
LMS J. Comput. Math. 14 (2011) 327–350 Ce2011 Author
doi:10.1112/S1461157011000180

Proving the Birch and Swinnerton-Dyer conjecture for specific
elliptic curves of analytic rank zero and one

Robert L. Miller

Abstract

We describe an algorithm to prove the Birch and Swinnerton-Dyer conjectural formula for any
given elliptic curve defined over the rational numbers of analytic rank zero or one. With computer
assistance we rigorously prove the formula for 16714 of the 16725 such curves of conductor less
than 5000.

1. Introduction

Let E be an elliptic curve defined over Q, given by a global minimal Weierstrass equation.
We denote the identity of E by O, the rank of the Mordell–Weil group E(Q) by r and the
conductor of E by N . For each prime p, let cp(E) be the Tamagawa number at p and let
ap = p+ 1−#Ẽ(Fp), where Ẽ(Fp) is the mod-p reduction of E. Let L(E/Q, s) be the Hasse–
Weil L-function of E, and denote its order of vanishing at s= 1 by ran(E/Q). The regulator
of E(Q) is denoted Reg(E(Q)). Let ω denote the minimal invariant differential of E and let
Λ = {

∫
α
ω : α ∈H1(E, Z)} be the canonical period lattice of E. Let Ω(E) =

∫
E(R)

|ω| be the
real period (the least positive real element of Λ) times the order of the component group of
E(R) and let ‖ω‖2 =

∫
E(C)

ω ∧ iω be twice the area of the fundamental domain of Λ. Denote
the Shafarevich–Tate group by X(Q, E) and for G an abelian group let Gtors denote its torsion
subgroup and let G/tors denote the quotient group G/Gtors.

Let #X(Q, E)an denote the following quantity:

#X(Q, E)an =
L(r)(E/Q, 1)

r!
· #E(Q)2tors

Ω(E) ·
∏
p cp(E) · Reg(E(Q))

.

The Birch and Swinnerton-Dyer (BSD) conjecture states that the rank r of E(Q) is equal to
the analytic rank ran(E/Q), the Shafarevich–Tate group is finite and its order is given by the
formula

#X(Q, E) = #X(Q, E)an.

Definition 1.1. We denote by BSD(E/Q, p) the following assertions.
(i) The rank r of E(Q) is equal to the analytic rank ran(E/Q).
(ii) The p-primary part X(Q, E)(p) of the Shafarevich–Tate group is finite.

(iii) The positive real number #X(Q, E)an is rational.
(iv) The conjectural formula holds at p, that is,

ordp(#X(Q, E)an) = ordp(#X(Q, E)(p)).

We also denote BSD(E, p) = BSD(E/Q, p), and note that there is a definition of BSD(A/K, p)
for abelian varieties A over global fields K in general — see, for example, [35, III, Section 5]
for details.
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By the modularity theorem [6, 59], every elliptic curve E defined over Q has a modular
parametrization ψ :X0(N)→ E. If for each isogenous curve E′ with modular parametrization
ψ′ :X0(N)→ E′ we have that ψ′ = ϕ ◦ ψ for some isogeny ϕ, then we say that E is an optimal
elliptic curve, often called a strong Weil curve in the literature. Every elliptic curve over Q
has an optimal elliptic curve in its isogeny class and by the characterizing property this curve
is unique. Thus, we can use optimal curves as isogeny class representatives and, by isogeny
invariance of BSD(E, p) which is proved in [10], focus on optimal curves.

If ran(E/Q) 6 1, then all but the last part of BSD(E/Q, p) is known, so in this case
BSD(E/Q, p) is equivalent to the last equality. Clearly, the Birch and Swinnerton-Dyer
conjecture holds if and only if #X(Q, E)an > 0 and, for each prime p, BSD(E/Q, p) is true.
The rank conjecture has been verified for E/Q of conductor N < 130 000 [15]. This is possible
because E is known to be modular and the analytic rank is at most three. We can compute
the ratio L(E, 1)/Ω(E) ∈Q exactly, use the Gross–Zagier–Zhang formula (Theorem 4.1) to
provably determine whether L′(E, 1) = 0, numerically compute the second and third derivatives
to desired precision and use parity to determine the exact analytic rank in this case. It is worth
noting that #X(Q, E)an is not even known to be a rational number for a single curve such
that ran(E/Q)> 1.

In this note, we describe a well-known algorithm which computes the order of the
Shafarevich–Tate group of any elliptic curve E such that ran(E/Q) 6 1 (see Theorem 4.7).
This either proves the full conjecture for E or produces a counterexample. We aim to make
this algorithm as explicit and efficient as possible. We also report the results of computer
calculations which prove the following theorem.

Theorem 1.2. Suppose that E/Q is an elliptic curve of conductor N < 5000 and (analytic)
rank at most one. If p is a prime such that E[p] is irreducible, then BSD(E, p) holds. If E[p]
is reducible and the pair (E, p) is not one of the eleven pairs appearing in Table 10, then
BSD(E, p) holds.

Note that this gives the full Birch and Swinnerton-Dyer conjecture for 16714 curves of the
16725 of analytic rank at most one and conductor at most 5000. The remaining cases will be
treated in forthcoming papers with Michael Stoll and with Brendan Creutz — see Section 9
for more details.

In their original work [4], Birch and Swinnerton-Dyer formulated a theory of reduced quartic
forms in order to determine representations of the 2-Selmer groups of elliptic curves. They
studied curves of the form y2 = x3 −D and y2 = x3 −Dx and did extensive computations
to give lower and upper bounds for the ranks of the Mordell–Weil groups for |D|6 400 in
the first case and |D|6 200 in the second case. In [5], they studied curves ED of the form
y2 = x3 −Dx even more closely, expressing L(ED/Q, 1) in terms of division values of the
Weierstrass ℘-function. They showed that

L(ED/Q, 1) =

{
D−1/4ωDσ(D) for D > 0,
(−4D)−1/4ωDσ(D) for D < 0,

where ωD is the real period of ℘ and σ(D) is a rational number.
Swinnerton-Dyer was able to secure plenty of time on the computer EDSAC II by

programming its first operating system. He and Birch used this opportunity to run numerical
experiments for 1348 values of D, leading them at first to conjecture that σ(D) was roughly
the order of the Shafarevich–Tate group X(Q, ED). Motivated by Cassels, they used these
computations to formulate the conjecture that the order of X(Q, ED) is #ED(Q)2/τ(D), where
τ(D) =

∏
p6∞

∫
ED(Qp)

ωp is the Tamagawa number and ω = dx/y is an invariant differential
on ED.
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Razar further studied these curves ED. Razar’s studies were based on the observation of
Tate that if there are no first descents for the 2-isogenies between ED and E−4D, then ED(Q)
is finite and X(Q, ED)[2∞] is trivial. In [42], Razar confirmed that when there are no first
descents, the order of X(Q, ED) predicted by the conjecture is a 2-adic unit for D equal
to ±p,±p2,±p3,±4p,±4p2 and ±4p3, where p is a prime. In [43], he showed that when D
is p2 or −4p2, the prime p satisfies p≡ 9 (mod 16) and p has 2 as a quartic residue, then
ED(Q) is finite and X(Q, ED)[2∞], which is now non-trivial, has the order predicted by the
conjecture.

The full conjecture for abelian varieties over global fields can be found stated in [56], in
which Tate extended Cassels’ result [10] on the isogeny invariance of the conjectural formula
from elliptic curves to abelian varieties over number fields. He also showed this invariance for
abelian varieties over function fields Fq(t), as long as the isogeny is of degree prime to the
characteristic to the field. In the same paper, Artin and Tate showed that over function fields,
the L-function has a zero of order at least the rank of the Mordell–Weil group, and by [40,
II.9.7] these two ranks are equal if and only if the Shafarevich–Tate group is finite.

Buhler, Gross and Zagier [7] studied the first curve over Q (ordered by conductor) of rank
three, E : y2 = 4x3 − 28x+ 25. In this case, it is not known that the order of the Shafarevich–
Tate group predicted by the conjecture is a rational number, nor that the group itself is
finite. Nonetheless, the authors managed to show that if E is modular, which is now known
to be the case, then the analytic rank equals the algebraic rank and the two sides of the
conjectural formula agree up to 29 decimal places. In [24], Flynn, Leprévost, Schaefer, Stein,
Stoll and Wetherell considered 32 curves of genus 2 over Q whose Jacobians J are modular
abelian surfaces. They computed to very high numerical precision the conjectured order of
the Shafarevich–Tate group of J/Q, and they found in each case that this is very close to an
integer, which is in fact equal to the order of the 2-torsion of the Shafarevich–Tate group.

In the rest of this note, we will focus on elliptic curves over number fields, restricting our
attention to Q and occasionally to certain quadratic imaginary number fields. Much more is
known in these cases, especially when the L-function has a zero of order at most one: see
Sections 2–4. This note was inspired by the work in [27], in which the full conjectural formula
was shown to hold for a large number of curves of conductor up to 1000. In the present note, we
extend this work to conductor 5000 and prove the formula for a much larger proportion of the
curves considered, using various n-descents, Heegner point computations and Iwasawa theory.
In contrast to the results in [7] and [24], the final results are not a numerical verification
to high accuracy, but a complete proof of the truth of the Birch and Swinnerton-Dyer
conjecture.

Whenever we prove a theorem with the help of a computer, questions regarding errors in both
hardware and software arise. Any computer-assisted proof implicitly includes as a hypothesis
the statement that the software used did not encounter any bugs (hardware or software errors)
during execution. Few software programs for serious number theory research have been proven
correct. However it is often noted in the literature, as it is in Birch and Swinnerton-Dyer’s
seminal note [4, p. 18] itself, that the kind of algorithms which occur in number theory (and
more importantly the errors computational number theorists are likely to make implementing
them) are often of a very particular sort. Either the software will work correctly or very quickly
fail in an obvious way — perhaps it will crash or give answers that make no sense at all. In fact,
the computational work behind the theorems of Section 8 uncovered several bugs (which have
all been fixed). There are sometimes different implementations of the same algorithm or even
different algorithms which implement the same theory. For example, the author used four
different implementations of 2-descent to verify the computational claims of Theorem 8.1.

Throughout, E will denote an elliptic curve defined over Q of analytic rank zero or one.
For such a curve, the Birch and Swinnerton-Dyer conjectural formula is known to hold up to
a rational number, and Sections 2–4 explain this result in such a way as to make it explicit.
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Sections 5 and 6 discuss what to do with the remaining primes and Sections 7 and 8 contain
the proof of Theorem 1.2. Section 9 discusses the remaining cases, which all have reducible
mod-p representations.

2. Quadratic twists

Below we will need to use several properties of the quadratic twist Ed of the elliptic curve
E by a squarefree integer d 6∈ {0, 1}, so we establish these here. For any number field F , let
GF denote its absolute Galois group. Suppose that E is an elliptic curve over Q given in
standardized (a1, a3 ∈ {0, 1} and a2 ∈ {−1, 0, 1}) global minimal Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The curve Ed can then be presented in the following Weierstrass form, which is not necessarily
integral (and even when it is it may not be minimal):

Ed : y2 + a1xy + a3y = x3 + (a2d+ a2
1(d− 1)/4)x2 + (a4d

2 + a1a3(d2 − 1)/2)x
+ a6d

3 + a2
3(d3 − 1)/4.

Put K = Q(θ), where θ2 = 1/d, and note that the curves are related by the K-isomorphism

ϕ : E→ Ed : ϕ(x, y) =
(
θ−2x, θ−3

(
y − a1(θ − 1)

2
x− a3(θ3 − 1)

2

))
.

The L-series of E/K, E/Q and Ed/Q are related by the formula

L(E/K, s) = L(E/Q, s) · L(Ed/Q, s).

Define as usual
b2 = a2

1 + 4a2, c4 = b22 − 24b4,

b4 = 2a4 + a1a3, c6 = b32 + 36b2b4 − 216b6,

b6 = a3
3 + 4a6, ∆ = (c34 − c26)/1728,

noting that ∆ is the minimal discriminant of E, hence ω = dx/(2y + a1x+ a3) is the
minimal invariant differential of E. Let ∆′ be the minimal discriminant of Ed, let sig(E) =
(ord2(c4), ord2(c6), ord2(∆)) and, for each prime p, let

λp = min{3ordp(c4), 2ordp(c6), ordp(∆)}.

The following proposition is a correction of [13, Proposition 5.7.3].

Proposition 2.1. For each prime p | 2d, define δp as follows.
(1) If p is odd, then define δp = 1 if either λp < 6 or p= 3 and ordp(c6) = 5. Otherwise,

define δp =−1.
(2) If d≡ 1 (mod 4), then δ2 = 0.
(3) If d≡ 3 (mod 4), then

• δ2 = 2 if sig(E) = (0, 0, ·) or (·, 3, 0);
• δ2 =−2 if sig(E) = (4, 6, c) with c> 12 and 2−6c6d≡−1 (mod 4) or if sig(E) =

(a, 9, 12) with a> 8 and 2−9c6d≡ 1 (mod 4);
• δ2 = 0 otherwise.

(4) If d≡ 2 (mod 4), then
• δ2 = 3 if sig(E) = (0, 0, ·);
• δ2 =−3 if sig(E) = (6, 9, c) with c> 18 and 2−10c6d≡−1 (mod 4);
• δ2 = 1 if ord2(c4) ∈ {4, 5}, or if ord2(c6) ∈ {3, 5, 7}, or if sig(E) = (a, 6, 6) with a> 6

and 2−7c6d≡−1 (mod 4);
• δ2 =−1 otherwise.
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Then

∆′ = ∆δ6 where δ = δ(E, d) =
∏
p|2d

pδp .

The original statement of the proposition in [13] does not include some of the congruence
conditions when d≡ 3 (mod 4). This is simply a transcription omission from the correctly
stated and more general Proposition 5.7.1.

The invariant differential ωd associated to the given Weierstrass equation for Ed has pullback
ϕ∗ωd = θω by [49, p. 49], and it may not be minimal. In fact, if ∆d is the discriminant of
the above equation for Ed, then θ12∆d = ∆. Since ∆ = ∆′δ−6, we have (δ/d)6∆d = ∆′. The
transformation taking Ed to its minimal model must be defined over Q, so |δ/d| ∈Q must be
a square (or one can just read this off from the above proposition) and if ω′ is the minimal
invariant differential of Ed, then ±|δ/d|−1/2ωd = ω′. Finally, since ϕ∗ω′ =±|δ/d|−1/2θω, we
find the relationship between the canonical period lattices of E and Ed:

Λd = |δ/d|−1/2θΛ.

Next we will consider the relationship between the Mordell–Weil and Shafarevich–Tate
groups of the curve E and its twist Ed. Let σ denote the non-trivial element of G= Gal(K/Q).
Define an action of G on H1(K, E) by setting ξσ(τ) = ξ(στσ−1)σ for τ ∈GK and {ξ}σ = {ξσ}.
Let E(K)±, H1(K, E)± denote the ±1-eigenspaces of E(K), H1(K, E), respectively. By the
definition of Ed (see [49, X, Section 2]), we have that ϕσ = [−1] ◦ ϕ. Then for P ∈ E(K) we
have

Pσ =±P ⇒ ϕ(P )σ = ϕσ(Pσ) =∓ϕ(P ),

and for ξ :GK → E representing a cocycle class {ξ} ∈H1(K, E) we have

{ξσ ± ξ}= 0⇒{(ϕ ◦ ξ)σ ∓ ϕ ◦ ξ}= {[−1] ◦ ϕ ◦ (ξσ ± ξ)}= 0,

which show that ϕ exchanges E(K)+ with E(K)− and H1(K, E)+ with H1(K, E)−.
We now give the relationship between the Mordell–Weil groups E(Q), Ed(Q) and E(K).

Lemma 2.2. We have E(Q) = E(K)+ and under ϕ−1 we may identify Ed(Q) = E(K)−.
Under this identification, we have:

(1) the intersection is 2-torsion:

E(Q) ∩ Ed(Q) = E(Q)[2];

(2) if E(K) has rank r and E(K)[2] has rank s, then

[E(K)/tors : (E(Q) + Ed(Q))/tors] 6 2r

and

[E(K) : E(Q) + Ed(Q)] 6 2r+s;

(3) if E(K) has rank one, E(Q) has rank zero and E(Q)[2] = 0, then

E(K)/tors = Ed(Q)/tors.

Proof. The identifications are by definition and the above observations.
(1) Note that P ∈ E(K)+ ∩ E(K)− is equivalent to P = Pσ =−P and hence to P ∈

E(Q)[2].
(2) Let P ∈ E(K) and note that

2P = (P + Pσ) + (P − Pσ) ∈ E(K)+ + E(K)−.
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Therefore, since 2E(K)⊆ E(K)+ + E(K)−, we have that

[E(K)/tors : (E(K)+ + E(K)−)/tors] 6 [E(K)/tors : 2E(K)/tors] = 2r

and

[E(K) : E(K)+ + E(K)−] 6 [E(K) : 2E(K)] = 2r+s.

(3) Choose P such that E(K) = ZP ⊕ E(K)tors. We have that T := Pσ + P ∈ E(K)+ must
be torsion, so choose a, b so that the order of T is 2b(2a+ 1). With W = P + aT , we have that

Wσ +W = Pσ + aT + (P + aT ) = Pσ + P + 2aT = (2a+ 1)T

must be in E(Q)(2), which is trivial since E(Q)[2] = 0. Thus, W ∈ E(K)− and, since W ≡ P
modulo torsion, we have E(K)/tors = E(K)−/tors.

Lemma 2.3. If X(K, E) is finite, then for some integer t we have

#X(K, E) = #X(Q, E) ·#X(Q, Ed) · 2t.

Proof. Let v be a place of K and let Qv be the completion of Q at v. The Hochschild–
Serre spectral sequence [30] can be used to extend the inf–res sequence, which we fit into a
commutative diagram.

0 // H1(K/Q, E(K)) inf // H1(Q, E) res //

��

H1(K, E)+ //

��

H2(K/Q, E(K))

0 // H1(Kv/Qv, E(Kv))
inf // H1(Qv, E) res // H1(Kv, E)+ // H2(Kv/Qv, E(Kv))

If G is a finite group, then Hi(G, ·) is killed by #G for all i. Therefore, the finite groups on
the far left and right of the above diagram are all killed by 2.

Given a ξ ∈X(K, E), we have 2ξ = (ξ + ξσ) + (ξ − ξσ) and ξ ± ξσ ∈H1(K, E)±. Since
H2(K/Q, E(K)) is killed by 2, there is a ξ′ ∈H1(Q, E) with res(ξ′) = 2(ξ + ξσ). Because
ξ + ξσ ∈X(K, E), we know that res(ξ′) ∈H1(Kv, E)+ is trivial for all v and, since
H1(Kv/Qv, E(Kv)) is killed by 2, we have 2ξ′ = 0 in H1(Qv, E) for all v, that is, we have
2ξ′ ∈X(Q, E) and hence 4(ξ + ξσ) ∈ res(X(Q, E)). Using ϕ to identify H1(K, E)− with
H1(K, Ed)+, we may show by a similar argument that 4(ξ − ξσ) ∈ res(X(Q, Ed)). This shows
that

8X(K, E)⊆ res(X(Q, E)) + res(X(Q, Ed))⊆X(K, E).

The claim then follows from the fact that the kernel of each restriction map is a finite
2-group.

The following lemma is a generalization of a formula which appeared in [29, p. 312] without
proof.

Lemma 2.4. Suppose d < 0 is a squarefree integer. Then with δ = δ(E, d) as defined above,
we have

Ω(E) · Ω(Ed) · δ1/2 = [E(R) : E0(R)] · ‖ω‖2.

Proof. Let x be the least positive real element of the period lattice Λ, and choose
a fundamental domain for Λ with base [0, x]⊂ R and upper left corner with positive
imaginary part y and real part in [0, x). Then Ω(E)/[E(R) : E0(R)] = x and ‖ω‖2 = 2xy.
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We compute

δ1/2Ω(Ed) = δ1/2
∫
Ed(R)

|ω′|=
∫
E(C)−

δ1/2|ϕ∗ω′|=
∫
E(C)−

|ω|= 2y.

The claim follows.

3. Complex multiplication

Let E be an elliptic curve over Q, let R denote the endomorphism ring End(E/C), let K denote
its field of fractions and let AutR(E[p]) denote the set of automorphisms of E[p] commuting
with the action of R. Consider the map ρE,p :GQ→Aut(E[p]), which we call the mod-p Galois
representation.

If E does not have complex multiplication (CM), then R= Z, K = Q and the groups
AutR(E[p]) and Aut(E[p])∼= GL2(Fp) are identical. If E does have CM, then R is an order
in the quadratic imaginary field K and we have ρE,p|GK

:GK →AutR(E[p]) ( Aut(E[p]). In
either case, we will say that ρE,p is surjective if the image of GK is AutR(E[p]). Often in the
literature one sees this defined as being ‘as surjective as possible’ in the CM case. In Section 7,
we will give several examples of this.

Note that there is always an isogeny defined over Q from E to an elliptic curve E′ with CM
by a maximal order. E has CM by a non-maximal order if and only if its j-invariant is in the
set {−12288000, 54000, 287496, 16581375} [50, p. 483].

Suppose that E is an elliptic curve defined over K with CM by the ring of integers OK .
The period lattice Λ of E is an OK-module and, since K has trivial class group, Λ is a free
OK-module. Both are free Z-modules of rank two, so let τ ∈ C× be a generator of Λ, that is,
τOK = Λ.

We have the following theorem of Rubin.

Theorem 3.1. With E, K, τ as above and w = #O×K , we have:

(1) if L(E/K, 1) 6= 0, then E(K) is finite, X(K, E) is finite and there is a u ∈ OK [w−1]×

such that

L(E/K, 1) =
#X(K, E) · ττ
u · (#E(K))2

;

(2) if L(E/K, 1) = 0, then either E(K) is infinite or the p-part of X(K, E) is infinite for
all primes p - #O×K ;

(3) if E is defined over Q and ran(E/Q) = 1, then BSD(E/Q, p) is true for all odd p which
split in K.

Proof. See [45].

Corollary 3.2. If E is defined over Q, has CM by K and ran(E/Q) = 0, then
BSD(E/Q, p) is true for all p> 5. If K 6= Q(

√
−3), then BSD(E/Q, 3) is true.

Proof. Let K = Q(
√
d) for d < 0 a squarefree integer and without loss of generality suppose

that E has CM by OK . Letting Ed be the model defined in Section 2 so that Λd = θΛ, note
that since [θ−1] is an endomorphism of E we have θ−1Λ⊂ Λ, which implies Λ⊂ Λd. Thus, E
is isogenous to Ed, and this degree-|d| isogeny is defined over Q since its kernel is θΛ/Λ and
GQ acts by multiplying θ by ±1. Thus, we have that

L(E/K, s) = L(E/Q, s)2.
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Since L(E/Q, 1) 6= 0, we have L(E/K, 1) 6= 0, so E(K) and X(K, E) are finite. By
Lemmas 2.2 and 2.3, we have that E(Q) and X(Q, E) are finite and

L(E/Q, 1)2 =
#X(Q, E) ·#X(Q, Ed) · ττ

(#E(Q) ·#Ed(Q))2
· 2tu−1,

where t ∈ Z. Since E and Ed are isogenous over Q, we have [10, Corollary 1.3]

#X(Q, Ed)
#Ed(Q)2

=
#X(Q, E)

#E(Q)2
· Ω(E)

Ω(Ed)

∏
p

cp(E)
cp(Ed)

.

By Lemma 2.4, we have

L(E/Q, 1)2

Ω(E)2
=

#X(Q, E)2

#E(Q)4
· ττδ

1/2

‖ω‖2
· 2t

[E(R) : E0(R)] · u
·
∏
p

cp(E)
cp(Ed)

.

Note that ‖ω‖2/2 is the area of Λ = τOK , that is, ττ times the area of OK . So, we have

ττδ1/2

‖ω‖2
= 2v

δ1/2

|d|1/2
,

where v = 1 and δ ∈ {|d|, 1/|d|} if d≡ 1 (mod 4); and v =−1 and δ/|d| ∈ {4, 1, 1/4, 1/16}
otherwise.

In summary, we have that

L(E/Q, 1)2

Ω(E)2
=
(

#X(Q, E)
#E(Q)2

)2

·
(

2v+tδ1/2

[E(R) : E0(R)] · |d|1/2

)
·
(

1
u

∏
p

cp(E)
cp(Ed)

)
.

Since L(E/Q, 1)/Ω(E) is a rational number, we have δ1/2/(|d|1/2u) ∈Q. But, since δ > 0 and
u ∈K, we must have u ∈Q and hence δ1/2/|d|1/2 ∈Q. As noted in [50, p. 176], since E has CM,
it must be of additive reduction at all the bad primes. For each prime p, by [49, Corollary 15.2.1,
p. 359], the Tamagawa numbers cp(E) and cp(Ed) are at most 4.

Let p be a prime and suppose p> 5. Since neither the Tamagawa numbers nor the error
term u are divisible by p, we will show that ordp(δ1/2/|d|1/2) = 0. If d 6≡ 1 (mod 4), then
this is true as observed above, so suppose d≡ 1 (mod 4). Since d is divisible by exactly one
prime and δ is divisible by at most two and that prime, we may assume p= |d|. Since p> 5,
the quantity ordp(δ1/2/|d|1/2) must be even and hence δ = |d|. Since p does not divide any
Tamagawa number, the first claim is proved.

Now suppose p= 3 and d 6=−3, hence ord3(u) = 0. If d >−3, then from the above we have
ord3(δ1/2/|d|1/2) = 0, so further suppose d <−3; in particular, we have d≡ 1(mod 4) and
δ1/2/|d|1/2 ∈ {1, |d|−1}. Since the prime |d| is not 3, we must have ord3(δ1/2/|d|1/2) = 0. It
only remains to show that when d 6=−3, no Tamagawa number cq(E) is divisible by 3. This
can be done as follows.
E is isomorphic to one of the ten curves in the table on [50, p. 483] which do not have CM

discriminant −3. Call this representative curve F and note that E is a twist of F by a character
whose order divides 4. Since 3 does not divide the discriminant of F , we have 4 · ord3(∆(E))≡ 0
(mod 12). By [50, Table 4.1, p. 365], if q 6= 3, then Kodaira types IV and IV∗ cannot occur
at q since in those cases ordq(∆(E)) ∈ {4, 8} and therefore cq(E) is not divisible by 3. For
q = 3, one may write down an explicit equation for E as a twist of one such F and run Tate’s
algorithm [50, IV.9.4] over Q3. For example, suppose j(E) = 1728 and hence F is the curve
y2 = x3 + x, noting that this is the only case in which the twisting character could be of order
four.

If the order is four, then E is given by y2 = x3 +Dx for some D ∈Q∗. Since we are assuming
that E is in minimal integral form, we have that D ∈ Z. We have that b2 = b6 = 0, b4 = 2D,
b8 =−D2 and ∆ =−26 ·D3. Tate’s algorithm shows that if ord3(D) = 0, the Kodaira symbol
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is I0, if ord3(D) = 1 it is III, if ord3(D) = 2 it is I∗0, if ord3(D) = 3 it is III∗ and if ord3(D) > 4
then the model of E is not minimal. If the order is two, then either E is the exceptional quadratic
twist y2 = x3 − 4x, whose Kodaira symbol at q = 3 is I0, or E is given by y2 = x3 +D2x for
some non-zero D ∈ Z. So, b2 = b6 = 0, b4 = 2D2 and b8 =−D4. If ord3(D) = 0, then the Kodaira
symbol is I0, if ord3(D) = 1 then it is I∗0 and if ord3(D) > 2 then the given model of E is not
minimal.

The other nine cases proceed similarly, in each case ruling out the possibility of Kodaira
types IV and IV∗ at q = 3. Therefore, 3 - cq(E) for all primes q and hence the second claim is
proved.

Lemma 3.3. With E and K as above, let p be a prime of K of good reduction for E which
does not divide #O×K . Then K(E[p])/K is a cyclic extension of degree Norm(p)− 1 in which
p is totally ramified.

Proof. See [44, Lemma 21(i)].

Lemma 3.4. With E and K as above, we have AutOK
(E[p])∼= (OK/pOK)× for all primes p.

Proof. E[p] is a free OK/pOK-module of rank one [50, II.1.4(b)].

Proposition 3.5. If p is a prime of good reduction for E not dividing #O×K which is inert
in K, then ρE,p is surjective.

Proof. When p is inert in K, Norm(p) = p2. By Lemma 3.3, we find that the order of the
Galois group is #Gal(K(E[p])/K) = p2 − 1. Since ρE,p : Gal(K(E[p])/K)→AutOK

(E[p]) is
injective, it suffices to show that #AutOK

(E[p]) = p2 − 1. Since dimZ(OK) = 2, we have that
#(OK/pOK)× = p2 − 1, which by Lemma 3.4 is equal to #AutOK

(E[p]).

4. Heegner points

If E is an elliptic curve over Q of conductor N and D < 0 is a squarefree integer, we say that the
quadratic imaginary field K = Q(

√
D) satisfies the Heegner hypothesis for E if each prime p |N

splits in K. If K satisfies the Heegner hypothesis for E, then the Heegner point yK ∈ E(K) is
defined as follows (see [28] for details). By hypothesis, there is an ideal N of OK such that
OK/N is cyclic of order N . Since OK ⊂N−1, we have a cyclic N -isogeny C/OK → C/N−1

of elliptic curves with CM by OK and hence a point x1 ∈X0(N). By the theory of CM, x1 is
defined over the Hilbert class field H of K. We fix a modular parametrization ψ :X0(N)→ E of
minimal degree taking∞ to O, which exists by [6, 59]. As above, denote the minimal invariant
differential on E by ω. Then ψ∗(ω) is the differential associated to a newform on X0(N). We
have ψ∗(ω) = α · f , where f is a normalized cusp form and α is some non-zero integer [21]
constant. The Manin constant is c := |α| and the Heegner point is yK := TrH/K(ψ(x1)) ∈ E(K).
It has been conjectured that c= 1 if E is optimal, and this has been verified for N < 130000
by Cremona [1]. Define IK := [E(K)/tors : ZyK ], which we call the Heegner index. Note that
sometimes we may denote the Heegner index by ID to emphasize the dependence K = Q(

√
D).

Gross, Zagier and Zhang have proved a deep theorem which expresses the first derivative of
the L-series of E/K at 1 in terms of the canonical height ĥ of the Heegner point yK .

Theorem 4.1 (Gross–Zagier–Zhang). If K satisfies the Heegner hypothesis for E, then

L′(E/K, 1) =
2‖ω‖2ĥ(yK)

c2 · u2
K ·
√
|∆(K)|

,
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where ‖ω‖2 =
∫
E(C)

ω ∧ iω and the quadratic imaginary number field K has 2uK roots of unity

and discriminant ∆(K).

Proof. Gross and Zagier first proved this in [29] when D is odd and Zhang generalized it
in [62].

Note that uQ(
√
−1) = 2, uQ(

√
−3) = 3 and, for all other quadratic imaginary fields K, we have

uK = 1. Often, one requires that D 6∈ {−1,−3} but, since there are infinitely many D satisfying
the Heegner hypothesis for E if ran(E) 6 1, this is a minor issue (see the proof of Theorem 4.4).
Note also that the ĥ appearing in the formula as stated here is the absolute height, whereas
the one appearing in [29, Theorem 2.1, p. 311] is equal to our 2ĥ. Recall that the Néron–Tate
canonical (absolute) height is defined for P ∈ E(K) by

ĥ(P ) =
1

2[K : Q]
lim
n→∞

4−n log(HK(x(2NP ))),

where HK(x) =
∏
v |x|

[Kv :Qv ]
v with the product running over the places v of K.

We have the following theorem of Kolyvagin.

Theorem 4.2. If yK is non-torsion, then E(K) has rank one (hence IK <∞), X(K, E)
is finite and

#X(K, E)|c4I2
K ,

where c4 is a positive integer (explicitly defined in [34]) such that every odd prime p dividing
c4 is such that ρE,p is not surjective.

Proof. This is [34, Theorem A].

Corollary 4.3. If yK is non-torsion, then X(Q, E) and X(Q, ED) are finite and have
orders whose odd parts divide c4I

2
K .

Proof. By Lemma 2.3, we have that #X(Q, E) ·#X(Q, ED) divides #X(K, E) up to a
power of two.

Theorem 4.4. If ran(E) 6 1, then there exists a quadratic field K satisfying the Heegner
hypothesis such that yK is non-torsion. In particular,

r(E) = ran(E),

X(Q, E) is finite and, if p is an odd prime unramified in the CM field such that ρE,p is
surjective, then

ordp(#X(Q, E)) 6 2 · ordp(IK).

Note that the if E does not have CM, then by the CM field we mean Q.

Proof. We follow the proof given in [20]. If ε=−1 (that is, ran(E) = 1), then a result of
Waldspurger (see [57]) implies that there are infinitely many D < 0 such that K = Q(

√
D)

satisfies the Heegner hypothesis for E and ran(ED) = 0. If ε= 1 (that is, ran(E) = 0), then
results of Bump, Friedberg and Hoffstein (see [8]) or independently results of Murty and
Murty (see [41]) imply that there are infinitely many D < 0 such that K = Q(

√
D) satisfies

the Heegner hypothesis for E and ran(ED) = 1.
We have that

ords=1L(E/K, s) = ords=1L(E/Q, s) + ords=1L(ED/Q, s),
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which implies that in either case ran(E/K) = 1, which, by the Gross–Zagier–Zhang formula
(Theorem 4.1), implies that yK is non-torsion. Then Kolyvagin’s Theorem 4.2 implies
that E(K) has rank one, that IK <∞ and that X(K, E) is finite.

By Lemma 2.2, we have

rank(E(K)) = rank(E(Q)) + rank(ED(Q)).

By [20, Proposition 3.11], the point yK belongs to E(Q) (up to torsion) if and only if ε=−1.
It follows that the rank of E(Q) is equal to ran(E/Q).

The following collects previous results in a way to make them more computationally
explicit.

Corollary 4.5. Suppose that E has CM by the full ring of integers OK .

(1) If ran(E) = 0, then BSD(E/Q, p) is true for p - #O×K .
(2) If ran(E) = 1, then:

(a) if p> 3 is split, then BSD(E/Q, p) is true;
(b) if p> 5 is inert and p is a prime of good reduction for E, then

ordp(#X(Q, E)) 6 2 · ordp(I),

where I = IQ(
√
D) is any Heegner index for D <−4 satisfying the Heegner

hypothesis.

Proof. Part (1) is Corollary 3.2. Part (2a) is part (3) of Theorem 3.1. Part (2b) is obtained
from Proposition 3.5 by Theorem 4.4.

We now describe an algorithm for computing the Mordell–Weil and Shafarevich–Tate groups
when the analytic rank of E/Q is bounded above by one. In the next section, we will make
this more explicit, with the aim of developing a practical procedure for verifying the Birch and
Swinnerton-Dyer conjecture for a specific elliptic curve.

Lemma 4.6. If B > 0 is such that S = {P ∈ E(Q) : ĥ(P ) 6B} contains a set of generators
for E(Q)/2E(Q), then S generates E(Q).

Proof. See [14, § 3.5].

Theorem 4.7. If ran(E/Q) 6 1, then there are algorithms to compute both the Mordell–
Weil group E(Q) and the Shafarevich–Tate group X(Q, E).

Proof. In general, 2-descent is not known to terminate, but in this case r = ran(E) is
known. Therefore, 2-descent will determine E(Q)/2E(Q). Then we can search for points up
to the maximum height of points in E(Q)/2E(Q) and by Lemma 4.6 we will find a set of
generators for E(Q). (Note that point searching suffices to prove the existence of an algorithm,
since the condition r = ran(E) gives a termination condition for the search. We mention 2-
descent here because it is much more effective in practice, especially for finding points of large
height.)

To compute X(Q, E), note that Kolyvagin’s Theorem 4.4 gives an explicit upper bound B
for #X(Q, E). For primes p dividing this upper bound, we can (in theory at least) perform
successive pk-descents for k = 1, 2, 3, . . . to compute X(Q, E)[pk]. As soon as X(Q, E)[pk] =
X(Q, E)[pk+1], we have X(Q, E)[pk] = X(Q, E)[p∞] and can move on to the next prime.
Once we do this for each prime, we have X(Q, E) =

⊕
p|B X(Q, E)[p∞].
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For ran(E) 6 1, we can (at least in theory) compute #X(Q, E)an exactly, as first described
in [29, p. 312]. Together with the previous theorem, this shows that the BSD formula for E
can be proved for specific elliptic curves via computation.

The main ingredient in applying Kolyvagin’s work to a specific elliptic curve E of analytic
rank at most one is to compute the Heegner index IK = [E(K)/tors : ZyK ], where K = Q(

√
D)

satisfies the Heegner hypothesis for E and yK ∈ E(K) is a Heegner point (and yK is its image
in E(K)/tors). Let z ∈ E(K) generate E(K)/tors.

We can provably compute ĥ(yK) to desired precision using the Gross–Zagier–Zhang formula
(Theorem 4.1), reducing the index calculation to the computation of the height of z, since

I2
K =

ĥ(yK)

ĥ(z)
.

We have the following corollary of Lemma 2.2.

Corollary 4.8. Suppose that E is an elliptic curve of analytic rank zero or one over Q, in
particular rank(E(Q)) = ran(E(Q)). Let D < 0 be a squarefree integer such that K = Q(

√
D)

satisfies the Heegner hypothesis for E.

(1) If we have ran(F (Q)) = 1, where F is one of E or ED, and if x ∈ F (Q) generates
F (Q)/tors, then

IK =



√
ĥ(yK)

ĥ(x)
,

1
2
x 6∈ F (K),

2

√
ĥ(yK)

ĥ(x)
,

1
2
x ∈ F (K).

(2) Suppose ran(E(Q)) = 0. If E(Q)[2] = 0, then let A= 1, otherwise let A= 4. Let C =
C(ED/Q) denote the Cremona–Prickett–Siksek height bound [18]. If there are no non-torsion
points P on ED(Q) with naive absolute height

h(P ) 6
A · ĥ(yK)
M2

+ C,

then

IK <M.

Note that this is a correction to the results stated in [27]. However, for each case in which [27]
uses this result, the corresponding A is equal to 1. Therefore, this mistake does not impact any
of the other results there.

If rank(E(Q)) = 1, then we will have a generator x from the rank verification, and we can
simply check whether 1

2x is in E(K) and use part 1 of the corollary. If rank(E(Q)) = 0, then
we may not so easily find a generator of the twist, because a point search may very well fail
since the conductor of ED is D2N . However, a failed point search can still be useful as long as
we search sufficiently hard, because of part 2 of the corollary.

It is also worthwhile to point out that in each case where we use the computation of ĥ(yK) to
prove bounds on IK or to compute IK exactly, we must compute ĥ(yK) to sufficient precision.
One can either compute the Heegner point algebraically and then compute its height directly,
or one can compute its height via the Gross–Zagier formula. Any time such a computation
was used in a proof, it was done with sufficient precision to prove the resulting conclusion
on IK .
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5. Bounding the order of X(Q, E)

Suppose ran(E) 6 1 for E/Q and that K is a quadratic imaginary field satisfying the Heegner
hypothesis for E. We have already seen that for analytic rank-zero curves, BSD(E, p) is true
for primes p > 3 if E has CM. Otherwise, we have the following theorem.

Theorem 5.1. Suppose that E is an optimal non-CM curve, and let p be a prime such
that p - 6N and ρE,p is surjective. If ran(E) = 0, then X(Q, E) is finite and

ordp(#X(Q, E)) 6 ordp

(
L(E/Q, 1)

Ω(E)

)
.

Proof. As outlined in [27, § 4], this is due to Kato’s Euler system [33] together with a
result of Matsuno [36].

As a corollary to this theorem, BSD(E, p) is true for primes p > 3 of good reduction, where
ρE,p is surjective and p does not divide #X(Q, E)an. Under certain technical conditions on p
(explained in [26]), Grigorov has proved the bound on the other side. In addition, recent work
of Skinner and Urban [51] showed that if ran(E) = 0, E has good ordinary reduction at p, ρE,p
is surjective and there is a prime q 6= p such that q||N and ρE,p is ramified at q, then

ordp(#X(Q, E)) = ordp

(
L(E/Q, 1)

Ω(E) ·
∏
q cq(E)

)
.

Because Theorem 5.1 often eliminates most of the primes p > 3, one often does not need to
compute the Heegner index for rank-zero curves. However, if there is a bad prime p > 3 such that
ρE,p is not surjective, then Theorem 5.1 does not apply and descents are in general not feasible.
For example, this happens with the pair (E, p) = (2900d1, 5). Interestingly, #X(Q, E) = 25 in
this case (this will be proved in Section 8). Theorem 4.4 still gives an upper bound, provided
we have some kind of bound on the Heegner index. In the example above, the methods of
Section 4 show that IK 6 23, implying ord5(IK) 6 1 and hence ord5(#X(Q, E)) 6 2.

The following theorems give alternate hypotheses under which Kolyvagin’s machinery still
gives the same result. These should be viewed as extensions of Theorem 4.4.

Theorem 5.2. If ran(E/Q) 6 1 and p is a prime such that p - 2 ·∆(K), p2 -N and ρE,p is
irreducible, then

ordp(#X(Q, E)) 6 2 · ordp(IK).

Proof. See [11, 12].

Theorem 5.3. Suppose ran(E/Q) 6 1 and that p is an odd prime which does not divide
#E′(Q)tors for any E′ which is Q-isogenous to E. If ∆(K) is divisible by exactly one prime,
further suppose p - ∆(K). Then

ordp(#X(Q, E)) 6 2 · ordp(IK).

Proof. See [27, Theorem 3.5]. Note that the statement of this theorem in [27] includes the
hypothesis that E does not have CM, but the proof never uses it.

Jetchev [31] has improved the upper bound with the following theorem.
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Theorem 5.4 (Jetchev). If the hypotheses of any of Theorems 4.4, 5.2 or 5.3 apply to p,
then

ordp(#X(Q, E)) 6 2 ·
(

ordp(IK)−max
q|N

ordp(cq)
)
.

If p divides at most one Tamagawa number, then this upper bound is equal to
ordp(#X(Q, E)an).

There is also a relevant algorithm of Stein and Wuthrich based on the work of Kato, Perrin-
Riou and Schneider (a preprint is available at [54] and the algorithm is implemented in
Sage [55]). Suppose that the elliptic curve E and the prime p 6= 2 are such that E does not
have additive reduction at p and ρE,p is either surjective or reducible. These conditions hold for
all but finitely many p if E does not have CM. Given a pair (E, p) satisfying this hypothesis,
the algorithm either gives an upper bound for #X(Q, E)[p∞] or terminates with an error.
In the case that ran(E) 6 1, an error only happens when the p-adic height pairing cannot be
shown to be non-degenerate. For curves of conductor up to 5000 and of rank zero or one, this
never happens for those p considered. Note that it is a standard conjecture that the p-adic
height pairing is non-degenerate and, if this is true for a particular case, it can be shown via
a computation.

There are also techniques for bounding the order of X(Q, E) from below. In [17], Cremona
and Mazur established a method for visualizing pieces of X(Q, E) as pieces of Mordell–Weil
groups via modular congruences, which is fully explained in the appendix of [2]. They have
also carried out computations for curves of conductor up to 5500, which are listed in [17]. In
addition, Stein established a method for doing this for abelian varieties as part of his PhD
thesis [53].

6. Descent

Cremona’s program mwrank is one of various implementations of 2-descents on elliptic curves,
and consists of Birch and Swinnerton-Dyer’s original algorithm [4] together with a range
of improvements spanning years in the literature. This is frequently called the ‘principal
homogeneous space’ method, since it essentially involves a search for principal homogeneous
spaces which represent elements of the 2-Selmer group. These are hyperelliptic curves defined
by y2 = f(x), where f is a quartic. As such, these curves are called quartic covers of the
elliptic curve. It is very well described in [14], as long as one is also aware of the various
improvements and clarifications: [16] works out computing equivalences of the involved
quartics, [19] completes the classification of minimal models begun in [4] at p= 2 and even
this was further refined in certain cases in [47, 48] includes an asymptotic improvement
over [4] in determining local solubility. Further, the situation regarding what mwrank does
in higher descents (extensions of φ-descents to 2-descents when φ is an isogeny of degree two)
is documented mostly in slides entitled ‘Higher Descents on Elliptic Curves’ on Cremona’s
website†, as well as some unpublished notes he was kind enough to share. There is also Denis
Simon’s gp [3] script, which computes the same information as mwrank, but via what is called
the ‘number field method’. Both of these programs are available in Sage [55].

The various descent methods in Magma [9] were written by Geoff Bailey, John Cremona,
Steve Donnelly, Michael Stoll, Mark Watkins, Tom Womack and others. Magma’s 4-descent
routines are based on [38, 60], and here the homogeneous spaces each come from the
intersection of two quadric surfaces in P3. The 8-descent routines are based on [52], and
the homogeneous spaces are intersections of three quartics. Tom Fisher has written 6-descent
methods which are due to appear in a future Magma release, based on [23].

†See http://www.warwick.ac.uk/staff/J.E.Cremona/papers item 26.
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Jeechul Woo, a 2010 PhD student of Noam Elkies, has implemented a gp script for doing
3-isogeny descents when the curve has a rational 3-torsion point, based on [61]. Magma’s
3-descent implementation is due mainly to J. Cremona and M. Stoll.

Where explicit computer calculations of descents were used in the proofs below, each
available implementation, as mentioned above, was used to verify the results. The computations
were done on machines funded by the US National Science Foundation grant number
DMS-0821725.

7. Examples

The following examples are not only useful in illustrating the preceding discussion, but will
also be needed to prove the main results of this note. We begin by proving that several mod-p
Galois representations are surjective, where the elliptic curve has CM. This will allow us to use
Theorem 4.4 for these curve–prime pairs in Section 8.

Example 7.1. Each of the curves in Table 1 has CM by K, in which p is inert. By
Lemma 3.4, we can think of the representation as a map ρ :GK → (OK/pOK)× ∼= F×p2 . If ` 6= p
is a prime of good reduction, then N(ρ(σ`)) = ` and Tr(ρ(σ`)) = a`, where the norm and trace
maps are from Fp2 to Fp and σ` is a Frobenius element at `. Since in dimension two the norm
and trace determine the characteristic polynomial, it suffices to show that there is an ` for which
these agree with the norm and trace of a generator of F×p2 . In Table 1, we give a witnessing `
and the corresponding a`.

If K is an étale algebra over Q, then K decomposes uniquely into a direct product of number
fields K ∼=

∏
i Ki. If S is a set of places of Q, Schaefer and Stoll [46] defined K(S, p) to be

the elements α ∈K×/(K×)p such that all the extensions Ki( p
√
α)/Ki are unramified at all

primes of Ki lying above a finite place outside of S. In [46], they described a way of computing
the p-Selmer group of an elliptic curve. If S = {p} ∪ {` : p|c`}, then Sel(p)(Q, E) corresponds
to the subgroup of elements of H1(Q, E; S) whose localizations are in the image of the local
connecting homomorphisms for each place in S. In practice, one computes the S-Selmer group
K(S, p) of the étale algebra K corresponding to a Galois-invariant spanning subset of E[p]\{O}
in terms of the class group and S-units. Here we give two useful examples of this technique,
which proves that the 5-primary part of X(Q, E) is trivial.

Table 1. Surjective mod-p representations for CM curves.

Cremona label E p ` a`

675a1 y2 + y = x3 + 31 5 7 1
900c1 y2 = x3 + 100 5 7 −1
1568g1 y2 = x3 − 49x 7 5 2
2700h1 y2 = x3 + 625 5 7 −1
2700l1 y2 = x3 + 5 5 7 1
2700p1 y2 = x3 + 500 5 13 7
3600bd1 y2 = x3 − 100 5 7 1
3136t1 y2 = x3 + 49x 7 5 −2
3136u1 y2 = x3 − 343x 7 5 4
3136v1 y2 = x3 − 7x 7 5 −4
3267d1 y2 + y = x3 − 333 11 7 1
3872a1 y2 = x3 + 1331x 11 13 4
4356a1 y2 = x3 − 44 11 7 1
4356b1 y2 = x3 + 58564 11 7 −1
4356c1 y2 = x3 − 1331 11 7 4
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Example 7.2. Let p= 5. Usually, 5-descents are infeasible due to the number fields
involved; for example, if the mod-5 representation is surjective, the étale algebra will be a single
number field of degree 24, for which class group and S-unit calculations will be too difficult to
complete without assuming the generalized Riemann hypothesis (GRH). However, the following
two examples illustrate cases in which a 5-descent is actually possible without assuming the
GRH. Here the 5-division polynomial has a factor of degree four which corresponds to a Galois
invariant spanning subset X of E[p]\{O} of size 8. In each case g(y) is the resultant of this
factor and the defining polynomial of E, which defines a number field A1.

(1) Let E = 225a1. Then we have

g(y) = y8 + 4y7 + 97y6 + 277y5 − 80y4 − 617y3 − 548y2 − 194y + 331.

(2) Let E = 3600be. Then we have

g(y) = y8 − 720000y6 − 27000000000y4 + 1458000000000000000.

In both cases the set S is of order one, consisting of the primes above 5, and the dimension
of A1(S, p) is 6. Computations show that the dimension of A1(S, p)(1) = ker(σg − g) (the
notation again comes from [46]) is at most two in both cases. Since the Selmer group
Sel(5)(Q, E) is contained in A1(S, p)(1), it has dimension at most two. Since the dimension
of E(Q)/5E(Q) is exactly one, we have that in these two cases #X(Q, E)[5] 6 5 and hence
that #X(Q, E)[5] = 1.

8. Curves of conductor N < 5000, irreducible mod-p representations

There are 17314 isogeny classes of elliptic curves of conductor up to 5000. There are 7914 of
rank zero, 8811 of rank one, 589 of rank two and none of higher rank. There are only 116
optimal curves which have CM in this conductor range. Every rank-two curve in this range has
#X(Q, E)an ≈ 1.000000. For any curve E with ran(E) 6 1 in this range, ordp(X(Q, E)an) 6 6
for all primes p. If such an E is optimal, then ordp(X(Q, E)an) 6 4 for all primes p.

Theorem 8.1. If E/Q has conductor N < 5000 and ran(E) 6 1, then BSD(E, 2) is true.

Proof. Assume that E is an optimal curve and let T (E) = ord2(#X(Q, E)an). For each
curve we are considering, if T (E) = 0, then a 2-descent proves BSD(E, 2) and if T (E)> 0,
then a 2-descent proves X(Q, E)[2]∼= (Z/2Z)2. If T (E) = 2, then a 4-descent proves BSD(E, 2)
and if T (E)> 2, then a 4-descent proves X(Q, E)[4]∼= (Z/4Z)2. For the range of curves we
are considering, T (E) is at most four and, if T (E) = 4, an 8-descent proves X(Q, E)[8] =
X(Q, E)[4] and hence proves BSD(E, 2).

Theorem 8.2. If E/Q has conductor N < 5000 and ran(E) 6 1, then BSD(E, 3) is true.

Proof. For optimal curves where ord3(#X(Q, E)an) is trivial, a 3-descent suffices. For the
rest, we have that ord3(#X(Q, E)an) = 2, and in this case a 3-descent proves X(Q, E)[3]∼=
(Z/3Z)2. These 31 remaining optimal curves are shown in Table 2. If E is in the set

{681b1, 1913b1, 2006e1, 2429b1, 2534e1, 2534f1, 2541d1, 2674b1, 2710c1, 2768c1, 2849a1,
2955b1, 3054a1, 3306b1, 3536h1, 3712j1, 3954c1, 4229a1, 4592f1, 4606b1},

then the algorithm of Stein and Wuthrich [54] proves the desired upper bound. For the
rest of the curves except for 2366d1 and 4914n1, the mod-3 representations are surjective.
Table 3 displays selected Heegner indexes in this case, which together with Theorem 4.4 (and
Theorem 5.4 for 4675j1 since c17(4675j1) = 3) proves the desired upper bound.
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Finally, we are left with 2366d1 and 4914n1. Each isogeny class contains a curve F for which
#X(Q, F )an = 1, so we replace these curves with 2366d2 and 4914n2. Then 3-descent shows
that X(Q, F )[3] = 0, and hence BSD(F, 3) holds for both curves.

Corollary 8.3. If rank(E(Q)) = 0, E has conductor N < 5000 and E has CM, then the
full BSD conjecture is true.

Proof. This is a direct result of Corollary 3.2 and Theorems 8.1 and 8.2.

Theorem 8.4. If E/Q is an optimal curve with conductor N < 5000 and non-trivial
analytic X, that is, #X(Q, E)an 6= 1, then, for every p |#X(Q, E)an, BSD(E, p) is true.

Proof. By [15], we have that p6 7 and, by the theorems of the previous section, we may
assume p> 5.

For p= 5, E is one of the twelve curves listed in Table 4. These are all rank-zero curves with
ρE,5 surjective, so, if 5 -N , Theorem 5.1 provides an upper bound of 2 for ord5(#X(Q, E)).
This leaves just 2900d1 and 3185c1. For 2900d1, Corollary 4.8 together with a point search
shows that the Heegner index is at most 23 for discriminant −71; hence, Kolyvagin’s inequality
provides the upper bound of 2 in this case. For 3185c1, the algorithm of Stein and Wuthrich [54]
provides the upper bound of 2. In all twelve cases [17] (and the appendix of [2]) found visible
non-trivial parts of X(Q, E)[5]. Since the order must be a square, #X(Q, E) must be exactly
25 in each case.

For p= 7, there is only one curve E = 3364c1 and ρE,7 is surjective. Since 7 - 3364 and
E is a rank-zero curve without CM, Theorem 5.1 bounds ord7(#X(Q, E)) from above by
2. Furthermore, Grigorov’s thesis [26, p. 88] showed that ord7(#X(Q, E)) is bounded from
below by 2. Alternatively, the elements of X(Q, E)[7] are visible at three times the level, as
Tom Fisher kindly pointed out — one should also be aware of his tables of non-trivial elements
of X of order three and five, available on his website†.

Table 2. Optimal E with ord3(#X(Q, E)an) = 2.

681b1 2429b1 2601h1 2768c1 3054a1 3712j1 4229a1 4675j1
1913b1 2534e1 2674b1 2849a1 3306b1 3879e1 4343b1 4914n1
2006e1 2534f1 2710c1 2932a1 3536h1 3933a1 4592f1 4963c1
2366d1 2541d1 2718d1 2955b1 3555e1 3954c1 4606b1

Table 3. Heegner indexes where ord3(#X(Q, E)an) = 2.

E D ID ord3(ID)

2601h1 −8 12 1
2718d1 −119 48 1
2932a1 −31 3 1
3555e1 −56 6 1
3879e1 −35 24 1

E D ID ord3(ID)

3933a1 −56 24 1
4343b1 −19 12 1
4675j1 −19 18 2
4963c1 −19 3 1

Table 4. Optimal E with ord5(#X(Q, E)an) = 2.

1058d1 1664k1 2574d1 2900d1 3384a1 4092a1
1246b1 2366f1 2834d1 3185c1 3952c1 4592d1

† http://www.dpmms.cam.ac.uk/∼taf1000/.
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Theorem 8.5. If E/Q is an optimal rank-zero curve with conductor N < 5000 and p is a
prime such that E[p] is irreducible, then BSD(E, p) is true.

Proof. By theorems of the previous two sections, we may assume p > 3, that E does not
have CM and ordp(#X(Q, E)an) = 0. In this case, Theorem 5.1 applies to E (since the rank
part of the conjecture is known for N < 130000 by [15]). At first, suppose that E does not
have additive reduction at p.

Suppose that ρE,p is surjective. In this case, we need only consider primes dividing the
conductor N . For such pairs (E, p), we can compute the Heegner index or an upper bound for
it, which gives an upper bound on ordp(X(Q, E)). When the results of Kolyvagin and Jetchev
were not strong enough to prove BSD(E, p) using the first available Heegner discriminant, the
algorithm of Stein and Wuthrich [54] was (although to be fair the former may be strong enough
using other Heegner discriminants in these cases). This algorithm always provides a bound in
this situation, since p > 3 is prime of non-additive reduction such that ρE,p is surjective and E
is rank zero.

Now suppose that ρE,p is not surjective. The curve–prime pairs matching these hypotheses
can be found in Table 5 along with selected Heegner indexes. The only prime to occur in
these pairs is 5, and each chosen Heegner discriminant and index is not divisible by 5 except
for E = 3468h. Further, 5 does not divide the conductor of any of these curves, so, by Cha’s
Theorem 5.2, BSD(E, 5) is true for these pairs. For E = 3468h, note that one of the Tamagawa
numbers is 5, so, by Theorem 5.4, BSD(E, 5) is true for this curve.

We are now left to consider the 1964 pairs (E, p) for which E has additive reduction at p.
There are fourteen pairs where ρE,p is not surjective, and Theorem 5.3 applies to all of them.
The Heegner point height calculations listed in Table 6 prove that BSD(E, p) is true in these
cases. Note that when p may divide the Heegner index, it must do so of order at most one, and
in these cases it also divides a Tamagawa number, so Theorem 5.4 assists Theorem 5.3.

Now we may also assume that ρE,p is surjective. In these cases, Heegner index computations
sufficed to prove BSD(E, p), using Theorems 4.4 and 5.4. For 79 of these curves, the Heegner

Table 5. Non-additive reduction, irreducible but not surjective.

E p D ID

324b1 5 −23 6
324d1 5 −23 2
608b1 5 −31 2
648c1 5 −23 4
1044a1 5 −23 12
1216i1 5 −31 1

E p D ID

1296g1 5 −23 2
1296i1 5 −23 2
1444a1 5 −31 2
2268a1 5 −47 6
2268b1 5 −47 63
3132a1 5 −23 6

E p D ID

3468c1 5 −47 2
3468h1 5 −47 611
4176n1 5 −23 63
4232b1 5 −7 2
4232d1 5 −7 6

Table 6. Additive reduction, irreducible but not surjective.

E p D ID τp

675d1 5 −11 2 1
675f1 5 −11 2 1
800e1 5 −31 6 3
800f1 5 −31 2 1
1600i1 5 −31 4 2
1600k1 5 −31 4 2
2400f1 5 −191 <5 2

E p D ID τp

2400bg1 5 −71 20 10
2450d1 7 −31 1 1
2450bd1 7 −31 <13 7
4800n1 5 −71 <5 3
4800u1 5 −71 10 5
4900s1 5 −31 4 2
4900u1 5 −31 12 6

τp = ordp(
∏

q cq).
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index computation required 4- and even 6-descent [23]. These are listed in Table 7, thanks to
Tom Fisher.

For example, if E = 1050c1, the first available Heegner discriminant is −311. Bounding the
Heegner index is more difficult in such cases, since it involves point searches to large heights.
However, in two and a half seconds the algorithm of Stein and Wuthrich provides an upper
bound of 0 for the 7-primary part of the Shafarevich–Tate group, which eliminates the last
prime for that curve.

Proposition 8.6. If E is the elliptic curve 1155k1 and p= 7, then BSD(E, p) is true.

Note that for (E, p) = (1155k1, 7), we have c3(E) = 7, c5(E) = 7,

ord7(#X(Q, E)an) = 0 and ord7(#X(Q, E)) 6 2,

by Theorem 5.4. The following proof is due to C. Wuthrich.

Table 7. Additive reduction, surjective.

E p D ID τp

1050l1 5 −311 3 0
1050n1 5 −2399 19 0
1050q1 5 −311 7 0
1350o1 5 −239 4 0
1470q1 7 −479 26 0
1764h1 7 −167 6 0
1850d1 5 −471 6 0
2100o1 5 −311 4 0
2352x1 7 −551 6 0
2450bd1 5 −559 14 0
2450k1 5 −159 2 0
2550bc1 5 −191 7 0
2550j1 5 −239 23 0
2550z1 5 −1511 45 1
2646ba1 7 −47 11 0
2646bd1 7 −143 10 0
2650k1 5 −679 28 0
3038m1 7 −55 6 0
3150bc1 5 −1511 6 0
3150bd1 5 −1991 64 0
3150bj1 5 −311 2 0
3150bn1 5 −1991 22 0
3150t1 5 −1151 6 0
3185c1 7 −199 10 0
3225b1 5 −119 4 0
3234c1 7 −503 16 0
3350d1 5 −79 12 0
3450p1 5 −479 13 0
3450v1 5 −191 180 1
3630c1 11 −1559 4 0
3630l1 11 −239 35 0
3630r1 11 −239 7 0
3630u1 11 −1319 9 0
3650j1 5 −79 14 0
3822bc1 7 −647 18 0
3822e1 7 −1511 2 0
3822u1 7 −503 10 0
3822w1 7 −503 6 0
3822z1 7 −1823 32 0
3850e1 5 −1399 6 0

E p D ID τp

3850m1 5 −2351 2 0
3850y1 5 −1399 54 0
3900k1 5 −1199 4 0
3900l1 5 −191 30 1
4050bi1 5 −71 4 0
4050s1 5 −551 6 0
4050x1 5 −119 6 0
4200bd1 5 −479 27 0
4200m1 5 −719 32 0
4350q1 5 −719 11 0
4350w1 5 −719 24 0
4410b1 7 −671 4 0
4410bi1 7 −1319 18 0
4410bj1 7 −311 6 0
4410q1 7 −839 4 0
4410u1 7 −2231 10 0
4550p1 5 −1119 14 0
4606b1 7 −31 12 0
4650bo1 5 −119 18 0
4650bs1 5 −239 84 0
4650bt1 5 −1511 2 0
4650bu1 5 −1199 170 1
4650q1 5 −119 6 0
4650w1 5 −719 46 0
4725q1 5 −59 8 0
4800ba1 5 −71 7 0
4850h1 5 −31 22 0
4900w1 5 −311 8 0
4950bj1 5 −239 6 0
4950bk1 5 −239 14 0
4950bm1 5 −479 56 0
4950bp1 5 −431 22 0
4950w1 5 −1151 4 0
4950x1 5 −359 12 0
4998bg1 7 −47 18 0
4998bk1 7 −47 36 0
4998k1 7 −47 30 0
4998t1 7 −1487 6 0
4998u1 7 −47 6 0

τp = ordp(
∏

q cq).
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Proof. First, note that E/Q has non-split multiplicative reduction at 7. Let D =−8 and
let K = Q(

√
D), noting that E(K) = E(Q)∼= Z and that #ED(Q) = 1. Since 7 is inert in K,

the reduction of E/K at 7OK is split multiplicative. Kato’s theorem [33, Theorem 17.4] is
known to hold for curves with multiplicative reduction over abelian fields unramified at p. The
characteristic series f(T ) of the dual of the Selmer group therefore divides the p-adic L-series

Lp(E/K, T ) = Lp(E/Q, T ) · Lp(ED/Q, T ).

By work of Jones [32, Theorem 3.1], we can compute the order of vanishing of f(T ) at T = 0,
which is 2 since the reduction is split multiplicative, and the leading term, which is, up to a
unit in Z×p , ∏

v cv ·#Ẽ(F49) ·#X(K, E)[7∞] · Regp(E(K)) · L
#E(K)2tors

,

where L is the L-invariant and Regp is the p-adic regulator as defined in the split multiplicative
case in [37] and corrected in [58].

We compute
∏
v cv = 73, Ẽ(F49)∼= Z/48Z and

Lp(E/Q, T ) = (6 · 7 +O(72)) · T + (4 · 7 +O(72)) · T 2 +O(T 3),
Lp(ED/Q, T ) = (2 · 7 +O(72)) · T + (4 · 7 +O(72)) · T 2 +O(T 3).

To compute the L-invariant L, we switch to the Tate curve. Since ED/Q has split
multiplicative reduction at 7 and the parameter is the same as for E/K, we have

qE = 3 · 7 + 3 · 72 + 4 · 73 + 75 +O(76).

Hence, the L-invariant is

L= logp(qE)/ordp(qE) = 2 · 7 + 6 · 72 + 2 · 73 + 5 · 74 +O(76).

Finally, we wish to compute the p-adic regulator. If P is a generator of E(K), then
Q= 7 · 8 · P has good reduction everywhere and lies in the formal group at the place 7OK .
One computes, as in [54, § 4.2], the p-adic height of Q and so that of P :

hp(P ) =
hp(Q)
(7 · 8)2

= 2 · 7−1 + 4 + 5 · 7 + 2 · 72 + 73 + 3 · 75 +O(76).

Since the leading term of the p-adic L-function is 5 · 72 +O(73) and the leading term of f(T )
must have smaller valuation, we have

ordp

(
73 · 48 ·#X(K, E)[7∞] · hp(P )

7
· L
)

6 2.

Therefore,
ordp(#X(K, E)[7∞]) 6−ordp(hp(P ))− ordp(L) = 0.

In particular, ord7(#X(Q, E)) = 0.

It may also be possible to prove this using [25], since there is a modular congruence
E[7]∼= F [7], where F is the curve 77a1.

Theorem 8.7. If E/Q is a rank-one curve with conductor N < 5000 and p is a prime such
that E[p] is irreducible, then BSD(E, p) is true.

Proof. We may assume in addition that E is optimal, since reducibility is isogeny-invariant.
By Theorems 8.1 and 8.2, if p < 5, then BSD(E, p) is true. Thus, we may assume p> 5.
Computing the Heegner index is much easier when E has rank one, as noted in Section 4.
Kolyvagin’s Theorem 4.4 then rules out many pairs (E, p) right away. Then some combination of
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Theorems 5.2, 5.3 and 5.4 and the algorithm of Stein and Wuthrich [54] will rule out many more
pairs. If no combination of these techniques works for the first Heegner index one computes,
then another Heegner discriminant must be used. Table 8 lists rank-one curves E for which
this is necessary, such that E[p] is irreducible, E does not have CM and (E, p) 6= (1155k, 7).
All these curves have ρE,p surjective and p does not divide any Tamagawa numbers, so it
is sufficient to demonstrate a Heegner index which p does not divide. The case (1155k, 7) is
Proposition 8.6.

If E has CM, we may also rule out primes which split in the CM field. There are seventeen
pairs (E, p) left, namely the fifteen pairs in Example 7.1 and the two in Example 7.2. Table 9
lists Heegner indexes, which, together with Theorem 4.4, prove the fifteen cases not handled
in Example 7.2.

9. Curves of conductor N < 5000, reducible mod-p representations

Suppose that E is an optimal elliptic curve of conductor N < 5000 and p is a prime such that
E[p] is reducible, that is, there is a p-isogeny φ : E→ E′. Further, assume ran(E) 6 1. If p < 5
or E is a rank-zero curve with CM, results of the previous sections show that BSD(E, p) is
true. This leaves 462 pairs (E, p). The results of Theorem 5.3 can be applied to 339 of these
curve–prime pairs, using Corollary 4.8 and various descents, including [23]. This leaves 123
pairs of the original 462: 102 isogenies of degree 5, sixteen isogenies of degree 7, two isogenies
of degree 11, and one isogeny each of degrees 19, 43 and 67. Of the 123 rank-zero and rank-one
cases remaining, 104 more at p ∈ {5, 7} are covered in [22].

Of the nineteen remaining cases, eight are proved in a paper by Michael Stoll and the
author [39]. The eleven remaining are listed in Table 10: if (E, p) does not appear in Table 10
for E[p] reducible, then BSD(E, p) is true. These eleven remaining cases will be handled in a

Table 8. Some Heegner indexes using larger discriminants.

E p D ID

1450c1 5 −151 3
1485e1 5 −131 4
1495a1 5 −79 3
1735a1 5 −24 4
2090c1 5 −431 8
2145a1 5 −131 2
2275b1 5 −139 2
2550n1 5 −239 9
2860a1 5 −519 9
2970j1 5 −359 3
2990e1 5 −159 12
3060h1 5 −359 18
3075a1 5 −119 14
3140b1 5 −39 2

E p D ID

3150i1 5 −479 8
3150bb1 5 −479 4
3310b1 5 −151 3
3450b1 5 −551 28
3480h1 5 −239 2
3630h1 5 −431 3
3760k1 5 −39 1
3900n1 5 −599 2
3920y1 5 −159 6
4050h1 5 −239 32
4140c1 5 −359 6
4200t1 5 −551 4
4400z1 5 −79 24
4410i1 5 −479 2

E p D ID

4440f1 5 −259 2
4485d1 5 −296 2
4550j1 5 −199 4
4675t1 5 −84 9
4680h1 5 −311 8
4725c1 5 −104 8
4800bx1 5 −119 7
4815e1 5 −71 6
4950r1 5 −359 6

2660a1 7 −439 11
4158a1 7 −215 2
4704t1 7 −143 8
4914x1 7 −335 12

Table 9. Heegner indexes of some rank-one curves with CM.

E p D ID

675a 5 −11 2
900c 5 −119 6
1568g 7 −31 2
2700h 5 −119 3
2700l 5 −119 3
2700p 5 −71 6
3136t 7 −55 2
3136u 7 −31 4

E p D ID

3136v 7 −47 2
3267d 11 −8 2
3600bd 5 −71 12
3872a 11 −7 2
4356a 11 −95 4
4356b 11 −167 6
4356c 11 −95 2
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forthcoming paper with Brendan Creutz, in which we will show that the corresponding p-torsion
elements of X(Q, E′) are not divisible by p.

Table 10. Remaining curves: reducible representations.

E p

546f 7
570l 5
858k 7
870i 5
1050o 5
1230k 7

E p

1938j 5
1950y 5
2370m 5
2550be 5
3270h 5
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