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Abstract

Nonoscillatory solutions of a nonlinear neutral type higher order difference equations are classified
by means of their asymptotic behaviors. Existence criteria are then provided for justification of such
classifications.
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1. Introduction

Classifications schemes for nonoscillatory solutions of nonlinear difference equations
are important since further investigations of some of the qualitative behaviors of
nonoscillatory solutions can then be reduced to only a number of cases. In this paper,
we are concerned with a class of nonlinear neutral difference equations of the form

(1) Am(xn+pxn-r)+f(n,xn_s)=0, n = 0 , 1 , 2 , . . . ,

where m, x and S are integers such that m > 2, x > 0, 8 > 0, and p is a nonnegative
real number different from 1. The function / : {0, 1,...} x K —> R is continuous
in the second variable and xf (n, x) > 0 for x ^ 0 and all n = 0, 1,2, In some
cases, we will also assume that/ is superlinear or sublinear. More precisely, / is said
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to be superlinear if

f(n,x) f(n,y)
> , for* > y > 0, or* < y < 0,

x y

and sublinear if

f(n,x) f(n,y)
< , for x > y > 0, or x < y < 0.

x y

Note that if/ is superlinear, then when 0 < a < x < b, we have

f(n,a)<f(n,x)<f(n,b), « = 0, 1,2,... ,

and if/ is sublinear, then when 0 < a < x < b, we have

lf(n,a)<f(n,x) <-f(n,b), n = 0, 1

Similar statements can be made when a < x < b < 0.
Since (1) can be written as a recurrence relation

Xn+m = = * \Xn— i i -^n—rt Xn, - ^ n + 1 , • • • , Xn+m— {),

it is clear that given JC, for — max{r, 8} < i < 1, we can successively calculate
x2,x3,... in a unique manner. Such a sequence {*,,} will be called a solution of (1).
We will be concerned with the nonoscillatory, that is eventually positive or eventually
negative solutions of (1). In particular, we will provide a classification scheme for
these solutions. This scheme is then justified by existence criteria.

Nonlinear difference equations have been studied by a number of authors. In
particular, Grace and Lalli in [4] studied the equation

A2(xn + pxn-x) + qnf (xns) = 0

and obtained a number of oscillation criteria for its solutions. Li and Cheng in [10]
studied the equation

A(rnA(xn -pnxn-T))+f{n,xn^) = 0

and obtained classification schemes for its nonoscillatory solutions. Fourth order
equations of the form

A2(rn+1 A
2xn) + f (n + 2, yT(n)) = 0

have been studied by a number of people (see [12-14]) and several results are related
to classifications of nonoscillatory solutions. Other related results can be found in
[1-5,7-16].

The convention that an empty sum is zero will be adopted in the sequel.
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2. Preparatory lemmas

We first establish or quote several preparatory results which will be useful later.
Let {;<:„} be a real sequence defined for n > a — r, the sequence {zn} defined by

will be called its associated sequence (relative to the constant p and the integer r).
Two relations between a nonoscillatory solution and its associated sequence will be
needed.

LEMMA 1. Assume that p > 0 and p ^ 1. Assume further that the sequence
[xn/n

a] is bounded and eventually positive (or eventually negative), where a is a
nonnegative integer. If{zn] « the associated sequence of[xn] and

lim — = b,

then

lim — = .
n-oo na \+p

PROOF. Without loss of generality, we may assume that xn > 0 for n > 0. Let

Q = limsup — and q — liminf —.
n-»oo na it-*™ na

Then there exist subsequences {n(k)} and {j (k)} of the nonnegative integers such that

hm —7p- = Q and hm - ^ = q.
*»n«(it) kooj«(k)

If/? e [0, l),then

b = Um - ^ = lim — •„ : , ; ;— > Q + pq

and

b= lim ^ k = Hm " y w ' : , 7 W ~ ' < q + PQ-

Hence <?+pO> Q + pq,orq > Q. Since ? < 2 by definition, we see that
Similarly, if p > 1, we have

b=\im / *"[k)+\ >q+PQ
*-oo (n(A:) + T)» ~ ^

https://doi.org/10.1017/S1446788700000902 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000902


[4] A classification scheme for nonoscillatory solutions 125

and

b= Km . < Q + pq-

Thus Q + pq > q + pQ, or q > Q. Again, we have q = Q.
Thus,

, .. Zn .. Xn+pXn_x

b = lim — = lim = q + pq.

This shows that

b.. xn

lim — = q =
_. . ™ •*

1 + p

The proof is complete. •

Given a real function u(t) whose derived function u(r)(t) is sign regular, the in-
termediate derived functions will also satisfy certain sign conditions. Such results
are well known in the theory of ordinary differential equations (see Kiguradze and
Chanturia [6]) and their discrete analogs have been reported by a number of authors
[13,16]. Several of these sign regularity conditions are listed here without proofs.

LEMMA 2 (Zhou and Yan [16]). Let [xk] be a real bounded sequence affixed sign.
Suppose xkA'xk < 0 (xkA'xk > 0) for some odd integer t > 1 and all large k. Then
(—l)jxkA

jxk > 0 (respectively (—iyxkA
Jxk < 0)for 1 < j < t and all large k.

LEMMA 3 (Zafer and Dahiya [13]). Let N be a positive integer. Let {yn}T=o be a

real sequence such that {yn} and [ANyn] are of constant sign. Suppose further that
{ANyn} does not vanish identically for all large n and that ynA

Nyn < Ofor n > 0.
Then

(i) for each j e [1,2,... ,N — I), the sequence [AJyn] is of constant sign for
all large n; and

(ii) there is an integer k G [0,1,2,... , N - 1} such that ( - I)*"*"1 = 1 and for
each} 6 {0, 1,... , k], ynA

jyn > Ofor all large n, and for each j € [k+1,... , N —
1}, (-iy-kynA

jyn > Ofor all large n.

LEMMA 4 (Zafer and Dahiya [13]). Let N be a positive integer. Let [yn}%L0 be a
real sequence such that for each j 6 {0, 1 , . . . , N — 1], [A} yn} is of constant sign for
all large n. Suppose further that ynA

Nyn > Ofor all large n. Then either

(i) foreachj e {1 ,2 , . . . ,N},ynA
jyn > 0 for all large n; or
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(ii) there is an integer k € {0, 1 , . . . , TV — 2} such that (—l)N~k = 1, and for each
j € {1 , . . . , k}, ynA{y > Ofor all large n, and for each j e [k + 1,... , N — 2],
(-iy~kynA{yn > 0 for all large n.

We need the following result in our subsequent development. Let B be the linear
space of all real sequences x = [xn]%LN endowed with the usual operations and the
supremum norm

11*11= lXkl

where {hk}1^N ' s a positive sequence with a uniform positive lower bound. Then B
is a Banach space. A set Q of sequences in B under the above norm is said to be
uniformly Cauchy if for every e > 0, there exists an integer M such that whenever
/, ; > M, we have |(x,/A,) — (Xj/hj)\ < e for all x = {xk} e Q. The following
discrete Schauder type fixed point theorem was obtained by Cheng and Patula [2].

LEMMA 5. Let Q be a closed, bounded and convex subset of the Banach space B.
Suppose T is a continuous mapping such that T(£l) is contained in Q, and suppose
the T(£2) is uniformly Cauchy. Then T has a fixed point in Q.

The following well known theorem of Stolz is a discrete analog of l'Hopital's rule
(see [1, Theorem 1.7.7 and Corollary 1.7.8]).

LEMMA 6 (Stolz's theorem). Let [uk] and {vt} be two real sequences such that
vk > 0 and Avk > Ofor all large k. 7/"limt̂ .oo vk = oo and lim^oo Auk/Avk = c,
where c may be infinite, then lim^oo uk/vk = c.

3. Classification scheme

We will propose a classification scheme for the nonoscillatory solutions of (1). For
this purpose it is convenient to denote the set of all eventually positive solutions of (1)
by S+ and also make use of the following notations:

Ej(oo, *) = {{*„} e S+ | lim -^- - oo, lim - ^ 4 e (°- ™

= \{xn}eS+\ l i m - ^ € ( 0 , oo) | ,

Ej(oo, 0) = {{*„} e S+ | lim -^- = oo, lim -~=o\,

Ej(*, 0) = {{*„} e S+ | lim -^- € (0, oo), lim - ^ 7 = 0

} € 5 + | l im-J^e (0,oo)},
n->oo tl2j ~2 I
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O.(oo, *) = \{xn} e S+ I lim -4h = 00, lim ^ - € (0, 00) 1
I n-*oo fl2J~i n-KX> nJ >

= \{xn}eS+\ lim ^ L € (0 ,oo) l ,
I n->oo n2j I

0,-(oo,0) - \{xn} e S+ I lim -£- = 00, lim - ^ = o ] ,

0, (*, 0) = j {xn} e S+ I lim -^- e (0, 00), lim - ^ = o]

= \{xn)eS+\ lim - £ - e (0,oo)l,

where y is some integer to be specified. Similar notations can also be introduced for
eventually negative solutions of (1).

THEOREM 1. Under the condition that m is even, for every eventually positive solu-
tion [xn] of (I), there is some integer j € { 1 , 2 , . . . , nt/2] such that [xn] belongs to one
of the classes Ej (oo, *), £} (oo, 0), or Ej (*, 0). Under the condition thatm is odd, for
every eventually positive solution {xn} of(l), either there is j € { 1 , 2 , . . . , (m — l)/2}
such that it belongs to one of the classes Oj (oo, *), Os (oo, 0), 0, (*, 0), or else it con-
verges.

PROOF. Assume that [xn] is an eventually positive solution of (1). Then the associ-
ated sequence [zn] of {*„} is eventually positive, furthermore, in view of (1), {Amzn}
is eventually negative.

Suppose m is even. Then by Lemma 3, there exist integers nt and N = 2j — I,
where j e { 1 , . . . , w/2}, such that

Akzn > 0, n = TJI, nx + 1 , . . . ; k = 0, 1 , . . . , N - 1,

and

(-l)MAkzn > 0, n = nu nx + 1 , . . . ; k = N, N + 1 , . . . , m - 1.

In particular, A2J~2zn > 0, A2j~lza > 0 and A2jzn < 0 for n > n,. Thus

0 < A.2,-1 = lim A2j~lzn < oo and 0 < k2j-2 = lim A2j~2zn < oo.
n—>oo n—*00

If k2j-i > 0, then by Stolz's theorem, we have

Since 0 < ^ n / « 2 ; ~ ' < zn/n
2i~\ we see that xn/n

2i~l is bounded for n > «i. In view
of Lemma 1, we have

.. X" ^ 2 / - l , „
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It follows that

lim " = oo,
n->oo Tl 1

and hence [xn] € Ej (oo, *).
If X2j -l = 0 and k2J _2 = oo, then by Stolz's theorem, it is easy to see that

lim " = 0 and lim " = oo.
n->oo n ) n-*oo n J

In view of Lemma 1, we see further that

X X

lim " = 0 and limsup —rr-: = oo.

Hence [xn] belongs to Ej (oo, 0).
If X2j-\ = 0 and 0 < A.2,-2 < oo, then by Stolz's theorem, we have

.. Zn ^-2;-2 , n

In view of Lemma 1, we see that

lim X" = ^v~2 =£ 0
n^oonV-l (2/ _ 1)1(1 + p ) ^ '

It follows that limn_0 Oxn/n2 i~l = 0. Hence {*„} belongs to Ej (*, 0).
When m is odd, in view of Lemma 3, there is an even integer t e {0, 1 , . . . , m — 1}

such that for each s e {0, 1 , . . . , t], Asxn > 0 for all large n, and for each j e f f + 1,
. . . , m - 1 } , (-l)s-'Asxn > 0 for all large it. In case t € {1 ,2 , . . . , m- 1}, the proof
is similar to that given above. In case t = 0, then xn > 0, Axn < 0 and A2xn > 0 for
all large n. It follows that [xn] converges to some nonnegative constant. The proof is
complete. •

4. Existence criteria when m is even

Eventually positive (and by analogy eventually negative) solutions of (1) have been
classified according to Theorem 1. We remark, however, that there is an uncertainty
involved, namely, the integer j which is needed in the definitions of Ej and O,. We
now justify our classification schemes by finding existence criteria for solutions in Ej
and Oj.
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THEOREM 2. Suppose that m is even. Suppose further that f is superlinear or
sublinear. If equation (1) has an eventually positive solution in Ej (oo, *) for some
j e {1, 2 , . . . , m/2], then there is a constant C > 0 such that

(2) J2nm'2if ("'C(n - )

The converse is also true.

PROOF. Let [xn] be an eventually positive solution in Ej (oo, *) so that lim^oo*,,/
n2''2 = oo and limn_,.0O;t,,/n2j'~1 = a > 0. Then its associated sequence [zn] is
eventually positive. Since {Amzn} is eventually negative in view of (1), we may
apply Lemma 3 and conclude that [A'zn] is eventually monotonic for each / e
{1 ,2 , . . . , m — 1). Let ny be an integer such that

an
2i~x 3an2j~l

* . 2

for n > nx. Note first that

lim A2j-l
Zn = (2/ - l ) ! ( l + p ) a ,

n-t-oo

which holds since by the theorem of Stolz

Zn A2J~lZn

l i m —f- = • • • = l i m — ^- = (1 + p)a.

Next, since {A'zn} is eventually monotonic for i e [2j, 2j + 1 , . . . , m — 1}, we see
further that

lim A2jzn = lim A2y+1zn = • • • = lim Am~xzn = 0.
n-+oo n—KX> n—••oo

Thus by summing (1) successively, we obtain

for n > «i. Summing again, we obtain

A2i-l
Zni~(2j -1)1(1+p)a
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which implies

00

i=0

If/ is superlinear, then/ (n, anv'x/2) < / (n, xn) for « > n{. Hence

oo

E I '"^/ ( I " '2 ( I '~^" I ) < 0 ° -
i=0

Similarly, if/ is sublinear, then

( JCL • \

/, —^t — o) i < oo.
/

Next, we assume that (2) holds for some j e {1, 2 , . . . , m/2] and C > 0. Let
D = C/2 if/ is superlinear and let D = C if / is sublinear. Let

= n2i~\ n = 0, 1, . . . .

We need to consider the cases p = 0, 0 < p < 1 and p > 1. If p 6 (0, 1), we have

=p
»-*oo I (« — T — d)

and

lim - i = 1 > 1 - —-^
—oo r(n) 4p

Choose pi e (p, 1) and M > x + 8 such that

r(M) ^
r(M - T - 5) < '

for n > M, and

w I"i — ^7 / • o
1=M ^

Let N = M - x - 8. Then pV(M)/ r(N) < px by (3). We introduce the Banach
space B of all real sequences x = {jcn} îw endowed with the usual operations and the
norm

= sup
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and let ft be the subset of B defined by

ft = {{xn} € B | DF(n) <xn< 2DT(ri), n > N].

Let T : ft -> ft be defined as follows: for x = {*„} e ft,

(Tx)n = DF(M), N <n<M,

and

<5) + £ " £ • • • £ «;:,
im-i=M im-2=M im-2j+t=M

where we have employed the convenient notation

The subset £2 is bounded, convex and closed. We assert further that T maps £2 into
ft, T is continuous, and that T£2 is uniformly Cauchy. Indeed, if x = {xn} 6 ft, then
from the definitions of M, N and from (3) as well as (4), we see that

DF(n) < DT{M) = (Tx)n < 2DT(n), N <n< M,

), n > M,
z

and

r W

< — - r ( » i ) < 2DT{n), n>M.
8

This shows that Tx e ft. Next, let {x'*'}^ be a sequence in ft such that lim*_>oo x(k)

x. Since ft is closed, x e ft. Furthermore, for n > M, we have

-P
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n - l im_i — 1 I » - 2 > + 2 - 1

[11]

E

1 1

r(«) (2/ - 1 ) !
Since

* ) - / (i, x,-t < f (i, JC« ) + / (i, *,-_,) < 4/ (i, C(* -

and since / is continuous in the second variable, by the Lebesgue's dominated con-
vergence theorem, we see that

r II r W T II r \(Tx«\ - (Tx)n\hm Txw — Tx \\ = hm sup -1 ; = 0.

*-«" " * - < » £ r 2 ( )
This shows that T is continuous.

Finally, we assert that TO is uniformly Cauchy. To see this, we have to show that
given any e > 0 there exists an integer P such that for t, n > P

(Tx), (Tx)n
< e,

for any {xn} e £2. Indeed, assuming without loss of generality that t > n, we have

(Tx), (Tx)n

T2(0 T2(n)

1
2r(o

(-1 i.,-1-1

• E E •
l,.FMi..!=l( lm_2y+l=A/

P) ^4Dp (l-p)D
T TT^—;—r

3D(l+p)
2 f ( ) P

V(n) r(«) 8
3P(l+p) 4Dp (1 - p)D

\F(t) + F(n))

r r
4r(n)

5D

4r(n) ~ r(n)
Since T(n) tends to infinity as n tends to infinity, we see that our assertion holds.

As a consequence, we may now apply Lemma 5 to conclude that T has a fixed
point x* = {x*} in £2. In view of (5), we now see that

3 D ( l + p ) rt — 1 i m - l — 1
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By taking differences on both sides of the above equality, we see that x* is a solution
of (1). Furthermore, by applying the theorem of Stolz, we also see that

3 ( l + p ) P

Finally, by Lemma 1, we have

which also implies that

lim — 2 - = oo.

In other words, we have found a solution in Ej (oo, *) for the case p € (0, 1).
For the case p = 0, we modify the definition of M in the above arguments so that

C(i8)2i-l)

and modify the definition of T so that

im-i=M im-2=M im_2;+i=M

for n > M. Then under the same N, B, and fi, we may show that (1) has a solution
in Ej (oo, *).

For the case p > 1, we first choose p\ such that 0 < \/p < p\ < 1. We also
change the definition of M so that M > T + 8 and

i r2(n + T)
< pi < 1, n> M,

and
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Finally, we modify the definition of T so that

and

(Tx)..

ll1 'v'T11 "ill1 'v'T1 'i-v+2-i

+ - E E ••• E »:^(
The same reasoning described above will lead to the conclusion that (1) has a solution
in Ej (oo, *). The proof is complete. •

Next we turn our attention to solutions in Ej (*, 0).

THEOREM 3. Suppose that m is even. Suppose further that f is superlinear or
sublinear. If equation (1) has an eventually positive solution in Ej (*, 0) for some
; 6 ( 1 , 2 , . . . , m/2], then there is a constant C > 0 such that

(6) f^ nm-v+1f (n, C{n - S)v~2) < oo.
n=O

The converse is also true.

PROOF. If equation (1) has an eventually positive solution in £}(*, 0), then by
modifying the arguments in the proof of Theorem 2, it is not difficult to see that (6)
holds for some positive constant C. The proof of the converse is also similar to that
of Theorem 2. We first retain the definition of the Banach space B and its subspace £2
in the proof of Theorem 2. We then change the definition of T(n) to F(n) = n2j'2 for
n > 0. Furthermore, for the case p e (0, 1), we choose p\ e (p,l) and M > x + S
such that

\-p
<Pu - •/ T ( n - r - < 5 ) r T(n) Ap

for n > M, and

(i - M + 1) • • • (i - M + m - 2/ + 1) e ,. „ . .._„ ( l - p ) P
( w - 2 y + l ) ! f (>>*>') ) <

We modify the definition of the operator T by

( 7 * ) n = DF(M), N <n< M,
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and

W - l ' . i - l - l 'm-2j+3-l

+ E E - E ^rovaxi..). «>M.
i,.i=Mi,.FM im-2j+2=M

For the case where /? = 0, we modify the definition of M in Theorem 2 so that

Let N = M — T — 5. We modify the definition of T by

(7*)B = £>r(M), N <n<M,

and

im-,=M im-2=M im-2J+2=M

for n > M.
Finally for the case p > 1, we choose px e (1/p, 1) and M >x +8 such that

1 T2(n + T)

p P(n - T -
< 1, n > M,

<\ + - , n>M,
4

and

We also modify the definition of T so that

2p p r(M)

and

p
n + i - l i'm-i-1 'in-;;+3-1

E E E^ E E - E ff^+1(o/d-.xM). «>M.

Then the same reasoning described in the proof of Theorem 2 will lead to the
conclusion that (1) has a solution in Ej (*, 0). •
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Next we turn our attention to solutions in Ej (oo, 0).

THEOREM 4. Suppose that m is even. Suppose further that for each fixed n > 0,
f (n,x)is nonincreasing in x over the interval (0, oo). If equation (1) has an eventually
positive solution in Ej (oo, 0)for some j e (1, 2 , . . . , m/2], then

(7) ^2,nm-2if{n, a(n - 8)2i~l) < oo
n=0

for every a > 0, and

(8)

for every b > 0. Conversely, if (7) holds for every a > 0 and

(9) J^ nm~2if (n, C(n - S)2J~2) < oo
n=0

for some C > 0, rften equation (1) has a positive solution in Ej (oo, 0).

PROOF. Let {*„} be an eventually positive solution in Ej (oo, 0) so that

limsup ——- = oo,

and

°
For any a > 0 and 6 > 0, there exists nx > 0 such that

ta2j-2<x,<an2'-', n > / i , ,

which, in view of the decreasing property of/, implies that

f (n, a n 2 j ~ l ) < f ( n , x n ) < f (n, b n 2 i ' 2 ) , n > n x .

Now we may follow the arguments in the proof of Theorem 2 and conclude that (7)
holds for any a > 0. Next, note that the associated sequence {zn} of {xn} satisfies

lim A.2J~2zn = oo,
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which holds since, by the theorem of Stolz,

hmsup .. , < limsup „. „ = hm „. „ = • • • = hm = oo.
v n2>~2 ~ n-+oo n2'-2 n-^oon2'-2 n-oo(2/-2)!rt—•OO

Since {A'zn} is eventually monotonic for i € {2/ — 1,2j,... , m — 1}, we see further
that

lim A2j~1zn = • • • = lim A"""1zn = 0.

Thus by summing (1) successively, we obtain

for n > «i. Summing again, we obtain

" S o^TTT^ '<"•*-<>•
which, since linin-.oo A2j~2zn = oo and/ («, *„) < / (n, bn2j~2)9 implies

oo
J ^ nm-y+\f (n> fe(n _ 5)27-2) _ oo

for every b > 0. This shows that

(n, *(n - S)2i~2) = oo
n=0

for every b > 0.
Conversely, assuming that (8) holds for every b > 0 and (9) holds for some C > 0,

we may proceed as in the proof of Theorem 2. We first retain the definitions of
the Banach space B and its subspace £2. Then we change the definition of T(n) to
F(n) = n2>~2 for n > 0. We have three cases to consider: p = 0, 0 < p < I and
p > 1. We will only consider the case p € (0,1), for the other two cases can be
proved in similar manners. Choose p\ € (p, 1) and M > x + S such that

r(n) r ( n - r ) , 1 - p
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for n > M, and

£ | - - M + l ) . . . ( t - _ M + w - 2 / ) ( l - p ) P

We modify the definition of the operator T by

(Tx)n = DF(M), N <n<M,

and

n - 1 i m - l i m _ 2 j + 4 l

+ E E ••• E H^JOfiUx,-.). n>M.
i,-|=»(i,.!=V in_2J+3=A/

Using similar argument as in the proof of Theorem 2 we conclude that (1) has a
solution x* in £2. Furthermore, applying the theorem of Stolz, we see that

and

l i m ** + px;_t = H m _LHr2j{i)f{i t • } = 0
n-»oo n •* n-»oo (̂ ZJ — 1 ) !

Hence, by Lemma 1, we have

(10) lim - ^ = 0.
n->oo

Since the associated sequence {z*} of {x*} satisfies A2;~2z* > 0 and A2J~lz* < 0
for all large n, the sequence {A2j~2z*} is eventually positive and increasing. Thus
{A2^~2z*} either converges to some positive limit or diverges to oo. If the first case
holds, then

for some constant 9, and hence by Lemma 1,

lim - S - =

But then x* will belong to E, (*, 0) so that (6) holds for some constant C > 0. This
is contrary to the assumption that (8) holds for every b > 0. In other words, x* either
belongs to Ej (*, 0) or Ej (oo, 0). The latter case is, however, excluded by (10). The
proof is complete. •
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5. Existence criteria when m is odd

For the case where m is odd, we have four results. The first three correspond to
Theorem 2, Theorem 3 and Theorem 4 in the last section. The proofs of these results
are similar in nature to those above and hence are sketched or omitted.

THEOREM 5. Suppose that m is odd. Suppose further that f is superlinear or
sublinear. If equation (1) has an eventually positive solution in Oj (oo, *) for some
j € {1, 2 , . . . , (m — l)/2}, then there is a constant C > 0 such that

(ii) Y^nm~v~lf ("• c ( " - s^2i) < °°-

The converse is also true.

The proof is again similar to that of Theorem 2. In particular, to show the converse,
we first retain the definitions of the Banach space B and its subspace ft in the proof
of Theorem 2. We then change the definition of F(n) to T(n) = n1' for n > 0.
Furthermore, for the case p 6 [0, 1), we modify the definition of T so that

(Tx)n = DT(M), N < n < M,
3D(l+p)

(Tx)n = T(n) -pxn_x

f l - l l ' m - 1 - 1 'm-2j + \ — 1

+ E E - . E HZZ:lv>f<*".*<-*)' n±M>

and for the case p > 1, we modify the definition of T so that

2p p r(M)
3D(l+p) 1

(Tx)n = F(n) xn+T2p p
1 n+r-l im-i~l im-2j+l-l
I \—\ y—\ T—\ m_2;_[ .

H — / / ••• / ",• (')/('. Xi-s), n>M.
P • _ _ • _ M

Then the same reasoning described in the proof of Theorem 2 will lead to the conclu-
sion that (1) has a solution in Oj (oo, *).

THEOREM 6. Suppose that m is odd. Suppose further that f is superlinear or
sublinear. If equation (1) has an eventually positive solution in Oj(*,0) for some
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j e [1,2,... ,(m — l) /2}, then there is a constant C > 0 such that

n=0

The converse is also true.

The proof of this result is similar to those of Theorem 2, Theorem 3 and Theorem 4,
and is thus omitted.

THEOREM 7. Suppose that m is odd. Suppose further that for each fixed n > 0,
f (n,x)is nonincreasing in x over the interval (0, oo). If equation (1) has an eventually
positive solution in Oj(oo, 0) for some j 6 {1, 2 , . . . , (m — l)/2}, then

00

(13) ^ n m - y - ' / ( n , a ( n -8)2J) < oo
n=0

for every a > 0, and

(14)
n=0

for every b > 0. Conversely, if (14) holds for every b > 0 and (12) holds for some
C > 0, then equation (1) has an eventually positive solution in Oj (oo, 0).

Our final result is concerned with the existence of convergent positive solutions.

THEOREM 8. Suppose that m is odd. Suppose further that f is superlinear or
sublinear. If equation (1) has an eventually positive solution which converges to a
positive constant, then there is a constant C > 0 such that

nm~lf(n, C) < oo.
n=0

The converse is also true.

Again, the proof is similar to that of Theorem 2. In particular, to show the converse,
we first retain the definitions of the Banach space B and its subspace £2 in the proof
of Theorem 2. We then change the definition of F(n) to V(n) = 1 for n > 0.
Furthermore, for the case p € [0, 1), we modify the definition of T so that

(Tx)n = DF(Af), N <n<M,
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and

(Tx)n = 3 £ > ( 1
2

+ P ) - pxH.T + Hf-\i)f (i,*,_,), n > M;

and for the case p > 1, we modify the definition of T so that

(Tx)n = 3 P ( * + P ) - -*M+r, N <n<M,
2p p

and

(Tx)n =
 3D(l+P) _ IXn_r + ii/;+-r'(0/(i,*,_,), n > M.

2p p p

The same reasoning as described in the proof of Theorem 2 leads to the conclusion
that (1) has an eventually positive solution which converges to a positive constant.

As a final remark, when m = 4, p = 0 and j = 2 in Theorem 2, and when m = 4,
p = 0 and y = 1 in Theorem 3, the corresponding results have been derived by Zhang
and Cheng [14, Theorem 3.1 and Theorem 3.2]. But in [14], only results related to
fourth order equations are discussed.
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