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KRASNOSELSKI-MANN ITERATIONS IN NORMED SPACES 

JONATHAN BORWEIN1, SIMEON REICH2 AND ITAI SHAFRIR 

ABSTRACT. We provide general results on the behaviour of the Krasnoselski-Mann 
iteration process for nonexpansive mappings in a variety of normed settings. 

1. Krasnoselski-Mann iterations. Let C be a closed convex subset of a normed 

space (X, || ||) and consider a nonexpansive mapping p:C —> C. Let {tn} be an arbi­

trary sequence of real numbers in [0,1] and consider the sequence of iterates {xn} in C 

generated by: xo G C 

(1) xn+i := (1 - tn)xn + tnp(xn). 

This iteration is often said to be a segmenting Mann iteration [13], [5], [6] or to be of 

Krasnoselski-type [12], [2], [7]. In this note we use an iterative inequality due to Goebel 

and Kirk [9], [4], [10] that unifies the basic work of Ishikawa [8] and Edelstein and 

O'Brien [2]. By refining this inequality—given as Proposition 2 below—we are able to 

significantly extend certain results on the behaviour of iteration (1). More precisely, we 

are able to allow for any sequence {tn} with divergent sum and with l i m s u p ^ < 1, 

while in [17], [18] {tn} was required to be bounded away from 0. Thus, we cover the 

case of Cesaro and other summability methods [1], [5], [13]. 

Throughout, we let yn := p(xn), and write d{x,y) := ||JC — y\\. We let {JC*} denote 

iteration (1) commencing at JC*. 

LEMMA 1. The following inequalities hold for n and i in N: 

(a) d(xn+i, yn+i ) < d(xn, yn ); 

(b) d(xn+ux*n+l) <d(xn,x*n); 

In particular, iftn = a then 

(c) d(xn+i+i ) <d(xn+i,xn). 

PROOF, (a) is standard and in fact this holds in any hyperbolic space in the sense of 

[4]. We write 
d(xn+uyn+i) = ||(1 -tn)(xn- yn) + yn ~}Wi | | 

<(l-f„) | |*„- ;y , , | | + |bn-y«+i | | 

< (I - tn)\\xn -yn\\ +tn\\xn-yn\\. 
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The next two inequalities rely more on the linear structure, but do hold in any hyper­
bolic space in the more restrictive sense [18]. 

Q))d(xn+iX+\)= \\(l-tn)(Xn-x*)+tn(yn-y*)\\ < (1 -tn)\\xn-x*n\\ +tn\\yn-y*n\\ < 
\\xn-jfn\\, since | | * „ - J £ | | > \\yn-yn\\-

(c) follows similarly or from applying (b) with x* = xn+i. m 

We now list the key elementary inequality from [4], [10]. 

PROPOSITION 2. The following inequalities hold for n and i in N: 

(
n+i— 1 x rn+i—\ 1 -i 

1+ Y, ts)d(xi,yi)<d(Xi9yi+n)+\ ]J — — \{d(xhyi) - d(xi+n,yi+n)} . • 

In particular 

•n+i—1 x r-n+i—1 Y i 

(2) f J2 ts)d(Xi,yi)<d(xhXi+n)+\ H -——\{d(xhyi)-d(Xi+n,yi+n)} 
\ s=i J L J = I - I fjJ 

(on using Lemma 1(a)). This is the form we will work with. 
It enables us to prove the following very general result, which with the additional 

restrictive hypothesis that {tn} is bounded away from zero, may be found in Theorem 6.6 
in [18]. 

2. The main results. We suppose X is complete and we define 

rc(p) := inf{d{x,p(x)) : x e C}. 

THEOREM 3. Suppose that {tn} is divergent in sum with lim sup{ tn : n G N} < 1. 
For any initial value x, in the Krasnoselski-Mann iteration (1), d(xn,yn) converges to 

rc(p)> 

PROOF. We first show that r(x) :— limd{xn,yn) (which exists by Lemma 1(a)) is 
independent of the initial value. Suppose not. Then select points x and x* such that r(x) > 
r(x*). Set e > 0 with r(x) > r(x*) + e and now fix i with d(xj,yj) < r(x) + e, d(x*,y*) < 
r(jc*) + e for j > /. We abbreviate 

n+i— 1 

S„ := £ u 
s—i 

and observe (as in [8], [4]) that since limsup{ tn : n £ N} < 1, the product term in (2) 
is bounded above by exp(KSn) for some constant K. Thus (2) yields for all n 

Snr(x) < d(xi,xn+i) + e exp(KSn) 

< d(x*,x*n+i) + d(xtjx*) + d(xn+i,x*+i) + e exp(KSn). 

By using Lemma 1(b) we have 

SnKx) < d(x*,x*+n) + 2d(jt,x*) + e txp(KSn). 
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Now write 
n+i— 1 n+i—\ n+i—\ 

.y=/ 5= / £=/ 

= $„</(*;,#), 

(using Lemma 1(a) with { JC*} ). Hence we have 

(3) Sn[r(x) - r(x*) - e] < 2d(x,x*) + e exp(KSn). 

Now, much as in [8] or [4], select n such that 

M < Sn < M + 1 for M := (l + 2d(x,x*j)/ (r(x) - r{x*j). 

Then (3) yields 

(l + 2d(x,x*j)(r(x) - r(x*) - e/ (r(x) - r(x*)) < 2J(JC,JC*) + e exp(/^(M+ 1)) 

so that since x, x*, K, M, r(x), r(x*) are independent of e, we may let e go to 0 to deduce 
that 1 + 2d(x,x*) < 2d(x,x*). This contradiction shows that r(x) is independent of x. 
Finally, since r(x) < d(x,p(x)} for each JC, we reach the desired conclusion. • 

Let us recall that p is said to have an approximate fixed point or to be approximately 
fixed in C precisely when rc(p) = 0. Also, p will be said to be asymptotically regular in 
C if, in iteration (1), d(xn,p{xn)) —+ 0, for each x in C. 

COROLLARY 4. Ifp is approximately fixed then p is asymptotically regular. 

PROOF. This is immediate from Theorem 3. • 

LEMMA 5. A nonexpansive mapping p: C —> C is approximately fixed if any of the 
following hold: 

(i) p has a fixed point ; 
(ii) some (each) sequence of iterates {xn} is bounded; 

(Hi) C is closed and convex and norm bounded; 
(iv) X is reflexive and C is closed and convex with no non-zero recession directions; 
(v) C is directionally bounded (in the sense of [19]). 

PROOF, (i) is obvious. 
(ii) Lemma 1(b) shows that if one sequence is bounded, all are. Proposition 2 in [3] 

shows that p is asymptotically regular (the argument uses (2) and is an easier variant of 
Theorem 3). This also will be established in Corollary 9 below. 

(iii) is standard and follows from the Banach contraction principle applied to 
(1 - t)p + tc for c in C and tin (0,1]. 

(iv) is due to Reich [ 16]. We repeat the relevant argument for completeness. In [ 11 ] it 
is shown by direct methods that there is a continuous linear functional/* (depending on 
x) in the unit dual ball such that 

(4) r(^^)>,c(P) 
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for all positivera in N. Now || [x — p(n\x)]/n\\ < \\x—p(x)\\ mdsopin)(x)/ n has a weak 
cluster point d*. For all t > 0 and c G C, (1 — tj h)c + tp{n\x)/ n lies in C for n large and 
so c + fd* lies in C. Thus if C has no non-zero recession directions, d* — 0 and (4) shows 

rc(p) = 0. 
(v) See [19, Theorem 2.4]. • 

The next two results are known, see Fujihara [3] and Reich and Shafrir [17], [18]. 
Again we sketch simple proofs for the sake of completeness. 

LEMMA 6. Let {xn} be given by (1). Then, for alln> 1, 
n-\ 

d(x0,xn) > Yj^cip)-

PROOF. We begin with an elementary inequality from [ 11 ] for nonexpansive p leav­
ing C invariant, where we assume 0 G C (with no loss of generality): if x G C, s > 0, 
and/?(**) = (1 + s)x* (as exists by Banach's principle) then 

(5) | |*-** | | -\\p(x)-x*\\ > ||**-/7(**)|| -2s\\p(x)\\. 

Now/7n := (1— tn)I+tnp is nonexpansive and leaves C invariant, and pn(x*) = (l+stn)x*. 
Thus we may apply (5) for each n. Since pn(xn) — xn+\ and || JC* —/?n(;c*)|| > tnrc(p), we 
deduce that 

| |x n -** | | - ||*„+i — JC*|| > tnrc(p)-2stn\\xn+\\\, 

and on summing 

\\x0-xn\\ > | |xo-Jt*| | -\\xn-x*\\ >Snrc(p)-0(s\ 

where Sn is the sum of the first n scalars tn. 
Letting s go to 0 gives the claimed inequality. • 

A little more work with subgradients shows that for each xo there is a functional/ of 
norm not exceeding 1 such that for all n 

n-\ 
f(x0 - xn) > Y, tirc(p). 

1=0 

PROPOSITION 7. Iftn lies in [0,1] and is divergent in sum then 
d(x0,xn) 

. l m l ^n-1 . = rc(P)-

lïP¥ v.n-1 . ^ rc(P)' 

PROOF. By Lemma 6 it is clear that 
.d(xp,xn) 

Since \\xn — x*\\ < \\x — x* \\, lim supd(xn,xo)/ Sn is independent of the initial value JCO 
[again Sn is the sum of the first n scalars tn]. Since lim supd(xn,xo)/ Sn < ^(jco,p(xo)), it 
follows as required that lim supd(xn,xo)/ Sn < rcip). • 

From now on we assume throughout that £ tn diverges with 0 < tn < 1 — S for some 
S > 0. 
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THEOREM 8. For any initial value in iteration (I) we have, 

/

n+k—\ ln~^ 

YJ tj= \imd(x0,xn)/ J2fj 
v-v j=n n^°° ' 7=0 

= rcip) 

for all k> 1. 
PROOF. In view of Theorem 3 and Proposition 7, we need only show that 

,n+k-\ 

lim d(xn,xn+k)/ Y, h = rc(p)-

Now 

/
n+k—\ 

J2 h ^ d(xn,p(xn)) 
j=n 

where the first inequality is a consequence of Lemma 6 with initial value xn. The second 
follows from convexity of the norm and Lemma 1(a). Now Theorem 3 completes the 
argument. • 

COROLLARY 9. Let {xn} be defined by (I). 
(a) Either {xn} is bounded andp is asymptotically regular or { \\xn\\} tends to in­

finity. 
(b) If all closed bounded convex subsets ofC have the fixed point property for non-

expansive mappings then either p has a fixed point or { \\xn\\} tends to infinity. 

PROOF, (a) It follows from Theorem 3 and Lemma 6 that, when { xn } is bounded, p 
is asymptotically regular. 

Suppose liminf ||jtn|| < oo. Pick a bounded subsequence {*n(jt)} and define R := 
lim sup ||xn(k) —xo\\. Consider 

D := {y e C : lim supd(y,xn(k)) < R}. 
&—>oo 

Clearly, D is closed convex bounded and nonempty. For any y in C we have 

d(p(y\xn{k)) < d(y,xn{k)) + d(xn(khp(xn{k))) 

sincep is nonexpansive. Asp is asymptotically regular, d(xn(k),p(xn(k))) —* 0- It follows 
that D is left invariant by p. Since xo lies in D, the entire sequence does and (a) is proven. 

(b) By hypothesis, p has a fixed point and (b) follows. • 

COROLLARY 10. Let {xn} be defined by (1). If {xn} has a norm cluster-point x* 
then {xn} converges to x* = p(x*). 

PROOF. It follows from Theorem 3 that d(x*,/?(**)) = rc(p). By Lemma 6, rc(p) = 
0. Since {d(x*,xn)} is a decreasing sequence, we are finished. • 

Goebel and Kirk [9], [4, Theorem 3] show that Corollary 10 holds in any of their 
hyperbolic metrics when tn is constant, say a. 
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COROLLARY 11. If C is boundedly relatively compact, in particular if X is finite 
dimensional, then either {xn} converges tox* — p(x*) or { \\xn\\ } tends to infinity. 

PROOF. This is immediate from Corollary 10. • 

REMARK 12. Theorem 3 and Theorem 8 continue to hold with essentially the same 
proof in any hyperbolic space (in the sense of Reich and Shafrir). In consequence the 
condition that {tn} be bounded away from 0 may be dropped from the appropriate results 
in both [17] and [18]. 

3. Two geometric corollaries. We finish by rederiving two essentially known con­
clusions that exploit the convexity structure of the norm on the space. The first result is 
the counterpart to Lemma 6, and the comment following it. 

THEOREM 13. If the dual norm on X* is strictly convex then there is a functional f 
in the dual unit ball such that, independent ofx, 

(7) f(x-xn)>j:tsrc(p) 

and so, as before 

(8) ll*-*n| | > YsUrdp) 

and, in particular, eitherp is asymptotically regular or \\xn\\ tends to infinity. 

PROOF. We may assume that rc(p) > 0. Reich [14, p. 140] has observed that if the 
dual norm on X* is strictly convex then the norm-one functional in (4) can be supposed 
independent of x. Indeed for x and y in C {p(n\x)/ n} and {p(n)(y)/ n} are bounded and 
have a common cluster-point, say —F, in X** [as ||/?(n)(jc) — /?(n)(j)|| / n —• 0]. Since we 
have ||F||** < rc(p), because \\[x-p(n\x)]/n\\ < \\x -p(x)\\, (4) yields 

F(fx) = F(fy) = rc(p) 

which shows that F(\fx +p]/ 2) = rc(p) and that || \fx +/>]/ 2|| = 1. The assumption of 
strict convexity now shows fx — P. We have 

n-\ 
X~Xn= Y^ ts(xs - P(XSJ) 

and so applying (4) within n := 1 and/ :—fx gives 

n - l n-\ 

f(x -xn)=J2 t*f(xs -P(xs)) > XI tsrcip) 
S=0 5=0 

so that since ||/|| = 1 the result follows. • 

Note that (7) is actually a stronger inequality than (8). 

https://doi.org/10.4153/CMB-1992-003-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-003-0


KRASNOSELSKI-MANN ITERATIONS 27 

COROLLARY 14. IfX has a uniformly convex and Fréchet differentiable norm then 
either {xn} converges weakly tox* = p(x*) or { \\xn\\} tends to infinity. 

PROOF. If rc(p) > 0 then Theorem 8 or 13 applies (since X is reflexive, the norm on 
X* is strictly convex when the norm onX is Gateaux differentiable). Otherwise, rc(p) = 0 
and by Corollary 4, d(;tn,p(jtn)) —-> 0. Now either { \\xn\\} —• oo or {xn} has a weak 
cluster point x*. In the latter case, as is well known, x* = p(x*) since d(xn,p(xn)) —• 0 
[15]. Thus Theorem 2 in [15] applies and shows that {xn} converges weakly to x*. m 

EXAMPLE 15. (a) The next example attributed to J. F. Mertens in [11] illustrates the 
need for strict convexity in (7) of Theorem 13. See also Theorem 15 in [17] and the 
remark following it. Let/?: R2 —> R2 be defined by 

p(x,y) := ( jc-signum (JC), v) if |JC| > 1 

and 
p(x,y) : = ( 0 , l + y - | x | ) if |JC| < 1. 

Then p is nonexpansive in the l\ norm. Moreover rç{p) = 1. But, 0 lies in the convex 
hull of the range oil — p — { (JC, 1 — |JC|) : |JC| < 1} and a fortiori one can not pick/ 
independent of JC. 

(b) We let X be any of the traditional sequence spaces and consider C := {x G X : 
\*n\ < I for n € N} with/r.C —> C given viap((jq,... ,JC„,. ..))•= (l,JCi,... ,JC„,. ..). 
Thus p is an isometry in lq(N), 1 < q < oo, and C is linearly bounded. Despite this, 
for q := 1, rcip) = 1. For q > 1, Lemma 4 applies and shows that/? is asymptotically 
regular. For 1 < q < oo, Corollary 14 implies that {\\xn\\} —» oo, because /? is fixed 
point free. For q = oo, we observe that/? is w*-continuous and so that {xn} converges 
w* to the unique fixed point ( l , l , . . . l , . . . ) . In particular, if JC lies in CQ it follows from 
Corollary 10 that { JC„} has no norm cluster-points. • 
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