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Abstract

Let (Xt )t≥0 be a continuous-time irreducible Markov chain on a finite state space E, let
v : E → R \ {0}, and let (ϕt )t≥0 be defined by ϕt = ∫ t

0 v(Xs) ds. We consider the case
in which the process (ϕt )t≥0 is oscillating and that in which (ϕt )t≥0 has a negative drift.
In each of these cases, we condition the process (Xt , ϕt )t≥0 on the event that (ϕt )t≥0
hits level y before hitting 0 and prove weak convergence of the conditioned process as
y → ∞. In addition, we show the relationship between the conditioning of the process
(ϕt )t≥0 with a negative drift to oscillate and the conditioning of it to stay nonnegative
for a long time, and the relationship between the conditioning of (ϕt )t≥0 with a negative
drift to drift to ∞ and the conditioning of it to hit large levels before hitting 0.
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1. Introduction

Let (Xt )t≥0 be a continuous-time irreducible Markov chain on a finite state space E, let v be
a map v : E → R \ {0}, let (ϕt )t≥0 be the additive functional defined by ϕt = ϕ + ∫ t

0 v(Xs) ds,
and let Hy, y ∈ R, be the first hitting time of level y by the process (ϕt )t≥0. In a companion
paper (Jacka et al. (2005)), we discussed the problem of conditioning the process (Xt , ϕt )t≥0
on the event that the process (ϕt )t≥0 stays nonnegative, that is, the event {H0 = ∞}. In the
oscillating case and in the case of the negative drift of the process (ϕt )t≥0, when the event
{H0 = ∞} is of probability 0, the process (Xt , ϕt )t≥0 can instead be conditioned on some
approximation of the event {H0 = ∞}. In Jacka et al. (2005), we considered the approximation
by the events {H0 > T }, T > 0, and proved weak convergence, as T → ∞, of the process
(Xt , ϕt )t≥0 conditioned on this approximation.

In this paper, we look at another approximation of the event {H0 = ∞}: the approximation
by the events {H0 > Hy}, y ∈ R. We are again interested in weak convergence, as y → ∞,
of the process (Xt , ϕt )t≥0 conditioned on these approximations.

Our motivation comes from Bertoin and Doney (1994). In that work, the authors considered
a real-valued random walk {Sn, n ≥ 0} that does not drift to ∞ and conditioned it to stay
nonnegative. They discussed two interpretations of this conditioning: one was the conditioning
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of S to exceed level n before hitting 0, and the other was the conditioning of S to be nonnegative
up to time n. As will be seen, results for our process (Xt , ϕt )t≥0, when conditioned on the
event {H0 = ∞}, appear to be analogues of the results for a random walk.

Furthermore, similar to the results obtained in Bertoin and Doney (1994) for a real-valued
random walk {Sn, n ≥ 0} that does not drift to ∞, we show that, in the negative-drift case,

(i) taking the limit, as y → ∞, of conditioning the process (Xt , ϕt )t≥0 on {Hy < ∞} and
then further conditioning on the event {H0 = ∞} yields the same result as taking the
limit, as y → ∞, of conditioning (Xt , ϕt )t≥0 on the event {H0 > Hy}; and

(ii) conditioning the process (Xt , ϕt )t≥0 on the event that the process (ϕt )t≥0 oscillates and
then further conditioning on {H0 = ∞} yields the same result as taking the limit, as
T → ∞, of conditioning the process (Xt , ϕt )t≥0 on {H0 > T }.

The organization of the paper is as follows. In Section 2, we state the main theorems in
the oscillating and negative-drift cases. In Section 3, we calculate the Green’s function and
the two-sided exit probabilities of the process (Xt , ϕt )t≥0 that are needed for the proofs in
subsequent sections. In Section 4, we prove the main theorem in the oscillating case. In
Section 5, we prove the main theorem in the negative-drift case. Finally, Sections 6 and 7 deal
with the negative-drift case of the process (ϕt )t≥0 and give commuting diagrams illustrating
the conditioning of the process (Xt , ϕt )t≥0 on {Hy < H0} and, respectively, {H0 > T } listed
in (i) and (ii) above.

All the notation in this paper is taken from Jacka et al. (2005).

2. Main theorems

We first recall some notation from Jacka et al. (2005).
Let the process (Xt , ϕt ) be as defined in the introduction. Suppose that both E+ =

v−1(0, ∞) and E− = v−1(−∞, 0) are nonempty. For any y ∈ R, let E+
y and E−

y be the half-
spaces defined by E+

y = (E × (y, ∞))∪ (E+ ×{y}) and E−
y = (E × (−∞, y))∪ (E− ×{y}).

Let Hy, y ∈ R, be the first crossing time of the level y by the process (ϕt )t≥0, defined by

Hy =
{

inf{t > 0 : ϕt < y} if (Xt , ϕt )t≥0 starts in E+
y ,

inf{t > 0 : ϕt > y} if (Xt , ϕt )t≥0 starts in E−
y .

Let P(e,ϕ) denote the law of the process (Xt , ϕt )t≥0 starting at (e, ϕ), and let E(e,ϕ) denote
the expectation operator associated with P(e,ϕ). Let Q denote the conservative irreducible
Q-matrix of the process (Xt )t≥0 and let V be the diagonal matrix diag(v(e)). Let V −1Q� =
�G be the unique Wiener–Hopf factorization of the matrix V −1Q (see Lemma 3.4 of Jacka et
al. (2005)). Let J , J1, and J2 be the matrices

J =
(

I 0
0 −I

)
, J1 =

(
I 0
0 0

)
, J2 =

(
0 0
0 I

)
,

and let �2 be a matrix given by �2 = J�J . Throughout, I denotes the identity matrix, and
M(i, j) = [M](i, j) is used to denote the (i, j)th entry of a matrix M . In J1 and the first row
of J , I is of order |E+|, while in J2 and the second row of J , it is of order |E−|. For a fixed
y > 0, let P[y]

(e,ϕ) denote the law of the process (Xt , ϕt )t≥0, starting at (e, ϕ) ∈ E+
0 , conditioned

on the event {Hy < H0}. We are interested in weak convergence of the restriction to Ft of
(P[y]

(e,ϕ))y≥0 as y → ∞.
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Theorem 2.1. Suppose that the process (ϕt )t≥0 oscillates. Then, for a fixed (e, ϕ) ∈ E+
0 and

t ≥ 0, the restrictions to Ft of the measures (P[y]
(e,ϕ))y≥0 converge weakly, as y → ∞, to the

restriction to Ft of the probability measure Phr

(e,ϕ), which is given by

Phr

(e,ϕ)(A) = E(e,ϕ)(1(A)hr(Xs, ϕs)1(s < H0))

hr(e, ϕ)
, s ≥ 0, A ∈ Fs ,

where hr is a positive, harmonic function for the process (Xt , ϕt )t≥0, given by

hr(e, y) = [e−yV −1QJ1�2r](e), (e, y) ∈ E × R,

and V −1Qr = 1.

By comparing this theorem with Theorem 2.1 of Jacka et al. (2005), we see that the measures
(P[y]

(e,ϕ))y≥0 and (P(T )
(e,ϕ))T ≥0 converge weakly to the same limit. Therefore, in the oscillating

case, conditioning (Xt , ϕt )t≥0 on {Hy < H0}, y > 0, and conditioning (Xt , ϕt )t≥0 on
{H0 > T }, T > 0, yield the same result.

Let fmax be the eigenvector of the matrix V −1Q associated with its eigenvalue with maximal
nonpositive real part. In the negative-drift case, the weak limit, as y → ∞, of the sequence of
restrictions to Ft of (P[y]

(e,ϕ))y≥0 is given in the following theorem.

Theorem 2.2. Suppose that the process (ϕt )t≥0 drifts to −∞. Then, for a fixed (e, ϕ) ∈ E+
0

and t ≥ 0, the restrictions to Ft of the measures (P[y]
(e,ϕ))y≥0 converge weakly, as y → ∞, to

the restriction to Ft of the probability measure P
hfmax
(e,ϕ) , which is given by

P
hfmax
(e,ϕ) (A) = E(e,ϕ)(1(A)hfmax(Xs, ϕs)1(s < H0))

hfmax(e, ϕ)
, s ≥ 0, A ∈ Fs ,

where hfmax is a positive, harmonic function for the process (Xt , ϕt )t≥0, given by

hfmax(e, y) = [e−yV −1QJ1�2fmax](e), (e, y) ∈ E × R.

Before we prove Theorems 2.1 and 2.2, we recall some more notation from Jacka et al.
(2005) that will be used in the sequel.

The matrices G+ and G− are components of the matrix G, i.e.

G =
(

G+ 0
0 −G−

)
,

and the matrices �+ and �− are components of the matrix � determined by the Wiener–Hopf
factorization of the matrix V −1Q, i.e.

� =
(

I �−
�+ I

)
.

In other words, the matrix G+ is the Q-matrix of the process (XHy )y≥0, (X0, ϕ0) ∈ E+ × {0},
the matrix G− is the Q-matrix of the process (XH−y )y≥0, (X0, ϕ0) ∈ E−×{0}, and the matrices
�− and �+ determine the probability distribution of the process (Xt )t≥0 at the time (ϕt )t≥0
hits 0, that is, the probability distribution of XH0 (see Lemma 3.4 of Jacka et al. (2005)).

The matrix F (y), y ∈ R, is defined by

F (y) =
{

J1eyG = eyGJ1, y > 0,

J2eyG = eyGJ2, y < 0.
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For any vector g on E, let g+ and g− denote its restrictions to E+ and E−, respectively.
We write the column vector g as

g =
(

g+
g−
)

and the row vector µ as µ = (µ+, µ−).
A vector g is associated with an eigenvalue λ of the matrix V −1Q if there exists a k ∈ N

such that (V −1Q − λI )kg = 0.
By B we denote a basis, in the space of all vectors on E, containing exactly n = |E+|

vectors, f1, f2, . . . ,fn, such that each fj , j = 1, . . . , n, is associated with an eigenvalue αj

of V −1Q for which Re(αj ) ≤ 0, and containing exactly m = |E−| vectors, g1, g2, . . . , gm,
such that each gk, k = 1, . . . , m, is associated with an eigenvalue βk of V −1Q for which
Re(βk) ≥ 0. The vectors f +

1 , f +
2 , . . . ,f +

n form a basis N + in the space of all vectors on E+
and the vectors g−

1 , g−
2 , . . . ,g−

m form a basis P − in the space of all vectors on E−.
The matrix V −1Q cannot have strictly imaginary eigenvalues. All eigenvalues of V −1Q

with negative and positive real parts respectively coincide with the eigenvalues of G+ and
−G−. The matrices G+ and G− are irreducible Q-matrices with simple eigenvalues

αmax := max
1≤j≤n

Re(αj ) ≤ 0,

−βmin := max
1≤k≤m

Re(−βk) = − min
1≤k≤m

Re(βk) ≤ 0,

respectively, while fmax and gmin are the eigenvectors of the matrix V −1Q respectively
associated with its eigenvalues αmax and βmin. Therefore, f +

max and g−
min are the Perron–

Frobenius eigenvectors of the matrices G+ and G−, respectively.
If the process (ϕt )t≥0 drifts to −∞ then αmax < 0 and βmin = 0; if it drifts to ∞ then

αmax = 0 and βmin > 0. If (ϕt )t≥0 oscillates then αmax = βmin = 0 and there exists a vector r

such that V −1Qr = 1.

3. The Green’s function and hitting probabilities of the process (Xt, ϕt )t≥0

The Green’s function of the process (Xt , ϕt )t≥0, denoted by G((e, ϕ), (f, y)) for any
(e, ϕ), (f, y) ∈ E × R, is defined as

G((e, ϕ), (f, y)) = E(e,ϕ)

( ∑
0≤s<∞

1(Xs = f, ϕs = y)

)
,

noting that the process (Xt , ϕt )t≥0 hits any fixed state at a discrete time. For simplicity of
notation, let G(ϕ, y) denote the matrix (G((·, ϕ), (·, y)))E×E .

Theorem 3.1. In the drift cases,

G(0, 0) = �−1
2 =

(
(I − �−�+)−1 �−(I − �+�−)−1

�+(I − �−�+)−1 (I − �+�−)−1

)
.

In the oscillating case, G(0, 0) is undefined.

Proof. By the definitions of G(0, 0) and the matrices �+, �−, and �2, we have

G(0, 0) =
∞∑

n=0

(
0 �−

�+ 0

)n

=
∞∑

n=0

(I − �2)
n.
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Suppose that the process (ϕt )t≥0 drifts to either ∞ or −∞. Then, by Equation (3.6) and
Lemma 3.5(iv) of Jacka et al. (2005), exactly one of the matrices �+ and �− is strictly
substochastic. In addition, the matrix �−�+ is positive and, thus, primitive. Therefore, the
Perron–Frobenius eigenvalue λ of �−�+ satisfies 0 < λ < 1, which, by the Perron–Frobenius
theorem for primitive matrices (see Seneta (1981)), implies that

lim
n→∞

(�−�+)n

λn
= const. �= 0.

Therefore, (�−�+)n → 0 entrywise as n → ∞ and, similarly, (�+�−)n → 0 entrywise
as n → ∞. Hence, (I − �2)

n → 0 as n → ∞. Since

I − (I − �2)
n+1 = �2

n∑
k=0

(I − �2)
k

and, by Lemma 3.5(ii) of Jacka et al. (2005), �−1
2 exists, by letting n → ∞ we obtain

G(0, 0) =
∞∑

n=0

(I − �2)
n = �−1

2 .

Suppose now that the process (ϕt )t≥0 oscillates. Then, again by Equation (3.6) and
Lemma 3.5(iv) of Jacka et al. (2005), the matrices �+ and �− are stochastic. Thus,
(I − �2)1 = 1 and

G(0, 0)1 =
∞∑

n=0

(I − �2)
n1 =

∞∑
n=0

1.

Since the matrix Q is irreducible, it follows that G(0, 0) is undefined.

Theorem 3.2. In the drift cases, the Green’s function G((e, ϕ), (f, y)) of the process
(Xt , ϕt )t≥0 is given by the |E| × |E| matrix G(ϕ, y), where

G(ϕ, y) =
{

�F (y − ϕ)�−1
2 , ϕ �= y,

�−1
2 , ϕ = y.

Proof. By Theorem 3.1, G(y, y) = G(0, 0) = �−1
2 , and, by Lemma 3.7 of Jacka et al.

(2005),
P(e,ϕ−y)(XH0 = e′, H0 < ∞) = [�F (y − ϕ)](e, e′), ϕ �= y.

The theorem then follows from

G((e, ϕ), (f, y)) =
∑
e′∈E

P(e,ϕ−y)(XH0 = e′, H0 < ∞)G((e′, 0), (f, 0)).

The Green’s function G0((e, ϕ), (f, y)), (e, ϕ), (f, y) ∈ E × R, of the process (Xt , ϕt )t≥0
killed when the process (ϕt )t≥0 crosses 0 is defined by

G0((e, ϕ), (f, y)) = E(e,ϕ)

( ∑
0≤s<H0

1(Xs = f, ϕs = y)

)

(and written G0(ϕ, y) in matrix notation). It follows that G0(ϕ, y) = 0 if ϕy < 0, that
G0(ϕ, 0) = 0 if ϕ �= 0, and that G0(0, 0) = I . To calculate G0(ϕ, y) for |ϕ| ≤ |y|, ϕy ≥ 0,
y �= 0, we use the following lemma.
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Lemma 3.1. Let (f, y) ∈ E+ ×(0, ∞) be fixed and let the process (Xt , ϕt )t≥0 start at (e, ϕ) ∈
E × (0, y). Let (e, ϕ) 
→ h((e, ϕ), (f, y)) be a bounded function on E × (0, y) such that the
process (h((Xt∧H0∧Hy , ϕt∧H0∧Hy ), (f, y)))t≥0 is a uniformly integrable martingale and

h((e, 0), (f, y)) = 0, e ∈ E−, (3.1)

h((e, y), (f, y)) = G0((e, y), (f, y)). (3.2)

Then
h((e, ϕ), (f, y)) = G0((e, ϕ), (f, y)), (e, ϕ) ∈ E × (0, y).

Proof. The proof of the lemma is based on the fact that a uniformly integrable martingale
that almost surely hits 0 is almost surely 0. We leave the reader to supply the details.

Let Ay , By , Cy , and Dy be the components of the matrix e−yV −1Q, such that, for any y ∈ R,

e−yV −1Q =
(

Ay By

Cy Dy

)
. (3.3)

Theorem 3.3. The Green’s function G0((e, ϕ), (f, y)), |ϕ| ≤ |y|, ϕy ≥ 0, y �= 0, e, f ∈ E,
is given by the following |E| × |E| matrix G0(ϕ, y):

G0(ϕ, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Aϕ(Ay − �−Cy)

−1 Aϕ(Ay − �−Cy)
−1�−

Cϕ(Ay − �−Cy)
−1 Cϕ(Ay − �−Cy)

−1�−

)
, 0 ≤ ϕ < y,

(
Bϕ(Dy − �+By)

−1�+ Bϕ(Dy − �+By)
−1

Dϕ(Dy − �+By)
−1�+ Dϕ(Dy − �+By)

−1

)
, y < ϕ ≤ 0,

(
(I − �−CyA

−1
y )−1 �−(I − CyA

−1
y �−)−1

CyA
−1
y (I − �−CyA

−1
y )−1 (I − CyA

−1
y �−)−1

)
, ϕ = y > 0,

(
(I − ByD

−1
y �+)−1 ByD

−1
y (I − �+ByD

−1
y )−1

�+(I − ByD
−1
y �+)−1 (I − �+ByD

−1
y )−1

)
, ϕ = y < 0.

In the drift cases, G0(ϕ, y) is written in matrix notation as

G0(ϕ, y) =

⎧⎪⎨
⎪⎩

�e−ϕG�2F (y)�−1
2 , 0 ≤ ϕ < y or y < ϕ ≤ 0,

�F (−ϕ)�2eyG�−1
2 , 0 < y < ϕ or ϕ < y < 0,

(I − �F (−y)�F (y))�−1
2 , ϕ = y �= 0.

In addition, the Green’s function G0(ϕ, y) is positive for all ϕ, y ∈ R such that |y| > 0 and
yϕ ≥ 0.

Proof. We prove the theorem for y > 0. The case y < 0 can be proved in the same way.
Let y > 0. First we calculate the Green’s function G0(y, y). Let Yy denote a matrix on

E− × E+ with entries

Yy(e, e
′) = P(e,y)(XHy = e′, Hy < H0).

Then

G0(y, y) =
(

I �−
Yy I

)(∑∞
n=0(�

−Yy)
n 0

0
∑∞

n=0(Yy�
−)n

)
.
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By Lemma 3.5(vi) of Jacka et al. (2005), the matrix Yy is positive and 0 < Yy1+ < 1−,
componentwise. Hence, �−Yy is positive and therefore irreducible and its Perron–Frobenius
eigenvalue λ satisfies 0 < λ < 1. Thus,

lim
n→∞

(�−Yy)
n

λn
= const. �= 0,

which implies that (�−Yy)
n → 0 entrywise as n → ∞. Similarly, (Yy�

−)n → 0 entrywise
as n → ∞.

Furthermore, the essentially nonnegative matrices �−Yy − I and Yy�
− − I are invertible

because their Perron–Frobenius eigenvalues are negative and, by the same argument, the
matrices (I − �−Yy)

−1 and (I − Yy�
−)−1 are positive. Since

n∑
k=0

(�−Yy)
k = (I − �−Yy)

−1(I − (�−Yy)
n+1),

n∑
k=0

(Yy�
−)k = (I − Yy�

−)−1(I − (Yy�
−)n+1),

by letting n → ∞ we finally obtain

G0(y, y) =
(

(I − �−Yy)
−1 �−(I − �−Yy)

−1

Yy(I − Yy�
−)−1 (I − Yy�

−)−1

)
=
(

I −�−
−Y−1

y I

)−1

.

By Lemma 3.5(i) and (vi) of Jacka et al. (2005), the matrices �− and Yy are positive. Since
the matrices (I−�−Yy)

−1 and (I−Yy�
−)−1 are also positive, it follows that G0(y, y), y > 0,

is positive.
We now calculate the Green’s function G0(ϕ, y) for 0 ≤ ϕ < y. Let (f, y) ∈ E+ × (0, ∞)

be fixed and let the process (Xt , ϕt )t≥0 start in E × (0, y). Let

h((e, ϕ), (f, y)) = [e−ϕV −1Qgf,y](e), (3.4)

for some vector gf,y on E. Since, by Equation (3.4) of Jacka et al. (2005), Gh = 0, the
process (h((Xt , ϕt ), (f, y)))t≥0 is a local martingale and, because the function h is bounded
on every finite interval, it is a martingale. In addition, (h((Xt∧H0∧Hy , ϕt∧H0∧Hy ), (f, y)))t≥0
is a bounded martingale and therefore uniformly integrable.

We want the function h to satisfy the boundary conditions in Lemma 3.1. Let hy(ϕ) be an
|E| × |E+| matrix with entries

hy(ϕ)(e, f ) = h((e, ϕ), (f, y)).

Then, from (3.4) and the boundary condition (3.1),

hy(ϕ) =
(

Aϕ Bϕ

Cϕ Dϕ

)(
My

0

)
=
(

AϕMy

CϕMy

)
, 0 ≤ ϕ < y,

for some |E+| × |E+| matrix My . From the boundary condition (3.2), we have

AyMy = (I − �−Yy)
−1 and CyMy = Yy(I − �−Yy)

−1, (3.5)
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which imply that My = (Ay − �−Cy)
−1 and Yy = CyA

−1
y . Hence,

hy(ϕ) =
(

Aϕ(Ay − �−Cy)
−1

Cϕ(Ay − �−Cy)
−1

)
, 0 ≤ ϕ < y,

and the function h((e, ϕ), (f, y)) satisfies the boundary conditions (3.1) and (3.2). Therefore,
for 0 ≤ ϕ < y, G0(ϕ, y) = hy(ϕ) on E ×E+ and, because G0(ϕ, y) = hy(ϕ)�− on E ×E−,
we have

G0(ϕ, y) =
(

Aϕ(Ay − �−Cy)
−1 Aϕ(Ay − �−Cy)

−1�−
Cϕ(Ay − �−Cy)

−1 Cϕ(Ay − �−Cy)
−1�−

)
, 0 ≤ ϕ < y.

Finally, since G0(y, y), y > 0, is positive, by irreducibility G0(ϕ, y) is also positive for
0 ≤ ϕ < y.

Lemma 3.2. For a y �= 0 and any (e, f ) ∈ E × E, we have

P(e,ϕ)(XHy = f, Hy < H0) = [G0(ϕ, y)(G0(y, y))−1](e, f ), 0 < |ϕ| < |y|,
P(e,y)(XHy = f, Hy < H0) = [(I − (G0(y, y))−1)](e, f ).

Proof. By Theorem 3.3, the matrix G0(y, y) is invertible. Therefore, the equalities

G0((e, ϕ), (f, y)) =
∑
e′∈E

P(e,ϕ)(XHy = e′, Hy < H0)G0((e
′, y), (f, y)), ϕ �= y �= 0,

G0((e, y), (f, y)) = I (e, f ) +
∑
e′∈E

P(e,y)(XHy = e′, Hy < H0)G0((e
′, y), (f, y)), y �= 0,

prove the lemma.

4. The oscillating case. Proof of Theorem 2.1

Let t ≥ 0 be fixed and let A ∈ Ft . We start by considering the limit of P[y]
(e,ϕ)(A) as

y → ∞. For some (e, ϕ) ∈ E+
0 and y > ϕ, by Lemma 3.5(vi) of Jacka et al. (2005),

P(e,ϕ)(Hy < H0) > 0 for all y > 0. Hence, by the Markov property, for any (e, ϕ) ∈ E+
0 and

any A ∈ Ft ,

P[y]
(e,ϕ)(A) = P(e,ϕ)(A | Hy < H0)

= 1

P(e,ϕ)(Hy < H0)
E(e,ϕ)(1(A)[1(t < H0 ∧ Hy) P(Xt ,ϕt )(Hy < H0)

+ 1(Hy ≤ t < H0) + 1(Hy < H0 ≤ t)]). (4.1)

Lemma 4.1. Let r be a vector such that V −1Qr = 1. Then

(i) hr(e, ϕ) ≡ −[e−ϕV −1QJ1�2r](e) > 0, (e, ϕ) ∈ E+
0 , and

(ii) lim
y→∞

P(e′,ϕ′)(Hy < H0)

P(e,ϕ)(Hy < H0)
= [e−ϕ′V −1QJ1�2r](e′)

[e−ϕV −1QJ1�2r](e) , (e, ϕ), (e′, ϕ′) ∈ E+
0 .
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Proof. (i) For any y ∈ R, let the matrices Ay and Cy be components of the matrix e−yV −1Q

given in (3.3), that is,

e−yV −1Q =
(

Ay By

Cy Dy

)
.

Then, for any ϕ ∈ R and e ∈ E,

hr(e, ϕ) = −[e−ϕV −1QJ1�2r](e) = −
[(

Aϕ(r+ − �−r−)

Cϕ(r+ − �−r−)

)]
(e).

The outline of the proof is as follows. We first show that the vector Aϕ(r+ − �−r−) has
a constant sign by showing that it is a Perron–Frobenius eigenvector of some positive matrix.
Then, because

Cϕ(r+ − �−r−) = CϕA−1
ϕ Aϕ(r+ − �−r−)

and, by our Lemma 3.2, our Theorem 3.3, and Lemma 3.5(vi) of Jacka et al. (2005), the matrix
CϕA−1

ϕ is positive, we conclude that the vector Cϕ(r+ − �−r−) has the same constant sign
and that the function hr has a constant sign. Finally, by Lemma 4.1(ii) of Jacka et al. (2005),
we conclude that hr is always positive.

Therefore, all we have to prove is that the vector Aϕ(r+ − �−r−) has a constant sign for
any ϕ ∈ R. Let r be a fixed vector such that V −1Qr = 1. Then

eyV −1Qr = r + y1 ⇔
{

A−yr
+ + B−yr

− = r+ + y1+,

C−yr
+ + D−yr

− = r− + y1−.

By (3.5), the matrix Aϕ is invertible. Thus, because 1+ = �−1−,

A−y − �−C−y = (Ay − �−Cy)
−1,

B−y − �−D−y = −(A−y − �−C−y)�
−,

we have
(Aϕ(Ay − �−Cy)

−1A−1
ϕ )Aϕ(r+ − �−r−) = Aϕ(r+ − �−r−). (4.2)

By Theorem 3.3, the matrix Aϕ(Ay − �−Cy)
−1 is positive for any ϕ �= y. By Lemma 3.2,

Theorem 3.3, and by Lemma 3.5(vi) of Jacka et al. (2005), the matrix A−1
ϕ is also positive.

Hence, the matrix Aϕ(Ay − �−Cy)
−1A−1

ϕ , ϕ �= y, is positive and has a Perron–Frobenius
eigenvector of constant sign.

Suppose that Aϕ(r+ − �−r−) = 0. Then, because Aϕ is invertible, r+ − �−r− = 0. If
r+ = �−r− then r is a linear combination of the vectors gk, k = 1, . . . , m, in the basis B;
however, this is not possible because r is also in the basis B and is therefore independent of
gk, k = 1, . . . , m. Hence, Aϕ(r+ − �−r−) �= 0 and, by (4.2), it is the eigenvector of the
matrix Aϕ(A−y − �−C−y)A

−1
ϕ that corresponds to the eigenvalue 1.

We want to show that the Perron–Frobenius eigenvalue of the matrix

Aϕ(A−y − �−C−y)A
−1
ϕ

is 1. It follows from

(Aϕ(Ay − �−Cy)
−1A−1

ϕ )Aϕ(I − �−�+) = Aϕ(I − �−�+)eyG+
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that if α is a nonzero eigenvalue of the matrix G+ with some algebraic multiplicity, then eαy

is an eigenvalue of the matrix Aϕ(Ay − �−Cy)
−1A−1

ϕ with the same algebraic multiplicity.
Since all n − 1 nonzero eigenvalues of G+ have negative real parts, all of the eigenvalues
eαj y, αj �= 0, j = 1, . . . , n, of Aϕ(Ay − �−Cy)

−1A−1
ϕ have real parts strictly less than 1.

Thus, 1 is the Perron–Frobenius eigenvalue of the matrix Aϕ(Ay − �−Cy)
−1A−1

ϕ , and the
vector Aϕ(r+ − �−r−) is its Perron–Frobenius eigenvector and therefore has a constant sign.

(ii) The statement of part (ii) follows directly from the equality

lim
y→∞

P(e′,ϕ′)(Hy < H0)

P(e,ϕ)(Hy < H0)
= lim

y→∞
[G0(ϕ

′, y)1](e′)
[G0(ϕ, y)1](e) ,

where G0(ϕ, y) is the Green’s function for the killed process defined and determined in
Section 3, and from the representation of G0(ϕ, y) given by

G0(ϕ, y)1 =
∑

j,αj �=0

aj e−ϕV −1QJ1�2eyV −1Qfj + ce−ϕV −1QJ1�2r,

for some constants aj , j = 1, . . . , n, and c �= 0, where the vectors fj , j = 1, . . . , n, form
part of the basis B in the space of all vectors on E and are associated with the eigenvalues
αj , j = 1, . . . , n, of the matrix G+. Since Re(αj ) < 0 for all αj �= 0, it can be shown that,
for every j such that αj �= 0, eyV −1Qfj → 0 as y → ∞, which proves the statement. For the
details of the proof, see Najdanovic (2003).

Proof of Theorem 2.1. By Lemmas 4.1(ii) and 4.3 of Jacka et al. (2005), the function
hr(e, ϕ) is positive and harmonic for the process (Xt , ϕt )t≥0. Therefore, the measure Phr

(e,ϕ) is
well defined.

For fixed (e, ϕ) ∈ E+
0 , t ∈ [0, ∞), and any y ≥ 0, let Zy be a random variable defined on

the probability space (�, F , P(e,ϕ)) by

Zy = 1

P(e,ϕ)(Hy < H0)
(1(t < H0 ∧ Hy) P(Xt ,ϕt )(Hy < H0)

+ 1(Hy ≤ t < H0) + 1(Hy < H0 ≤ t)).

By our Lemma 4.1(ii) and Lemmas 4.1(ii), 4.2(i), and 4.3 of Jacka et al. (2005), the random
variable Zy converges to

hr(Xt , ϕt )

hr(e, ϕ)
1(t < H0)

in L1(�, F , P(e,ϕ)) as y → ∞. Therefore, by (4.1), for a fixed t ≥ 0 and A ∈ Ft ,

lim
y→∞ P[y]

(e,ϕ)(A) = lim
y→∞ E(e,ϕ)(1(A)Zy) = Phr

(e,ϕ)(A),

which, by Lemma 4.2(ii) of Jacka et al. (2005), implies that the restrictions to Ft of the measures
(P[y]

(e,ϕ))y≥0 converge weakly to the restriction to Ft of Phr

(e,ϕ) as y → ∞.

5. The negative-drift case. Proof of Theorem 2.2

Again, as in the oscillating case, we start with the limit of P[y]
(e,ϕ)(A), as y → ∞, by

considering

lim
y→∞

P(e′,ϕ′)(Hy < H0)

P(e,ϕ)(Hy < H0)
.
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First we prove an auxiliary lemma.

Lemma 5.1. For any vector g on E, limy→∞ F (y)g = 0. In addition, for any nonnegative
vector g on E,

lim
y→∞ e−αmaxyF (y)g = cJ1fmax

for some positive constant c ∈ R.

Proof. Let

g =
(

g+
g−
)

and g+ =
n∑

j=1

ajf
+
j ,

for some coefficients aj , j = 1, . . . , n, where the vectors f +
j , j = 1, . . . , n, form a basis in

the space of all vectors on E+ and are associated with the eigenvalues αj , j = 1, . . . , n, of the
matrix G+. Then the first equality in the lemma follows from

F (y)g =
(

eyG+
0

0 0

)(
g+
g−
)

=
(

eyG+
g+

0

)
=

n∑
j=1

aj

(
eyG+

f +
j

0

)
, y > 0, (5.1)

since, for Re(αj ) < 0, j = 1, . . . , n, we have eyG+
f +

j → 0 as y → ∞.
Moreover, by Lemma 3.5(iii) of Jacka et al. (2005), the matrix G+ is an irreducible Q-matrix

with Perron–Frobenius eigenvalue αmax and Perron–Frobenius eigenvector f +
max. Thus, for any

nonnegative vector g on E+, by Lemma 3.6(ii) of Jacka et al. (2005),

lim
y→∞ e−αmaxy[eyG+

g](e) = cf +
max(e) (5.2)

for some positive constant c ∈ R. Therefore, from (5.1) and (5.2),

lim
y→∞ e−αmaxyF (y)g = lim

y→∞

(
e−αmaxyeyG+

g+
0

)
= c

(
f +

max
0

)
= cJ1fmax.

We now determine the limit

lim
y→∞

P(e′,ϕ′)(Hy < H0)

P(e,ϕ)(Hy < H0)
.

Lemma 5.2. For any (e, ϕ), (e′, ϕ′) ∈ E+
0 ,

(i) hfmax(e, ϕ) := [e−ϕV −1QJ1�2fmax](e) > 0,

(ii) lim
y→∞

P(e′,ϕ′)(Hy < H0)

P(e,ϕ)(Hy < H0)
= [e−ϕ′V −1QJ1�2fmax](e′)

[e−ϕV −1QJ1�2fmax](e)
.

Proof. (i) The function hfmax can be rewritten as

hfmax(e, ϕ) = [e−ϕV −1QJ1�2fmax](e) =
[(

Aϕ(I − �−�+)f +
max

Cϕ(I − �−�+)f +
max

)]
(e),

where Aϕ and Cϕ are as given in (3.3).
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We first show that the vector Aϕ(I − �−�+)f +
max is positive. By (3.5), the matrix Aϕ is

invertible and, by Equation (3.6) and Lemma 3.5, parts (ii) and (iv), of Jacka et al. (2005), the
matrix I − �−�+ is invertible. Therefore,

Aϕ(A−y − �−C−y)A
−1
ϕ = Aϕ(I − �−�+)eyG+

(I − �−�+)−1A−1
ϕ .

By Theorem 3.3, the matrix Aϕ(Ay − �−Cy)
−1, ϕ �= y, is positive and, by Lemma 3.2,

Theorem 3.3, and by Lemma 3.5(vi) of Jacka et al. (2005), the matrix A−1
ϕ is also positive.

Hence, the matrix Aϕ(A−y − �−C−y)A
−1
ϕ , ϕ �= y, is positive and is similar to eyG+

. Thus,
Aϕ(A−y − �−C−y)A

−1
ϕ and eyG+

have the same Perron–Frobenius eigenvalue and, because
the Perron–Frobenius eigenvector of eyG+

is f +
max, it follows that Aϕ(I − �−�+)f +

max is the
Perron–Frobenius eigenvector of Aϕ(A−y − �−C−y)A

−1
ϕ and, therefore, positive. In addition,

Cϕ(I − �−�+)f +
max = CϕA−1

ϕ Aϕ(I − �−�+)f +
max

and, by Lemma 3.2, Theorem 3.3, and by Lemma 3.5(vi) of Jacka et al. (2005), the matrix
CϕA−1

ϕ is positive. Therefore, the function hfmax is positive.

(ii) By Lemmas 3.2 and 5.1 and Theorem 3.3,

lim
y→∞

P(e′,ϕ′)(Hy < H0)

P(e,ϕ)(Hy < H0)
= lim

y→∞
[e−ϕ′V −1Q��2F (y)1](e′)
[e−ϕV −1Q��2F (y)1](e) .

Since the vector 1 is nonnegative and ��2J1fmax = J1�2fmax, the statement of the lemma
follows from Lemma 5.1.

The function hfmax has the property that the process (hfmax(Xt , ϕt )1(t < H0))t≥0 is a
martingale under P(e,ϕ). We prove this in the following lemma.

Lemma 5.3. The function hfmax(e, ϕ) is harmonic for the process (Xt , ϕt )t≥0 and the process
(hfmax(Xt , ϕt )1(t < H0))t≥0 is a martingale under P(e,ϕ).

Proof. The function hfmax(e, ϕ) is continuously differentiable in ϕ and, therefore, by Equa-
tion (3.4) of Jacka et al. (2005), it is in the domain of the infinitesimal generator G of the
process (Xt , ϕt )t≥0, with Ghfmax = 0. Thus, the function hfmax(e, ϕ) is harmonic for the
process (Xt , ϕt )t≥0 and the process (hfmax(Xt , ϕt ))t≥0 is a local martingale under P(e,ϕ). It
follows that the process (hfmax(Xt∧H0 , ϕt∧H0) = hfmax(Xt , ϕt )1(t < H0))t≥0 is also a local
martingale under P(e,ϕ) and, because it is bounded on every finite interval, is a martingale.

Proof of Theorem 2.2. The proof is exactly the same as the proof of Theorem 2.1 with the
function hfmax substituting for hr . (We therefore appeal to Lemma 5.2 rather than to Lemma 4.1
for the desired properties of hfmax .)

6. The negative-drift case: conditioning (ϕt )t≥0 to drift to ∞
The process (Xt , ϕt )t≥0 can also be conditioned first on the event that (ϕt )t≥0 hits large levels

y despite possibly crossing 0 (that is, taking the limit, as y → ∞, of conditioning (Xt , ϕt )t≥0
on {Hy < ∞}), and then the resulting process can be conditioned on the event that (ϕt )t≥0
stays nonnegative. In this section, we show that these two conditionings, performed in the
order stated, yield the same result as taking the limit, as y → ∞, of conditioning (Xt , ϕt )t≥0
on {Hy < H0}.
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Let (e, ϕ) ∈ E+
0 and y > ϕ. Then, by Lemma 3.5(vii) of Jacka et al. (2005), the event

{Hy < ∞} is of positive probability and the process (Xt , ϕt )t≥0 can be conditioned on
{Hy < ∞} in the standard way. For a fixed t ≥ 0 and any A ∈ Ft ,

P(e,ϕ)(A | Hy < ∞) = E(e,ϕ)(1(A) P(Xt ,ϕt )(Hy < ∞)1(t < Hy) + 1(A)1(Hy < t))

P(e,ϕ)(Hy < ∞)
. (6.1)

Lemma 6.1. For any (e, ϕ), (e′, ϕ′) ∈ E+
0 ,

lim
y→∞

P(e′,ϕ′)(Hy < ∞)

P(e,ϕ)(Hy < ∞)
= e−αmaxϕ′

fmax(e
′)

e−αmaxϕfmax(e)
.

Proof. By Lemma 3.7 of Jacka et al. (2005), for 0 ≤ ϕ < y we have

P(e,ϕ)(Hy < ∞) = P(e,ϕ−y)(H0 < ∞) = [�F (y − ϕ)1](e).
The vector 1 is nonnegative; hence, by Lemma 5.1 and because �J1fmax = fmax, we have

lim
y→∞

P(e′,ϕ′)(Hy < ∞)

P(e,ϕ)(Hy < ∞)
= lim

y→∞
e−αmaxϕ′ [�e−αmax(y−ϕ′)F (y − ϕ)1](e′)
e−αmaxϕ[�e−αmax(y−ϕ)F (y − ϕ)1](e)

= e−αmaxϕ′
fmax(e

′)
e−αmaxϕfmax(e)

.

Let hmax(e, ϕ) be a function on E × R defined by

hmax(e, ϕ) = e−αmaxϕfmax(e).

Lemma 6.2. The function hmax(e, ϕ) is harmonic for the process (Xt , ϕt )t≥0, and the process
(hmax(Xt , ϕt ))t≥0 is a martingale under P(e,ϕ).

Proof. The function hmax(e, ϕ) is continuously differentiable in ϕ and, therefore, by Equa-
tion (3.4) of Jacka et al. (2005), it is in the domain of the infinitesimal generator G of the
process (Xt , ϕt )t≥0, with Ghmax = 0. It follows that the function hmax(e, ϕ) is harmonic for
the process (Xt , ϕt )t≥0 and that the process (hmax(Xt , ϕt ))t≥0 is a local martingale under P(e,ϕ).
Since the function hmax(e, ϕ) is bounded on every finite interval, the process (hmax(Xt , ϕt ))t≥0
is a martingale under P(e,ϕ).

By Lemmas 6.1 and 6.2, we can prove the following theorem.

Theorem 6.1. For a fixed (e, ϕ) ∈ E+
0 , let Phmax

(e,ϕ) be a measure defined by

Phmax
(e,ϕ)(A) = E(e,ϕ)(1(A)hmax(Xt , ϕt ))

hmax(e, ϕ)
, t ≥ 0, A ∈ Ft .

Then Phmax
(e,ϕ) is a probability measure and, for a fixed t ≥ 0,

lim
y→∞ P(e,ϕ)(A | Hy < ∞) = Phmax

(e,ϕ)(A), A ∈ Ft .

Proof. By definition, the function hmax is positive. By Lemma 6.2, it is harmonic for the
process (Xt , ϕt )t≥0 and the process (hmax(Xt , ϕt ))t≥0 is a martingale under P(e,ϕ). Hence,
Phmax

(e,ϕ) is a probability measure.
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For fixed (e, ϕ) ∈ E+
0 , t ≥ 0, and any y ≥ 0, let Zy be a random variable defined on the

probability space (�, F , P(e,ϕ)) by

Zy = P(Xt ,ϕt )(Hy < ∞)1(t < Hy) + 1(Hy < t)

P(e,ϕ)(Hy < ∞)
.

By our Lemma 6.1 and Lemmas 4.2(i) and 4.3 of Jacka et al. (2005), the random variable
Zy converges to hmax(Xt , ϕt )/hmax(e, ϕ) in L1(�, F , P(e,ϕ)) as y → ∞. Therefore, by (6.1),
for a fixed t ≥ 0 and A ∈ Ft , we have

lim
y→∞ P(e,ϕ)(A | Hy < ∞) = lim

y→∞ E(e,ϕ)(1(A)Zy) = Phmax
(e,ϕ)(A).

We now want to condition the process (Xt , ϕt )t≥0, under Phmax
(e,ϕ), on the event {H0 = ∞}. By

Theorem 7.1, (Xt )t≥0 is a Markov process under Phmax
(e,ϕ) with irreducible conservative Q-matrix

Qhmax given by

Qhmax(e, e′) = fmax(e
′)

fmax(e)
[Q − αmaxV ](e, e′), e, e′ ∈ E,

and, by the same theorem, the process (ϕt )t≥0 drifts to ∞ under Phmax
(e,ϕ). We next find the

Wiener–Hopf factorization of the matrix V −1Qhmax .

Lemma 6.3. The unique Wiener–Hopf factorization of the matrix V −1Qhmax is given by

V −1Qhmax�hmax = �hmaxGhmax ,

where, for any (e, e′) ∈ E × E,

Ghmax(e, e′) = fmax(e
′)

fmax(e)
[G − αmaxI ](e, e′) and �hmax(e, e′) = fmax(e

′)
fmax(e)

�(e, e′).

In addition, if

Ghmax =
(

Ghmax,+ 0
0 −Ghmax,−

)
and �hmax =

(
I �hmax,−

�hmax,+ I

)
,

then Ghmax,+ is a conservative Q-matrix, �hmax,+ is stochastic, Ghmax,− is not a conservative
Q-matrix, and �hmax,− is strictly substochastic.

Proof. By definition, the matrices Ghmax,+ and Ghmax,− are essentially nonnegative. In
addition, for any e ∈ E+, [Ghmax,+1](e) = 0. Hence, Ghmax,+ is a conservative Q-matrix. By
Lemma 5.2(i),

h−
fmax

= (�+e−ϕG+ − eϕG−
�+)f +

max = e−αmaxϕ(I − eϕ(G−+αmaxI ))f −
max > 0.

Since

lim
ϕ→0

(I − eϕ(G−+αmaxI ))f −
max

ϕ
= −(G− + αmaxI )f −

max

and (I − eϕ(G−+αmaxI ))f −
max > 0, it follows that (G−+αmaxI )f −

max ≤ 0. Thus, Ghmax,−1− ≤ 0
and, so, Ghmax,− is a Q-matrix. Moreover, if (G− + αmaxI )f −

max = 0 then hfmax(e, ϕ) = 0
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for e ∈ E−, which is a contradiction of Lemma 5.2. Therefore, the matrix Ghmax,− is not
conservative.

The matrices Ghmax and �hmax satisfy the equality

V −1Qhmax�hmax = �hmaxGhmax ,

which, by Lemma 3.4 of Jacka et al. (2005), gives the unique Wiener–Hopf factorization of
the matrix V −1Qhmax . Furthermore, by Lemma 3.5(iv) of Jacka et al. (2005), �hmax,+ is a
stochastic matrix and �hmax,− is a strictly substochastic matrix.

Finally, we prove the main result in this section.

Theorem 6.2. Let P
hfmax
(e,ϕ) be as defined in Theorem 2.2. Then, for any (e, ϕ) ∈ E+

0 and any
t ≥ 0,

Phmax
(e,ϕ)(A | H0 = ∞) = P

hfmax
(e,ϕ) (A), A ∈ Ft .

Proof. As we shall see in Section 7, Theorem 7.1 states that the process (ϕt )t≥0, under Phmax
(e, ϕ),

drifts to ∞. Since, in the positive-drift case, the event {H0 = ∞} is of positive probability, for
any t ≥ 0 and any A ∈ Ft we have

Phmax
(e,ϕ)(A | H0 = ∞) = Ehmax

(e,ϕ)(1(A) Phmax
(Xt ,ϕt )

(H0 = ∞)1(t < H0))

Phmax
(e,ϕ)(H0 = ∞)

, (6.2)

where Ehmax
(e,ϕ) denotes the expectation operator associated with the measure Phmax

(e,ϕ).
By Lemma 3.7 of Jacka et al. (2005) and by our Lemma 6.3, for ϕ > 0 we have

Phmax
(e,ϕ)(H0 = ∞) = 1 − eαmaxϕ

fmax(e)

∑
e′∈E

[�e−ϕG](e, e′)[J21](e′)fmax(e
′)

= 1

hmax(e, ϕ)
[e−αmaxϕfmax − �F (−ϕ)fmax](e)

= hfmax(e, ϕ)

hmax(e, ϕ)
, (6.3)

where hfmax is as defined in Lemma 5.2. Similarly, for e ∈ E+,

Phmax
(e,0)(H0 = ∞) = [f +

max − �−f −
max](e)

f +
max(e)

= hfmax(e, 0)

hmax(e, 0)
.

Therefore, the statement of the theorem follows from Theorem 6.1, (6.2), and (6.3).

Let us summarize the results of this section. In the negative-drift case, making the
h-transform of the process (Xt , ϕt )t≥0 by the function hmax(e, ϕ) = e−αmaxϕfmax(e) yields the
probability measure Phmax

(e,ϕ) under which (Xt )t≥0 is a Markov process and (ϕt )t≥0 has a positive
drift. The process (Xt , ϕt )t≥0, under Phmax

(e,ϕ), is also the limiting process, as y → ∞, when
conditioning (Xt , ϕt )t≥0, under P(e,ϕ), on {Hy < ∞}. Furthermore, conditioning (Xt , ϕt )t≥0,
under Phmax

(e,ϕ), on {H0 = ∞} yields the same result as the limit, as y → ∞, of conditioning
(Xt , ϕt )t≥0 on {Hy < H0}. In other words, the diagram in Figure 1 commutes.
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(Xt , ϕt )t≥0 under P(e,ϕ)

(Xt , ϕt )t≥0 under Phmax
(e,ϕ)

(Xt , ϕt )t≥0 under P
hfmax
(e,ϕ)

{Hy < H0}, y → ∞

{Hy < ∞}, y → ∞ {H0 = ∞}
(the negative-drift case)

(the positive-drift case)

Figure 1: The conditioning of the process (Xt , ϕt )t≥0 on the events {Hy < H0}, y ≥ 0, in the negative-
drift case.

7. The negative-drift case: conditioning (ϕt )t≥0 to oscillate

In this section, we condition the process (ϕt )t≥0 with a negative drift to oscillate, and then
condition the resulting oscillating process to stay nonnegative.

Let Ph
(e,ϕ) denote the h-transform of the measure P(e,ϕ) by a positive, superharmonic function

h for the process (Xt , ϕt )t≥0. We want to find an h such that Ph
(e,ϕ) is honest, the process (Xt )t≥0

is Markov under Ph
(e,ϕ), and the process (ϕt )t≥0 oscillates under Ph

(e,ϕ). These desired properties
of the function h necessarily imply that it has to be harmonic.

First, we find the form of a positive, harmonic function h for the process (Xt , ϕt )t≥0 such
that (Xt )t≥0 is Markov under Ph

(e,ϕ).

Lemma 7.1. Suppose that a function h is positive and harmonic for the process (Xt , ϕt )t≥0
and that the process (Xt )t≥0 is Markov under Ph

(e,ϕ). Then h is of the form

h(e, ϕ) = e−λϕg(e), (e, ϕ) ∈ E × R,

for some λ ∈ R and some positive vector g on E.

Proof. By the definition of Ph
(e,ϕ), for any (e, ϕ) ∈ E × R and t ≥ 0,

Ph
(e,ϕ)(Xs = e, 0 ≤ s ≤ t) = h(e, ϕ + v(e)t)

h(e, ϕ)
P(e,ϕ)(Xs = e, 0 ≤ s ≤ t).

Since the process (Xt )t≥0 is Markov under Ph
(e,ϕ), the probability Ph

(e,ϕ)(Xs = e, 0 ≤ s ≤ t)

does not depend on ϕ. Thus, the right-hand side of the last equation does not depend on ϕ.
Since P(e,ϕ)(Xs = e, 0 ≤ s ≤ t) also does not depend on ϕ, because (Xt )t≥0 is Markov under
P(e,ϕ), it follows that the ratio h(e, ϕ + v(e)t)/h(e, ϕ) does not depend on ϕ. This implies that
h satisfies

h(e, ϕ + y) = h(e, ϕ)h(e, y)

h(e, 0)
, e ∈ E, ϕ, y ∈ R. (7.1)

Let e ∈ E be fixed. Since the function h is positive, we define a function ke(ϕ) by

ke(ϕ) = log

(
h(e, ϕ)

h(e, 0)

)
, ϕ ∈ (0, ∞).
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Then, by (7.1), the function ke is additive. In addition, it is measurable because h, as a
harmonic function, is measurable. Therefore, it is also linear (see Aczel (1966)). It follows that
the function h is exponential, that is,

h(e, ϕ) = h(e, 0)eλ(e)ϕ, (e, ϕ) ∈ E+
0 ,

for some function λ(e) on E.
Hence, h is continuously differentiable in ϕ, which, by Equation (3.4) of Jacka et al. (2005),

implies that the Q-matrix of the process (Xt )t≥0 under Ph
(e,ϕ) is given by

Qh(e, e′) = h(e′, ϕ)

h(e, ϕ)
Q(e, e′) + (∂h/∂ϕ)(e, ϕ)

h(e, ϕ)
V (e, e′)

= h(e′, 0)

h(e, 0)
e(λ(e)−λ(e′))ϕQ(e, e′) + λ(e)V (e, e), e, e′ ∈ E.

However, because (Xt )t≥0 is Markov under Ph
(e,ϕ), Qh does not depend on ϕ. This implies

that λ(e) = −λ = const.
Finally, setting g(e) = h(e, 0), e ∈ E, proves the theorem.

The following theorem characterizes all positive, harmonic functions for the process
(Xt , ϕt )t≥0 with the properties stated at the beginning of the section.

Theorem 7.1. There exist exactly two positive, harmonic functions h for the process (Xt , ϕt )t≥0
such that the measure Ph

(e,ϕ) is honest and the process (Xt )t≥0 is Markov under Ph
(e,ϕ). They

are given by

hmax(e, ϕ) = e−αmaxϕfmax(e) and hmin(e, ϕ) = e−βminϕgmin(e).

Moreover,

(i) if the process (ϕt )t≥0 drifts to ∞ then hmax = 1 and the process (ϕt )t≥0, under Phmin
(e,ϕ),

drifts to −∞;

(ii) if the process (ϕt )t≥0 drifts to −∞ then hmin = 1 and the process (ϕt )t≥0, under Phmax
(e,ϕ),

drifts to ∞;

(iii) if the process (ϕt )t≥0 oscillates then hmax = hmin = 1.

Proof. We give a sketch of the proof. For the details, see Najdanovic (2003).
Let a function h be positive and harmonic for the process (Xt , ϕt )t≥0 and let the process

(Xt )t≥0 be Markov under Ph
(e,ϕ). Then, by Lemma 7.1, the function h is of the form

h(e, ϕ) = e−λϕg(e), (e, ϕ) ∈ E × R,

for some λ ∈ R and some vector g on E.
Since the function h is harmonic for the process (Xt , ϕt )t≥0, it satisfies the equation Gh = 0,

where G, the generator of the process (Xt , ϕt )t≥0, is given by Equation (3.4) of Jacka et al.
(2005). Hence, Gh = (Q+V (d/dϕ))h = 0 and h(e, ϕ) = e−λϕg(e) imply that V −1Qg = λg,
that is, λ is an eigenvalue of the matrix V −1Q and g is its associated eigenvector. In addition,
by Lemma 3.6(i) of Jacka et al. (2005), the only positive eigenvectors of the matrix V −1Q are
fmax and gmin. Hence, h(e, ϕ) = e−αmaxϕfmax(e) or h(e, ϕ) = e−βminϕgmin(e).
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The equality Gh = 0 implies that the process (h(Xt , ϕt ))t≥0 is a local martingale. Since the
function h(e, ϕ) = e−λϕg(e) is bounded on every finite interval, the process (h(Xt , ϕt ))t≥0 is
a martingale. It follows that the measure Ph

(e,ϕ) is honest.
Let Qh be the Q-matrix of the process (Xt )t≥0 under Ph

(e,ϕ). It can be shown that the eigen-
values of the matrix V −1Qhmin coincide with the eigenvalues of the matrix V −1(Q − βminI ),
and that the eigenvalues of the matrix V −1Qhmax coincide with the eigenvalues of the matrix
V −1(Q − αmaxI ). These facts together with Equation (3.6) of Jacka et al. (2005) prove
statements (i)–(iii).

By Theorem 7.1(ii) there does not exist a positive function h, harmonic for the process
(Xt , ϕt )t≥0, such that Ph

(e,ϕ) is honest, the process (Xt )t≥0 is Markov under Ph
(e,ϕ), and the

process (ϕt )t≥0 oscillates under Ph
(e,ϕ) (we recall that initially the process (ϕt )t≥0 drifts to

−∞ under P(e,ϕ)). However, we can look for a positive, space–time-harmonic function h for
(Xt , ϕt )t≥0 that has the desired properties. We restrict ourselves to the set of such continuous
functions.

Lemma 7.2. Suppose that a function h is positive, continuous, and space–time harmonic for
the process (Xt , ϕt )t≥0 and that the process (Xt )t≥0 is (time-homogeneous) Markov under
Ph

(e,ϕ). Then h is of the form

h(e, ϕ, t) = e−αte−βϕg(e), (e, ϕ) ∈ E × R,

for some α, β ∈ R and some vector g on E.

Proof. Define u = mine∈E v(e) < 0, v = maxe∈E v(e) > 0, and the cone

C = {(0, 0)} ∪ {(s, y) : y > 0, us < y < vs}.
By the definition of the h-transform, for any (e, ϕ) ∈ E × R, t ≥ 0, and any (s, y) ∈ C,

Ph
(e,ϕ,t)(Xt+s = e, ϕt+s ∈ ϕ + dy) = h(e, ϕ + dy, t + s)

h(e, ϕ, t)
P(e,ϕ,t)(Xt+s = e, ϕt+s ∈ ϕ + dy).

(7.2)
Since the process (Xt )t≥0 is time-homogeneous Markov under Ph

(e,ϕ), we have

Ph
(e,ϕ,t)(Xt+s = e, ϕt+s ∈ ϕ + dy) = Ph

(e,0,0)(Xs = e, ϕs ∈ dy).

Similarly,

P(e,ϕ,t)(Xt+s = e, ϕt+s ∈ ϕ + dy) = P(e,0,0)(Xs = e, ϕs ∈ dy).

Therefore, it follows from (7.2) that the ratio h(e, ϕ + y, t + s)/h(e, ϕ, t) does not depend on
ϕ and t (for (s, y) ∈ C). This implies that h satisfies

h(e, ϕ + y, t + s) = h(e, ϕ, t)h(e, y, s)

h(e, 0, 0)
, e ∈ E, ϕ ∈ R, t ≥ 0, (s, y) ∈ C. (7.3)

Since the function h is positive, we can define a function k(e, ϕ, t) by

k(e, ϕ, t) = log

(
h(e, ϕ, t)

h(e, 0, 0)

)
, (e, ϕ, t) ∈ E+

0 × [0, ∞).
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Then, by (7.3),

k(e, ϕ + y, t + s) = k(e, ϕ, t) + k(e, y, s), e ∈ E, (t, ϕ), (s, y) ∈ C.

Now fix a ray of the form (t, ct) in C. It follows, by the same argument as in the proof of
Lemma 7.1, that there exists a λ(·, ·) such that

h(e, ϕ + cs, t + s) = eλ(e,c)sh(e, ϕ, t),

and it is then straightforward (by considering different routes from (t, ϕ) to (t + s, ϕ + y)) to
see that there exist a λ(·) and a µ(·) such that

h(e, ϕ, t) = eλ(e)t+µ(e)ϕh(e, 0, 0).

That λ and µ are independent of e then follows in the same way as in the proof of Lemma 7.1.

Theorem 7.2. All positive, continuous, space–time-harmonic functions h for the process
(Xt , ϕt )t≥0, such that Ph

(e,ϕ) is honest and (Xt )t≥0 is Markov under Ph
(e,ϕ), are of the form

h(e, ϕ, t) = e−αte−βϕg(e), (e, ϕ, t) ∈ E × R × [0, ∞),

where, for a fixed β ∈ R, α ≡ α(β) is the Perron–Frobenius eigenvalue and g is the right
Perron–Frobenius eigenvector of the matrix Q − βV .

Moreover, there exists a unique β0 ∈ R such that, under Ph
(e,ϕ),

• (ϕt )t≥0 drifts to ∞ if and only if β < β0,

• (ϕt )t≥0 oscillates if and only if β = β0,

• (ϕt )t≥0 drifts to −∞ if and only if β > β0,

and β0 is determined by the equation α′(β0) = 0.

Proof. We again give only a sketch of the proof. For the details, see Najdanovic (2003).
Let a function h be positive, continuous, and space–time harmonic for the process (Xt ,ϕt )t≥0,

and let the process (Xt )t≥0 be Markov under Ph
(e,ϕ). Then, by Lemma 7.2, the function h is of

the form
h(e, ϕ, t) = e−αte−βϕg(e), (e, ϕ, t) ∈ E × R × [0, ∞),

for some α, β ∈ R and some vector g on E.
Since the function h is harmonic for the process (Xt , ϕt )t≥0, it satisfies the equation Ah = 0,

where A, the generator of the process (Xt , ϕt )t≥0, is given by Equation (3.5) of Jacka et al.
(2005). Hence, Ah = (Q + V (d/dϕ) + I (d/dt))h = 0 and h(e, ϕ, t) = e−αte−βϕg(e) imply
that (Q−βV )g = αg, i.e. that α is an eigenvalue of the matrix Q−βV and g is its associated
eigenvector. In addition, by Lemma 3.1 of Jacka et al. (2005), the matrix Q−βV is irreducible
and essentially nonnegative. By the Perron–Frobenius theorem, the only positive eigenvector of
an irreducible and essentially nonnegative matrix is its Perron–Frobenius eigenvector. Thus, α

and g are, respectively, the Perron–Frobenius eigenvalue and eigenvector of the matrix Q−βV .
The equation Ah = 0 implies that the process h(Xt , ϕt , t)t≥0 is a local martingale. Since

the function h(e, ϕ, t) = e−αte−βϕg(e) is bounded on every finite interval, the process
h(Xt , ϕt , t)t≥0 is a martingale. It follows that the measure Ph

(e,ϕ) is honest.
For a fixed β ∈ R, let h(e, ϕ, t) = e−α(β)te−βϕ[g(β)](e), where α(β) and g(β) are respec-

tively the Perron–Frobenius eigenvalue and right eigenvector of the matrix Q − βV . Let µβ

https://doi.org/10.1239/aap/1134587752 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1134587752


1054 S. D. JACKA ET AL.

denote the invariant measure of the process (Xt )t≥0 under Ph
(e,ϕ), and let gleft(β) denote the

left eigenvector of the matrix Q − βV . It can then be shown that µβV 1 = gleft(β)Vg(β).
Since [gleft(β)](e)[g(β)](e) > 0 for every e ∈ E, Lemma 3.9 and Equation (3.6) of Jacka et
al. (2005) imply the statement of the second part of the theorem.

By Theorem 7.2, there exists exactly one positive, continuous, space–time-harmonic function
h for the process (Xt , ϕt )t≥0 with the desired properties, and it is given by

h0(e, ϕ, t) = e−α0te−β0ϕg0(e), (e, ϕ, t) ∈ E × R × [0, ∞),

where α0 = α(β0) and g0 is the Perron–Frobenius eigenvector of Q − β0V . For a fixed
(e, ϕ) ∈ E+

0 , let a measure Ph0
(e,ϕ) be defined by

Ph0
(e,ϕ)(A) = E(e,ϕ)(1(A)h0(Xt , ϕt , t))

h0(e, ϕ, 0)
, A ∈ Ft , t ≥ 0, (7.4)

and let Eh0
(e,ϕ) denote the associated expectation operator. Then the process (Xt )t≥0, under

Ph0
(e,ϕ), is Markov with Q-matrix Q0 given by

Q0(e, e′) = g0(e
′)

g0(e)
[Q − α0I − β0V ](e, e′), e, e′ ∈ E,

and, by Theorem 7.2, under Ph0
(e,ϕ) the process (ϕt )t≥0 oscillates.

The aim now is to condition (Xt , ϕt )t≥0, under Ph0
(e,ϕ), on the event that (ϕt )t≥0 stays

nonnegative. The following theorem determines the law of this new conditioned process.

Theorem 7.3. For a fixed (e, ϕ) ∈ E+
0 , let a measure Ph0,h0

r
(e,ϕ) be defined by

Ph0,h0
r

(e,ϕ) (A) = Eh0
(e,ϕ)(1(A)h0

r(Xt , ϕt )1(t < H0))

h0
r(e, ϕ)

, A ∈ Ft , t ≥ 0,

where the function h0
r is given by

h0
r(e, y) = [e−yV −1Q0

J1�2r
0](e), (e, y) ∈ E × R,

and r0 satisfies V −1Q0r0 = 1. Thus, Ph0,h0
r

(e,ϕ) is a probability measure.
In addition, for t ≥ 0 and A ∈ Ft ,

Ph0,h0
r

(e,ϕ) (A) = lim
y→∞ Ph0

(e,ϕ)(A | Hy < H0) = lim
T →∞ Ph0

(e,ϕ)(A | H0 > T )

and
Ph0,h0

r
(e,ϕ) (A) = P

h
r0

(e,ϕ)(A),

where P
h
r0

(e,ϕ) is as defined in Theorem 2.2 of Jacka et al. (2005).

Proof. By (7.4), for t ≥ 0 and A ∈ Ft ,

Ph0,h0
r

(e,ϕ) (A) = E(e,ϕ)(1(A)h0(Xt , ϕt , t)h
0
r(Xt , ϕt )1(t < H0))

h0(e, ϕ, 0)h0
r(e, ϕ)

= E(e,ϕ)(1(A)hr0(Xt , ϕt , t)1(t < H0))

hr0(e, ϕ, t)
,
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(Xt , ϕt )t≥0 under P(e,ϕ)

(Xt , ϕt )t≥0 under Ph0
(e,ϕ)

(Xt , ϕt )t≥0 under P
h

r0

(e,ϕ)

{H0 > T }, T → ∞

{Hy < H0}, y → ∞
{T < H0}, T → ∞

(the negative-drift case)

(the oscillating case)

Figure 2: The conditioning of the process (Xt , ϕt )t≥0 on the events {H0 > T }, T ≥ 0, in the negative-
drift case.

where

hr0(e, ϕ, t) = h0(e, ϕ, t)h0
r(e, ϕ) = e−α0te−β0ϕ[G0e−ϕV −1Q0

J1�
0
2r0](e)

is as defined in Theorem 2.2 of Jacka et al. (2005). By Lemma 5.1(i) of Jacka et al. (2005),
the function hr0(e, ϕ, t) is positive and, by Lemma 5.5 of Jacka et al. (2005), the function
hr0(e, ϕ, t) is space–time harmonic for the process (Xt , ϕt , t)t≥0. Thus, Ph0,h0

r
(e,ϕ) is a probability

measure and, by the definition of the measure P
h
r0

(e,ϕ) in Theorem 2.2 of Jacka et al. (2005),

Ph0,h0
r

(e,ϕ) (A) = P
h
r0

(e,ϕ)(A), A ∈ Ft , t ≥ 0.

In addition, by Equation (3.6) and Lemma 3.11 of Jacka et al. (2005), the Q-matrix Q0

of the process (Xt )t≥0, under Ph0
(e,ϕ), is conservative and irreducible and the process (ϕt )t≥0,

under Ph0
(e,ϕ), oscillates. Thus, by our Theorem 2.1 and Theorem 2.1 of Jacka et al. (2005), Ph0,h0

r
(e,ϕ)

denotes the law of (Xt , ϕt )t≥0, under Ph0
(e,ϕ), conditioned on {H0 = ∞}, and, for any t ≥ 0 and

A ∈ Ft ,

Ph0,h0
r

(e,ϕ) (A) = lim
y→∞ Ph0

(e,ϕ)(A | Hy < H0) = lim
T →∞ Ph0

(e,ϕ)(A | H0 > T ).

To conclude, let us summarize the results of this section. In the negative-drift case, making
the h-transform of the process (Xt , ϕt , t)t≥0 with the function h0(e, ϕ, t) = e−α0te−β0ϕg0(e)

yields the probability measure Ph0
(e,ϕ) such that (Xt )t≥0, under Ph0

(e,ϕ), is Markov and (ϕt )t≥0,
under Ph0

(e,ϕ), oscillates. Then the law of (Xt , ϕt )t≥0, under Ph0
(e,ϕ), conditioned on the event

{H0 = ∞}, is equal to P
h0,h

0
r

(e,ϕ) = P
h

r0

(e,ϕ). On the other hand, by Theorem 2.2 of Jacka et al. (2005),
under the condition that all nonzero eigenvalues of the matrix V −1Q0 are simple, P

h
r0

(e,ϕ) is the
limiting law as T → ∞ of the process (Xt , ϕt )t≥0, under P

h
r0

(e,ϕ), conditioned on {H0 > T }.
Hence, under the condition that all nonzero eigenvalues of the matrix V −1Q0 are simple, the
diagram in Figure 2 commutes.
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