2 (Contest Success Functions

As discussed in Chapter 1, Contest Theory heavily relies on Game Theory, for the
time being on Nash equilibrium, to make predictions. In determining the properties
of the equilibrium and ultimately the expected outcomes of a contest, the form of the
contest success function (CSF) plays a crucial role. As a result, it is imperative to be
cautious in selecting an appropriate CSF to model a contest.

This chapter presents a comprehensive review of the primary CSFs utilized in the
literature and investigates their fundamental properties. Additionally, we provide a
preliminary analysis of the existence and properties of the Nash equilibrium with
various CSFs in a contest game. A more thorough examination of the existence of
equilibrium in technically demanding cases is reserved for Chapter 3.

The origin of the functional forms defining the CSFs is not always clear, as
tractability is not the sole consideration. In Chapter 4, we aim to address the question
of understanding the microfoundations of the CSFs used in the literature. We will see
that these microfoundations, sometimes, suggest new CSFs!

Throughout this chapter and most of the book, we assume that ¢;(g;) = g;, and
thus the payoff for each contestant i is given by

i(g) = pi(@Vi — &i.

2.1 All Pay Auction (Hillman and Riley, 1989)

We begin by assuming that the prize is awarded through an auction in which the
highest bid wins. In other words, the contestant who exerts the greatest effort wins
the prize with a probability one. In the event of a tie between the largest efforts, a
lottery is held to determine the winner. Formally, the following rules for allocating the
prize apply. Let K be the set of agents with maximal effort, i.e.,if i, j € K, g; = g;
and g; > g/ forall/ ¢ K. Then

(1) If gi € K, pi = 1/#K, where #K denotes the cardinality of the set K.
(i) If g1 ¢ K, pr =0.

The All Pay Auction yields a contest in which the prize is awarded through an
auction process, but unlike traditional auctions, all participants are required to pay
regardless of whether they win or not, hence the term “all pay.” This type of auction
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represents a reverse form of Bertrand competition, where instead of the firm offering
the lowest price winning the entire demand, the prize is awarded to the participant
with the highest bid.

All Pay Auction models are characterized by intense competition, where even a
small increase in effort can make a significant difference. Examples of the latter are the
final sprint in an athletic competition or the Tour de France, where the time difference
between the winner and the 10th place finisher may be as little as 0.4%.

The All Pay Auction has no equilibrium in pure strategies. Suppose that g is such
that g; is the unique largest effort. Then g; — ¢ with ¢ sufficiently small also wins the
prize and reduces costs, so there is a profitable deviation and no equilibrium in pure
strategies with this characteristic is possible. Suppose now that g is such that there are,
at least, two contestants i and j with the largest effort. Clearly g; < V;. By playing
gi + € she wins the prize for sure with, almost, the same cost. So, again, we have a
profitable deviation.

When there is no equilibrium in pure strategies, Game Theory recommends looking
for an equilibrium in mixed strategies.> Here we just prove that such equilibrium exists
in the case of two contestants.

PROPOSITION 2.1  Suppose an All Pay Auction with n = 2 and Vi > V5. An
equilibrium in mixed strategies exists where both contestants randomize on [0, V3]
according to the following distribution functions:
81

72 (2.1)

Fi(g1) =

82 V2

Fr(g2) = 71 +1- 71 2.2)
Proof First note that no contestant would expend more than the value of the prize.
Consequently, there is no gain for contestant 1 to expend more than V,. For each
contestant, any g; in the support has to be optimal. If g; is in the support of contestant
i, the probability of winning, given the mixed strategy of contestant j, is the proba-
bility that g; < g;, i.e., Fj(g;). The payoff for contestant i is F;(g;)V; — gi. So, gi
is optimal if V;dF;(g;)/dg; = 1. Integrating both sides of this equation, we obtain
Fj(gi) = gi/Vi + K, where K is a constant. For contestant 1, Fi(V;) = 1, thus
K1 = 0. For contestant 2, F>(V,) =1 = V,/ V] 4+ K>, thus K =1 — Vo/ V. ]

In equilibrium, the expected effort for contestants are

1% 1 g%
E = —d = —_— frd = —,
g1 /0 817481 v, | T2 T2

1%
B

1 In the 2021 Tour de France, the winner Tadej Pogacar spent a total of 83 hours on the road. The
difference between his time and that of the runner-up was 5 minutes, representing a difference of 0.1%
of the winner’s time. Meanwhile, the difference between his time and that of the 10th place finisher was
approximately 18 minutes, equating to a difference of 0.36%.

2 For a discussion on this equilibrium concept, the reader may refer to textbooks on Game Theory, such as
Fudenberg and Tirole (1991) or Binmore (1991).
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12)
Vs 1 g2 V2

Eoy = —dor = | 22 =2
e [Potan 5]
0

Each contestant expends a fraction V,/2V) of their valuation. The ranking of efforts
is the same as the ranking of valuations. Moreover, the ratio between expected efforts
matches exactly the ratio of valuations. Effort for contestant 2 is increasing in her
valuation (the more you like the prize, the harder you fight for it) and decreasing in
the valuation of contestant 1. However, the effort of contestant 1 depends only on the
valuation of contestant 2 and it is increasing. This is because contestant 1 expects a
tougher fight with contestants whose valuations are closer to hers and adjusts her effort
accordingly. Total expected effort is given by

Egi 4+ Ego= 2(14 22
81 82—2 V] .

Note that when both contestants have identical valuations, the sum of expected
expenses equals the value of the prize. In the parlance of Tullock (1980), rents are
completely dissipated.
In equilibrium, all efforts in the support of the mixed strategy should give the same
payoff. Hence, given g’f € [0, V2], payoff for contestant 1 is
81

Va
(g = F(gDVi — g = (_ +1- 2

Vi—gf=VvVi—W.
7 Vl)l 81 1 2

And similarly for contestant 2, given g5 € [0, V2],

*

8
n2(g3) = Fi(gh)Va — g5 = 722V2 —g =0.

Note that contestant 1 can obtain the prize for sure by making an effort infinitesimally
above V. Thus, the payoff for contestant 1 in equilibrium is 711 (g*) = V| — V,. Given
this, contestant 2 cannot expect to obtain more than zero. Continuing the comparison
between this model and Bertrand’s, it becomes evident that in both models, the weaker
competitor (in this case, the contestant with a lower valuation, and in Bertrand’s
model, the firm with higher costs) earns no profit. If both competitors are identical,
both earn zero profit. This intense competition, where even a small difference can
have a significant impact, undermines the profits of underdogs.

The All Pay Auction with more than two contestants is analyzed in Chapter 3,
Section 3.5.

2.2 Difference CSF (Hirshleifer, 1989)

In the Difference CSF, the probability of winning is based on the difference between
efforts. As stated by its originator, “this CSF captures the tremendous advantage of
being slightly stronger than one’s opponent” (Hirshleifer, 1991, p. 131).
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Assuming n = 2, the difference CSF is written as

p1(g) = Fi(g1 — &2), p2(®) =1 — Fi(g1 — &2), (2.3)

where F is a strictly increasing function with a range in [0, 1]. Notice that this CSF is
akin to the All Pay Auction. In fact, when n = 2, it can be regarded as a generalization
of the All Pay Auction where Fj(a) = lifa > 0, F;j(a) = 0ifa < 0, and Fj(a) = 0.5
ifa=0.

In contests with more than two contestants, the previous definition is easily gener-
alized. Let M(g_;) be a measure of the average of the efforts made by all contestants
but i. This measure can be the arithmetic average (i.e., the sum of efforts divided by
n — 1), the geometric average (the n — 1 root of the multiplication of efforts), the
maximum effort made by competitors, etc. Then

pi(@) = Fi(gi — M(g-:)), i € {1,2,...,n}.

Whenn =2 and M(g;) = g;, we have (2.3).
Variations of this CSF were proposed by Baik (1998) and Che and Gale (2000).
The first author assumes the following:

p1(g) = F1(g1 — 0g2) and pa(g) = 1 — pi(g), with 0 > 0,

which, for 0 = 1, collapses (2.3).
Che and Gale (2000) proposed a special non-smooth form of (2.3):

1
p1(g) = max {min {5 + 5(g1 — 82), 1} ,0} and py(g) = 1 — p1(g). (2.4)

The number s measures how responsive the probability of winning is to the difference
of efforts. When s = 0, this CSF is a pure lottery. When s — oo, the difference of
efforts is paramount and the CSF becomes the All Pay Auction in which the highest
bidder takes it all.

A defining feature of the Difference CSF, when F is differentiable, is that, in any
equilibrium in pure strategies, only the contestant with the highest valuation exerts
a positive effort. To see this in a very simple way, let F'(g; — g») be the derivative
of F(g1 — g2). Let Vi > V>. Suppose both contestants exert positive effort. Since
p2(g) = 1 — p1(g), and the first-order conditions of payoff maximization hold with
equality for both contestants, we have that

F{(g1 —g)Vi — 1 =0and — F(g1 — g2)V2 — 1 =0,

which is a contradiction.

In other cases, such as with the CSF outlined in (2.4), a pure strategy equilibrium
does not exist, and instead, the equilibrium is in mixed strategies (see Che and Gale,
2000).

A drawback of the Difference CSF is that it is not unit-independent. As a result, in
the Che and Gale CSF, the parameter s must be adjusted to the units used to measure
the difference g1 — g2, to keep the impact of the difference constant.
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A comprehensive analysis with heterogeneous contestants for the following alter-
native difference CSF
1 exp(agi)

n

o explalg; — &) - > =1 exp(ag;))

pi(g) :Z

can be found in Ewerhart and Sun (2022). They found that when « is small (a high
level of noise) two types of equilibria in pure strategies exist, one in which all con-
testants exert zero effort, and another with at most one active contestant. In all other
cases, there are mixed-strategy equilibria.

2.3 Ratio Form CSF (Tullock, 1980)

In the Ratio CSF, the probability that a contestant wins equals the ratio of her effort to
the aggregate effort, namely

(o) — — 81 25
pi(g) > & 2.5
The Ratio Form CSF can be interpreted as saying that the probability that contestant i
obtains the prize when she holds g; tickets and there are Z?:i g tickets is just the pro-
portion of tickets in i’s hand. Hence, this CSF is also known as the “Tullock lottery.”

It’s noteworthy that the probability in Equation (2.5) is a homogeneous function of
degree zero, meaning it does not change with the units used to measure expenses. This
makes the Ratio Form CSF unit invariant.

To fully define the CSF, we need to explain how the prize is allocated when no
contestant makes an effort. The standard convention is to assume that when g = 0,
pi(g) = 1/n, meaning that the prize is awarded through a fair lottery. Note that this
CSF is discontinuous at g = 0. This means that when all contestants minus, say
i, make zero effort, an infinitesimal effort by i yields the full prize. But, an even
smaller effort yields the prize too, so the best reply of i when g_; = 0 does not exist.
Fortunately, this does not cause much trouble from the point of view of the existence
of equilibrium. It just implies that the standard procedure of showing the existence of
a Nash equilibrium cannot be applied here because payoffs are not continuous.

The next proposition illustrates how to handle existence issues in the specific sce-
nariowhere Vi =V, =... =V, = V.

PROPOSITION 2.2  There is a unique Nash equilibrium of the contest game in which
the CSF is the Ratio Form and all valuations are identical.

Proof The strategy of the proof is that, first, we look for a candidate equilibrium.
Once we have identified it, we show that this candidate is indeed an equilibrium.
How to find the candidate? The equilibrium candidate must fulfill the first-order con-
dition of payoff maximization. Thus for each i,

Zl}:i 8j — &i

ST V<l1,ie{l,2...,n) 2.6)
j=i 8j
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with strict inequality if g; = 0. We first see that if an inequality is strict, say for con-
testant j, it must be strict for all contestants. Suppose not, so there are two contestants,
say i and k such that

di—i8i— & _ > =i 8 — 8k
(Zl;:i gj)2 ’ (Z?:i gj)2

In this case g; = 0. But this implies that gy < g; which is a contradiction. And g = 0
is not an equilibrium because if a contestant makes an infinitesimal effort, he will
obtain the full prize. So we are left with the case in which, for all contestants, (2.6)
holds with equality. Next, note that any solution to this system of equations must be
symmetric, i.e., g; = g; for all i, j since the term Z;:i gj appears in the same way
in all of them. We have found a candidate, namely

V=1

n—1

* _
&=V 2.7)

It is only left to show that this candidate is indeed a Nash equilibrium. Given g*,
payoff for i looks like

8i_ 1 v
gi + (=)
Clearly, (2.7) is a solution to the first-order conditions of payoff maximization, and,

given that payoffs are strictly concave in g;, it is the only solution, so the candidate is
indeed the unique Nash equilibrium. O

mi(gi, 85 ;) = - &i-

From (2.7), probabilities of winning, total effort, and payoffs in equilibrium are

given by
1 < n—1 14
pig) =, Zg,,— —V, mEg)=—. (2.8)
j=i

The symmetry of equilibrium actions translates into equal probabilities (shares) of
obtaining the prize. But this could have been achieved by making no effort at all! In
this sense, symmetric contests can be seen as a rat race in which participants invest
substantial effort in vain.

Other comparative statics results are as follows:

(a) Individual and aggregate equilibrium efforts increase with V. Individual effort
decreases with n, but aggregate effort increases with n.
Contestants respond to incentives, and when expected reward decreases — either
because the prize is less valuable or there is more competition — individual efforts
decrease as well.?

3 The impact of prizes motivating effort is well-documented. For example, Ehrenberg and Bognanno
(1990a,b) studied the relationship between the magnitude of prizes and the performance of participants
in major golf tournaments. Their findings revealed a negative association between larger prizes and
lower scores, which was interpreted as an indicator of effort. These results can be refined by including
the composition of the contestants (higher prizes attract better athletes) and gender (men and women
seem to react differently to prizes); see Matthews, Sommers, and Peschiera (2007).
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(b) When n — oo, aggregate efforts tend to V, and individual payoff tends to 0.
This result was named by Tullock as Rent Dissipation because the value of
efforts (almost) equals the value of the rent in contests with a large number of
contestants.* In very competitive contests, contestants should expect very little
reward. In other words, the candy (rent) dissipates into too many mouths. We
recall that similar results can be found in oligopolist markets with a large number
of firms. In fact, a contest with the Ratio Form CSF is formally identical to a
Cournot model with inverse demand V/ Z'}:i gj (so the elasticity of demand is
one) and marginal costs are constant and equal to one (in this interpretation g;
stands for the output of firm 7).

The last observation leads us to inquire if the methods developed in Industrial
Organization can be applied to our field. Despite the similarity noted above, there
is a serious problem. In Industrial Organization, at least since the work of Bulow,
Geanakoplos, and Klemperer (1985), the models are divided into two subfields: Those
in which strategies are strategic substitutes, i.e., the best reply of any player is decreas-
ing in the actions of the competitors (typically the Cournot model), and those in which
strategies are strategic complements, i.e., the best reply of any player is increasing in
the actions of competitors (typically Bertrand models). These two cases use different
methods of analysis.® Thus, we are led to ask what the best replies look like in a
contest in which the CSF is the Ratio. The answer is that they do not fall into the
category of strategic substitutes or complements. Let us see why.’

From the first-order conditions of payoff maximization and letting g—; = >_, .; g/
(note that now g_; is a number and not a vector as when we write g_;), the best reply
function for contestant ; with valuation V; is given by

BRi(g-i) =+Vig-i — g-i-

We see that
dsi _ Vi
dg—i  2Jg=
For g_; = V;/4, it is zero. For g_; < V;/4, it is positive. For g_; > V;/4, it is
negative. Thus, strategies are neither strategic substitutes nor strategic complements.
In Figure 2.1, the best replies for two contestants in a contest with V| = V, = 1 are
depicted.
Note that equilibrium in Figure 2.1 occurs at g/ = 0.25, exactly where dg; /dg—; =
0. With more contestants, since equilibrium is symmetric, it is located in the intersec-
tion of the best reply and a straight line of slope 1/(n — 1). In Figure 2.2, the case for
n ="7and V; = 1 for all i is plotted.

1.

4 We have seen another example of Rent Dissipation in the section when the CSF is the All Pay Auction.

5 An exposition of these results can be found in Corchén (2001), propositions 2.2, 2.3, and 3.5.

6 For an exposition of these methods, see the books by Corchén (2001) and Vives (2001).

7 The careful reader will have noticed that the Cournot model with an isoelastic demand curve mentioned
in the previous paragraph yields a best reply that is neither a strategic substitute nor a complement. This
is why we said that “typically” Cournot models yield strategic substitution.
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g1

Figure 2.1 Best replies in a two-contestant case with a Ratio Form CSFand V| =V, =1

0.3

— BRi(9-)
9o
6

Figure 2.2 Equilibrium in a contest with n = 7, V; = 1 for all 7, and a Ratio Form CSF
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When n > 2, equilibrium occurs in the decreasing part of best replies, so, locally,
strategies are strategic substitutes. When n is very large, the straight line representing
symmetry is really close to the horizontal axis so g/ is close to 0 and total expenses
tend to 1, which is the value of the prize (Rent Dissipation).

The study of the heterogeneous contestants brings a new issue, namely, that some
contestants may opt to spend no effort in equilibrium. The analysis of this scenario is
deferred to Chapter 3.

24 Extensions of Ratio: Logit CSF (Dixit, 1987)

In the Logit CSF, the linear terms g; in the Ratio Form CSF are substituted by a more
general function ¢ of g;. When g # 0,

pi(g) = nm—gl)

> i=1Pg))
The function ¢ measures the impact (or the merit) of g; in the contest, and
P(gi)/ Z'}zl ¢(g ;) measures the relative impact (merit) of i. The probability (share)
of contestant i winning the contest equals her relative merit. For instance,the
generalized Ratio Form is ¢(g;) = g, as originally written by Tullock (1980).
When € = 1, this form yields our old friend (2.5). When € = 0, it yields a pure
lottery. You can check in Exercise 2.1 that if € € [0, 1], the CSF is concave in g; and
the unique symmetric Nash equilibrium is

.« €m—1V _Vin—emn—1)

1
pl(g*) = ;7 8 = T? and nl*(g*) - n2

These expressions generalize those in (2.8). But now there is no rent dissipation when
n is very large, which should serve as a warning about the generality of this result. See
Exercise 2.11 for further properties of this CSF.

Another example is given by ¢(g;) = g + k (Amegashie, 2006). The parameter
k can be interpreted as noise or as a head start (Kirkegaard, 2012). See Exercise 2.2
for the calculation of the unique Nash equilibrium in this case. Another special case
of ¢p(g;) in which this function is not everywhere increasing is presented in Exercise
2.19. See Cornes and Hartley (2005) for a general discussion of the importance of the
form of ¢.

Finally, note that if ¢ is strictly increasing, defining G; as G; = ¢(g;) payoffs can
be written as

G; _1
7 (G) Z?=1 G, 14 (P (Gi).

In this case, the contest with a Logit CSF is strategically equivalent to a contest with
a Ratio Form CSF in which costs are not necessarily linear.

We will see that the main insights obtained with the Ratio CSF hold when the CSF
is Logit. We assume that ¢ is differentiable, strictly increasing and concave to make
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sure that the first-order conditions of payoff maximization yield a maximum. Indeed,
the first-order conditions are

¢’ (i) Zj;éi o(g))
| p(g)?

V-1=0ie{l,...n) 2.9)

where ¢’ is the derivative of ¢. Since ¢ is concave, ¢’ is nonincreasing in g;, and so
the numerator inherits this property. And the denominator is increasing in g;. Thus,
since all these magnitudes are nonnegative, the ratio is decreasing in g;. In other words,
the second derivative of the payoff is nonpositive. Therefore, the first-order conditions
are also sufficient conditions for payoff maximization.

To derive the best reply, we write the left-hand side of (2.9) as F(g;,g—;). Totally
differentiating this function with respect to g; and g;, we obtain

0F(gi,g—i)
dsi _ o
ST F(gi.g )
dg; S i

Note that in the Ratio case, payoffs are aggregative, i.e., depend on the sum of efforts.
Assuming that in the maximum, the second-order conditions of payoff maximization
hold with strict inequality, we see that sign(dg;/dg;) = sign(0F(gi,g-i)/dg;). In
our case

. O0F(gi,g—i) .
Slg}’lT = Ssign (P(gl)_qu(gl)

/ J#i

As in the Ratio Form case, given the efforts of all other contestants, there is a unique
effort of i at which dg;/dg; = 0, namely ¢(g;) = Zj# ¢(g;), which for n = 2
implies g1 = g». If for ) ki ¢(g;) large enough the best reply of i is O (as it happens
when ¢(gx) = g and k € {1,2,...,n}), the best reply in this case has the same form
as in the Ratio CSF, namely hump-shaped. It can be proved that an increase of the
prize increases efforts but an increase in the number of contestants decreases efforts;
see Exercise 2.11.

25 Extensions of Ratio: Ratio Plus Luck and Relative Difference CSFs
The Ratio CSF does not account for the influence of pure luck on the contest result.
As mentioned in Section 2.4, Amegashie proposed a CSF that specifically consid-

ers this factor. Nitzan (1991a) introduced another CSF to model the impact of luck,
specifically

8 See Corchén (2021) for a survey on aggregative games.
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8i
Z?:l . a < [0,1]. (2.10)

Here, success is driven by two factors: merit (as in the Ratio CSF) and luck (as
in the Che and Gale CSF), which is assumed to be evenly distributed among all
contestants. If the CSF is imposed by a planner, it reflects her preference for equality.
In Nitzan’s CSF, luck does not affect merit directly (as in Amegashie), but it does
impact the outcome. In the context of elections, this fixed effect means that some
voters are firmly committed to one political party (e.g., Democrats or Republicans)
and will never change their vote. As a result, even if a party makes minimal effort in
an election, it will still receive a significant number of votes and have a nonnegligible
chance of winning. In Amegashie’s CSF, merit is perceived with a degree of noise.

Note that the sum of probabilities in (2.10) is one, as it should be. It is left to the
reader to show that, in the unique Nash equilibrium,

n—-1D1—-a)V
= T

1
pi(@ =a—+{1—a)
n

8
(see Exercise 2.3). When the contest is decided by pure luck (i.e., a = 1), equilibrium
efforts are zero, and when it is decided by relative merit (i.e., a = 1), they equal those
obtained with the Ratio Form CSF.

Bevid and Corchén (2015) proposed an extension which adds, to the luck factor, the
relative difference between contestants. This extension considers that a difference of,
say, one battalion in a battle (or a million dollars in an R&D contest) is very different
when the absolute number of soldiers is in the tens (or the R&D expenditure is in a
few million dollars) than when it is in the thousands (or when R&D expenditure is in
the billion dollars). Differences count, but they should be weighted by the expenses
incurred by contestants. Sun Tzu’s The Art of War counsels that how to arrange an
army depends on ratios: “It is the rule in war, if our forces are ten to the enemy’s one,
to surround him; if five to one, to attack him; if twice as numerous, to divide our army
into two” (p. 9).

The formal definition of this idea is not straightforward. A preliminary concept
is needed. A notional CSF, denoted by f, is defined ignoring the requirement that
probabilities are nonnegative and must sum up to one.

With two contestants and Zi:l gk 0,

8i — 88j
2
D k=1 8k

with a, B, and s being nonnegative numbers. On top of the luck term «, the relative
difference between expenses, where the competitor’s expense is weighted by a factor
s, is introduced. This is made to recover, as a special case, the Ratio Form CSF
(s = 0 and @ = 0). The parameter s can be interpreted as how the probability of
winning reacts to differences in efforts and f as how this probability reacts to relative
differential efforts. Both parameters reflect how competitive a contest is.

To convert a notional CSF into a CSF, first we have to guarantee that the functions
f defined in (2.11) add up to one, which is the case if and only if 2« + B(1 — ) = 1.

f(gigj))=a+p chje{lLl2)i# 2.11)
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So from the three parameters of this CSF, only two are truly independent. If s = 0 and
a = 0.5a,a+ B =1, and the Nitzan’s CSF defined in (2.10) is recovered. Finally, we
have to make sure that the values coming from the notional CSF are between zero and
one. With all these ingredients in hand, the probability of winning is defined using the
notional CSF,

pi(g) = min(max(f;(gi,g;).0). 1), i,j € {1,2},i # j.

This is the Relative Difference CSF. To find a Nash equilibrium in this setting, we
disregard the nonnegativity constraint and go to the first-order condition of payoff
maximization of the notional CSF. In the case of identical valuations, the first-order
condition for contestant 1 is

(1+9)8

(81 + 82
By the same reasonings made in Proposition 2.2, a candidate equilibrium is symmetric
and is given by

=0.

=g =,
which coincides with the Ratio case when f = 1 and s = 0. Note that the probability
of obtaining the prize, if contestants exercise these efforts, is a« + (1 — 5)/2 = 0.5.
Now consider the maximization of payoffs of contestant 1 when g = g7, namely

*
min (max <a + ﬁ—gl — Sg*z ,O), I)V —g1.
81+ 8
Since g1 € [0, V] and payoffs are continuous in g; by a theorem by Weierstrass the
maximum exists. It could be only located either in the extremes of [0, V] or when the
first-order conditions are met. Clearly, g1 = V is worse than g; = 0 because in the
former the best outcome would be to obtain the prize with a probability 1, payoffs
are going to be nonpositive. Therefore, if we show that in the candidate equilibrium
profits are nonnegative, this candidate is indeed an equilibrium. Indeed,

Vv 1 Vv
i (g") = > - BV :s = Z(Z—ﬁ(l +5)) > 0 if and only if 2 > B(1 + s).

What to take home from this argument is that when using the relative difference CSF,
you can disregard the constraints imposed by nonnegativity and use the notional CSF
(2.11). And the first-order conditions of payoff maximization when these constraints
are ignored yield indeed the Nash equilibrium we are looking for, provided that 2 >
B(1 + s). The latter indicates that the contest cannot be very competitive (recall the
interpretation of s and 8 given above) so we stay away from the All Pay Auction.’

The same procedure can be applied when n > 2. In this case, the notional CSF can
be written as

9 Note that the inequality 2 > B(1 + s) always holds for the Ratio Form CSF since s =0 and = 1.

https://doi.org/10.1017/9781009504409.006 Published online by Cambridge University Press


https://doi.org/10.1017/9781009504409.006

22 Foundations

(gi — i Zj;éi 8j)
ZZ:I 8k '

In this case, the condition for the first-order condition to be an equilibrium is n >
p(n — 1+ s), and equilibrium effort for each contestant i is

fgi.g-)=a+p

n—1+s
=pV—-5—

See Exercise 2.4 for the calculations leading to the above formula.!”

2.6 Additive Separable CSF
In the Additive Separable CSF, success in a contest is represented by

1 1
Pi® =~ + ) — — > P(g) (2.12)
J#i
with ¢(0) = 0 and ¢ increasing. Clearly, the sum of the terms in (2.12) is 1. To make
each term nonnegative, we add that (V) < 1/n, and thus

P = -+ ple) — = Y (g =~ =0
J# o

for the relevant range of efforts, namely for those in [0, V]. The success in a contest
depends on luck (1/n) and the difference between your impact on the contest (¢(g;))
and the average impact of the others, 3, ; ¢(g;)/(n — 1). The difference with the
Che and Gale CSF is that we do not need the max operator to guarantee that p;’s
are nonnegative. In this case, the trick is provided by the boundedness assumption
@(V) < 1/n. The reader can check that when n = 2, (2.12) looks similar to what is
inside the minmax operator in (2.4) when s = 1. But this would hold if ¢(g;) = g;
and this form violates the boundedness assumption.

An advantage of this CSF is that Nash equilibrium strategies are dominant strate-
gies, i.e., they are not only the best reply to what others do, but they are the best reply
to anything the others might do! Contestants do not have to wonder about what the
others are going to do. To prove this, we see that the terms that do not depend on
gi enter additively in payoffs. Thus, when other contestant actions increase, payoffs
are just smaller, but the relationship between expected revenue (p; V) and costs is the
same. In other words, payoffs are transformed monotonically by the strategies of other
contestants and, as consumer theory teaches us, this transformation does not affect the
maximum. Mathematically this is seen by looking at the first-order condition of payoff
maximization, ¢’(g;)V = 1, and realize that it only depends on g;.

10 Hwang (2012) presented another generalization of the Difference and the Ratio Form CSF; see
Section 3.6.
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Particular forms of this family of CSF were proposed by Skaperdas and Vaidya
(2012) and Polishchuk and Tonis (2013) and axiomatized by Cubel and Sanchez-Pages
(2016).

There are other CSF that yield dominant strategies. Consider a CSF like the follow-
ing one: Given a cutoff g€ [0, V/n), define

pi(g) = #C(2) foralli € C(g),

pi(@=0 for all i ¢ C(g), and
1
pi(g) = — foralli if C(g) = @,
n
where C(g) ={i € {1,....n} | g = g}

In this CSF, contestants are requested to make a minimum effort g to qualify for a
pure lottery of the prize unless no one makes this minimum effort in which case
all qualify for this lottery. It is easy to see that g; = g is a dominant strategy for
all contestants. But, this CSF is not additively separagle. If this CSF were addi-
tively separable, it should satisfy the following property: For all (gi,g—i), (g/,8_;),
pi(gi,g-i)+ pi(gl,g ;) = pi(gi.g_;) + pi(g/,g—i). Suppose that g; > g, g; is such
that C(g)\{i} =k, g/ < g and g’ ; is such that C(g)\{i} = m. Then, p;(g;,g—;) +
pi(gl,g ;) = 1/(k + 1) but p;(gi,g_;) + pi(gl,g—i) = 1/(m + 1).

However, it is possible to construct an additive separable CSF that gives the same
equilibrium efforts, probabilities, and payoffs than the contest described above. Let
pi(g) be such that

1 1 .
Pi® =~ +@g) — — ) _p(g)), with
J#
@(gi) = 1/nif gi > g and @(g;) = 0 otherwise.

This CSF is additively separable with g; = g being a dominant strategy for all
contestants. Bevid and Corchén (2022) prove that given any CSF yielding a contest
with dominant strategies, there is an additively separable CSF yielding a contest with
the same efforts and probabilities in equilibrium. This implies that additively separable
CSFs, somehow, characterize those CSFs yielding dominant strategies.

2.7 Advanced Material: The Existence of a Symmetric Equilibrium with
General CSF

At this point, the reader may wonder that given the variety of CSFs presented so far,
we would need idiosyncratic arguments to show the existence of a Nash equilibrium
in symmetric contests. Recall a general theorem showing the existence of a Nash
equilibrium in general games (see Fudenberg and Tirole, 1991, p. 34). But this proof
is of no avail here since we have seen that, at least, for CSF homogeneous of degree
zero, payoffs are not continuous at g = 0.
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In this section, we present two approaches to the existence of a symmetric equilib-
rium that will cover many of the cases seen before. The strategy of the proof in both
cases is identical to the one used in Proposition 2.2. First, we look for a candidate
equilibrium found by solving the first-order conditions, and later we show that this
candidate is indeed an equilibrium. Throughout this section, we will assume that the
CSF is symmetric, twice differentiable whenever there is, at least, a positive effort and
api(g)/dgi > 0. We will refer to these assumptions as D.

The first approach is taken from Malueg and Yates (2006), and it works for contes-
tants with identical valuations and CSF homogeneous of degree zero. We have seen
that there are plenty of CSFs satisfying this assumption.

Again, let us start by looking at the first-order conditions of payoff maximization.
Since the CSF is homogeneous of degree zero, dp;(g*)/dg; is homogeneous of degree
—1. (See Syds@ter and Hammond, 2012, chapter 12, p. 432.) This implies that we can

write
(8L &2 8n
api(g) lap’(gi’g;""’gi)
g gi dgi '

Since we are looking for a symmetric equilibrium, all ratios g;/g; are 1. The first-
order condition is written as

ap;(1,1,...,1
il Dy o 2.13)
0gi
Now g*, which is strictly positive because dp;(g)/dg; > 0, is our candidate equilib-
rium. Exercise 2.5 asks the reader to prove that (0,0, .. .,0) cannot be an equilibrium;

therefore our candidate is the only candidate. Thus, if a symmetric equilibrium exists,
it is given by (2.13). Malueg and Yates gave sufficient conditions that guarantee the
existence of such an equilibrium, mainly:

L 2 2| <0 Vg>g
i(g,1,...,1 .
(1) There exist g such that 0°p;(g,1,...,1)/0g; { -0 Vg<3
Condition (1) allows for nonconcave CSF as long as at some point concavity is

recovered.

(2 1/n—09pi(1,...,1)/dgi > pi(0,1,....,1).
Condition (2) guarantees that choosing zero effort is not a profitable deviation.

PROPOSITION 2.3  Under conditions (1)—(2) above, there is a unique symmetric
equilibrium for any contest with identical valuations and a CSF homogeneous of
degree zero satisfying D.

Proof The interested reader can see the complete proof in Malueg and Yates (2006);
we just give here a guide to the proof’s steps.

From the analysis above, it is only left to prove that when all contestants but i
choose g*, g* is the best reply of i to g* ..

(1) When all other contestants are choosing g*, payoff functions are continuous.
Since g; € [0, V], a payoff-maximizing effort, call it g, exists. This maximum
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can be located only in three places: at the first-order condition if the maximum is
interior or at the bounds, namely, O or V, the latter clearly not an optimal choice.

(2) Condition (2) implies that 0 cannot be a maximum because
mi(g*) = V(1/n —pi(L,1,...,1)/3g)) > pi(0,1, ..., DV = 11;(0, " ).

(3) Condition (1), implies that there are at most two strategies that satisfy the
first-order condition; we already know that g* is one of them; let ¢ be the other
possible one.

(4) Finally, the proof ends by showing that if g exist, 77;(¢,g*,) < m;(g*.g",).

As an example, let n = 2 and consider the generalized Ratio Form CSF

€

g.
pi(gi.8j) = m; ri(gj.8) =1—pi(gigj)

then our candidate is

€
gi‘:g;:ZV.

For this particular case, condition (1) holds whenever € < 2 and condition (2) also
holds (see Exercise 2.6).

What about CSFs that are not homogeneous of degree zero? Let us follow the
footsteps of the previous proof. First, let us find a symmetric candidate. Let a(y) be
the elasticity of p; when g; =y > Oforalli € {1,...,n}.

_ 3pi(y,y,...,y,-.-,y)n
0gi

When all contestants choose the same effort y, the first-order condition can be
written as

a(y)

y.

a

aWy, (2.14)
From now on, and without loss of generality, we will take y € [0, V] because, as we
said earlier, no rational contestant will spend more in the contest than the value of the
prize. Now we assume the following:

(I «a is continuous for all y > 0.

(II) limy o a(y) is well defined. Call it a(0).
() pi(0,g_;) =P aconstantforg_; = (y,y,...,y)withf < 1/n.
(IV) a(0) >0and a(y) <1 —npforally € [0, V].

How does this assumption look like when CSF is Logit? Defining €(g;) as the
elasticity of ¢, i.e.,
8iP'(8i)
() = B0,
P (gi)
we see that a(y) = €(y)(n — 1)/n and, given that § = 0, part (IV) of the previous
assumption says that €(0) > 0 and e(g;) < n/(n — 1). This is the assumption used by
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Pérez-Castrillo and Verdier (1992). A constant elasticity ¢(g;) with € < 1 (e.g., the
Ratio CSF) fulfills this assumption. When f # 0 like in the CSF proposed by Nitzan,
we have that if a is the constant multiplying 1/n in the CSF, § = a/n and the second
part of (IV) above says that a(y) < 1 —nf = 1 — a. And similarly with the CSF of
Bevia and Corchén.

With these assumptions in hand, we focus on (2.14). We see that for y = 0,
a@V/n > 0and for y = V, a(V)V < nV since a(y) < 1 — np. Thus, the
intermediate value theorem applied to (2.14) says that there is a positive number
y* € (0, V) such that

a *
(¥ )V -

The last assumption imposed is:
(V)om;(e,y_;)/9g; > 0for ¢ sufficiently close to zero, 97; (e, y_;)/dg; < 0 when
¢ is large enough. And there is at most a unique g; such that 8%, (g;, y,i)/agl.2 = 0.
This assumption is similar to condition (2) above of Malueg and Yates. The Ratio
Form CSF indeed fulfills these five properties (see Exercise 2.8).

PROPOSITION 2.4  There is a symmetric equilibrium for any contest with identical
valuations and a CSF satisfying (I)-(V) above and D.

Proof 1t is only left to prove that when all contestants but i choose y*, y* is the
best reply of i. The key fact is that when all other contestants are choosing y*, payoff
functions are continuous. Since g; € [0, V], a payoff-maximizing effort, call it g,
exists. This maximum can be located only in three places: at the first-order condition
if the maximum is interior or at the bounds, namely, 0 or V, the latter clearly not an
optimal choice. Setting g = y*, the payoffs when contestant i plays y are
*
% - @V > BV ifand only if I — np > a(y®).

It is only left to prove that there is only one strategy that satisfies the first-order
condition. For this, it is enough to invoke condition (V) above. Thus, when all con-
testants but i choose y*, y* is the unique best reply for i and we have found a Nash
equilibrium. O

In some cases, we can prove that the equilibrium is unique. For instance, when the
CSF is Logit with concave and strictly increasing ¢, the first-order conditions are

V% —1,ie{l2 ... .n) (2.15)

Since the left-hand side of (2.15) is strictly decreasing in y, the symmetric equilibrium
is unique. More generally, if the function « is decreasing, the solution to (2.14) is
unique so the symmetric equilibrium is unique too.

The map of the conditions under which an equilibrium exists is still incomplete,
even if we assume the generalized Ratio Form CSF. It seems intuitively obvious that
when the elasticity of efforts, €, is very large, this CSF tends to the All Pay Auction,
so only equilibria in mixed strategies exist. When n = 2, Baye, Kovenock, and de
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Vries (1994) showed that the symmetric two-player contest with € € (2,00) allows a
mixed-strategy Nash equilibrium. Further characterization of these mixed equilibria is
given by Alcalde and Dahm (2010) and Ewerhart (2015, 2017). See Exercise 2.12 for
the case of an additively separable utility function.

2.8 Exercises

2.1 Compute the Nash equilibrium of a contest with n contestants, linear cost,
Vi = V forall i, and the Logit CSF when ¢(g;) = gf, e e (0,1].

2.2 Compute the Nash equilibrium of a contest with n contestants, linear cost,
Vi = V for all i, and the Logit CSF when ¢(g;) = g; + k.

2.3 Compute the Nash equilibrium of a contest with n contestants, linear cost,
V; = V for all i, and the CSF proposed by Nitzan (1991a).

24 Compute the Nash equilibrium of a contest with n contestants, linear cost,
Vi = V for all i, and the CSF proposed by Bevid and Corchén (2015).

2.5 Show that in a symmetric contest with a CSF homogeneous of degree zero and
strictly increasing in g;, (0,,,0) cannot be an equilibrium.

26 Show that if p;(g) = gf/ Z’;:l gje., the sufficient conditions of Malueg and
Yates (2006) hold if € < n/(n — 1).

2.7 Suppose that the best reply of a symmetric game, denoted by B, is continuous in
R4.Let R(y) = B(y,...,Y,...,y) be the best response when all contestants except i
choose y. Suppose that R is such that

(a) 3x suchthatVy € (0,x), R(y)(n —1) >y

(b) 3Ix such thatVy € (x,00), R(y) = 0.

(1) Show that under (a) and (b) above, a symmetric Nash equilibrium exists
(equilibrium is not necessarily unique). (Hint: Use the intermediate value
theorem.)

(2) Give a micro foundation to (a) and (b) (hint for a) find the slope of B
differentiating the first-order condition).

2.8 Show that the Ratio Form CSF fulfills assumptions (I)~(V) in the main text.

2.9 Compute the symmetric Nash equilibrium of a Possibly Indecisive Contest
(a contest where the probability that no one receives the prize is not zero) in which
cost is linear and the CSF is p;(g) = gi/(Z’}:l gj+a)a>0.

2.10 There are n identical firms that can acquire each other prior to a contest. Let
71(m) be payoffs from the contests when there are m firms. Acquisition price is P =
ant(n) + (1 —a)n(n — 1) with a € [0, 1], i.e., the acquisition price is a linear convex
combination of payoffs with n firms (status quo) and n — 1 firms (when the acquisition
takes place). If acquisition takes place, total payoffs for a firm are the payoffs from the
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contests with n — 1 firms minus the price paid by the acquisition. Study conditions on
7t and a under which acquisition does not take place.

211 Prove that, with the Logit CSF with a differentiable, strictly increasing and
concave @, an increase of the prize increases efforts but an increase in the number of
contestants decreases efforts (see Nti, 1997 and Corchén, 2007).

2.12 Show the existence of equilibrium when contestants have an additively separa-
ble utility function u(p; V) — c(g;), where p; is the Ratio CSF, u is concave, and c is
convex. See Dickson, MacKenzie, and Sekeris (2022).

2.13 Consider a two-person contest with payoff functions 71;(g) = p(g1,£2)V — g1,
and 712(g) = (1 — p(g1,82))V — g». Assume differentiability as much as you need.
From the first-order condition, compute the infinitesimal effect of a change in V on
total effort and find conditions under which this effect is positive.

214 A contest with a variable prize: Consider a contest with #n individuals and a
variable prize, V = Y !_, giy, with y € (0,1). Assuming a Ratio Form CSF and a
linear cost of effort, find the Nash equilibrium. Give an interpretation of this game.

2.15 Consider n experts, with n > 2, making predictions about the outcome of a
random variable that can take on m different values with probabilities py, p2, ..., pm
(common knowledge among experts). Assume that p; > p» > --- > p,,. Experts get
areward from the public (prestige, money, etc.). In particular, assume that if n; experts
announce / and I occurs, the reward for each of these experts is V /ny. The rest of the
experts get zero. An equilibrium in the prediction market is a list of natural numbers
(n},n%,....n%)suchthat > 7", ny =nandforall I € {1,2,... ,m}, if nj > 0,

V >
n?pl_n“}—i-l

pr,YJe{l,2,....m}J #1

so no expert announcing / has an incentive to switch and announce any other predic-
tion. Show that there is an equilibrium in which experts announce different predic-
tions.

2.16 Consider a piece of land with a value of V that may be invaded by a large
number of identical potential invaders. The number of actual invaders is denoted as 7.
The probability of a successful invasion is given by

g(n)
g(n) +kg(ny’
where g(n) measures the strength of the invaders, and kg(n) represents the strength of
those opposing the invasion (such as police, armed forces, or current owners) which is

assumed to be proportional to the strength of the invaders. If the land is successfully
conquered, it will be divided equally among the invaders.

(1) Determine the payoffs for a potential invader in this scenario.
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(2) Let R be the opportunity cost of an invader, which is assumed to be independent
of the number of invaders. Determine the equilibrium number of invaders by
taking into account the opportunity cost R.

(3) Give historical examples of land invasions, see Falcone and Rosenberg (2023).

217 Suppose a contest where the objective function of each contestant is to

maximize the difference in payoffs (where payoffs are defined as has been assumed

throughout this book). Assume two contestants and a Logit CSF with ¢(g;) = g7

with € € (0,1].

(1) Find the Nash equilibrium of such a game.

(2) Suppose now that the contestant’s objective is to maximize the ratio of the
payoffs. Find the Nash equilibrium of such a game.

For a motivation of the assumption on the objective function of contestants, see the
natural selection model of Schaffer (1989).

2.18 Suppose rent-seeking activities can be taxed with a constant unit tax rate of ¢
on expenses. The CSF is a generalized Ratio Form. All contestants value the prize
atV.

(1) Write the payoff of a typical contestant.

(2) Use the first-order condition and symmetry to find the unique symmetric
equilibrium.

(3) Find the equilibrium payoffs. Comment on how payoffs depend on ¢. Interpret
this relationship.

(4) Calculate the total revenue raised by taxes. Determine the value of ¢ that
maximizes total revenue. Compute the sum of payoffs and total revenue.

2.19 Suppose a Logit CSF in which ¢(g;) = max(ag; — ggl.z,O). This function is

increasing if and only if g; < a/b.

(1) Find reasons why an increase in expenses might decrease the probability of
winning the prize.

(2) Find the unique symmetric equilibrium. (Hint: Disregard the nonnegativity
constraint in ¢(g;) and show that a symmetric solution to the first-order
condition satisfies this constraint.)

2.20 An organization with n identical individuals is going to be “purged.” In partic-

ular, k < n — 2 individuals are selected at random and expelled from the organization

with probability 1 — g. They enjoy zero utility. The remaining individuals enter into a

contest with a prize V and a Ratio Form CSF.

(1) Assuming that ¢ is given, find the k for which all individuals support the purge.
Comment on the solution

(2) Now assume that ¢ = (n — k)/n (favorable cases divided by total cases). Find
the k such that all individuals support the purge.

2.21 Suppose that the CSF is Ratio Form, agents are identical and have constant
absolute risk aversion. Write the payoff functions and the first-order condition of
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payoff maximization of a typical contestant. Give an example in which a symmetric
division of the prize will not increase the aggregate investment when the players
are risk neutral but it is possible for a symmetric division to increase the aggregate
investment when the players are risk averse. (See example 4 in Brookins and Jindapon,
2022.)
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