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Abstract. The role of stability in the general three-body problem is investigated with regard
to the tidal radius of a globular cluster (GC) in a galactic potential. This proceedings is a
summary of two papers which outline the stability method (Kennedy 2014a) and compare the
predicted stability boundary radius to observations of velocity dispersion profiles in Milky Way
GCs (Kennedy 2014b).
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1. Introduction

The discovery of flattening in the velocity dispersion profile for the galactic globular
clusters (GCs) NGC 5139 and NGC 7078 (Scarpa et al. 2003), where dark matter is
thought not to exist, has generated a lot of excitement with some studies claiming that
this is direct evidence for a breakdown of Newton’s laws at low accelerations. Expla-
nations for the observed deviation broadly fit into three categories; tidal interactions,
dark matter or a modified gravity theory (e.g. MOND). All of these theories can produce
a flattening of the velocity dispersion profile for large radii, in the case of MOND this
occurs at the critical acceleration of 1.2 x 10719 m/s? Milgrom (1983). The premise of
this proceeding is that the velocity dispersion profile will flatten in the outer regions of
the cluster where stellar orbits become unstable.

A stability analysis, detailed in Kennedy (2014a), is used to predict the occurrence of
unstable stellar orbits in the outermost region of a GC. Stars on unstable orbits around
the cluster centre will random walk in orbital binding energy until their eventual escape
from the cluster. The timescale for this random walk is currently being investigated
using a high resolution N-body simulation of a tidally interacting star cluster on an
orbit based on NGC 6341 and will be presented in the third paper in this series. This
simulation has run for over 1 Gyr and consists of over 10° particles, resolving each
star in the cluster. During the random walk stage stars have a different distribution of
velocities when compared to stars in an isolated cluster. This manifests as a flattening of
the velocity dispersion profile beyond the transition radius between stable and unstable
orbits.

The transition radius from stable to unstable orbits was compared to observational
data of the velocity dispersion profiles for 15 Milky Way GCs with approximately known
orbital parameters in Kennedy (2014b). It was found that the transition radius predicts
where the velocity dispersion flattens and that there is no need for any MOND type
theories to explain the observations.
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Figure 1. Left panel shows the eccentricity dependence for the transition from stable inner
orbits to unstable exterior orbits. The indicative value for the stability boundary (r.) is shown
as a black curve, while the minimum and maximum extents of the partially stable region are the
red and green curves respectively. The King radius (Equation 2.2) is shown as the dashed black
curve for comparison. Right panel shows a conceptualisation of the stability of stellar orbits in
a GC. The distance from the cluster centre associated with the transition from unstable (dark
shading) to stable orbits (unshaded inner region) is indicated by the ratio of outer to inner
periods o, . The region where orbits can be found in either unstable or stable configurations is
shown as a light shading between oyin and opax.

2. Stability theory

The method used for determining the stability boundary is described in detail in the
first paper in this series Kennedy (2014a) which was based on the stability of the general
three-body problem as derived in Mardling (2008) and Mardling (2013).

To describe this stability transition radius the functional form

=R, (%g)w f(e) (2.1)

is adopted, where My is the effective point mass for the Milky Way galaxy, e is the eccen-
tricity of the cluster orbit around the galaxy, and R, is the distance of closest approach
to the galaxy. This form allows direct comparison between the stability boundary and
other tidal radii estimates, for example the classical King (1962) tidal radius is given by

Fle)=07(3+e) /. (2.2)

The tidal radius (r;) will be used to denote the maximum theoretical tidal radius of a
GC by using Equations 2.1 and 2.2.

In Kennedy (2014a) the stability boundary was found to be well approximated by three
polynomials indicating the minimum and maximum limits of the partial stability region
and an indicative value referred to as the chaos radius and denoted by r.. The three
polynomials for f(e) are shown in Figure 1 (a) with the eccentricity function associated
with 7. shown as a solid black curve, the reader is referred to Kennedy (2014a) for details.
For radii r < ry;, all stars are expected to be on stable orbits, whereas for r > 7.« they
are expected to be on unstable orbits. A schematic diagram of the cluster stability is
shown in Figure 1 (b) where the ratio of GC-galaxy orbital period to the orbital period
of the star in the GC (o) is used as a proxy for radius.
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Figure 2. The observed velocity dispersion profile for two GCs. The vertical lines show the best
fit to the flattening of the velocity dispersion with errors denoted by the shaded region and the
red dotted curve indicates the theoretical velocity dispersion profile for the quoted cluster mass.
The cumulative distributions above each velocity dispersion profile show the chaos radius (solid
black curve), MOND radius (red dashed curve), tidal radius (green dotted curve) and best fit
flattening radius (dot-dashed blue curve).

3. Implications for observations

The bottom panels in Figure 2 show the velocity dispersion as a function of distance
from the cluster centre for two of the 15 GCs presented in Kennedy (2014b). References
for the velocity dispersion data and basis for the GC-galaxy orbital parameters are given
in Kennedy (2014b). The equilibrium velocity dispersion as a function of cluster radius,
r, for a Plummer sphere is Dejonghe (1987)
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where M is the cluster mass, rj, is the half-mass radius and G has its usual value. This
function is shown as the dotted curves for the quoted cluster masses in Figure 2.

The key requirements for predicting the flattening of GCs is the cluster mass and
the GC-galaxy orbital parameters. Both of which have large observational uncertainties.
Uncertainties in the orbital elements (R, and e) and cluster mass (M¢) are treated in
Kennedy (2014b) using 10° realisations of the GC-galaxy orbit for each GC in a realistic
galactic potential taking the observed GC proper motions as initial conditions. For each
set of orbital elements and cluster mass the predicted radii for each model are determined
and the resulting cumulative distributions for each radii are shown in the top panels of
Figure 2 for NGC 6171 and NGC 6341.

The MOND radius r,, as calculated for each cluster from where the acceleration from
the cluster potential goes beneath the MOND limit of ap = 1.2 x 107'° m/s? is shown
in the top panels of Figure 2 as a dashed red line. The transition from stable to unstable
orbits r. (Figure 1 a) is shown as a solid black line, the tidal radius r; (Equation 2.2) is
shown as a dotted green line and the flattening radius that best fits the data is shown
as a dot-dashed blue line. The region of best fit for the flattening radius is also shown as
the shaded region in the bottom panels.

Both NGC 6171 and NGC 6341 are promising candidates for distinguishing Newtonian
and MOND models since these clusters have small relative errors for both the cluster
mass and orbital parameters (Kennedy 2014b). For NGC 6341 the existing data is quite
good, although further observations of the velocity dispersion at large radii would better
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probe the region close to the tidal radius. In the case of NGC 6171 more resolution in
radius is required, although the data coverage of the flattening region and the small error
bars make this cluster a very good candidate.

Both clusters are rotating strongly enough that velocity dispersion inside the half-
mass radius must be modelled in more detail (Drukier et al. 2007 and Bellazzini et al.
2012). Interestingly increased rotation is predicted by the chaos diffusion model Kennedy
(2014a). Specifically, the region between the chaos radius (r.) and the maximum radius
(fmax in Figure 1 a) will have a different rotational profile compared to the rest of the
cluster. This is due to preferential removal of stars on prograde orbits relative to the
GC-galaxy orbit compared to stars on retrograde orbits. Thus more stars on retrograde
orbits will exist in the outer regions on the cluster, leading to a net rotation in this region.

To answer questions regarding the emergence of rotation and the timescale for stars
to escape via chaotic diffusion, an N-body simulation based on the mass and orbital
parameters of NGC 6341 is currently in progress, the results from which will be presented
in an upcoming publication.

4. Conclusions

Flattening of the velocity dispersion of GCs is predicted to occur beyond the stability
radius by consideration of Newtonian three-body stability. Kennedy (2014a) presented an
easy to use stability radius which has a much stronger dependence on the eccentricity of
the cluster-galaxy orbit than the classical tidal radius. As the stability radius depends on
the GC-galaxy orbit and not just on the cluster mass, further observations of the motion
of GCs will provide a way of distinguishing these predictions from MOND models.

At present the orbital determinations are not quite sufficient to definitively rule out
those MOND models that predict flattening for all 15 GCs (see Kennedy 2014b). How-
ever NGC 6171 and NGC 6341 have been identified as promising candidates for distin-
guishing Newtonian and MOND models, requiring only moderate improvement in the
observations. In particular, NGC 6171 may already be showing evidence of chaotic dif-
fusion of stars leading to flattening at the chaos radius as seen in the overlap between
the black and blue curves in Figure 2 (a). Clarification of this phenomenon will require
more resolution in the velocity dispersion and better orbital determination.
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