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Abstract. We prove a comparison theorem between Greenberg-Benois £-invariants and Fontaine—
Mazur L-invariants. Such a comparison theorem supplies an affirmative answer to a speculation of
Besser—de Shalit.

1 Introduction

Let f be a cuspidal normalized newform of weight 2k and level I'y(pN), where p
is a prime number and N € Z. such that p + N. Consider the complex L-function
attached to f

L(f,s) = i::lann’s.

One way to study L(f,s) is via p-adic method. That is, one can associate f with a
p-adic L-function L,(f,s), which p-adically interpolates the algebraic part of the
special values L(f,j) for 1< j <2k —1. In particular, the interpolation property at
s = k is given by the formula

k-1
o-(i-? )L(ﬂk))
N e

where Q¢ is the Deligne period of f at k ([6]).

Suppose moreover that a, = p*~; the formula above shows that L, (f, s) vanishes
ats = k. In the case when k = 1, Mazur-Tate-Teitelbaum conjectured in [15] that there
exists an invariant £ ( f) such that

d L(f.k)

—L,(f>8)]s=k = L(f) ——=.

RAUDISERRES
This conjecture is known as the trivial zero conjecture and has been proven by
Greenberg-Stevens in [9]. Moreover, for higher weights, various generalizations of
the invariant £( f) has been proposed. The following is an incomplete list:

« In [8], R. Greenberg constructed the L-invariants for Galois representations that
are ordinary at p and suggested a generalization of the trivial zero conjecture.
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2 J.-E Wu

« In[14], Fontaine-Mazur defined the £-invariant by studying the semistable module
(ala Fontaine) associated with a p-adic representation.

« In [5], R. Coleman proposed a construction of £-invariants as an application of his
p-adic integration theory.

o In [18], J. Teitelbaum proposed a construction of L-invariants by applying the
p-adic integration theory to p-adically uniformized Shimura curve.

All these L-invariants are known to be equal: Coleman-Iovita compared the second
and the third in [4]; Iovita—Spief} compared the second and the fourth in [13]; and the
comparison between the first and the second is a special case of [2, Proposition 2.3.7].

It is a natural question to ask whether one can establish a similar philosophy for
higher rank automorphic forms. Let us mention the following generalizations in our
consideration:

« In [2], D. Benois generalized Greeberg’s construction to Galois representations
of Galg that satisfies some reasonable conditions. He also stated a trivial zero
conjecture in such a generality ([op. cit., pp. 1579]).

o In [1], Besser-de Shalit generalized both the Fontaine-Mazur £-invariants and
Coleman (or Teitelbaum) £-invariants by studying the p-adic cohomology groups
of p-adically uniformized Shimura varieties. It is conjectured in loc. cit. that these
two constructions give rise to the same £-invariants (or £-operators as called in
loc. cit.). Authors of loc. cit. also speculated that the existence of a trivial zero
conjecture for these two L-invariants. However, they were not able to provide an
explicit statement.

This article concerns the comparison between Benoiss £-invariants and the
Fontaine-Mazur type L-invariants of Besser-de Shalit. To explain our result, let
us fix some notations: Let F be a number field such that for every prime ideal p c Op
sitting above p, the maximal unramified extension of Q,, in F, is Q, itself; let E be a
large enough value field that is a finite extension over Q,. Suppose

p : Galp - GL,(E)

is a Galois representation that is semistable at places above p. We further assume that
p satisfies the assumptions in §5.1. In particular, we assume the Frobenius eigenvalues
on the associated semistable modules are given by p™, ..., p™ "*! (for some suitable
m € Z that is independent of the prime ideals sitting above p) and the monodromy is
maximal. We remark in the beginning that these assumptions are required so that we
can perform the following two constructions:

« Following the suggestion in [17] (see also [10]), one can consider the induction
Indl(:2 p. Part of the assumptions then allows us to attach the £-invariant in Benois’s
style to Ind? p(m). This resulting £-invariant is denoted by Lgp(p(m)), where
the subscript GB stands for “Greenberg-Benois”. We refer the readers to §3 for the
construction of Lgg.

o We realized that the generalization of Fontaine-Mazur £-invariants suggested by
Besser—de Shalit can be translated to the world of semistable modules of a local
Galois representation. The other part of the assumptions in §5.1 then allow us to
attach L-invariants of Fontaine-Mazur style to each local Galois representation
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Py = plGaly, for every prime p above p. We term such £-invariants Lrwm (py ), where
the subscript FM stands for “Fontaine-Mazur”. We refer the readers to §4 for the
construction of Ly

Our main result reads as follows.

Theorem 5.4  We have an equality

Lap(p(m)) =] -Lrm(pyp),
plp

where the index set runs through all prime ideals in Op sitting above p

Since there is a well-stated trivial zero conjecture for Lgp(p(m)) in [2], our result
immediately supplies an affirmative answer to Besser—de Shalit’s speculation of the
relationship between their £-invariants and p-adic L-functions.

To close this introduction, let us mention that the generalization of £-invariants a
la Coleman (or Teitelbaum) suggested by Besser—de Shalit replaces Coleman’s integra-
tion theory with Besser’s theory of finite polynomial cohomology. Although they only
consider the case for the trivial coefficient (so that we can only see automorphic forms
of weight associated with the differential 1-forms), one can hope a generalization for
nontrivial coefficients by using finite polynomial cohomology with coefficients ([12]).
We wish to come back to this in future projects and hopefully to compare this type of
L-invariants with Lep(py) as suggested in [1].

Notations

« Through out this article, we fix a prime number p. B
« Given a field F, we fix a separable closure F and denote by Galp = Gal(F/F) its
absolute Galois group.

2 Preliminaries on (¢, T)-modules

2.1 General (¢,T")-modules

Fix a compatible system of primitive p-power roots of unity ({,»)nez,, in Q,. Given
a finite extension K of Q,, consider K({p=) = Upez., K({,») and denote by I' = 'k
the Galois group Gal(K({,~)/K). Moreover, for any € [0,1), let

jQ%::{f:ZaiT": a; € K 0 K((p) }

= f is holomorphic on the annulus r < |T| <1

and

fRK = U :R;(,

re[0,1)

where K""' is the maximal unramified extension of K in 61, and the infinite union is

taken with respect to the inclusions R}, — fR;(’ for r < r’ < 1. We call the ring R the
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4 J.-E Wu
Robba ring over K. It carries a g-action and a I'-action via the formula
o(T)=(1+T)? -1 and y(T)=(1+T)>") _1foranyyeT,

where y.y. is the cyclotomic character.

In what follows, we shall consider a more generalized version of Rg. Let E be a
finite extension of Q. We denote by R = Rk ®q , E and call it the Robba ring over
K with coefficients in E. We linearize the actions of ¢ and I" on Rg g via ¢ ® id and
y ® id, respectively. In what follows, we often assume E is large enough so that K c E.

By a (¢, I")-module over R g, we mean a finite free R, p-module D together with
a ¢-semilinear endomorphism ¢ and a semilinear action by I', which commute with
each other, such that the induced map

QDDZ(;)*DID®¢RK)E—>D

d(‘p ) the category of (¢, I')-modules over

is an isomorphism. We shall denote by Mo
RK)E .
Let Rep, (E) the category of Galois representations of Galg with coefficients in E.

Then, by [2, Proposition 1.1.4], there is a fully faithful functor
T
ng :Repy(E) - Modng’E).

Moreover, by letting Mod(q’ N) (resp., Mod}, ) the category of (¢, N')-modules (resp.,
@-modules) over K, = K N Qunr with coefficients in E, there is a functor (see, for
example, [2, §1.2.3])

Dyt Modgg’;;) - Modg’;EN) (resp., Deris : Modng’z) - MOdI(’;,E)
such that if p € Rep(E) is semistable (resp., crystalline), then ([3, Théoréme 0.2])
st(DLg(P)) Dy (p) (resp, DcrlS(D 1g(P)) Deris(p))-

Here, Dy (resp., D.is) is Fontaine’s semistable (resp., crystalline) functor ([7, 3]),
assigning a Galois representation in Rep,(E) a (¢, N)-module (resp., ¢-module)
over K, with coefficients in E.

Now, let D be a (¢, I')-module over R . Recall the cohomology of D is defined
by the cohomology of the Herr complex

0D x=>((pp-1)x,(y-1)x) DeD (x,9)=>(y-1)x=(¢p-1)y Do,

where y is a (fixed) topological generator of I". Note that, given a = (x,y) e D& D
such that (y —1)x — (¢p — 1)y = 0, there is an extension

0->D->Dy—»>Rgp—0
defined by
(2.1) Dy,=D&Rgre, (¢p,—1)e=x, (y-l)e=y
It turns out that such an assignment gives rise to an isomorphism

H'(D) 2 Exty, (R, D).
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Furthermore, we write H. (D) (resp., H}(D)) the subspace of H'(D), con-
sisting of those semistable (resp., crystalline) extensions D, (i.e., those satisfy
rankK0®QpE Ds(Dy) = rankK0®QPE Dw(D)+1  (resp., rankK0®QPE Deris(Dy) =
rankK(,@QpE Deris(D) +1)). According to [2, Proposition 1.4.2], if p € Rep . (E), then

Hy(Dfi,(p)) = Hy (K, p) (resp., Hy(D[,(p)) = Hi(K, p)),
where
Hy (K, p) =ker (H'(K,p) - H'(K, p ®q, Byt))
(resp., Hy(K, p) = ker (H'(K, p) = H'(K, p ®q, Beris)))’

is the usual local Bloch-Kato Selmer group.

To conclude our discussion for general (¢, I")-modules, we mention that if D is
semistable,” then H' (D) and H}(D) can be computed by complexes C$, and CZ,,
respectively ([2, Proposition 1.4.4]). Here,

ar (a(p-DaN@) p,
Dy (D) F i bap) ® Du(D) @ Dy(D)

Ca(D) = i(a,b,c) w N(b) - (pg ~ 1)
D (D)
and
—~(a,(p-1 Dcris D
C:ris(D): Dcris(D) e-(e(e-Da) ) ( ) ®Dcris(D)]~
FlldR Dcris (D)

2.2 (¢,I')-modules of rank 1

Recall that (¢, I')-modules of rank 1 can be understood via continuous characters.
More precisely, given a continuous character § : K* — E* and fixing a uniformizer
@ €K, we can write § =8'6" with §'[ox = 8[ox, 6'(@) =1 and " (@) = 6(@),
8"|ox =1 By local class field theory, §’ defines a unique one-dimensional Galois
representation y,; that is,

local Artin map

—_ —~ (a,b)~d(a
xor : Galx ———— > K~ ;OEXZMEX,"

which admits its associated (¢, I')-module D;‘ig( xo)- However, we define Rg p(8") =
Ri,pesr such that g(esr) = §(@)esn and y(esr) = esr. Then, the (¢,I")-module

associated with & is defined to be
Ric,£(8) = Ri(8") @y, Dig (Xo)-

1Here, Bs: and Bjs are, respectively, Fontaine’s semistable and crystalline period rings.
In fact, the condition can be loosen to being potentially semistable, but we do not need such a

generality here. - .
Here, K* is the profinite completion of K*. Note that the isomorphism K* = Ok x Z depends on the

choice of @, which is fixed.
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In particular, the cyclotomic character Galgx — OF has the associated (¢,T')-
module D;rig()(cyc). By [16, Lemma 2.13], we know that
Dfig (Xeye) = Rip(Nmg, (2)[Nmg, (2)]),

where ngp is the norm function from K to Q,.

Lemma 2.1. Leté: K* — E* be the character
8(z)=| I o™ ‘ngp (z)‘
O':K'—>6P
such that all m, > 1.

o If (Dst(RK)E(S))V(XCYC))(p:l is nonzero, then the inclusion H} (R g(8)) <
H' (R 5 (8)) is an isomorphism.

o (Do (Ric.£(8))Y (Yeye) )"~ = 0, then the inclusion HY(Ri,5(8)) = Hy(Ric £(9))
is an isomorphism.

Proof By [2, Corollary 1.4.5], we have the formula
=1
dimE H;t(RK,E((?)) - dlmE H}(IRK,E((D) = dlmE (‘:Dst(fRK,E((S))V(XCYC))(p .
Applying [17, Proposition 2.1 & Lemma 2.3], we know that
dimg Hy (Rk,5(8)) <[K:Q,]+1 and dimg H}(IRK,E((S)) =[K:Q,].
The lemma then follows easily. ]

Suppose § : K* — E* is a continuous character as in Lemma 2.1. Suppose Rk ¢ ()
is semistable and so rankk,eq, £ Dst(Rk,£(5)) = 1. We fix a Ko ®q, E-basis vs for
Dst(Rk,£(8)) and define

Bs =—cl(0,0,vs5), aj =cl(vs,0,0) € H'(C3(Rk,£(8))) = Hy(Rk.£(8)).*

Lemma 2.2. Suppose n: K* — E* is a continuous character of the form n(z) =
[1,.xoq, 0(2)" withall n, < 0. Suppose
: P

0> Rk,p(8) > D—> Rep(y) > 0
is a semistable extension (in the sense of §2.1). Then,
image (8 tHY(Rg.s(n)) = HI(IRK,E(S))) c H (Rg5(9)).
Moreover, there exists a unique £ (D) € E such that

B5 + L(D)aj € imaged.

4We use such notations due to [2, Theorem 1.5.7].
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Proof  First of all, it follows from [2, Proposition 1.2.7] that Rk g(7) is also
semistable. Hence, by applying [op. cit., Proposition 1.4.4], we know that

H®(Ri5(n)) = Ho(Ri ).

Taking the cohomology of the short exact sequence in the lemma, we have a commu-
tative diagram

H*(R.e(n)) —— H'(Rg.5(3))

H I

HY (Ri£(1)) —2= HY\(Rg£(8))

which shows the first claim.

Since Rk p(#) is semistable and it is of rank 1 over Rk, it is crystalline
and D (Rk,e(1)) = Deris(Ri,£(17)). This is because the monodromy operator is
nilpotent. We consider the commutative diagram

0 ————— Du(Rxe(5)) Dy(D) Da(Rke(n)) —> 0

| | !

Dot (Ri,£(8)) Du(Res(3)) > Dyt(D) Du(D) > Dyt(Ri,e (1))
Filly Da(Rep () O 2 e ) @ PP Rl Do (s ()

| | |

0 ———— Du(Rkx(9)) Du(D) Da(Rip(n)) ———> 0

® Du(Rie(n)) > 0

induced by the short exact sequence in the lemma, where the rows are exact and
the columns are the semistable complexes. Let v, be the element in Dy (Rk,£(77))
that gives rise to the basis of H’(Rk (%)) as in [17, Proposition 2.1]. In particular,
vy € Filjg Dy(Rk £ (1)) and ¢(v,)) = v,,. Using the relation Ng = pgN, one deduces
that 1 and p~' are Frobenius eigenvalues of D (D). We choose a lift v, € Dy (D)
such that ¢(v;) = ¥,,. This then implies that N (v, ) has Frobenius eigenvalue p~'. The
commutativity of the diagram then yields

T;,,] > Vf1

(v, O, N(vy)) —— 0

Applying the exactness of the middle row, we see that
(V4 0, N(%))) = a(v5,0,0) = b(0,0,vs).

Since N(v,) is a basis for the Frobenius eigensubspace of D (D) on which ¢ acts
via p‘l, we see that b is invertible. We then conclude that

9: H'(Rip (1)) = Hy(Rip(8)),  cl(vy) = aag + bp;.
Therefore, £L(D) := a/b. |
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3 Greenberg-Benois L-invariants

In this section, we first discuss the construction of Greenberg-Benois £-invariant
over Q in §3.1 by summarizing Benois’s construction in [2, §2] (in particular [op. cit.,
(26)]). Then we follow the strategy in [17], generalizing Benois’s construction to
general number fields by considering inductions of Galois representations ($3.2).

3.1 Greenberg-Benois L-invariants over Q

To define Greenberg-Benois L-invariants over Q, we start with a Galois
representation

p: Galg — GL,(E),
which is unramified outside a finite set of places. We denote by
S = {{: plgalq, is ramified} u {p, 00}

and let Qg be the maximal extension of Q that is unramified outside S.
Recall the Bloch—Kato Selmer group associated with p: Given v € S, define the local
Selmer groups

ker (H'(Qe, p) = H' (I, p) ) , ifv=101 poo,
H}(pr) = {ker(H'(Qp, p) » H'(Qp. p ®q, Baris)),  ifv=p,
H'(R,p), if v = oo,

where I, stands for the inertia group at ¢. Then, the Bloch-Kato Selmer group
associated with p is defined to be

H'(Qv, p)
HY(Q, p) := ker | H'(Galg., p) — — .
Let p, = p|GalQ;:' We follow [2, §2.1.2, 2.1.4] and proceed with the following
conditions:
(B1)  The local representation p, is semistable with Hodge-Tate weights k; < k,
< -+ < ky, giving rise to the de Rham filtration Filgg Dy (p).
(B2)  The Frobenius action on Dy (p,) is semisimple at 1 and P
(GBl) H{(Q,p)=0=H(Qp"(1))’
(GB2) H(Galg,,p) =0=H°(Galg,,p"(1)).
(GB3) The associated (¢, T")-module Dzig(pp) has no saturated subquotient® iso-
morphic to Uy, with k > 1and m > 0 ([2, §2.1.2]), where Uy ,, is the unique
crystalline (¢, I')-module sitting in a nonsplit short exact sequence

00— RQP’E(|Z|Zk) g Uk,m - :RQP’E(Z_m) - 0.

>Here, by confusing p with its underlying vector space, p¥ = Hom(p, E) is the dual representation of
p and pV (1) is the twist of p¥ by the cyclotomic character.
Here, by “saturated’, we mean the following: A saturated (¢, 1")-submodule of a (¢, [')-module is a
(¢, I")-submodule that has a torsion-free quotient. A saturated subquotient is a subquotient arising from
saturated (¢, I")-submodules; in particular, a saturated subquotient is torsion-free.
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Given a regular submodule D c Dy(p,) (ie, a (¢, N)-submodule such that
D (p,) = D @ Filjg Dy (p,)), Benois defines a five-step filtration

0, i: _2)
(1-p'o™)D+ N(D*™),  i=-l,
(3.1) DS .= D, i=0,
-1
D +Dgy(p,)? ' nNT(D?F ), i=1,
Dy (pp) i=2

Such a filtration then yields a filtration on D}, (p,) by

Fili" D (pp) = Dlig(pp) N (DF® ®q, Ra,.£[1/1]).

where ¢ = log(1+ T) € Rq, &
Using this filtration, we define the exceptional subquotient

W= FIIGB DIlg(pP)/ FllGB DIlg(PP)'

By [2, Proposition 2.1.7], we have

WzWoeWieM rank Wy = dimg H*(WV(1)),
Gro" Dl (pp) = Wo ® My with  rank W = dimg H'(W),
Grc'B DLg(Pp) * W e M, rank My = rank M,

where M, My, and M; sit inside a short exact sequence
0> My—-> M- M; - 0.
Moreover, one has
H'(W) = coker (H"(Fil%} D, (p,)) » H'(Fili® Dfi. (p,)))
Hy(W) = coker (H(Fil%} D, (p,)) » Hy(Fily® D}, (p,))),

and dimg H'(W)/HY(W) = ep = rank M, + rank W, + rank W; ([2, §2.2.1]).
Under the assumption (GBI) and (GB2), one applies Poitou-Tate exact sequence
and deduces an isomorphism

H'(Q).p)
HY(Galg.,p) —_—
( alqy p) %H}(QV’P)

H'(W) .,

Note that the latter space contains an ep-dimensional subspace W) =

i GB f
%]w We then define H'(D, p) to be the image of 1

To define the £-invariant, we further assume that

(GB4) W, = 0 and the Hodge-Tate weights for Gr:® DIlg(pp) are positive (see [2,
Proposition 1.5.9]).

(W) in H'(Galg,, p)-
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Benois shows that there is a decomposition ([2, §2.1.9] (see also the discussion in
(11, §1.2]))

H'(Gr® D!

tig(Pp)) = Hp(Gri™ Dl (py)) ® H(Gri™ Disg (py)

and isomorphisms

H}(Gr* D]

rig(PP)) = DCl‘iS(GrlGB DT

rig(PP)) = Hl(Gr?B D:1g(PP))
There are natural morphisms pp ; : H'(D, p) = Dris (Gri® D;rig(pp)) (forze{f,c})
making the diagram

GB
:Dcris (Gr1 DIig

o] w

H(D,p) ——— H(Gr$* D}, (py))

Dcris(GrlGB D;rig(Pp)) i> Hi(GrlGB D:ig(PP))

(pp)) —— H{(Gri"® D}, (py))

commutative. Under the assumption of (GB4), Benois shows that pp . is an isomor-
phism, and so one can define the Greenberg-Benois L-invariant attached to p (with
respect to D) as

L (p) = Lep(p, D) = det(pp,f o pp..) € E.

3.2 Greenberg—Benois L-invariants over general number fields

To define the Greenberg-Benois £-invariants over general number fields, we follow
the idea in [17] (see also [10]) and consider the induction of a Galois representation.
More precisely, let F be a number field and suppose we are given a Galois representa-
tion

p : Galp > GL,(E),

where E is (again) a finite extension of Q,. We shall consider the induction Ind,? p
and define S similarly as before.
Assume the following conditions hold for p:

(Bl)  For each place p|p in F, py = plaal,, is semiitable with Hodge-Tate weights
ky,o,1 < kp,o,2 <+ < kp,g,n, where 0 : Fy = Q.

(B2)  For each place p|p in F, the Frobenius action on Dg(py ) is semistable at 1
and pL.

(GBI) H}(Q,Ind} p) = 0= H{(Q,Ind} p¥(1)).

(GB2) H(Galq,,p) =0=H"(Galg,,p"(1)).

(GB3) The associated (¢, I")-module DIig((Ind(F) P)p) = ®ylp Dzig(pp) has no sat-
urated subquotient isomorphic to Uy ,, with k > 1and m > 0 ([2, §2.1.2]).
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For every p|p, choose a regular subomdule D, c D (py). Then, D := @y, Dy, ¢

®y|p Dst(py) = DLg((Indg p)p) is a regular submodule.” Moreover, if Wy, Mo, M,
(resp., Wy, 0, Mp,o, My ;) are the corresponding subquotients of Diig((lndg P)p)
Iig( py)) with respect to D (resp., Dy ), then we have decompositions

WO = @ Wp,()a MO = EBMp,O, M, = @Mp,b
plp plp plp

(resp., D

Hence, by assuming
(GB4) W, = 0forevery p|pand the Hodge-Tate weights for Gri™® DIig ((Ind?p),)
are all positive,

we may then follow the same recipe and define the Greenberg-Benois L-invariant
attached to p (with respect to {Dy } )

Len(p) = Lop(ps {Dp}y)p) = Lea(Ind¥ p, D) € E.

4 Fontaine-Mazur L-invariants

To define the Fontaine-Mazur £-invariants, we fix a finite extension K over Q,. We
shall be considering Galois representations

p: Galg - GL,(E),

where E is (again) a finite extension of Q,. In what follows, we consider the (¢, N)-
module Dy (p) associated with p. Note that if K is the maximal unramified extension
of Q, in K, then Dy (p) is a priori a Ko-vector space. However, we shall linearize
everything by base change to E.

Let g be the order of the residue field of K. We further assume p enjoys the following
properties:

(B1) The representation p is semistablg with Hodge-Tate weights k;; < kg5 <
- < kg 1< ks, where 0: K - Q,. The Hodge-Tate weights give rise to
the de Rham filtration Filjy Dy (p) = [Filﬁ;i' Dg:(p) o Filgﬁz Dy (p) o2

Fil's" Dy (p)].

(B2)  The linearized Frobenius eigenvalues on Dy (p) are ¢, ..., g™ "%

(FM1) Let DE;), ) be the eigenspace in Dy, (p) on which the Frobenius acts via g™/,
and we assume that the induced monodromy operator N on DE;) ) gives an
isomorphism

. p() (i+1)
N“Digny = Pigny:

7Note that Dst(Indg: pyp ) is nothing but Dy (py, ) (a prioria Ko ®q, E-module) viewing as a E-vector
space.
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DY and

(FM2) Define Frobenius filtration Fil{ Dy (p) by Filj.” Dyt(p) = Lisn1-j Dy

assume the orthogonality

Dy (p) = Fﬂfﬁii Dy (p) ® Fﬂ? Dy (p).

Lemma4.1.  Keep the notations and the assumptions as above. We abuse the notation

and denote by Grljz' D (p) = Fﬂﬁ;{’”‘l Dst(p)/Filgi’" D (p). Then, we have an inclu-
sion

-1 (0) )
Grjr Dy(p) = Diyny @ Dy ny:
Proof Indeed, we have a sequence of identifications

p® o pm _ FiliDu(p)

(9.N) (9:N) ~ Fil’_, Dy (p)
Fil§ Dy (p) @ Filgy" Da(p)

 Fil?_, Dy(p) @ Filly"* Dy(p)

_ Filf Dy (p) @ Filgy"* D (p)

B Dy (p)

_ Fil} Du(p) @ Filg™ Dur(p)

~ FilY Dy (p) @ Fil*y" Dy (p)

_ Filgi” Da(p)

il Dy(p)
where the third and the forth identifications follow from the orthogonality
assumption. [

Lemma 4.2.  For every i, we have

i)

o) = 1.

rankK,,@Qp E DE
Moreover, m < kg, , for every 0 : K — 61,.

Proof Consider the twisted Galois representation p(m). One can similarly
define the Frobenius filtration Fil{ Dy (p(m)), and we denote by DE;))N)(m) the
graded pieces. Since each Fil? Dy(p(m)) is a (¢, N)-module, [2, Proposition
1.2.7 (ii)] implies that we have an associated filtration Fil, Dlig(p(m)) such that
Dy (Eil, D]y (p(m))) = Eilf Dy (p(m)).
Consider Gr,, DIig(p(m)). One sees that
Da(Gra Dy (p(m))) = D) (m),

on which the semistable Frobenius acts via 1. Hence, by [17, Proposition 2.4],

Gr, DIig( p(m)) is crystalline and
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Gr, Dfiy(p(m)) 2 Ricp(8) with 8(z)= [] olz) .

U:anp

This shows that rank Ko®q, E D
that k, ,, > m.
Since rank1<0®Q ED( )(m) =1, we see that rank1<0®Q gD

(q) N) (m) = 1. Using the formula in loc. cit., one also sees

(Z)N) = 1. The result

then can be concluded by applying (FM1). [ ]

Thanks to Lemma 4.1 and Lemma 4.2, we can now define the Fontaine-Mazur

L-invariant. Let vo be a Ko ®q, E-basis for DE )N) and let v, := Nvy, which is a a
Ko ®q, E-basis for DE ) vy 1he Fontaine-Mazur L-invariant attached to p is then

defined to be Lp(p) € Ko ®q, E such that

vo - Lem(p)n1 € Grig' Dy (p).

Remark 4.3.  In fact, if we write Gri Dy (p) := Fil D (p)/ Fllk’*1 D (p), then a
similar argument as in Lemma 4.1 shows that

ni (1) ()
Grir' Dst(p) = Dy iy © Dy -

By using this inclusion, one can similarly define the i-th Fontaine-Mazur C-operator
attached to p to be Lg@l(p) € Ko ®q, E such thatv;_; - 51(:11\3["1' € Grliz' Dy (p), where
= NJv. Such a strategy was taken in [1]. However, it is believed that Lgla (p) =

Lrm(p) should determine all the other Lffl& (p)’s (see, for example, [op. cit., $§4.3.2]).
Hence, we focus on Ly (p). Moreover, one shall see, in what follows, that itis Lep(p)
we can relate to Greenberg-Benois £-invariants.

5 Comparing the two L-invariants

The aim of this section is to prove the comparison theorem (Theorem 5.4). However,
as aforementioned, to define £-invariants, there are some constraints one needs to put
on the Galois representations. For reader’s convenience, we collect all the assumptions
in §5.1 and briefly discuss a folklore about these assumptions.

5.1 Assumptions on the Galois representation

Let F be a number field and let E be a finite extension of Q, such that, for every
prime ideal p in Op sitting above p, F, c E. Write F, ¢ for the maximal unramified
extension of Q,, in Fy,; we further assume that F, = Q,, for every p. Suppose we are
given a Galois representation

p : Galp > GL,(E)

that is unramified outside a finite set of places. Let S be the set of places in F such that
p ramifies. We make the following assumptions:
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(I)  Basic assumptions:

(BI) For any prime ideal p c Op sitting above p, p,, = p|Gale is semistable
with Hodge-Tate weights 0<ky o1 <kpo2< o <kponi<Kkpan
where 0 : F, > Q,.

(B2) For any prime ideal p c Op sitting above p, the Frobenius eigenvalues
on Dy (py) are p™, ..., p™ "' such that ky 4., > m > ky,g,4-1, where
the first inequality is always guaranteed by Lemma 4.2.°

(I) Fontaine-Mazur assumptions:

(0
(EM1)  For any p|p, let D', v,

Frobenius acts via p™~. We assume that the induced monodromy

be the eigenspace in Dy (p,) on which the

operator N on D;i(q) N) gives an isomorphism

. () (i+1)
N=Dyfon = Priomy:
(FM2) Define FiljfJ Dy (pp) := Yisn-1-j D'(szq)’N), and we call the ascending
filtration Fil{ Dy (py ) the Frobenius filtration on D (p, ). We assume

the orthogonality

Dai(py) = Filyy" Dat(py) @ Fil! Dur(py).

(IIT) Greenberg-Benois assumptions:
(GBIl) Vanishing of the Bloch-Kato Selmer groups

H}(Q, Ind® p(m)) = H}(Q, IndQp¥(1-m)) =0.
(GB2) Vanishing of the zero-degree Galois cohomology
H®(Galg,, Ind2 p(m)) = H*(Galg,, Ind¥ p¥(1-m)) = 0.

(GB3) 'The associated (¢, ")-module DIig((Indgp(m))p) = @pp D;rig(pIJ
(m)) does not admit a subquotient of the form Uy , with k > 1 and
r>0([2,$2.1.2]).

(GB4) For any p|p, the space W, o for p,(m) vanishes (see [2, Proposition
2.1.7] or [17, pp. 1238]).

Remark 5.1.  For every p|p, the Frobenius filtration Fil{ Dy (p, ) defines a filtration

Fil, DLg( p) (similar as in the proof of Lemma 4.2). One observes that the graded

pieces Gr; Diig(p) of this filtration are all of rank 1 over Rf, g (by [2, Proposition

1.2.7 (ii)]). In particular, Fil, DLg (p) is a triangulation of DLg (p)- In fact, we have the
following description for the graded pieces:

Gri DIlg(p) = RFV’E((S”*i)’

8Here, m does not depend on p and o.
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where

On-i(z) = H G(Z)—kp,o,x‘ ‘ng;;z|—(m—n+i)'

a:Fy «—>6P

. T
Remark 5.2.  For every pl|p, since ky,g,n > m > ky g,,-1, We see that Fil =" "

Dqi(pp(m)) = Fillg Dst(py(m)). Moreover, the orthogonality condition (FM2)
implies that Fil® _| Dy (p,(m)) isaregular (¢, N')-submodule of D (p, (1) ). Hence,
in what follows, we naturally work with Dy, := Fil®_| Ds(py(m)) ¢ Dg(py(m)) and
D = @y|p Dy © @pp Dst(pp(m)). Moreover, in our situation, we shall see in the proof
(e.g., (5.2)) that the corresponding Gr<® D;rig ((Ind¥ p) ») has positive Hodge-Tate
weights, and so we remove such assumption in (GB4).

Remark 5.3.  'We have many assumptions on our Galois representation p. On the
one hand, one sees that they are necessary in order to attach both Lgp and Lpy
to it. On the other hand, we remark that it is a folklore that they shall appear as
Galois representations for automorphic forms of unitary groups whose corresponding
Shimura varieties can be p-adically uniformized by Drinfeld’s upper-half spaces. For
example, we are requiring maximal monodromy on our Galois representations. Such
a phenomenon is expected to appear for the Galois representations attached to unitary
automorphic representations that are Steinberg at p.

5.2 The main theorem

Theorem 5.4.  Keep the notations and assumptions as above. We have an equality

Lep(p(m)) = H ~Lem(pp)-
plp

Proof  The proof of the theorem is similar to the proof of [2, Proposition 2.3.7],
which relies on the following three steps:

Step 1. Fontaine-Mazur £L-invariants and cohomology of (¢, I')-modules.

Consider the triangulation Fil, DLg( p) in Remark 5.1. We define

Wy = Fil, DIig(P)/Filn—Z DIig(p)'

Hence, W, sits inside the short exact sequence

0 — Gr,, DI (p) —— W, — Gr, DI, (p) —— 0

rig rig
vz v
R, £(0p,1) Re,,5(8p,0)

for 8,,; : Fy — E* described as in Remark 5.1.
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As a result, Wp defines a class
Cl( Wp) € EXt((p,F)(RFp,E((Sp,O)):RFP,E((S;J,I))
= EXt((p’r)(fR, fR((Sp,l(S;)IO))
= HI(RFP,E(SP,I(?;}O)).

However, by construction, we know that Wp is semistable (since Dst(Wp) =

Dg"gw) D“(M)) and so cl(W,) € HY\ (Rp, 5 (8p.18,%)). Recall that HY, (Rp, ¢

(85.18,))) can be computed via the complex Cg (R, £ (8p.18,))) with

Dit(Re, 6 (8p.18,))
FﬂgR Dst(RFV,E(ap,lsg}O))

Dst(RFp»E@p»l‘S;,lo)) - ® 'Dst(RF,,E(‘sp,la;;,lo)) ® DSI(RFP,E((SF,I(S;,IO))

'Dst(yFV,E(ap,la;;,lo))

where the first map is given by a ~ (a mod Filjy Det(Re, £ (8p,18,%))s (¢ = 1a,
Na), while the second arrow is defined by (a, b, c) - Nb - (pp —1)c.

(0)
Now, choose a basis vy0 € D, (, v,

is a Fp 9 ®q, E-basis for pY 2 Ny We again denote by v, ; for the image of v, ; in
St(Wp((Sp '))). By the proof of [2, Proposition 1.4.4 (ii)], we know that the class

cA(W,) in H'(Co (R, 5 (8, 18,1))) is given by

over Fy o ®q, E and let v 1 := Nvy 9, which

c(a,b,c) =c(a, (¢ —1)vp0, Nvpo) =cl(a,0,vp,1),

where a € Dst(Wp((?;}o)) such that v, o + a € FilJg ﬂst(Wp((S;}o)). After untwist-
ing, a defines an element, still denoted by a e Dy(W,) such that vy +ae
Filﬁﬁ“‘" Dt ( Wp ). However, by construction,

Filﬁg"’” Dt (W,) = Griiz" Dyt (p) (notation as in Lemma 4.1).
Hence, we conclude that
(51) Cl( Wp ) = Cl(—LFM(pp )Vp,l, O, Vp,l) € H1 (Cs.t(RFp JE ((?p,l(?;}o)))

Step 2. Computing Lggp(p).
Next, we would also like to compute the Greenberg-Benois £-invariant Lggp(p)
via cohomology of (¢,I')-modules. As before, because of the decomposition

DLg((IndS P)p) = ®ylp Djig(lndg: pp)> we can study each p individually. Hence,

fix p|p. Computing the five-step filtration (3.1) explicitly, we have

0, 1:—2,
Ry ) =,
DS% = 1D, i=0
Dst(PP(m))7 i=1
Dy (pp(m)), i=2,

which gives rise to a five-step filtration Fil® D rlg( pp(m)).

https://doi.org/10.4153/50008439524000638 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439524000638

On Greenberg-Benois L-invariants and Fontaine-Mazur L-invariants 17
Let us simplify the notation and write
.1GB .1GB
W, = Fil; D;rig(Pp (m))/ FilZy DIig(pP (m)).

Similar as before, we see that W, sits inside the short exact sequence

0 —— Grg" Dl (pp(m)) —— Wy — G’ D, (pp(m)) —— 0

rig rig
~NE NP~ >
Rry,5(8p1) Re,,5(8y )
(5.2)
where
Fy \™ F ko F, —i
8 ni = Opni (NmQ‘:z) INmg 2™ = H, o(z) kpoitm INmg 2"
D':Fp~—>QP

By taking cohomology, we have the connecting homomorphism
9:H(Rp, £(6,0)) > H' (Rp, £(8),1)) = Hy(Rp, £(8},1))

where the equation follows from Lemma 2.1. Denoted by a§, and 8, the two classes
Pl p.l

in H' (R, . (8},,)) in Lemma 2.2. We know from loc. cit. that 9 gives rise to a unique
number £(W,) € E such that

[3:;;’1 + L(Wp)ocgg)l € image 0.
We claim that

(5.3) Lap(p(m)) ZITIL(Wp)
plp

Note that, in the definition of Lgp(p(m)), one studies the cohomology of
Gr? D;rig (pp(m)). However, we are now having cohomology classes in H!(Gr§" Diig
(pp(m))). To resolve this, we look at the short exact sequence

0+ (Grf® Duig(pp(m)))” (Keye) + Wy (xeye) + (Gr§® Drig(pp(m)))” (Yeye) + 0 .

~ S
Re, £ (kp,0) R, (rp.1)
By [2, Proposition 2.2.4], the Greenberg-Benois £-invariant computed by this exact
sequence (at each p) is the same as Lgp(p(m)). Here,
- Fp i
"ip,i(z) — Hi O,(Z)kp,n,nfx m+1 |NmepZ|1 1,
a:Fy '_’Qp

and we want to compute Lgg(p(m)) using the cohomology of R, g(#p,1)-
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By (B2), we have ky 5 ,—1 — m +1< 0 and we let uy, := min,{ky 4,1 — m +1}. By
[17, (2.8)], there is an injection

H'(Ro, 5(2")) > H'(Re. g(kpa)), 40~ Fkvenamel
(Ra,.£(z"")) (RF, . (kp,1)) Y > Ve

where Xy, Xk, ., ..-m+1> Yu,> and Yk w4 are as defined in loc. cit.”,'" By the
discussion on [17, pp. 1238], we have a commutative diagram

H' (EBD;(I - m),Ind2p¥(1- m))

plp

(5.4) / l \

DExk,.,-m > @H (Rp, p(kp1)) < DEyryn,i-mel
plp plp plp

where 1 is an isomorphism. Moreover, [op. cit., Corollary 3.9] yields that
Lan(p(m)) = det(1y 0 1,").
In particular, if £, € E such that
LpXkyenr-ms1 + Vi oua-ms1 € iMage (Hl (G|9 Dy (1-m), Ind} p¥(1- M)) - HI(RFP,E(MA))),
plp
then

Lap(p(m)) =] L,

plp

. H' (Wy (Xeye))
By definition, H' (EBPIP Dy(1- m),IndI? p¥Y(1- m)) = ®y)p Wésc)) The

vertical morphism in (5.4) is compatible with the natural morphism

HI(W;;/(XCYC)) - Hl(:RFp,E(HP,l))’

?For the convenience of the readers, we briefly recall the definitions of x,, and y,, . The definitions
for L — and Vkp oot —m+1 A€ similar; we refer the readers to [17, pp. 1233, 1234] for the precise
definitions. Given a = (a, b) € Rq,,r(z"» )®%, one can define an extension Dq as in (2.1), which defines a
class cl(a, b) € H'(Rq,,e (2" )). We simplify the notation and write e for the basis for Rq,,z (2" ). Then
Xu, = cl(t7"re,0) and yu, =10g yeyc(y)cl(0,t"» e), where recall y is a (fixed) topological generator
for I' = Gal(Q, ({»=)/Qp) and t = log[¢] € Bf;. Here, € € O"CP = lim o Oc, s defined by the fixed
compatible system of primitive p-power roots of unity (see the beginning of §2.1), and we implicitly use
the fact that certain subring of Rq, can be embedded into B:{R (see [2, §1.2.2]).

10 oo oo P Q .
This injection comes from a natural injection Rq,,r(2"?) — I“dFF: Rp,,E(kp,1). By duality,

T
we have a natural projection Indr:” Re,,5(8}1) = Rq,.r(z7"+[2]) as well as H'(R,,5(8},)) -
»

H'(Rq,,e(z7***"|2])). According to [2, Theorem 1.5.7], Xy, (resp., yu, ) is dual to BZ,, 41 (resp,—aZ, ).
Thus, we may choose vy € Dst(Rr,,£(8),,)) such that the corresponding oc;*;yl = cl(v%v‘,0,0) -

‘xiup+l and ﬁ;;l == Cl(O, 0, VB’N) e ﬁfup+l‘
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induced from the short exact sequence (5.2). Note that the exact sequence

HI(W};/(XCYC)) - HI(RFP,E(HD,I)) i HZ(RFP»E("QP)O))

is dual to the exact sequence
3
H(Rp, £(8p0)) = H' (Rp, 5(8,,)) ~ H'(W,).
We have 0(Lpxk,,, —m+1 + Vkpana-ms1) = 0 € H*(Rp, £(kp0)) and ﬁg;,l +

L(W, )a& =0eH '(W,). Moreover, using the relation between x, ., ,—m+1 (resp.,

Vkpomi-m+1) and /3&] 1 (resp., —(xgg 1)’ one sees that

Lp = L ( Wp ) 5
which concludes our claim.

Step 3. Conclusion.
By construction, W, defines a class (see (5.2))

c(Wy) € Exti%r)(ﬂ%pp,g((?;’o),fRFp,E(S;)l))
¥ Extl(%r)(ﬂ%pp,g, Ry £(851050))
= H'(Rp,,5(8p.18,))-
Note that, as classes in H'(Rp, £(8p,10,%)), we have
d(Wy) = (W),
Unwinding everything, we have

~ 1
¢ cl(L(Wy)vp1, 0,=vp1) = (W) = cl(Wp) = cl(=Lent(pp)vp.1, 0, vp.1)

for some c € E. In particular, we conclude that

Lem(pp) = -L(W,)

and so,

Lap(p(m)) = [1-Lem(pyp)
plp

by (5.3). .
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