
J. Functional Programming 4 (1): 77-88, January 1994 © 1994 Cambridge University Press 77

A-translation and looping combinators in pure
type systems

THIERRY COQUAND AND HUGO HERBELIN*
(e-mail: coquand@cs.chalmers.se)

(e-mail: herbelin@margaux.inria.fr)

Abstract

We present here a generalization of A -translation to a class of pure type systems. We apply this
translation to give a direct proof of the existence of a looping combinator in a large class of
inconsistent type systems, a class which includes type systems with a type of all types. This is
the first non-automated solution to this problem.

Capsule review

Consider a pure type system (PTS) extending X2 (see [Barendregt, 1991]). Under mild
conditions concerning the PTS in question the paper gives an algorithm that transforms any
proof M of a contradiction (i.e. such that I— M: Va. a) into a looping combinator, i.e. a term
Y' such that I- Y'\ Va.(<x^a)^a and BT(F) = BT(Y), where Y is (the usual fixed point
combinator, and BT (P) is the Bohm tree of a lambda term P. This extends a previous result
(Howe, 1987) in which a concrete proof of a contradiction in a particular PTS is translated with
the help of a computer into a looping combinator.

1 Introduction

The term A-translation first appeared in a paper by Friedman (1978). It denotes there
a technical tool used in a proof of closure under Markov's rule of several intuitive
systems. Combined with Godel's translation from classical arithmetic into intuitive
arithmetic, this was used to give a new proof of the intuitive probability of classically
provable EJ formulas.

Leivant (1985) is a good reference on ^-translation. Recently, connections between
/1-translation and continuation passing style have been investigated (see, for
instance, Murthy's (1990) PhD thesis).

We are going to generalize ^-translation to a large class of pure type systems,
introduced recently by Barendregt (1991) and Geuvers and Nederhof (1991). This

* This work has been supported by the CNRS "Programmation" Coordinated Research Program, and
by the "Logical Framework" Esprit Basic Research Action.

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

78 T. Coquand and H. Herbelin

generalization is motivated by the following problem: to extract constructive
information from paradoxes in inconsistent type systems. More specifically, let us
define a ' looping combinator' as being a term having the same Bohm tree as the fixed-
point combinator Y. It has been shown by Howe (1987) that a type system with a tree
of all types contain a looping combinator. We obtain this result as an application of
^-translation for pure type systems.

The basic idea motivating this can be traced back to the earliest known translation
from classical logic to intuitive logic due to Kolmogorov (1967). This translation was
actually a translation of classical logic into minimal logic: the rule abfalso quodlibet
is never used, and the absurd proposition i. in Kolmogorov's paper can thus be
replaced formally by any proposition A. Kolmogorov saw the use of his translation
as the development of'pseudo-mathematics', where, intuitively speaking, all notions
and all lemmas occurring in a proof are defined and proved ' relative to a fixed
proposition A'.

This is this feature of/4-translation that we essentially use here. In general, it is hard
to see how to transform a paradox into a looping combinator. Howe's (1987) argument
is rather involved, is done with computer assistance, and shows only how to extract a
looping combinator out of one specific paradox. Our approach is more general. We
show how to build a looping combinator from any given paradox. Indeed, when we
apply ,4-translation to a paradox, we get a proof of A where all notions and lemmas
are defined and proved 'relative to A'. This proof is then transformed without too
many problems into a looping combinator.

The first section defines a class of'logical' pure type systems in which we will define
an ,4-translation. Section 3 describes the ,4-translation for logical pure type systems.
We then state a significant property of proofs obtained from the ^-translation in
section 4. This property is exploited to show the existence of a looping combinator
in inconsistent type systems. The last section gives some examples of type systems
containing looping combinators. We end by raising some questions suggested by our
work.

2 Logical pure type systems

We use here the standard definition of pure type systems from Barendregt (1991) and
Geuvers-Nederhof (1991). In particular, we make fairly heavy implicit use of the
general properties of pure types systems as presented in Geuvers-Nederhof (1991).

Definition 1
A pure type system L is logical iff it is functional (see Geuvers and Nederhof, 1991) and
contains two distinguished sorts Prop and Type, such that

• Prop: Type is an axiom of L
• (Prop, Prop, Prop) is a rule of L
• There are no sorts of type Prop

In a logical pure type system, the terms of type Prop are called propositions, and the
terms of type a proposition are called proofs.

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

^-translation and looping combinators 79

Definition 2
A logical pure type system is inconsistent iff there exists a proof of A in the context
A: Proof.

Definition 3
A logical pure type system is said to be nondependent iff the only rules concerning Prop
are of the form (S, Prop, Prop) where S is some sort.

Remark
Simply-typed ^.-calculus, system F,Fm (see Geuvers and Nederhof, 1991) are non-
dependent logical pure type systems. On the other hand, a type system with a type of
all types, with Prop = Type is not logical because Prop is then a sort of type Prop. The
calculus of constructions is logical, but is not non-dependent because it has the rule
{Prop, Type, Type).

Lemma 1
In a non-dependent logical pure type system, ifX = (X1X2) and Xx or X2 is a proof, then
X is a proof.

Proof
There exist Yx, Y2, Sv S2 and S such that Xx: (x2: Y2) Y, X2: Yv Y: S, Y2: S2 and
(S2, S, SJ is a rule. If X1 is a proof, then S1 = PropCR and so S = Prop. If X2 is a
proof, then S2 = Prop, and so Sx = S = Prop. •

Lemma 2
In a non-dependent logical pure type system, if Y is a subterm of X and Y is a proof,
then X is a proof.

Proof
By induction on the term X. We can also assume that Y is a subterm of X distinct
from X.

In such a case, the term X cannot be a variable, a constant:

• if X is Xx: XX.X2 then, by induction hypothesis, since A\ is not a proof, Y is a
subterm of X2, and hence by induction hypothesis, X2 is a proof. Hence A' is a
proof.

• if X is (Zj X2) then by induction hypothesis, Xl or X2 is a proof. By lemma 1, this
implies that X is a proof.

The case where X is a product is impossible by induction hypothesis. •

Remark
This lemma implies that if C: Prop in a context containing the declaration of a proof
variable h: B, then h is not a subterm of C. Thus, any product Uh: B.C built from
the rule (Prop, Prop, Prop) is non-dependent and can be written B—^C.

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

80 T. Coquand and H. Herbelin

Lemma 3
Let L be non-dependent logical pure type system and p a proof in a context T. Then
p is either a variable of the context, or a constant, or Xx: Y.q where q is a proof in
T,x: Y, or (q X) where q is a proof in F. •

Proof
Direct by case analysis.

3 /(-translation in non-dependent logical pure type systems

In all the sections we assume a fixed, non-dependent logical pure type system, and
inside the context of A: Prop.

Notation
Let B be a proposition. We write [B] for the proposition (B->A)-* A.

We now define a translation + on terms which are not proofs. This translation
depends on the type of the subterms, and it is defined relative to a context in which
the term is well-formed. Notice that it is not clear a priori that M+ is a well-formed
term, so that a priori M+ is defined only as a pseudo-term (see Geuvers and Nederhof,
1991). Proposition 1 will later show that M+ is actually a well-formed term.

Definition
Let X be a well-formed term in the context T, different from a proof.

• X+ is X if X is a variable, a constant or a sort

• {7^x:X1.Xiy\&'kx: X\.X\
where X% is defined in Y,x: Xt

• the definition of (Ux: X1. X2)
+ depends on the type of X2 and X1:

if X2 is a proposition B2 in T
then if Xx is a proposition B1 in F

then (B^B2y is [BflMBt]
else (IIJC : X1. B2)

+ is Ylx: X\. [B\],
where B\~ is defined in T, x: X1

else (Ilx: Xx. X2)
+ is Ux: X\. X\~

where X2 is defined in T, x: X1

Remark
Lemma 3 justifies the previous definition by cases.

Lemma 4
For any terms X well-formed in T,y: Y and Z well-formed in V different from proofs,
then (X[y= Z])+ is identical to X+[y= Z+].

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

A-translation and looping combinators 81

Proof
It is straightforward. •

Lemma 5
For any terms X and Y well-formed in F different from proofs, X = p Y
implies X+ =fiY

+.

Proof
It suffices to prove that (kz:Z.ZrZ")+ reduces to (Z'[z==Z"])+. This follows from
lemma 4. •

We now define a translation * on propositions and contexts

Definitions
Let B be a proposition in a certain context, B* is defined as [B*]. Let T be a well-formed
context, F* is defined inductively as:

mifT is the empty context then F* is the empty context
• ifT is T',x: X, where X is not a proposition then F* is T'*,x: X+

• ifT is T',h: B, where B is a proposition then F* is T'*,h: B*

Lemma 6
For any propositions B and C in T, B = p C implies B* = p C*.

Proof
Straightforward by lemma 5. •

Proposition 1
IfT\-X: YandXisnotaproofthenT*\-X+\ Y+. IfT\-B: Prop then F*h- B*: Prop.

Proof
We prove this simultaneously by induction on the structure of the derivation of
T\-X:Y (resp. F\-B: Prop) CR. The case of conversion is done by lemma 5.
Lemma 2 assures us that the derivation of F I— X: Y {resp. F \- B: Prop) encounters
no proofs. •

Lemma 7
For any propositions B and C in F, ifT*\-p: B* and B = p C then F* I— p: C*.

Proof
By lemma 6 and the conversion rule in pure type systems. Proposition 1 assures that
T*\-C*:Prop. Q

We now define translation * on proofs. As for the translation +, it is defined relative
to a context in which the term is a well-formed proof p, and it is not clear a priori

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

82 T. Coquand and H. Herbelin

that p* is a well-formed term, so that p* is defined only as a pseudo-term. Theorem
1 will actually show that p* is indeed a well-formed term which is a proof.

Definition
Let p be a proof in the context T:

• p* is p if p is a variable or a constant
• ifp is Xh: B.q, with B a proposition, and q: C, then p* is Xk: ((B* -+C*)->-A).(kXh:

B*.Xk':(C+ -> A).(q*k')) where q* is defined in T,h: B
• if p is Xx: Y.q, with Y not a proposition, and q: C, then p* is Xk:((Ux: Y. C*)->

A).(kXx: Y.Xk':(C+^A).(q*k')) where q* is defined in T,x:Y
• ifP is fapj andPl: B-+C then p* is Xk:(C+^A).(p*Xh1:(B*^C*).(h1p*k))
• ifp is (/?! X), when X is not a proof, and p1: Hx: Y.C, then p* is Xk: (C[x— X]+ -*•

A).(p*Xh1:(Ux:Y+.C*).(h1 X+k))

Remark
Lemma 3 justified the previous definition by cases.

Theorem 1
Let B be a proposition in T. IfT\-p:B then T*\- p*. B

Proof
By induction on the structure of the derivation of T \- p: B. The case of proposition
conversion is done by lemma 7. Proposition 1 treats the case of judgements T\- X: Y
with X not a proof. •

Remark 1
• is a Kolmogorov-like A -translation. It generalizes an ^-translation of
Paulin-Mohring (1989) for the Calculus of Constructions with data types
distinguished from propositions, and is inspired by a classical/intuitionistic
translation of Girard (1972) for higher order X,-calculi.

Remark 2
If we assume Church-Rosser property for the pure type system we are considering,
lemma 5 holds also for pr|-conversion, and therefore proposition 1 and theorem 1 still
hold in presence of Pri-conversion. However, the Church-Rosser property for general
pure type systems (not necessarily normalizable) with Pr|-conversion still seems to be
an open problem.

4 Long /4-applicativity

As we said in the introduction, the original motivation in using ^-translation was the
fact that, intuitively, proofs that get by .4-translation 'proves only A\ Trying to make
precise this remark leads to the following notion.

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

A.-translation and looping combinators 83

Definition
The notion o/long /4-applicative proof in a context Y is defined by the following cases:

• the variable h of type B with B: Prop is a long A-applicative proofif h: B is in Y
• Xxx: Y1...Xxn: Yn.p is a long A-applicative proof in Y if p is a long A-applicative

proof in Y,xx: Y1,...,xn: Yn and if p is of type A
• (pq) is a long A-applicative proof in Y if p and q are long A-applicative proofs in Y
• (pX) where X is not a proof is a long A-applicative proof in Y if p is a long A-

applicative proof in Y.

Proposition 2
If'p is a proof in Y then p* is long A-applicative in Y*.

Proof
Direct from the definition of/?*. •

Lemma 8
If p is a long A-applicative proof in a context Y, h: B and q is long A-applicative in Y
then p[h~ q] is long A-applicative in Y.

If p is a long A-applicative proof in a context Y, x: Y and X is not a proof in Y then
p[x— X] is long A-applicative in Y.

Proof
By induction on the structure of p. •

5 Looping combinators

The idea of Meyer and Reinhold (1986) to obtain a recursion combinator in the
inconsistent system Type: Type was to exploit the non-normalizability of the proof of
the inconsistency by inserting some lf in it to obtain a term p0, such that p0

reduces to (fpj and then pl to (fp2), and so on. From such a sequence, it is straight-
forward to build a family of terms Yn: YIA: Type.(A^-A)^-A such that (YnAf) =
AYn+1Af).

Definition
Let T be a pure type system and S a sort of T. A looping combinator of sort S in T is
a term Y: YIA: S.(A->A)-+A such that there exists a sequence of terms Yo= Y, Yu...,
Yn..., of type YIA: S.(A^-A)^A such that for any A: S,f: A^-A

(YnAf)=fJ{Yn+lAf)

Howe (1987) applied the same idea to transform the paradox of Girard (1972) into
a looping combinator by a direct mechanical analysis of the term corresponding to
this paradox.

We now show how to build a looping combinator in any inconsistent nondependent
logical pure type system. The last section will show that this in particular implies the
existence of a looping combinator also for Type: Type.

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

84 T. Coquand and H. Herbelin

From now we assume a fixed, inconsistent, nondependent, logical pure type system
inside the context A: Prop.

Proposition 3
There exists a long A-applicative proof of A.

Proof
Since the type system is inconsistent, there exists a proof q of A in the context A: Prop.
By theorem 1, (qA)* is a proof of A* in the context A: Prop, and by proposition 2, this
proof is long ^-applicative. But A* is (A^-A)-^A, and pA = (qA)*Xx:A.x) is a long
^4-applicative proof of A. •

We now precise what kind of term is a long ,4-applicative proof of A:

Lemma 9

A long A-applicative proof of A is of the following form:

((kx1:Y1...Xxm: Ym.q)X1 ...Xm)

with m~^ 1, q: A and each Xi is either long A-applicative or not a proof.

Proof
Let p be a long ^4-applicative proof of A in the context A: Prop. Since A is atomic,
A cannot be convertible to a product by Church-Rosser. Hence, by uniqueness of
type, p does not begin with an abstraction.

Therefore, it is of the following form:

(/?'X1...Xm) with m ^ 0 andp' either a variable or an abstraction.

Since we are in the context A: Prop, the term p' cannot be a variable, m ^ 1 and
p' begins with an abstraction. And since/? is long ,4-applicative, p' is of the following
form:

Ix1: y 1 . . .^" 1 ' : Ym'.q with m' > land?: /L

The type of q remains A by instantiation, hence m cannot be greater than ni. And
since p proves A, m' cannot be greater than m. Hence, we have m = m', i.e. p has the
desired form. •

We now define a strategy of reduction applicable to long ^-applicative proofs of
type A.

Definition

Let p be a long A-applicative proofs of type A. By lemma 9, p is

(.(Xxl:Yl...Xxn:Yn.q)X1...Xn), with n> 1 andq: A,

red(p) is then the following term of type A

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

A-translation and looping combinators 85

Lemma 10
For any long A-applicative proofp of A in A: Prop, red(p) is a long A-applicative proof
of A in A: Prop.

Proof
By lemma 8. •

We now define the transformation / / which inserts 'marks' inside long A-
applicative proofs p in such a way that for any long ^-applicative proofs p of A
red(pf) is (f[red(p)Y).

Definition
Let p be a long A-applicative proof in a context F. pf is defined inductively in the context
T,f: A-+A as follows:

• if p is a variable h in F then pf is h in F,
• if p is Xx1: Y1...Xxn: Yn.q in F thenp1 is Xxt: Y1...Xxn: Yn.(fa*) in F where a* is

defined in F , / : A-> A,xt: Y1,...,xn: Yn,
• iff is (PiP2) then pf is [p{pQ,
• if p is {pl M) with M not a proof then pf is (p{ M).

Remark
pf is of same type as p and is also long ^-applicative.

Lemma 11
Ifp is an A-applicative proof in the context T,h: B and q an A-applicative proof of B
in F then pf[h'-= qf] is (p[h= q]/.

If p is an A-applicative proof in the context F, R: T and M: T not a proof then
pf[R-= M] is (p[R-=

Proof
By structural induction on p and by lemma 8. •

Lemma 12
For any long A-applicative proof p of A, red(pf) is (J[red(p)Y).

Proof
p is of the form

((Xxl:Yl...Xxm:Ym.q)Xl...Xm),
and then pf is

((kx1 :Y1...Xxm:Ym. (f<fl) {X1)1... (Xm) f),

which reduces by lemma 11 to {J\red{p)Y). •

Lemma 13
There exists a sequence of terms Mo,Mx,...,Mn,...defined in the context
A: PropJ: A^A such that Mn = P (/M n + 1) .

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

86 T. Coquand and H. Herbelin

Proof
We define a sequence of terms pn as follows. First, we define p0 to be any long A-
applicative proof of A in the context A: Prop, using proposition 3. We then define pn+1

to be red{pn). Each proof term pn is long ^-applicative proof of A in A: Prop by
lemma 10.

Let Mn be p^. The sequence Mo,...,Mn,... satisfies lemma 13 by lemma 12. •

Theorem 2
In any inconsistent non-dependent logical pure type system, there exists a looping
combinator of type Prop.

Proof
Direct from lemma 13. •

Remark
The proof given here is constructive. We can effectively transform any proof of A in
the context A: Prop into a looping combinator.

6 Applications

We describe here the systems U~, U and Type: Type as pure type systems.
The system U~ is the pure type system defined by the sorts Prop, Type and Class,

the axioms Prop: Type and Type: Class, and the rules:

{Prop, Prop, Prop)

{Type, Prop, Prop)

{Type, Type, Type)

{Class, Type, Type).

System U is the same as system U~, plus the following rule:

{Class, Prop, Prop).

The system Type: Type is the pure type system with only the sort Type, only the
axiom Type: Type, and only the rule {Type, Type, Type).

Both [/and U~ systems are non-dependent logical pure type system. They are both
inconsistent, as shown in Girard (1972) and Coquand (1991). Hence, by theorem 2,
they contain a looping combinator of the sort Prop. It is clear that a looping
combinator for one of these systems translates directly in a looping combinator of
sort Type for Type: Type.

Here is a direct application. Call a non-dependent logical type system impredicative
iff it contains the rule {Type, Prop, Prop).

Theorem 3
Convertibility is undecidable for inconsistent impredicative logical pure type system.
Furthermore, convertibility and type-checking is undecidable for Type: Type.

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

A-translation and looping combinators 87

Proof
The arguments of Meyer and Reinhold (1986), which assumed the existence of a
fixed-point combinator, apply directly using a looping combinator instead.

For the sake of completeness, we include a sketch of these arguments. First, it is
standard (Girard, 1972) how to represent primitive recursive functions as terms of
type N-+N, where N is the proposition UX. X^(X-> X)->-X, and the number n is
represented by the term XX.Xx.Xf.(f"x). A looping combinator family allows the
numeralwise representation of any partial recursive function $ by a term <J>: namely
^'n = p '* iff <K«) = k- This entails the undecidability of convertibility in any
inconsistent impredicative logical pure types system.

The same reasoning will apply to Type: Type by taking N to be the type UX.X->
(X-rX)^X. Furthermore, in this case the problem of whether <(>(«) = 0 reduces to
the question whether (Jx) is typable in the context P: N-yType, f:P(to)->N,
x: P(<S>(tn)). Likewise, checking specific type judgements is undecidable, since
(j>(«) = 0 reduces to the question whether x has type P(Q>(tn)) in the context
P:N^Type,x:P(t0). •

Notice, however, that the normalization theorem for system F (Girard, 1972)
directly implies the decidability of type-checking for the U~ and U systems.

7 Conclusion

We would like to highlight some problems:

• The problem of the existence of a fixed-point combinator for the Type: Type
system still exists.

• Is it possible to derive the existence of a looping combinator from the existence of
a paradox in a more direct way than by using ^-translation?

• For the U~ system it is possible to define a 'stripping' operation that associates
to any proof term the untyped A.-term we get by forgetting the type information.
We conjecture that the usual direct proof of non-typability of the term
(Xx(x x)Xx(x x)) in system F extends to show that this term is not typable in
the U~ system.

Acknowledgements

The authors want to thank Herman Geuvers, Chet Murthy, Erik Palmgren and
Benjamin Werner for their remarks about the paper, and for enjoyable discussions
about ^-translation and pure type systems. Thanks also to Henk Barendregt for his
definition of looping combinators.

References

Barendregt, H. (1991) Introduction to Generalized Type System. J. Functional Programming,
1(2) April: 125-154.

Coquand, T. (1991) A New Paradox in Type Theory. In Proceedings 9th International Congress
of Logic, Methodology and Philosophy of Science, Uppsala, August.

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

88 T. Coquand and H. Herbelin

Friedman, H. (1978) Classical and Intuitionistically Provably Recursive Functions. In Higher
Set Theory, G. H. Muller and D. S. Scott, editors, Springer-Verlag, Lecture Notes 669,
21-27.

Geuvers, H. and Nederhof, M.-J. (1991) Modular proof of strong normalisation for the
calculus of constructions. J. Functional Programming, 1 (2) April: 155-189.

Girard, J. Y. (1972) Interpretation fonctionnelle et elimination des coupures dans Farithmetique
dordre supe'rieur. These de doctorat d'etat d'universite Paris 7.

Howe, D. J. (1987) The computational behaviour of Girard's paradox. In Proceedings Second
Symposium of Logic in Computer Science, (Ithaca, NY, IEEE Press), 205-214.

Kolmogorov, A. N. (1967) On the principle of excluded middle. 1925. In From Frege to Godel:
a source book in mathematical logic, 1879-1931, J. Van Heijenoort, editor, Harvard
University Press.

Leivant, D. (1985) Syntactic translations and provable recursive functions. J. Symbolic Logic,
50: 682-688.

Meyer, A. R. and Reinhold, M. B. (1986) "type" is not a type. In Conference record Thirteenth
Annual ACM Symposium on Principles of Programming Languages, ACM SIGACT,
SIGPLAN, 287-295.

Murthy, C. (1990) Extracting Constructive Content From Classical Proofs. PhD Thesis, Cornell
University.

Paulin, C. (1989) Extraction de programmes dans le Calcul des Constructions. These de doctorat
de l'universite Paris 7.

https://doi.org/10.1017/S0956796800000952 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000952

