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Abstract. It is shown that a smooth area-preserving monotone twist mapping <p of
an annulus A can be interpolated by a flow <p' which is generated by a ^-dependent
Hamiltonian in U x A having the period 1 in t and satisfying a Legendre condition.
In other words, any such monotone twist mapping can be viewed as a section
mapping for the extremals of variational problem on a torus:

F(t,x,x)dt,

where F has period 1 in t and x and satisfies the Legendre condition F& > 0.

1. Introduction
In a series of papers several authors studied area preserving annulus mappings
possessing a certain 'monotone twist' property (see [1], [2], [3]). J. Mather and
S. Aubry developed interesting theories for these mappings establishing closed
invariant sets for prescribed rotation number, for which this monotone twist property
is fundamental. It is the aim of this note to show the close connection of this property
and the Legendre condition of calculus of variations. As a matter of fact, the theories
of Mather and Aubry can readily be extended to variational problems on the torus
satisfying the Legendre condition. Instead of developing such a theory we want to
show here by elementary arguments that every monotone twist mapping of an
annulus can be viewed as the 'time-one' map of a Hamiltonian system whose
Hamiltonian is periodic in t and satisfies the Legendre condition. In other words,
every monotone twist mapping can be viewed as the Poincare mapping of a flow
given by the solutions of Euler equations of a variational problem on a torus
satisfying the Legendre condition.

We describe the result more precisely. We consider a C°°-diffeomorphism of an
annulus on its covering space in IR2

A = {x,y\a'sy<a"},

the annulus being obtained by identifying points (x,y), (x',y) for which x' — x is
an integer. The lifted diffeomorphism <p : (x, y) -* (xx, >>,) is given by
(1-1) xl=f(x,y), yi = g(x,y),
where f,geC°°(A) and

(0 d(f,g)/d(x,y) = V,
(ii) f(x+l, y) =f(x, y) +1, g(x+l, y) = g(x, y);
(iii) g(x, y)-y = 0fory = a', a".
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402 J. Moser

We observe that such mappings are exact symplectic, i.e. satisfy

(y1dx1-ydx) = 0

for any curve y = u{x), u(x + l) = u(x) +1 and its image curve. Indeed, this holds
clearly for the boundary curve and by the divergence theorem and (i), for any other
curve.

Such a diffeomorphism <p is called a monotone twist mapping if df/dy ¥^ 0 and,
without loss of generality, we will assume

(iv) df/dy >0.
Geometrically, this means that any vertical tangent vector (0, A), A >0, is mapped
into a vector in the first or fourth quadrant. For the annulus mapping this is viewed
as an increasing twist to the right as the 'radius' y increases. Our main result is
contained in:

THEOREM 1. Given a CK-monotone twist mapping <p with the above properties there
exists a Hamiltonian function H - H(t, x, y) e C°°(R xR x A) with

(a) H(t + l,x,y) = H(t,x,y) = H(t,x + l,y);
(b) Hx(t,x,y) = 0fory = a',a";
(c) Hyy>0;

and such that the mapping <p, taking the initial values (x0, y0) of the solutions of

x = Hy(t,x,y), y = -Hx(t,x,y)

into the values (x(t), y(t)) agrees with the given mapping cp for t = 1.

The condition (b) expresses that the boundaries y = a', a" are invariant under the
flow and (c) expresses the Legendre condition. Indeed, if one introduces p in the
standard way by the Legendre transformation

(1.2) p = Hy(t,x,y)

then, for fixed t, x, the variable p will vary monotonically in a closed interval
[p'{t, x), p"(t, x)] as y varies in [a', a"]. With the Lagrange function F(t, x, p) defined
by

(1-3) F(t,x,p) = yp-H(t,x>y)

the Hamiltonian differential equation becomes the Euler equation of the variational
problem

(1.4) F(t,x(t),x(t))dt,

and Hyy > 0 becomes the standard Legendre condition

(1.5) Fpp(t,x,p)>0.

The converse of the above theorem is, of course, not true; that is, the time-one map
of such a Hamiltonian system, or the corresponding Euler equation, need not be a
monotone twist mapping, although it has all the other properties (i)-(iii). One has
to require in addition that the solutions x(t) of the Euler equation do not have two
conjugate points in the interval [0,1].
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Monotone twist mappings 403

To understand the significance of the above interpolation theorem we note that
the composition <p, ° <p2 of two monotone twist mappings need not be a monotone
twist mapping. One just has to consider such a monotone twist mapping <p with an
elliptic fixed point, for which the linearized mapping is a rotation about an angle
</i between TT/2 and n. Then for <p2 the corresponding angle 2i/> lies between v and
2TT, hence the vertical (0,1) is mapped into the 2nd or 3rd quadrant, and is not a
monotone twist mapping. Now it turns out that the theory of Aubry as well as that
of Mather can readily be generalized to mappings <p which can be represented as
composition <px ° <p2 ° • • • ° <PN of monotone twist mappings and, more generally, to
mappings <p which can be interpolated by area-preserving mapping <p, with <p0 = id,
<Pi = (p such that (pt+e°<p^ is a monotone twist mapping, for sufficiently small e.
The vector field defined by

* - * < • • • >

is Hamiltonian and can be written in the form

(1.6) x = Hy, y = Hx.

Hence the mapping <p,+e ° (pi1 is given by

and for e > 0 small enough this is a monotone twist mapping if Hyy > 0. Thus the
above mentioned theories can be extended to Hamiltonian systems with the condition
Hyy > 0 which is equivalent to the Legendre condition. The theory deals with 'minimal
solutions' x(t) which are characterized by the condition that

o

(F(t,x + £,x + £)-F(t,x,x))dt>0

for all £ e Clomp(R). Our theorem shows that such a theory is a genuine generalization
of the theory of Aubry since every monotone twist mapping can be obtained from
such a variational problem, at least for C^-mappings (see also [4]).

It is rather straightforward to develop such a theory for minimal solutions for
variational problems (1.4) satisfying (1.5) which we will describe elsewhere. Here
it is our aim to relate the monotone twist condition (iv) to the Legendre condition.
Since such variational problems occur quite frequently in mechanics and geometry,
it also seems more natural to work with the continuous problem instead of the
discrete system. Indeed, as a rule such mappings <p are obtained from the continuous
problem as section mappings.

Actually such a theorem could be generalized to Cr-mappings and to mappings
in half- or full cylinders with various asymptotic restrictions. But we forgo such
extensions and present the proof of the above theorem in the following sections.
I would like to express my thanks to D. Salamon for pointing out inaccuracies and
for proof-reading.

2. Extension of the mapping to U2

For technical reasons it is useful to extend the mapping <p from A to U2 preserving
the above mentioned properties (i)-(iv). For this purpose we note that gx = 0 for
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404 J- Moser

y = a', a" and hence
1 = fxgy,

i.e. fx 5^0, and because of (ii)/x>0. In a sufficiently small strip a"- e<y<a",fx>0
and thus <p can be represented with a generating function x^y + wix^y) as

where weC°° has period 1 in x,, satisfies l + wXiy>0 and wXi = 0 for y = a". The
condition (iv) becomes

wyy < 0.

The plan is to extend w(x1>y) for y>a" as a C°°-function. We use a standard
device of E. Borel. For simplicity of the notation we replace a" by 0 by a translation
and denote the Taylor expansion of w(x, ,y) for y < 0 = a" by

I Wvixjy".

We introduce a cut-off function £e C°°(R), 0 < £ < 1 with £(s) = 1 for ssO, £(s) = 0
for * & 1. For a given small constant p > 0 we define a sequence

A,, = 2"p~1(l + max |wv(x1)|),

set
L = C(Ky)

and define the extension by

w(x,y) fora'<_y<0
w(Xl'y)=\ I y) fory>0

=o
with

R(xl,y)= I wMyv£v(y).

For any fixed y > 0 this sum is finite as \vy -» oo and defines a C°°-function for y > 0.
To show that vv is C°° at y = 0 we verify that the Taylor expansions match from
both sides at y = 0. To check this up to order N— 1 it suffices to estimate the tail:

since ^ < A j ' .
Similarly, using that y Ĵ,, y2£" are bounded uniformly in y, v one checks readily

\R\,\DR\,\D2R\=O(p)

for y > 0 where D stands for derivatives with respect to x, and y. Thus, if p is taken
small enough we have wyy < 0 for all y > 0, and 1 + vvXiy > 0 for 0 s y < p.

Next we replace the term w2(x)y2 by \jj = a(x) + b(x)y-(c/2)y2 with a positive
constant c by the following construction: For a given c > 0 we define
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for all y > 0 and set

x,y) = 2 [ [ y(x,y")dy"dy' = 2y2 \\l-s)y(x, sy) ds.
Jo Jo Jo

Then we have

(i) ip{x, y) = w2{x)y2 for y > 0 near zero

= a(x) + b(x)y-(c/2)y2 {Ory>p.

(ii) illy? = 2y<0.
[yip

(iii) il,xy = 2w'2p\ f(A)dA = O(p).
J

fora'<>><0
Therefore the function

satisfies

for all y>0 and w*(x,,j>)
relations

w*y<0

1) + wf(xi)y-(c/2)y2 for y>p. Therefore the

yi=y+w*l(xi,y)

define an area-preserving mapping for a'&y<ao extending the given map. By
construction this is a monotone twist mapping which commutes with (x, _y)-»

Finally we can modify the extended mapping such that it preserves the circles
y = r for sufficiently large constants r. We replace w* for y > p by

= I ae(y'-p))dy'.
o

With a small constant cr = e2 we define

so that w= w for a ' < ^ < 0 , and w = -(c/2)y2 for o-~1. Moreover,

wyy = £w*y + U-l)c+O(<r)<0

for all y > 0 if p, a = e2 are sufficiently small.
Since w(xx,y) = -(c/2)y2, for y>p + o-~i the extended mapping has the form

X; = x + cy, yx = y for y > p + o-~l.
Similarly, one can extend the mapping <p to y<a' and thus to U2 preserving all

the properties. In addition we have g = y and f=x + cy for large \y\.
In the following we consider C°°-monotone twist mappings <p in the whole plane

with the additional assumption that for each fixed x the monotone function f(x, •)
takes on all values, i.e. f(x, +00) = +00, f(x, -00) = -00. Actually, we impose the
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more stringent condition that with a fixed constant 5 > 0

(2.1) 8sfy(x,y)<8-\

for all x,ye U2. For the extension constructed above this requirement is clearly
satisfied.

We represent q> in terms of a generating function h = h(x, x,)e C°°(IR2): Solving
xt = / (x , y) for y we can write <p in the form

(2.2) y = -hx{x,xl), yi = hXt(x,x1)

where -hx{x, •) is the inverse function of/(x, •) hence also monotone and surjective.
The assumption (2.1) is equivalent to

(2.3) 8<-hXXl<5-\

Moreover, the periodicity condition (ii) becomes

(2.4) h(x+l,x1 + l) = h(x,x1).

First we prove the analogue of theorem 1 for such mappings in the plane.

THEOREM 2. Let <p be a monotone twist mapping of U2 into itself given by a generating
function h e C°°(IR2), satisfying (2.3) and (2.4). Then there exists Hamiltonian function
H = H(t, x, y) e C°°([0,1] x U2) with the following properties

(a) H(t,x,y) = H(t,x+\,y);
(b) 0<5<Hyy<S-1;

and the mapping <p, taking initial values (xo,yo) of the solutions of

x = Hy, y = -Hx

into {x(t),y(t)) agrees with the given mapping cp for t — l.

In the next section we shall prove this theorem and subsequently derive theorem 1
from it by smoothing the flow obtained by periodic extension with respect to t and
finally, by taking care of the boundary condition (b) in theorem 1.

3. Proof of theorem 2
The proof will bebasedon the construction of a variational principle (1.3) for which
the extremal integral

(3.1) S{xo,Xl)= F(t,x{t),x(t))dt
Jo

taken along extremals x(t) connecting xo = x(0) and x, = x(l) agrees with h(x0, x,).
This would imply that the corresponding Hamiltonian flow tp, satisfies <Pi = <p. Of
course, such an integrand is rather arbitrary and we want to require that the extremals
are straight lines

(3.2) x(t) = xo+t(xl-xo).

Let us determine the most general such variational principle. From the Euler
equations one sees that a necessary and sufficient condition for straight line extremals
is that F satisfies the partial differential equation

(3.3) (dt+pdx)Fp = Fx.
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Differentiation with respect to p gives

i.e.
(3.4) Fpp(t,x,p)=G(x-pt,p)

for some arbitrary function G(x, p). One verifies readily that the most general
solution of (3.3) is given by

F = F0(t, x, p) + pmx(t, x) + mt(t, x)
(3.5)

Jo
)G(x-p't,p')dp'.

We determine the corresponding extremal integral (3.1)

(3.6) S(x0, x,) = S0{x0, x,) + m(l, xj - m(0, x0),

where So is the extremal integral for Fo. One has the standard relations

SXB=-Fp(0,xo,xi-xo), SXl = F p ( l ,x 1 ) x 1 -x 0 ) , S^ = -F w (0 , x0, x , -x 0 ) .

In order to achieve S = h we have to set

G(x,p) = -hXoXl(x,x + p)>0,
so that

(3.7) F0(f, x, p) = - f' (p - p ' ) ^ , ( x -P'«, * +p'(l - 0) 4p'.
Jo

Then we have

d2S0 d2h

or

(3.8) S0-h =

Finally, if we choose the boundary values of m(t, x) so that

m(0, xo) = u(xo); m(l,xl) = -v(x1)

we obtain from (3.6) and (3.8)

S = h.

We observe that on account of (3.4)

(3.9) Fpp(t, x,p) = -hXoXi(x-pt,x + p(l - f))>0

which shows that the monotone twist condition corresponds to the Legendre condi-
tion Fpp > 0. The periodicity condition (2.4) for h yields

F0(t,x+\,p) = F0(t,x,p)

and if we choose, for example

m(t,x) = (l-t)u(x)-tv(x), 0<f<l

one computes readily

(3.10) mx = -(l-t)hXo(x,x)+thXl(x,x), m, = h(x,x).

so that mx, m, and hence F{t, x,p) have period 1 in x.

https://doi.org/10.1017/S0143385700003588 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003588


408 /. Moser

Thus the variational principle is constructed with the desired properties and the
Hamiltonian H(t, x, y) is obtained by the Legendre transformation

y = Fp(t, x, p); H(t, x, y) = yp- F(t, x, p).

Because of (3.9) we have

and because of Hyy • Fpp = 1 also

Moreover, H has period 1 in x. From standard facts of calculus of variations it
follows that the flow <p, of the Hamiltonian system for H interpolates <p and the
identity, proving theorem 2.

We illustrate this construction with a mapping

<p(x,y) = {x + y+Vx(x),y+Vx(x))

with the generating function

h(x,xl) = ±(xl-x)2+V(x)

where V is smooth function of period 1. The formulae (3.7), (3.10) give for 0^ t < 1

F(t,x,p)=y2-{l-t)pVx+V
and the Hamiltonian

Periodic continuation gives rise to discontinuities. A more suggestive yet more
singular choice is

where Sper is the periodic Dirac function with support on the integers.

4. Smoothing
In order to obtain a variational problem periodic of period 1 in r we just have to
extend F(t,x,y), or equivalently H(t, x,y), defined in re[0,1) periodically, by
setting F(t, x, y) = F(t—j, x, y) with an integer j e [t, t +1). This is sufficient for most
purposes though it leads to discontinuities of F, H and the corresponding vector
field at integer values of t, while the corresponding flow is continuous. However,
in this section we want to show that F, H can in fact be replaced by smooth periodic
functions F, H which give rise to the same given Poincare mapping and satisfy the
Legendre condition. To achieve this we will replace <p, by another interpolating flow
<p, which agrees with <p, for t = 0,1 and which corresponds to a smooth t- periodic
Hamiltonian H satisfying Hyy > 0. This will be done with the following somewhat
clumsy argument.

For simplicity we restrict ourselves in this section to monotone twist mappings
satisfying

(4.1) f(x,y) = x + cy, g{x,y) = y for \y\ large.

This condition holds for the extension of the annulus mapping constructed in § 2,
and since we now turn to the proof of theorem 1 we may as well assume (4.1) to
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simplify the following. By (2.2) this assumption is equivalent to

h ~ — {xl-x)2 + const, for large |x , -x |
2c

where the constant for ±(x , -x) large need not be the same. Using the formulae
(3.7), (3.10) denning F we find

F = — p2+const, for \p\ large
2c

or

(4.2) H=;% z +const, for \y\ large.

We define the exact symplectic flow

(4.3) *l>':(x,y) + (x + sy,y)

corresponding to the Hamiltonian \y2. For e e (0, \) we consider

which for e sufficiently small is a monotone twist mapping. Applying theorem 2 to
(px we obtain an interpolating flow <pT, 0 S T < 1 with <pT = id, <pK for T = 0, 1,
respectively. Now we define

iff' forO<f<e

which is continuous for t e [0,1) and interpolates *0 = id and #, = <p. Moreover, \t
is smooth except for t = e, 1 - e. This flow x. is generated by the piecewise smooth
Hamiltonian

(\y2 forre[0, e ) a n d f e ( l - e , 1)
H = < 1

I Y ^ J W C T . A : , ; ' ) withT = ( r - e ) / l - 2 e , t € O , l - e ] .

For large \y\ we have

H=y2 + const.

if we choose the constant c = 1 -2e in § 2, so that Hx, Hy-y have compact support.
Moreover, we have Hyy > 0.

Since H = H(t,x,y) agrees for t near 0 and 1 with \y2 the periodic extension of
H does not lead to discontinuities at integers t; instead we have discontinuities of
H for t = e, 1 - e (mod 1) which we will now remove, by smoothing Xt n e a r l = e.
1 - e without changing it near the endpoints. This is actually a local problem.

Before proceeding we point out a difficulty. One may try to achieve the desired
smoothing by representing Xi m terms of a generating function, say xy, + w,{x, >',)
and replace w, by a smooth w, which for fixed t is C2-close to w, and agrees with
w, outside an interval about e. This would give rise to a smooth symplectic flow <j>,,
C'-close to Xt, ar*d the Hamiltonian H(t, x, y) generating <p, would be smooth at
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e. However, the difficulty is to verify the Legendre condition near t = e, since Hyy

cannot be uniformly close to Hyy since the latter is discontinuous.
To avoid this difficulty we proceed differently and first approximate H by a

smooth H* such that H*y>0. Secondly we will change the corresponding flow <pf
outside an interval about t = e to a flow $, agreeing with tp, outside. With appropriate
estimates we can ensure that the Hamiltonian H generating <p, satisfies the Legendre
condition.

To first smooth H near t = e we set for 0 < p < e

where TJ € C°°(R), 0 < 77 < 1, 17(5) = 0 for | s | & l , and

so that H* is C°° for 0< t<\ and H* = H for t<e~p. Moreover, since 17>0 we
have H*y>0.

Moreover, with D" = at1 5"2, ct = {otl,a2) we find
ri/2 p

(4.5) |D a (H*-H) |A< C l sup \\Da(H(t-r,x,y)-H(t,x,y)\dtscaP
Jo |T|<P J

since D"H is piecewise smooth in (. On the other hand the uniform estimate

(4.6) sup \Da(H*-H)\sc2 sup \Da(H(t-r,x,y)-H(t,x,y))\> cap

holds only for | f - e | > p . All these estimates are uniform in x, y since H*-H has
compact support for 0 < t < \.

If <pf denotes the flow determined by H* one derives from standard theorems
on solutions of differential equations

(4.7) \<pf-X,n,*c3\ \H*-H\m+1dt=O(p)
Jo

for 0 s t < \ where for a function G = G(t, x, y) the norm is defined by

|G|m = sup I \DaG\; |a| = «, + a2.
x, y |a|<m

For the f-derivatives one obtains from the differential equation and (4.6)

(4.8) \d,(q>f -x,)\m s c4\H* - H\m+i = O(p)

only for |t — e |>p . Also cpf = Xt for 0< r < e - p .
It remains to change <pf for i > ( 2 > e so that it agrees with \t there and still

retains all required properties. For this purpose we represent Xt, <P* with generating
functions x1y + w(t, xx,y) and xiy+w*(t,x1,y) respectively, so that w, w* have
period 1 in x l .

Such a representation is possible for t<2e, e sufficiently small, since Xt, <P* are
then close to the identity mapping. On account of (4.7), (4.8) one has

\w*-w\m = O(p) for/<2e
(4.9)

\d,(w*-w\m =
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Moreover,

(4.10) w* = w f o r O < ( < e - p .

With tu t2 in e<t1<t2<2e use a cut-off function f(f)eC°°, £ = 1 for f < ^ and
£ = 0 for / > f2 and define

(4.11) w = ( l - £ ) w + £w*

so that w = w* for f < ^ hence smooth and w = w for t> t2. Moreover, w= w also
for 0< f< e — p, hence the flow <p, defined by w is smooth in 0 s t < | and agrees
with Xt near the end-points. It remains to verify that the Hamiltonian H correspond-
ing to <p, satisfies the Legendre condition.

For this purpose we express the Legendre condition in terms of w: If the flow
(x,y)^(x' = x(t), y' = y{t)) is defined by the Hamiltonian H = H(t, x',y') then one
has by standard transformation theory

from which one finds

Thus the condition Hyy- > 0 is equivalent to

(4.12) Wtyy(l + Wxy)-WlyWxyy<0.

By construction this condition is valid for w = w as well as for w*, and by continuity
for a C3-neighbourhood of these. We have to verify this condition for w only in
[tut2] whereby (4.9), (4.11)

\w-w\3=O(p),

i.e. for p sufficiently small (4.12) is satisfied for w=w, i.e. Hyy>0 in (0,5).
This way the discontinuity at t = e is removed, and by the same argument one

gets rid of the discontinuity at t = 1 - e to obtain a smooth Hamiltonian H(t, x, y)
of period 1 in t, and x with Hyy > 0 for which the Poincare mapping agrees with
the given <p.

5. Boundary condition
Finally we will take care of the boundary condition (b) in theorem 1. The Hamiltonian
H constructed in the previous section will be called H; it belongs to C°°(IR3) and
satisfies conditions (a), (c) of that theorem. The flow <p, takes the boundary curves
y = a', a" into curves T',, T" with

(5.1) r'j = r0, r ; = r s f o r y = o , ± i , . . .
since by assumption <p leaves these curves invariant.

LEMMA. The curves T't, T"t are graphs of C°°-functions

y = u'(t,x); y = u"(t,x)>u'(t,x)
of period 1 in t, x.

Thus the image of the annulus A under <p, is given by

A,: u'(t,x)i£y£u"(t,x).
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To prove this lemma we set y = a, where a = a' or a" and consider the curve T,
given by

(x, y) = <p,(x0, a) = (x(t, x0, a), y(t, x0, a)).

We define the tangent vector

Thus X = X(t, x0), Y= Y(t, x0) have period 1 in x0 and (X, Y) describes a closed
curve y, for each fixed t, depending continuously on t. For ( = 0we have (X, Y) =
(1,0) and, more generally,

(5.2) X > 0 for<=j"eZandallxo,

since y = a is invariant under <pJ and the induced mapping is a diffeomorphism. We
want to prove X > 0 for all t > 0.

Assume that to>0 is the first zero of inf^ X, so that X > 0 for t e (0, t0) and all
x0, but for some x* we have

Then the differential equation X = HyxX + HyyY shows that

hence

i.e.

Thus the crossing takes place on the negative Y-axis.
Next we see that such a crossing of y, of the negative Y-axis cannot disappear

for t > t0, and this clearly contradicts (5.2). If this assertion were false there would
exist a 'last' crossing t = f, < 1 on the negative Y-axis - since y, depends continuously
on t a n d X 2 + Y2>0. Thus

X(t1,x'o) = 0, Y(t1,x'o)<0

X{t,xo)>0 for fe(f,, U + e) and all xo.

By the same argument as above we conclude that

Y(U,x0)>0.

This contradiction shows that

X = — ( f , x o , a ) > 0 forf>0.
dx0

Eliminating x0 from the relations x = x{t,x0, a), y = y(t,xo,a) one obtains the
representation y = u{t, x) for the curve as a graph proving the lemma. Clearly
u(t, x +1) = u{t, x) since H has period 1 in x. Moreover, one finds that JJ u(t, x) dx
is independent of t, hence

(5.3) u'{t, x)dx = a', u"{t,x)dx = a".
Jo Jo
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We seek an exact symplectic transformation T, which takes the curves FJ, F" into
FQ, FQ'. In order not to destroy the Legendre condition we have to require that T,
preserves the foliation x = const. The most general such transformation has the form

r,(x, y) = (A(t, x), A~x\y- B(t, x)))

where

(5.4) Ax>0; A-x, B of period 1 in x.

Thus the requirement that T, takes FJ, F" into Fo, FQ leads to the equations

A-X\u'-B) = a', AZ\u"-B) = a",

which yields

u"-u' a"u'-a'u"
a"-a' ' a"-a'

This determines B uniquely and A up to an irrelevant function of t which we fix
by A{t, 0) = 0. Because of (5.3) the condition (5.4) holds true, as well as TJ = id for
all integer j .

With the so determined T, we define the flow

which preserves the curves Fo, FQ, and thus gives rise to a flow in A: a'<y< a".
From the construction it is clear that the Legendre condition is maintained. One

can see this also by determining the Hamiltonian H for <p, which is given by

H(t,x',y') = H(t,x,y)+W,(t,x,y')

where (x', y') = T,(X, y) and

W=A(t,x)y'+\ B(t,\)d\
Jo

is the generating function of T,. Hence

Hyy = A\Hyy > 0.

Moreover, <p, = <pj for all integers j . The Hamiltonian H restricted to the annulus A
satisfies all conditions of theorem 1.
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