,fl„). 
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for some a\,..., an, b\,..., bn G k and 1 < i < n. 

PROOF. Let/ satisfy the assumptions. It is immediate that so do rf and Cf (cf. 2.0). 
If/ has a fictitious variable, say the first, then A/ also satisfies the assumptions. Using 
repeatedly £, r and A we can get rid of all fictitious variables obtaining an operation g 
satisfying the assumptions and depending on all its variables. If (4.2) holds for g then it 
holds also for/ and so for simplicity we assume that already/ depends on all its variables. 
For notational ease assume im/ = 2. 

For \ <i<n and ç = (c\,..., cn) G kn define/î G 0(1) by setting 

fi(x) : ^ / ( c i , . . . , c/_i, *, ci+i,... cn). 

CLAIM 1. If there exist a = (a\ ,a2,...,an) € kn and b = (b[ ,b2,...,bn) E kn such 
that ker/J ^ ker/J, then there are a\,b\ G k such that (4.2) holds for a\,a2,...,an, 
b\,b2,-..,bn andi = 1. 

PROOF (OF THE CLAIM). At least one of ker/J and ker/jj has exactly two blocks. 

Choose the notation so that ker/J has two blocks A and B. We claim that 

(4.3) Û(c)ïfXa(d) and fi(c)=fl(d) 

for suitable c,d Ek. Indeed, if (4.3) does not hold, then for every c G A and every d G B 
we have/J (c) ^ /J (d) and so ker/J Ç ker/J, in particular ker/J has at least two blocks. 
As it has at most two blocks, we deduce the contradiction ker/J = ker/J. Thus (4.3) is 
proved. Put a := /J(c). In view of a G {/J(c),/J(d)} w e can set {a\,b\} = {c,d} so 
that a =fa(a\). Now (4.2) is proved for i = 1 as 

/(fli , . . . ,<3„) =/J(a i ) = or =/J(ai) =f(a\,b2, -..,bn) 

= ft(bi)=f(bu...,bn)^fl(bl)=f(bua2,...,an). 

m 
If an isomer of/ satisfies the assumptions of Claim 1 then (4.2) holds for a suitable 

\ <i <n. Thus we are left with the case of/ with the following property: 

(E) There exist 2-block equivalence relations e\,..., en on k such that ker/j = 
Si for all a G k " and i = 1, . . . , n. 

For i = 1 , . . . , n denote by B® and Bn the two blocks of e, and define far. k —• 2 setting 
<M*) : = J for all j G 2 and all x G #,;;. 

CLAIM 2. 77iere w a boolean function g (i.e. a map g: 2n —• 2) swc/i ffozf 

(4.4) / f a , . . . , xn) = g(fa (xi ) , . . . , <j>n(xn)) 

holds for all x\,... ,xn G 2. 

PROOF (OF THE CLAIM). We start by showing that for every j = (/i » • • • Jn) G 2n the 
operation/ is constant on the cartesian product P = P(j) := i?i7l x • • • x #rt7n. Indeed, let 
(c\,...,cn),(d\,...,dn)eP. 
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We show that 7/> := f(c\,..., cn) = f(d\, C2,..., cn). Indeed, put ç = (c\,..., cn). 
Since ker/1 = e\ and c\, d\ both belonging to the block B\jx of ei, we obtain 

7 P = / £
1 (C 1 ) = / , V I ) = / (d i , c 2 , . . . ,c„). 

Continuing in this fashion we get 7/> = /(^i ,...,dn) and s o / is constant on P. To get 

(4.4) it suffices to define g: 2" —• 2 by setting g(j) := 7/>(/) f o r a117 € 2n. • 

CLAIM 3. Forallx\,...,xnE2 

g(xu...,xn) = xi +•••+*„ + g(0, •••,()). 

PROOF (OF THE CLAIM). Put c := g(0, . . . , 0). To every j = (ju... jn) e 2n assign 

l/ |=yi +2/2 + ---+2n-Vn. 

Suppose 

(4-5) ^(/) ̂ 7 i + - - - + y „ + c 

holds for some y = (ju... Jn) G 2n. Let y G 2n satisfy (4.5) with the least possible \j\. 
Due to our choice of c clearly \j\ > 0. Denote by i the first index such that y'/ = 1 and 
set / := (0 , . . . , OJH-I > • • • Jn)- Clearly [/| = \j\ — 2l~x and so by the minimality of \j\ we 
have 

g(j')=ji+l + ' • • +7n + <?. 

According to (4.5) we have g(j) ^ 1 + y';+i + • • • + jn + c, and so in view of g E 2 we 
have g(j') = g(/). Choose cm E #mo for all 1 < m < / and cm E Bmjm for i < m < n. Put 
ç := (ci , . . . ,cn) and consider/!. For x E B® we have/(x) = g(j') and for x E Bn the 
value of/(jc) is g(j). Since g(j') = g(j) the function/ is constant, in contradiction to the 
property (E). • 

Combining Claims 2 and 3 we obtain that/ is quasilinear (with <£0 the identity map 
on 2). This contradicts our assumption and settles the last case of/ satisfying (E). • 

LEMMA 4.3. Iff satisfies the assumption of Lemma 4.2, then U = { 1 , . . . , / : — 1}. 

PROOF. We start with the following: 

CLAIM 1. 7/0 <d <k! andd E U, thend+l,...,2d+l E U. 

PROOF (OF THE CLAIM). For notational simplicity assume that (4.2) holds for / = 1. 
Fix z so that k - 2d - 1 < z < k - d. Put 

A0 := {0, . . . , jfe - d - z - 1}, A ! := {k - d - z,... ,d - 1} 

(4.6) A 2 := {</,...,</ + * - 1 } , A3 :={rf + z , . . . , * - l } 

and define g i , . . . , gn E 0(1) as follows: (i) g\ (x) = a\ for all x E AQ UA\, (ii) gj(x) = aj 
for all 2 < y < n and x GA0UA2 and (iii) gj(x) = bj otherwise. Note that each kerg7 

has either one block (if gt is constant) or exactly two blocks of sizes d and k — d. Thus 
g\,...,gn £ C and so h(x) :fc* /(gi (x), . . . , gn(;c)) belongs to C. According to (4.2) the 
equivalence ker h has exactly two blocks A 2 and k\A2. As \A2| =z ,we have z,k—zEU. 
The above restriction k — 2d— 1 < z < k — d translates into d < k — z <2d+ l. m 

https://doi.org/10.4153/CJM-1994-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-054-1


FINITE CLONES CONTAINING ALL PERMUTATIONS 963 

CLAIM2. IfO<d< k'anddeUthen 1,... ,d - 1 € U. 

PROOF (OF THE CLAIM). Let 0 < z < d. Put 

A 0 : = { 0 , . . . , d - z - l } , A, : = { d - z , . . . , £ / - l } , 

(4.7) A2 :={</,...,</ + * - 1 } , A 3 :={d + z , . . . , J fc- l} . 

Define gi , . . .gn E 0(1) by setting (i) g\(x) := «i for all * E A0 U Ai, (ii) gy(x) = cij 
for all 2 < j < n and x E A$ U A2 and (iii) #/(*) = fry otherwise. Again h defined by 
h(x) &f(g\ (x),..., gn(x)) is such that ker h has exactly two blocks A2 and k\A2 proving 
ZEU. m 

PROOF OF THE LEMMA. From Lemma 2.13 we know that ( 7 ^ 0 and so there is 
d E U, d < k'. By Claim 2 we have 1,... ,d E U. Suppose to the contrary that U ^ 
{1, . . . ,£ — 1} and denote m the least element of {1,. ..,k — 1}\U. Then 1 < m < k'. 
Now m— 1 E U and so by Claim 1 also m,. . . , 2m — 1 E U, a contradiction. • 

Now we have: 

PROPOSITION 4.1. Letf be an essential operation with | im/| = 2. //"/ /s nof quasi-
linear then C := {/*} U S^ contains T2. 

PROOF. We have £/2 Ç C by Lemma 4.3. Let a\,...,an, b\,...,bn, and / be as in 
Lemma 4.2. We may assume that / (^i , . . . , at-\, £;, at+\,..., an) = 0 while the other 
three values in (4.2) are 1. Define w, E 0(1) by wf(0) := fr, and W/(JC) := a, otherwise. For 
1 <./ < >W 7̂  * put w/(0) := cij and wy(jt) := b} otherwise. Clearly u\,..., un E Ui Ç C. 
Define /z E 0(2) by 

/î(Xi,X2) « / ( w i f e ) , • • • , M/_i(*2), «/(*l), W/+lfe), • • • , Un(x2)). 

Clearly A E C and h(0,0) = 0, h(l, 0) = /z(0,1) = /z(l, 1) = 1. Now it suffices to apply 
Lemma 2.8. • 

4.5. We turn to the remaining case of a quasilinear/. 
In the sequel / E 0(n) is an essential quasilinear operation. We may assume that 

imf = 2. Clearly in the expression (4.1) off the map <J>Q\ 2 —• 2 is non-constant and thus 
either </>o(x) = x for x = 0,1 or </>o(x) = x + 1 for x = 0,1. In the second case replace cj>n 

by <^ where <^(x) := <f>n(x) + 1 for all x E k. We have obtained that 

(4. 8) / f a , . . . ,xn) w (^i(xi) + • • • + 0„(JC„). 

Without loss of generality we may assume that/ depends exactly on its first t variables 
(i.e. (j>\,..., (j>i are non-constant while <j>^\ ,...,</>„ are constant). Proceeding as above 
we get 

f(xu...,xn)&<l>\(x\) + ••• + <l>t(xi). 

Denote by C the clone generated by / and the constant selfmaps of k. 
We start with the following: 
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FACT 4.6. Let 1 < m < I. Then 

(i) 

(4.9) (j>m+i (cm+i ) + ••• + (l>n(cn) = 0 

for some cm+\,..., cn € k, and 
(ii) C contains the operation 

(4.10) fm(xu... ,xm) :& <l>i(xi) + • • • + <t>m(xm) 

PROOF. We argue the contrapositive. Suppose (i) does not hold. Then (j>m+\(x\) + 
• - + (j>n(xn-m) is the (n — ra)-ary constant operation with value 1 and so 

f(xu • • • ,xn) & </>\(x\) + • • • + <j>m(xm) + 1 

contradicting the fact that/ depends on its first I variables, (ii) Denote by cm+i,..., c„ 
the elements from (i). Clearly 

/mW> • • • iX~m) ^ / W » • • • )^mi cm+\ ? • • • ? c n) 

belongs to C. • 
As before U stands for the set of all positive integers u such that for some/ E C*̂  the 

equivalence ker/ has two blocks of sizes u and k — u. We have: 

LEMMA 4.7. Letf, C and U be as in 4.5. 

(i) If a, b E U satisfy 0 <a <b < k— 1 then 

(3.9) b-a, b-a + 2,...,cEU 

where c := a + b if a + b <k and c:=2k — a — b if a + b > k, 
(ii) ifu,u+\EUthen 1 6 U, 

(Hi) if l EU then 2 € U, and 
(iv) 1/1,2 6 U then 3 E U. 

PROOF. Define g e 0(2) by setting 

g(xux2) :» <M*i) + <t>i(xi). 

According to Fact 4.6, the operation g belongs to C. As neither (j>\ nor fc is constant, we 
have im <j>\ = im fa = 2. Fix a t, fit 6 k (/ = 1,2) so that 

4>i (*i ) = <^2(a2) = 0, (/>! (/?! ) = fa((32) = 1 • 

(i) Let e satisfy max(a + b — k, 0) < e < a. Define fa, fa E 6>(1) by setting 
1) fa(x) := a\ for all 0 < x < a, fa(x) := a2 for all 0 < x < a — e and 

a <x < k — b + e 
2) \l>j(x) := Pj otherwise 0' =1 ,2) . 
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Notice that ker t/>i has blocks of sizes a and that k — a and ker i/>2 has blocks of sizes 
k — b and b; and so ^\, i/>2 £ C (due to a, b 6 £/). The unary operation 

belongs to C. Note that 

r ^i(cti) + </>2(«2) = 0 + 0 = 0 for all 0 < JC < a - e 
. r v I ^i(ofi) + ^2(j82) = 0 + l = 1 f o r a l l f l - ^ < x < a 

| <I>\(P\) + faioci) = 1 + 0 = 1 fora\\a<x<k-b + e 
[ (j>iQ3\) + (j>2(P+2) = 1 + 1 = 0 ioxd\\k-b + e<x<k 

and so |/z_1(0)| = a + b — 2e. Thus a + Z? — 2e E £/. Choosing e in its range (which 
depends on whether a + b<k or a + b>k) we obtain (3.9). 

(ii) Define ^1,^2 £ #(1) by setting /ii(x) := oc\ for 0 < x < «, /X2W :== <*2 
for u < x < k — 1 and /i/(x) = /3y otherwise. Straight verification shows that 
s{x) :^ g(/zi(;c), /X2W) satisfies s_1(0) = {w} and so 1 E £/. 

(iii) Define 1/1,1/2 € #(1) by setting z/i(0) := «i, 1/2(1) := «2 and Vj(x) := /?/ other­
wise. Then v\, 1/2 6 C and (̂JC) :œ g(i/i(jc), 1/2W) has ^ ( l ) = {0,1} proving 
2 eu. 

(iv) Define £1,62 6 0(1) by setting £i(0) = £i(l) = cti, 52(3) = a-i and e/(x) = fy 
otherwise and proceed as above. • 

LEMMA 4.8. Iff C and U are as in 4.5 then either (i) U = { 1 , . . . , k — 1} or 
(ii) U = {2,4, . . . , / : — 2} and k is even. 

PROOF. Let k = 3. Since U ^ 0 by Lemma 2.13, we have 2 e U which implies 
£/ = {1,2} and (i) holds. Thus let A: > 3. According to Lemma 4.7(iv) we have U ^ 
{l,k— 1} and so a E U for some 1 < a < k!. Suppose U does not contain all even 
numbers not exceeding k!. Denote m the least even number < k! such that m eU while 
ra+2 fi U. Choosing a = b = m in Lemma 4.7(i) we get 2 ,4 , . . . , 2m E U. As m+2 ^ U 
we have 2m < m in contradiction to m = 2. It follows that U contains all even positive 
numbers < k'. We proceed by cases. 

A. Let k = U + 1. We have 2 ,4 , . . . , 21 E U and so k - 21 = 21 + 1 G U. In 
Lemma 4.7 (i) choose a — b = 21 + 1 to obtain c = 2k — 2(2£ + 1) = 4£ and so 
2,4, . . . ,4£ E £/. If we add the elements of the form k-u we get 1,2,..., 4£ - 1 E £/, 
proving (i). 

B. Let k = 4£ + 3. We have 2 , . . . , 21 E £/, hence 21 + 3 = Jfc - 21 E (7. Choosing 
a = b = 2^+3 in Lemma 4.7(i) we get 2,4, . . . ,4£ E £/. Now U contains it—2,... , £ -4£ 
and so 3 ,5 , . . . , M + 1 E £/. Finally choosing a = 2 and & = 3 in Lemma 4.7(i) we get 
1 E U, and so (i) holds. 

C. Let k = 2£. As all positive even numbers not exceeding t are in U we have 
^ 2 {2,4, . . . , 2£ — 2}. If we have equality we have (ii). Thus assume that U also 
contains some odd number o. We may assume that it does not exceed k' = £. If o = 1, 
then by Lemma 4.7(v) also 3 € U and so we may assume 3 < o < L Suppose that U 
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does not contain all odd numbers between 3 and t. Denote by u the least integer such 
that 1,3,5,..., 2w + 1 G U,2u+\ < I while 2u + 3 £ U. Choosing a = 2u + 1 and 
b — 2u + 2 in Lemma 4.7(i) we get c = Au + 3 (as a + b = Au + 3 < 21 — 3 < k) and so 
Au+3 < 2w+3 leading to u = 0 whereas w > 1. This contradiction shows that U contains 
all odd numbers between 3 and £. By Lemma 4.7(iii) we have 1 G U proving (ii). • 

The two cases in Lemma 4.8 lead to the clones investigated in the next section. 

5. Clones of quasilinear operations containing S. 

5.1. Call a selfmap <j> of k even if \(f>~1 (a)\ is even for all a EK i-e. if ker/ consists 
of blocks of even size. Put 

T:={(j>eO{l) : im<£Ç2}. 

Recall that/ G 0(n) is quasilinear (4.1) if 

(5.1) / ( * i , . . . ,xn) & (j>o((l>\(x) 4- • • • + <£„(*)) 

where <J>Q\ 2 —• k and 0 i , . . . , </>n G 7. Denote by B the set of all quasilinear operations. 
Call/ € B even if it can be expressed as in (5.1) with all <j>\,..., (j)n even. Denote by Be 

the set of even quasilinear operations and Q := {e? : 1 < / < n < u} the clone of all 
projections. We have: 

LEMMA 5.2. QUB and QUBe are clones. 

PROOF. Let C be one of QUB andQUBe and let £,r, A and * be as in 2.0. a) It 
is easy to see that £C = rC = C. b) Let n > 1 and / G C be given by (5.1). Put 
(j>\(x) :&> 0i(JC) + (j>2(x) and 0- := <j>i+\ (i = 1, . . . , w — 1). Then 

(A/)(*i , . . . ,*n_i) ft* 0o(0i(*i) + ' • ' + 0n-i(**-i)) . 

Clearly # G 7 and so Af € B settling AC C C in the case C = QUB. Let fa and fa 
be even. It suffices to verify that |</>j-1(0)| is even. For ij G 2 put Ay := 07* (0 H ( ^O) 
and a,y := |A//|. Clearly 

«oo + «oi = Î T"1 C0)| = 0 (mod 2), a0i + an = 1^(1)1 = 0 (mod 2) 

and so 
|̂ î—1C0)j = «oo + «ii = «oi + «ii = 0 (mod 2) 

proving that fa is even and Af EC in the case C = QUBe. c) Set/ G C ^ and g G &m\ 
Put r := m + n — 1 and h := f * g. Suppose that at least one of/ and g is a projection. 
Then it is easy to check that h E C (to express h in the form (5.1) choose fa to be the 
constant c$ with value 0 whenever h does not depend on its i-th variable). Thus suppose 
that neither/ nor g is a projection. Let/ be given by (5.1) and g by 

g(xU. . . ,Xm) « V o ^ l C ^ l ) + • • • + ^m(xm)). 
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Now 

h(xu.. .,xr) & (j>0i(j>\ (V>o(V>i(*i) + • • • + i)m(xm)yj + fa(xm+\) + • • • + (£„(*/-) I 

= ^o(x(V>l(*l ) + ' ' • + V>m(*m)) + <£2(-Wl) + ' • • + MXr)) 

where x := <£i ° Vto- 2 —• 2. Note that either 1) x is constant, or 2) xW = •* f° r all 
je G 2, or 3) x(x) = 1 + x f° r all JC G 2. 

CASE 1. Let x be constant. Put c0(x) := 0 for all x G k. Then /I(JCI, . . . ,xr) œ 
<ft)(x(*i) + ^ofe) + • • • + c0(xm) + ^m+i(*w+i) + ' * * + <t>n(xrj), and so A G C. 

CASE 2. Let x(x) = JC for all x G 2. Then clearly /i G C 

CASE 3. Let x(x) = JC + 1 for all JC G 2. Setting <t>'0(x) := 0O(* + 1) for all JC G 2 we 
get 

h(xU. . . ,Xr) W 0o(V>l(*l) + * * * + i>m(Xm) + ^2^m+l) + * ' * + </>n(xrj), 

and so again h E C. m 
Put V := {<j> G 0 (1) : |im<£| < 2}. 

LEMMA 5.3. 77*é? setMUB is a clone for every V CM C 0(1). 

PROOF. Notice that V CB.lt suffices to check that MUZ? is closed under *. Clearly 
this holds for M and by Lemma 5.2 also for B. Let / G #(w) be given by (5.1) and let 
g G M be ra-ary. Then 

g(Xi,...,Xm)t*g'(Xi) 

for some 1 < i < m and some unary operation g' G M. Put r := m + n — 1. We have 

(f * g)(*i,. . . , xr) w <£0 Ko(*i) + •••+ c0(*/-i) + ^i (g'(*i)) 

4- C0(*/+l) + ' ' • + C0(xm) 4- <£2(*m+l) + • • • + (j>n(Xr)), 

(where again CQ maps k onto {0}). If / > 1 then (g *f)(x\, ...9xr) & g'ixi) while for 
/ = 1 

(g*f)(xu...,xr)& (*i) + • • • 4- <f>(xn) + cofe+i) + * • • + c0(jcr))J. • 

We derive a Slupecki type criterion for Q U Be. Denote by Ve the set of all even maps 
from V (i.e. Ve := {</> G 0(1) : | im <j>\ < 2, \<j>~\a)\ even for all a G im <£}. 

We have: 

PROPOSITION 5.4. Letf be a quasilinear and essential operation. Then: 
(i) Ve U {/"} = QUBe provided/ is even, and 

(ii) VU{}} = QUBotherwise. 

PROOF, (i) By Lemma 5.2 the set Q U Be is a clone; and, in view of Ve Ç Be and 
f € Be the clone D := V U {/} is a subclone of <2U#e. For D it suffices to prove DD Be. 
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We may assume that imf = 2 (if not, replace/ by 1/; 0 / for a suitable V> € Ve) and 
that/ depends exactly on its first I variables, i.e. 

/ ( * ! , . . . ,xn) & <M*i) + * * ' + <l>e(xi), 

for some ^-: k —• 2 (/ = 1, . . . , £). Notice that the existence of an even/ implies kn is 
even and so k is even. It follows that all constant selfmaps of k belong to Ve. Applying 
4.5-4.6 (for m = 2) we obtain that 

belongs to D. As </>i is non-constant, we have (f>\ (c) = 0 and (j>\ (d) = 1 for some c, d E k. 
There is A G V, with A(0) = c and A(l) = d. Put /x := ^ o A . Similarly, (/>2(c') = 0 
and <j>2(d') — 1 for some c\d' E k. The map v mapping A := ^_1(0) onto {c'} and 
Z? := ii~l (1) onto {</} clearly belongs to Ve. The operation 

(5.2) 82(xux2) :» <£i(A(*i)) 4- ^2(1/(^2)) » M(*i) + Mte) 

belongs to £> and agrees with + on 2 (due to /X(JC) = JC for JC = 0,1). For m > 2 define 
gm inductively by setting gm := gm-\ * #2- Clearly all gm belong to D. By induction on 
m > 2 we show that 

(5. 3) gm(xu... ,*w) w /x(*i) + • • • + /z(*w). 

The equation (5.2) shows the validity of (5.3) for m=2. Let m > 2 and suppose (5.3) 
holds for ra-1. By the definition of gm, (5.2), (5.3) and n(x) = x for JC = 0,1 we get 

gw(*i,... ,*w) w /X(M(*I) + • • • + M(*m-i)) + li(xm) 

& H(x\) + • • • + /i(xm-i) + /i(xm), 

concluding the induction step. 
Finally let/ E Be be an arbitrary rc-ary operation. Then (5.1) holds for some </>o : 2 —• k 

and even <j>\,..., <j>n E 7\ From /Z(JC) = JC for JC = 0,1 it is immediate that 

/ (*! , . . . ,Xn) « <£0(M(<M*I)) + ' ' ' + **(<£„(*«))) » <£o(gn(<M*l)> • • • , ^/i(*m))); 

and s o / E Z) proving the required 2?£ Ç D. 

(ii) The proof is virtually the same as that of (i) but simpler since we can drop all 
restrictions to even operations. • 

REMARK 5.5. Let (j> E 0 (1) be not even and satisfy 1 < | im^ | < k. Set D := 
{(j)}UBe. Using Ve Ç Be it is easy to show that D contains some i/> E V \ Ve. Now D 
contains some #2 of the form (5.2) and proceeding as in the proof of Lemma 4.7 one can 
show that VCD. Applying Proposition 5.4(H) we get D D Q UB. 
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