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Cohomogeneity One Randers Metrics

Jifu Li, Zhiguang Hu, and Shaoqiang Deng

Abstract. An action of a Lie group G on a smooth manifold M is called cohomogeneity one if the
orbit spaceM/G is of dimension 1. A Finsler metric F on M is called invariant if F is invariant under
the action ofG. In this paper, we study invariant Randers metrics on cohomogeneity one manifolds.
We ûrst give a suõcient and necessary condition for the existence of invariant Randers metrics on
cohomogeneity one manifolds. _en we obtain some results on invariant Killing vector ûelds on the
cohomogeneity one manifolds and use them to deduce some suõcient and necessary conditions for
a cohomogeneity one Randers metric to be Einstein.

1 Introduction

Let M be a smoothmanifold andG a Lie group. An action ofG onM is called cohomo-
geneity one if the orbit spaceM/G is of dimension 1. _is notion was ûrst introduced
by Mostert [19]. If G acts on M properly, then there exists a G-invariant complete
Riemannian metric h on M. In this case the manifold with the metric h is called a co-
homogeneity one Riemannianmanifold. Cohomogeneity one Riemannianmanifolds
have been studied extensively, and many interesting results have been obtained. For
example, many interesting new and signiûcant examples, including Einstein metrics
and positively curved metrics, have been constructed; see [2–5,7, 13–15, 19,21,23–25].
_ere are also some studies on cohomogeneity one action on Alexandrov spaces [12],
which is a natural synthetic generalization of Riemannian geometry.

_e purpose of this paper is to initiate the study of cohomogeneity one action on
Finsler spaces. Due to the complexity of the general case, we will focus on Randers
spaces. Randers metrics were introduced by G. Randers in the context of general rela-
tivity. Hence they have important applications in the theory of relativity. In geometry,
Randers metrics provide a rich source of explicit examples that are neither Riemann-
ian nor locally Minkowskian. In [10, 11], Deng and Hou study homogeneous Randers
metrics and invariant Einstein–Randersmetrics on homogeneousmanifolds (see also
[9]) and obtain some interesting results. Since a cohomogeneity one Riemannian
manifold is a natural generalization of a Riemannian homogeneous manifold, it is
interesting to study cohomogeneity one actions on the Finsler manifolds. Hopefully
this consideration will lead to serious study on general cohomogeneity one Finsler
spaces.
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In Section 2 we recall some deûnitions and fundamental results on cohomogeneity
one Riemannianmanifolds and Finsler geometry. Section 3 is devoted to studying in-
variant Randers metrics on cohomogeneity onemanifolds. A complete description of
invariant Randers metrics on cohomogeneity one Riemannian manifolds is given. In
Section 4, we obtain a complete description of invariant Killing vector ûelds on coho-
mogeneity one Riemannian manifolds. _is result is used to present some suõcient
and necessary conditions for a cohomogeneity one Randers metric to be Einstein.

We remark here that the authors are listed in order based on their contribution.

2 Preliminaries

In this section we ûrst give some fundamental facts about cohomogeneity one Rie-
mannian manifold; for details see [2–4, 7, 27]. _en we recall some deûnitions and
facts about Randers manifolds. We will also ûx the notation to be used throughout
the paper.

Let M be a manifold and G a connected compact Lie transformation group on M.
If G acts eòectively on M and has a codimension one orbit, or equivalently, if the
orbit space M/G has dimension 1 (see [7, 19]), then M is called a cohomogeneity one
G-manifold. Since G is compact, we can choose a G-invariant Riemannian metric h
on M. We say that (M , h) is a cohomogeneity one Riemannian manifold. Note that
in this case the orbit space I = M/G becomes a one-dimensional metric space under
the natural projection π∶M → M/G. Mostert [19] proved that the metric space M/G
must be homomorphism to one of the following:
(i) I = R;
(ii) I = [0,+∞);
(iii) I = S1 = R/Z;
(iv) I = [0, L].
Denote (0, L) by I0. In the following, we only consider case (iv),as the other cases

can be treated similarly. Note that in the case (iv) the manifold M is a compact man-
ifold, and its fundamental group is ûnite.

Deûnition 2.1 Let (M , h) be a Riemannian cohomogeneity one manifold. A
G-orbit in M is called singular (resp. regular) if the image under the natural pro-
jection π is a boundary (resp. internal) point. A point x ∈ M is called singular (resp.
regular) if the orbit G ⋅ x is singular (resp. regular). _e set of all regular points of M
is denoted by Mr .

Deûnition 2.2 Let (M , h) be a cohomogeneity one Riemannian manifold. A com-
plete geodesic γ is called normal if it is perpendicular to all orbits.

_e existence of normal geodesics is proved in [7]. Let S1 = π−1(0) and S2 =

π−1(L) be two singular orbits and let γ be a normal geodesic on M initiating at x1 ∈ S1 ,
parameterized by arc length. _en γ is a normal geodesic from S1 to S2, and x2 =

γ(L) ∈ S2. Let H = Gγ(L/2) be the isotropy subgroup of G at the midpoint γ(L/2).
_en for any 0 < t < L, we have H = Gγ(t). Hence H preserves any point in the
normal geodesic. Let K i = Gx i , (i = 1, 2) be the singular isotropy subgroups. _en
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we have H ⊂ {K1 ,K2} ⊂ G, and it can be proved that the coset spaces K i/H, (i = 1, 2)
are spheres [2]. Every principal orbit is homomorphic to the reductive homogeneous
space G/H. Let g = LieG and h = LieH. Fix a bi-invariant inner product Q on g
and letm = (h)� be the orthogonal complement of h in g. _en we have a direct sum
decomposition g = h +m, which satisûes the condition

Ad(h)m ⊂ m, ∀h ∈ H.

For each t ∈ I0, the tangent space Tγ(t)(G ⋅ γ) can be identiûed with TH(G/H)

via the fundamental vector ûeld X̃ and X ∈ m. On the other hand, any G-invariant
metric h on Mr must be of the following form:

h = dt2 + ht ,

where ht is a G-invariant metric on G/H. Deûne

h(X̃ , Ỹ)γ(t) = ht(X ,Y) = Q(PtX ,Y),∀ X ,Y ∈ m,

where Pt ∶m → m is a Q symmetric Ad(H)-equivalent endmorphism, and X̃ is a
fundamental vector ûeld on Mr generated by X ∈ m; see [16] for details.

Proposition 2.3 (see [9, 11] or [10]) _ere is a bijection between the set of invariant
vector ûelds on (G/H, h) and the subspace

V ∶= {X ∈ m ∣ Ad(h)X = X ,∀h ∈ H}.

Furthermore, the vector ûeld X̃ on (G/H, h) generated by X ∈ V is aG-invariant Killing
vector ûeld if and only if X satisûes h([X ,Y]m , Z)+h(Y , [X , Z]m) = 0, for all Y , Z ∈ m.

Lemma 2.4 ([7]) Let (M , h) be a cohomogeneity one Riemannian manifold such
that M/G is a compact space. If (M , h) is Ricci �at, then h is �at.

We now recall some results on Randers metrics. A Randers metric is a Finsler
metric of the form F = α+β, where α is a Riemannianmetric and β is a 1-formwhose
length with respect to α is everywhere less than 1. _ere is another way to express
such metrics, namely,

(2.1) F(x , y) =

√
h(W , y)2 + λh(y, y)

λ
−

h(W , y)
λ

,

where h is a Riemannian metric, y ∈ TxM,W is a vector ûeld on smooth manifoldM
with h(W ,W) < 1, and λ = 1 − h(W ,W) [6]. We call the pair (h,W) the navigation
data of the Randersmetric F. If F is aG invariant Randersmetric on a cohomogeneity
one manifold M, then (M , F) is called a cohomogeneity one Randers space.
A Finsler metric F on M is called Einstein if its Ricci scalar Ric(x , y), where x ∈ M

and y ∈ Tx(M)/{0}, has no dependence on the direction y [5]. _e following result
is a kind of Schur’s Lemma in Finsler geometry.

Lemma 2.5 ([5]) _eRicci scalar of an Einstein–Randers metric in dimension greater
than 2 is necessarily constant.
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In the general case, it is still an open problem whether the above lemma is true.
Obviously, if (M , F) is a homogeneous Einstein–Finsler space, then the Ricci scalar
must be constant.

3 Invariant Randers Metrics on Cohomogeneity One Riemannian
Manifolds

Let (M , h) be a cohomogeneity one Riemannianmanifold under the action of a com-
pact Lie group G with M/G = [0, L]. Fix a a normal geodesic γ on (M , h). Let
H = Gγ(L/2) and K1 = Gγ(0)(K2 = Gγ(L)) be the principal isotropy subgroups and
singular isotropy subgroup, respectively. _en H ⊂ {K1 ,K2} ⊂ G and the coset spaces
K i/H, (i = 1, 2) are spheres with the induced Riemannian metrics.
Deûne a map φ∶G/H× I0 → M by φt(gH) ∶= φ(gH, t) = g ⋅γ(t). Obviously, φt is

well deûned and is aG equivariant diòeomorphism fromG/H to each principal orbit.
Given a vector ûeld X on G/H, deûne X̃t = (φt)∗X ,∀t ∈ I0. _en for each t ∈ I0, X̃t

is a vector ûeld on G ⋅ γ(t). Conversely, for each t ∈ I0, a vector ûeld Ỹt ∈ T(G ⋅ γ(t))
on G ⋅ γ(t) can be given by Ỹt = (φt)∗Y , where Y is a vector ûeld on G/H. Hence,
the vector ûelds on a principal orbit G ⋅ γ(t) are in one to one correspondence to that
on G/H. Whence we have the following lemma.

Lemma 3.1 Let X be a G-invariant vector ûeld on G/H. _en X̃t deûned as above is
a G-invariant vector ûeld on G ⋅ γ(t),∀t ∈ I0, and vice versa.

By Proposition 2.3 and Lemma 3.1, we see that there is a bijection between the
G-invariant vector ûelds on a principal orbit G ⋅ γ(t) and the space

V = {u ∈ m ∣ Ad(h)u = u,∀h ∈ H}.

Hence,

ũ∣gγ(t) =
d
ds

∣
s=0

exp(su)γ(t), ∀t ∈ I0 , g ∈ G , u ∈ V ,

is a G-invariant vector ûeld that is tangent to each principal orbit.
Now let u ∈ V . If for any k ∈ K1 (resp. K2), we have Ad(k)u = u, then the induced

vector ûeld ũ generated by u on a singular orbit G/K1 (resp. G/K2) is a G-invariant
vector ûeld. _e converse statement is obviously true.

Now we summarize the above results. We ûrst deûne a vector ûeld. Let u ∈ V and
g ∈ G.
(i) If Ad(k)u = u,∀k ∈ K i , i = 1, 2, deûne

û∣gγ(t) =
d
ds

∣
s=0

g exp(su) ⋅ γ(t), ∀t ∈ I.

(ii) If Ad(k)u = u,∀k ∈ K1, but Ad(k)u /= u, for some k ∈ K2, deûne

û∣gγ(t) =
⎧⎪⎪
⎨
⎪⎪⎩

0, t = L,
d
ds ∣ s=0g exp(su) ⋅ γ(t), t ∈ [0, L).
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(iii) If Ad(k)u /= u, for some k ∈ K1, but Ad(k)u = u, for k ∈ K2, deûne

û∣gγ(t) =
⎧⎪⎪
⎨
⎪⎪⎩

0, t = 0,
d
ds ∣ s=0g exp(su) ⋅ γ(t), t ∈ (0, L].

(iv) If Ad(k)u /= u, k ∈ K i , i = 1, 2, deûne

û∣gγ(t) =
⎧⎪⎪
⎨
⎪⎪⎩

0, t = 0, L,
d
ds ∣ s=0g exp(su) ⋅ γ(t), t ∈ (0, L).

_en we have the following theorem.

_eorem 3.2 _e vector ûeld û∣gγ(t) deûned above is a G-invariant vector ûeld on
the manifold M.

Let T = ∂
∂t be the geodesic vector ûeld along the normal geodesic γ(t), t ∈ I.

(i) If K1 = H = K2, deûne

T̂gγ(t) = (dτg)γ(t)T , ∀t ∈ I.

(ii) If K1 = H and H /= K2, deûne

T̂ ∣gγ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0, t = L,
(dτg)γ(t)T , t ∈ [0, L).

(iii) If K1 /= H and H = K2, deûne

T̂ ∣gγ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0, t = 0,
(dτg)γ(t)T , t ∈ (0, L],

where τg is the transformation of G/H deûned by τg ∶ g′H → g g′H. _en Tgγ(t) is a
well-deûned and G-invariant vector ûeld on M. Hence any G-invariant vector ûeld
X̂ on M can be uniquely written as

X̂ = c1û1∣gγ(t) + ⋅ ⋅ ⋅ + cs ûs ∣gγ(t) + cs+1T̂ ∣gγ(t) ,

where u1 , . . . , us is a basis of V , and c1 , . . . , cs+1 are G-invariant functions on M.
Since each G-invariant Randers metric on manifold M can be constructed by a

navigation data (h,U), where h is a Riemannianmetric andU is aG-invariant vector
ûeld with h(U ,U) < 1, we have the following theorem.

_eorem 3.3 Let (M , h) be a cohomogeneity one Riemannianmanifold with M/G =

I = [0, L]. _en there is a bijection between the set of G-invariant Randers metrics with
underlying Riemannian manifold (M , h) and the set

W ∶= V ∪ {T} = {u ∈ m ∣ Ad(h)u = u,∀h ∈ H} ∪ {T}.
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4 Killing Vector Fields and Invariant Einstein-Randers Metrics

In the above sectionwe have described invariant Randersmetrics on a cohomogeneity
one Riemannian manifold. In this section we will study some geometric properties of
the invariant Randers metric. In particular, we will prove that an invariant Randers
metric on a cohomogeneity one Riemannian manifold is an Einstein metric if and
only if in the navigation data the Riemannian metric is an Einstein metric and the
corresponding vector ûeld is a Killing vector ûeld with respect to the Riemannian
metric. _is shows that Killing vector ûelds of a cohomogeneity one Riemannian
manifold will play an important role in our study.

We ûrst give two ways of constructing Killing vector ûelds on (M , h).

_e ûrst construction. Let X ∈ V . _en X̃ is an G-invariant vector ûeld on
(G/H × I0 , dt2 + ht), that is,

X̃∣gγ(t) =
d
ds

∣s=0g exp(sX) ⋅ γ(t).

_en X̃ is a Killing vector ûeld if and only if the corresponding one parameter trans-
formation group

ϕs ∶Mr → Mr , gγ(t) → g exp(sX) ⋅ γ(t), t ∈ I0 ,

consisting of isometries of h. In particular, we have

h(Ỹ1 , Ỹ2)∣r(t) = h(dϕs(Ỹ1), dϕs(Ỹ2)) ∣r(t) .

A direct calculation (see [9] or [10]) then shows that

dϕs(Ỹi) = dτexp(sX)( ̃ead(sX)(Yi)) , i = 1, 2,

where τexp(sX) is the transformation of G/H deûned by gH → exp(sX)gH.
By the G-invariance of ht , we have

ht(Ỹ1 , Ỹ2)∣r(t) = ht(
̃ead(sX)(Y1), ̃ead(sX)(Y2)) ∣r(t) ,

that is,
Q(PtY1 ,Y2) = Q(Ptead(sX)(Y1), ead(sX)(Y2)) .

Taking the derivative with respect to s and considering the value at s = 0, we get

Q(Pt[X ,Y1],Y2) + Q(Pt[X ,Y2],Y1) = 0, for all t ∈ I0 ,Y1 ,Y2 ∈ m.

Conversely, if the above formula holds, then a backward argument shows that X̃ is a
Killing vector ûeld on (Mr , h). Combining with _eorem 3.2, we have the following
proposition.

Proposition 4.1 Let (M , h) be a cohomogeneity one Remannian G-manifold. Sup-
pose X ∈ V. _en the induced vector ûeld X̂ deûned before _eorem 3.2 is a Killing
vector ûeld on (M , h) if and only if X satisûes

Q(Pt[X ,Y1],Y2) + Q(Pt[X ,Y2],Y1) = 0, for all t ∈ I0 ,Y1 ,Y2 ∈ m.

Note _e Killing vector ûeld X̂ constructed in Proposition 4.1 may not be smooth
on the manifold M.
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_esecond construction. Since h = dt2+ht , theRiemannianmanifold (G/H × I0 , h)
is a warped product (see [8]). Let π1 and π2 be the natural projection from M onto
G/H and I0, respectively. We call {gH} × I0 = π−1

1 (gH) the ûbers and G/H × {t} =
π−1

2 (t) the leaves. Vectors tangent to the leaves are called horizontal, and those tan-
gent to the ûbers are called vertical. We identify the vector ûeld on G/H with the π1
related vertical vector ûeld on G/H × I0, and the vector ûeld on I0 with the π2 related
horizontal vector ûeld on G/H × I0.

Let X be a vector ûeld on G/H × I0. Denote X1 ∶= (π1∗(X), 0) = π1∗(X) and
X2 ∶= (0, π2∗(X)) = π2∗(X). _en X1 is a vector ûeld on G/H × {t},∀t ∈ I0, and
X2 is a vector ûeld on {gH} × I0 ,∀g ∈ G. Since LX1dt

2 = 0, we have the following
lemma.

Lemma 4.2 Let X be a vector ûeld on (G/H × I0 , h) with h = dt2 + ht . _en

LXh = LX2dt
2
+ LXht .

In particular, if ht = f (t)g, then LXh = LX2dt
2+X2( f )g+ f LX1 g, where f is a smooth

positive function on I0 and g is a homogeneous metric on G/H.

_e following proposition follows from Lemma 4.2.

Proposition 4.3 A vector ûeld Y is a Killing vector ûeld on (G/H, ht) if and only if
its horizontal li� Y is a Killing vector ûeld on G/H × I0.

In particular, we have the following proposition.

Proposition 4.4 If h = dt2 + f (t)g, where f is a smooth positive function on I0 and
g is a homogeneous metric on G/H, then we have
(i) a vector ûeld Y is a Killing vector ûeld on (G/H, ht) if and only if its horizontal

li� Y is a Killing vector ûeld on (G/H × I0 , h);
(ii) a vector ûeld Z is a Killing vector ûeld of (I0 , dt2) and Z( f ) = 0 if and only if its

vertical li� Z is a Killing vector ûeld on (G/H × I0 , h).

Remark Proposition 4.4 is also true for the cases of the warped product of two
semi-Riemannian manifold and the generalized Robertson-Walker spacetimes; see
[20, exercise 2] and [22, Proposition 3.7].

If Zht /= 0, then Z is not a Killing vector ûeld on G/H × I0 by Proposition 4.4.
Hence, we only need to consider G-invariant Killing vector ûelds on (Mr , h) gener-
ated by the natural li� of Killing vector ûelds on (G/H, ht).
Combining Proposition 2.3 and Proposition 4.3, we have the following corollary.

Corollary 4.5 With the same assumptions as in Proposition 4.4, Let

g = h +m,

be the decomposition of g = LieG. Deûne

V = {X ∈ m ∣ Ad(h)X = X ,∀h ∈ H}.
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If X ∈ V satisûes Q(Pt[X ,Y]m , Z)+Q(PtY , [X , Z]m) = 0,∀Y , Z ∈ m, t ∈ I0, then the
vector ûeld X̃ on (G/H, h) generated by X ∈ V is a G-invariant Killing vector ûeld, and
the horizontal li� X of X̃ is a G-invariant Killing vector ûeld on (Mr , h). Furthermore,
as in the proof of _eorem 3.2, we can obtain a G-invariant Killing vector ûeld X̂ on
(M , h).

IfW ∈ V , then Ŵ deûned in _eorem 3.2 is a G-invariant vector ûeld on (M , h).
Let

F = F(gγ(t), y), t ∈ I, y ∈ Tgγ(t)M
be given by (2.1). _en F is aG-invariant Randers metric on M. Let A(t), t ∈ I0 be the
Cartan tensor of the Randers metric F. If F is a smooth Randers metric, then A(t) is
continuous on I, i.e., W satisûes _eorem 3.2(i). On the other hand, if limx→0 A(t)
and limx→L A(t) exist, then we can redeûne A(t) to make it continuous on I. In both
cases, we call A(t) complete on I. Now we can prove the main result of this paper.

_eorem 4.6 Let M be a manifold with dimM ≥ 2 and G a compact Lie group that
acts on M such that M is a cohomogeneity one G-manifold with M/G = I = [0, L]. Let
H be the principal isotropy subgroup of G with a reductive decomposition g = h⊕m. Let
W ∈ m be an H ûxed vector with Q(PtW ,W) < 1 and let Ŵ be the inducedG-invariant
vector ûeld on (M , h). If the Cartan tensor A(t) of the induced Randers metric F with
navigation data (h, Ŵ) is complete, then the Randersmetric F is Einstein–Randers with
Ricci constant K on (Mr , h) if and only if h is Einstein with Ricci constant K and W
satisûes

Q(Pt[W ,Y1],Y2) + Q(Pt[W ,Y2],Y1) = 0, ∀t ∈ I0 ,Y1 ,Y2 ∈ m.

Proof By the result of Bao and Robles [5], the Randers metric (M , F) with naviga-
tion data (h,W) is Einstein if and only if h is an Einstein Riemannian metric and
W is a homothetic vector ûeld. Moreover, W must be a Killing vector ûeld if h has
nonzero scalar curvature. Now we prove the “only if ” part. _ere are two cases:
(a) (M , h) is not Ricci �at. _en W must be a Killing vector ûeld, and the assertion

follows from the result of Bao and Robles [5].
(b) (M , h) is Ricci �at. _en by Lemma 2.4, (M , h) must be �at. We assert that in

this case the vector ûeld Ŵ must also be a Killing vector ûeld. In fact, otherwise
Ŵ must be a homothetic vector ûeld with dilation σ /= 0. _en by Bao, Robles,
and Shen’s result in [6], the Randers metric F must be of constant �ag curvature
− 1

16 σ
2 on the regular part (Mr , h). Since the Cartan tensor is complete, Akbar-

Zadeh’s theorem [1] then implies that F must be Riemannian on (Mr , h). Hence,
Ŵ = 0 on (Mr , h). By the deûnition of Ŵ , we get Ŵ = 0 on (M , h), which is a
contradiction. Hence, Ŵ must be a Killing vector ûeld, and the assertion follows.

_e “if ” part can be proved by a backward argument.

Remark _eorem 4.6 is true in the case whereM/G = S1 without the condition of
the Cartan tensor being complete. _e proof is similar and will be omitted.

Finally, we give an example to describe some of the results in this paper.

https://doi.org/10.4153/CMB-2015-009-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-009-5


Cohomogeneity One Randers Metrics 583

Example 4.7 Let (M , h) be a (2m+2)-dimensional compact Riemannianmanifold,
whereM = [a, b]×SU(m+1)/SU(m), (a < b). _en the action of SU(m+1) on M is
cohomogeneity one, with the principal orbit SU(m+1)/SU(m). Let h = dt2+ f (t)g0,
where f is a smooth positive function on [a, b] and g0 is the standard Riemannian
metric on SU(m+ 1)/SU(m). If there is a positive constant λ satisfying the equations

(2m + 1) f ′′ + λ f = 0,

Ric0 = (λ f 2 + f f ′′ + 2mf ′2)g0 ,

where Ric0 is the Ricci tensor of g0, then (M , h) is an Einsteinmanifold with Einstein
constant λ and has constant sectional curvature by [7]. From [26], we know that there
is a bijection between the set of invariant Killing vector ûelds on SU(m + 1)/SU(m)

and the subspace

V = { (
− c
√
−1

m Im
c
√
−1

) ∣ c ∈ R} .

LetW be a vector ûeld on SU(m+1)/SU(m) generated byw ∈ V with f (t)g0(w ,w) <

1, t ∈ [a, b]. _en the Randers metric F with navigation data (g ,W) is an Einstein–
Randers metric with Ricci constant λ and has constant �ag curvature on (M , h),
whereW is the horizontal li� ofW to M.
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[1] H. Akbar-Zadeh, Sur les espaces de Finsler à courbures sectionnelles constantes. Acad. Roy. Belg.
Bull. Cl. Sci. 74(1988), no. 10, 281–322.

[2] A. V. Alekseevsky and D. V. Alekseevsky, G-manifolds with one dimensional orbit space. In: Lie
groups, their discrete subgroups, and invariant theory, Adv. Soviet Math., 8, American
Mathematical Society, Providence, RI, 1992, pp. 1–31.

[3] A. V. Alekseevsky and D. V. Alekseevsky, Riemannian G-manifold with one-dimensional orbit
space. Ann. Glob. Anal. Geom. 11(1993), no. 3, 197–211.

[4] D. V. Alekseevsky, Riemannian manifolds of cohomogeneity one. In: Diòerential geometry and its
applications (Eger, 1989), Colloq. Math. Soc. János Bolyai, 56, North-Holland, Amsterdam, 1992,
pp. 9–22.

[5] D. Bao and C. Robles, Ricci and �ag curvatures in Finsler geometry. In: A sampler of
Riemann-Finsler geometry, Math. Sci. Res. Inst. Publ., 50, Cambridge University Press,
Cambridge, 2004, pp. 197–260.

[6] D. Bao, C. Robles, and Z. Shen, Zermelo navigation on Riemannian manifolds. J. Diòerential
Geom. 66(2004), 377–435.
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