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Interactions between oblique second mode and oblique waves at a high-speed boundary at
Mach 4.5 are studied using linear stability theory, nonlinear parabolized stability equations
(NPSE) and direct numerical simulation (DNS). Parametric analysis based on the NPSE
suggests that the oblique second mode can amplify both the oblique first and second
modes, with the former experiencing a higher amplification. Our analysis reveals that
the mean-flow distortion and difference mode contribute to this enhancement, with the
latter exerting a key influence through the parametric resonance process. Kinetic energy
transfer analysis demonstrates that the oblique waves gain energy from the mean flow,
rather than from the oblique second mode. Furthermore, we find that the mechanism
underlying the interaction between a pair of second oblique waves and a single oblique
wave is similar to that between an oblique second mode and an oblique wave, as the steady
modes generated by the pair of oblique second modes have a limited impact on the oblique
wave. Finally, DNS confirms the validity of two transition paths proposed in this study
based on the NPSE results. The first path suggests that a pair of low-amplitude second
oblique waves alone are insufficient to cause oblique breakdown, but the introduction
of a pair of low-amplitude damping first oblique modes could lead to boundary layer
breakdown. The second path involves the formation of a domino-like effect through the
combination of different types of oblique waves with the appropriate parameters. These
two nonlinear paths can lead to a fully developed turbulent boundary layer.

Key words: compressible boundary layers, transition to turbulence, nonlinear instability

1. Introduction

The laminar-to-turbulent transition is a critical issue in the design of high-speed vehicles,
particularly for the thermal protection system (Zhao et al. 2022; Zhou, Liu & Yan
2023). However, our understanding of the nonlinear interactions of various modes during
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this transition is limited. The path of high-speed boundary layer transition is highly
dependent on the free-stream environment (Morkovin 1969). The growth of acoustic,
entropic or vortical disturbances (Fedorov 2003; Fedorov et al. 2013) can cause the
laminar-to-turbulent transition of the boundary layer. When the disturbances are of small
amplitude, linear stability theory (LST) (Mack 1984) accurately describes their evolution.
At low-Mach-number supersonic boundary layers, the oblique first mode (Mack 1984),
which is similar to the Tollmien–Schlichting waves in incompressible boundary layers, is
the most amplified instability for the two-dimensional flat-plate boundary layer according
to LST. As the Mach number increases (Ma > 4.0), the planar second mode, or Mack
mode (Mack 1984), becomes dominant in the transition of the boundary layer.

When the amplitude of disturbances is high, nonlinear mechanisms can cause the
boundary layer to break down. In incompressible flows, fundamental and subharmonic
resonances were identified as the two nonlinear transition paths leading to the breakdown
of the boundary layer (Kachanov 1994). However, the mechanisms of nonlinear
interactions in high-speed boundary layers are more complex. Our understanding of these
mechanisms is limited. For high-speed boundary layers, three relevant nonlinear transition
paths have been identified: oblique breakdown (Mayer, Von Terzi & Fasel 2011; Hartman,
Hader & Fasel 2021) and secondary instabilities (Herbert 1988; Ng & Erlebacher 1992)
consisting of fundamental breakdown (K-type transition) (Sivasubramanian & Fasel 2015)
and subharmonic breakdown (Chang & Malik 1994; Adams & Kleiser 1996). The oblique
breakdown was first discovered by Thumm (1991) and Fasel, Thumm & Bestek (1993),
and is initiated by the nonlinear interactions between a pair of oblique first modes with
the same frequency and opposite spanwise wavenumbers in a supersonic boundary layer.
Chang & Malik (1994) conducted a detailed study of the evolution stages of oblique
breakdown using the nonlinear parabolized stability equations (NPSE). It is worth noting
that the first mode is considered the most likely to dominate the transition mechanism
for low-Mach-number supersonic boundary layers (Ma < 3.5) owing to the low initial
amplitude requirements for oblique waves.

Fundamental and subharmonic breakdowns are two potential nonlinear mechanisms
for high-Mach-number supersonic boundary layers (Ma > 4.0). These mechanisms arise
from the interactions between a planar mode and a pair of oblique modes with the same
frequency and opposite spanwise wavenumbers. The frequency of the oblique wave in
the case of fundamental breakdown is the same as that of the planar mode, whereas
for subharmonic breakdown, it is half that of the planar mode. Studies by Al-Salman
(2003) have shown that the subharmonic between a planar second mode and a pair of
first oblique modes can lead to a super-exponential amplification rate of the first mode.
The spanwise wavenumber of the oblique wave is crucial in the interactions between a
planar second mode and a pair of oblique waves with the same frequency as the second
mode, according to Yu & Luo (2014). When the amplitude of the planar second mode is
high, the nonlinear amplification rate of the oblique wave increases with an increase in
the spanwise wavenumber. Franko & Lele (2013, 2014) used direct numerical simulation
(DNS) to investigate the breakdown mechanism and heat transfer overshoot of the first
mode oblique breakdown, second mode oblique breakdown and fundamental breakdown
at Mach 6 with zero pressure gradient (ZPG) and an adverse pressure gradient (APG). They
found that the breakup of streaks plays a significant role in the breakdown of the boundary
layer for these three nonlinear paths, and that the APG increases the amplification rate of
the initial amplitude, leading to an earlier transition. However, the breakdown mechanism
for these three paths is similar between APG and ZPG. The fundamental breakdown is the
most likely path to transition for a Mach 6.0 boundary layer at a flared cone, as found by
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Hader & Fasel (2019). More recently, Meersman, Hader & Fasel (2021) investigated the
effect of geometry, including straight and flared cones with zero attack, on the nonlinear
stages of breakdown at Mach 6.0. The strong fundamental resonance was observed in both
geometries, with the concave surface accelerating the transition process but not changing
the mechanism for the streaks’ evolution. It is important to note that these studies only
investigated the mechanisms for interactions between a planar second mode and a pair of
oblique waves with the same or half the frequency of the second mode. Further research
is needed to study the interactions between the second mode and a wide range of oblique
waves.

Maestrello, Bayliss & Krishnan (1991) found that the nonlinear interactions between the
most unstable planar second mode and the most unstable oblique first mode can amplify
both the nonlinearity and the three-dimensionality of spatially growing disturbances in
the Mach 4.5 flat-plate boundary layer. To further examine these interactions, some
researchers have focused on studying the evolution of wave packets or the evolution of
random disturbances in high-speed boundary layers, aiming to identify the dominant
nonlinear transition path or discover new transition paths. Leinemann, Hader & Fasel
(2020, 2021) conducted a DNS to investigate the evolution of a small wave packet in the
Mach 6.0 flat-plate boundary layer. They found that both the fundamental breakdown and
the oblique breakdown can lead to the breakdown, but the dominant nonlinear transition
is not clear. Further study is needed to better understand the interaction between the
first and second modes. Unnikrishnan & Gaitonde (2020) introduced a planar second
mode with low-amplitude random disturbances to the boundary layer through blowing and
suction on the wall. They observed that the oblique waves were amplified and rode on the
second-mode rollers, resulting in the breakdown of the boundary layer. This highlights the
importance of the interaction between the second mode and oblique waves in the boundary
layer.

In experiments, the nonlinear interactions between the different modes are often
studied using particle image velocimetry, Rayleigh scattering visualization and pressure
measurements. For example, Zhang, Tang & Lee (2013), Zhang et al. (2015) and Zhu et al.
(2016, 2018) conducted a series of experiments on the transition process of a flared cone
in a quiet wind tunnel. They found that the second mode can lead to fast breakdown of the
boundary layer through the generation of vortical waves, and the interaction between the
second mode and low-frequency mode was observed using bicoherence, which rapidly
amplified the low-frequency waves. However, the mechanisms for these interactions
are not clear, and there are challenges in studying the nonlinear region experimentally
(Craig et al. 2019). Thus, numerical investigations are a more convenient method for
studying the nonlinear mechanisms. The study by Chen, Zhu & Lee (2017) used stability
analysis to explore the interactions between the planar second mode and low-frequency
oblique waves. Results indicated that the low-frequency modes, known as Görtler vortices
(Görtler 1954; Ren, Fu & Hanifi 2016), were most amplified by the planar second mode.
However, the high amplitude of the low-frequency mode caused by the second mode
weakened the amplitude of the second mode at the full-interaction stage. Additionally,
the study observed parameter resonance between modes with specific frequencies and
spanwise (azimuthal) wavenumbers and sum/difference modes. Similar work has also been
conducted on the flat-plate hypersonic boundary layer by Zhang & Luo (2017) and Liu &
Zhang (2019). These studies investigated the selective effect of the planar second mode
on oblique waves and reported that low-frequency oblique modes or fundamental family
disturbances are amplified more by the planar second mode, with the enhancement effect
becoming stronger as the spanwise wavenumber of the oblique modes increases. These
studies focused on the interactions between the planar second mode and oblique waves
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and highlighted that not only can the fundamental and subharmonic breakdowns lead
to boundary layer breakdown, but also the combination of the second mode with other
frequencies can dominate the nonlinear transition path.

To the best of the authors’ knowledge, the interactions between oblique second modes
and oblique waves have received limited attention. This is primarily because the planar
second mode is usually the most amplified disturbance in high-speed boundary layers.
Nevertheless, it is important to note that the amplification rate of oblique second modes
with small wave angles is comparable to that of the planar second mode (Husmeier
& Fasel 2007; Zhou et al. 2022b). Additionally, the breakdown of a boundary layer
is a three-dimensional process, and the oblique second mode can contribute to the
three-dimensionality of the flow field, which cannot be achieved by the planar second
mode. As a result, even when they have the same amplitude, the oblique second mode may
trigger an earlier transition of the boundary layer than does the planar mode. In a recent
study, Jahanbakhshi & Zaki (2019) found that the interaction between a pair of oblique
second modes and a pair of oblique first modes can be the most dangerous disturbance at
high energy levels of inlet disturbances, owing to the enhancement effect of the oblique
second mode on the first oblique wave. Finally, interactions between pairs of second modes
can result in the generation of steady modes (Pruett & Chang 1995; Franko & Lele 2013),
making the interactions between oblique waves and these steady modes a topic worthy of
further investigation. In addition, investigation of the interactions between oblique second
modes and oblique waves has the potential to uncover new nonlinear pathways and provide
valuable insights into the nonlinear pathways of transition in high-speed boundary layers.

The present study aims to investigate the interactions between oblique second mode
and oblique waves in a high-speed boundary layer at Mach 4.5. The study is organized as
follows: § 2 will describe the computational set-up and simulation methods. The results
of the linear analysis will be presented in § 3. The interactions between a single oblique
second mode and a oblique first or second mode will be examined using NPSE with
parameter studies and kinetic energy budget analysis in § 4. A similar analysis of the
interactions between a pair of oblique second modes and a single oblique first or second
mode will be presented in § 5. Based on the results of §§ 3, 4 and 5, the study will
explore two new nonlinear laminar-to-turbulent transition pathways in § 6 using DNS. The
conclusion will be presented in § 7.

2. Simulation methods and computational set-up

2.1. Direct numerical simulations
The Navier–Stokes equations are the governing equations for the DNS in this study, which
are in the form of

∂Q
∂t

+ ∂F c,j

∂xj
= 1

Re
∂F v,j

∂xj
( j = 1, 2, 3). (2.1)

The conservative variables Q, convective flux vectors F c,j and viscous flux vectors F v,j
in the DNS are described in more detail in Zhou et al. (2022a), and Re is the Reynolds
number. These simulations are carried out using the OpenCFD code developed by Li et al.
(2010b), which has been used to study high-speed boundary layer transitions (Li, Fu &
Ma 2010a) and turbulent flows (Li et al. 2019). The convective terms are discretized
spatially using an optimized sixth-order monotonicity-preserving scheme (Li, Leng &
He 2013) combined with the Steger–Warming splitting method. The viscous terms are
discretized using a sixth-order central difference scheme. A third-order Runge–Kutta
method (Jiang & Shu 1996) is used for time advancement. The non-reflection and
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supersonic outlet boundary conditions are used at the top and outlet of the computational
domain, respectively. A no-slip isothermal wall is used at the bottom. Periodic boundary
conditions are utilized on both sides of the domain. At the inlet, the profiles are solved
using the compressible Blasius equations, validated in our previous study (Zhou et al.
2022b).

2.2. Stability analysis
As mentioned in § 2.1, the flow variables are described by the Navier–Stokes equations.
To derive the governing equations of the fluctuation quantities, the flow variables φ =
[ρ, u, v, w, T] can be divided into mean quantities φ̄ = [ρ̄, ū, v̄, w̄, T̄] and fluctuation
quantities φ

′ = [ρ
′
, u

′
, v

′
, w

′
, T

′
], where ρ, u, v, w and T are the density, streamwise

velocity, wall-normal velocity, spanwise velocity and temperature, respectively. The mean
quantities φ̄ are determined by the basic Navier–Stokes equations, while the fluctuations
are calculated through stability analysis. The governing equations for the fluctuation
quantities can be expressed as

𝞒
∂φ

′

∂t
+ A

∂φ
′

∂x
+ B

∂φ
′

∂y
+ C

∂φ
′

∂z
+ Dφ

′ + V xx
∂2φ

′

∂x2 + V yy
∂2φ

′

∂y2 + V zz
∂2φ

′

∂z2

+ V xy
∂2φ

′

∂x∂y
+ V xz

∂2φ
′

∂x∂z
+ V yz

∂2φ
′

∂y∂z
= F. (2.2)

The matrices 𝞒, A, B, C, D, V xx, V yy, V zz, V xy, V xz and V yz are functions of the mean
quantities φ̄. The nonlinear term F contains both the mean-flow and fluctuation variables.
The expressions for the matrices and nonlinear term F can be found in Ren & Fu (2014).

2.2.1. Linear analysis theory
In LST, the mean quantities are solved for using the compressible Blasius equations
(White 2006). This approach has been shown to give results in good agreement with
those obtained through DNS as reported in Zhou et al. (2022b). The nonlinear term is
not considered in the LST. Furthermore, it is assumed that the mean flow is quasi-parallel
at a given location. The fluctuation quantities are assumed to be of the form

φ
′ = φ̂( y) exp(i(αx + βz − ωt)), (2.3)

where α, β and ω are the streamwise wavenumber, spanwise wavenumber and angular
frequency, respectively. Substituting (2.3) into (2.2) and ignoring the lower-order terms
and the wall-normal velocity of the mean flow, we can obtain the governing equations for
the LST. The details of this derivation can be found in Chang (2004). The LST is solved as
an eigenvalue problem, where the streamwise wavenumber α is a function of the spanwise
wavenumber β and the angular frequency ω. In the spatial LST, both the spanwise
wavenumber and the angular frequency are real, while the streamwise wavenumber α =
αr + iαi is complex. Given a fixed spanwise wavenumber and an angular frequency, we can
determine the value of the streamwise wavenumber and the corresponding eigenfunction
φ̂. The imaginary part αi represents the amplification rate of the disturbance and a negative
value of αi indicates instability. The fourth-order central difference method is used for the
wall-normal-direction discretization of the LST governing equations.
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2.2.2. Nonlinear parabolized stability equations
In the NPSE, the form of disturbance is

φ
′
(x, y, z, t) =

M∑
−M

N∑
−N

φ̂mn(x, y) exp
(

i
∫ x

x0

αmn(x) dx
)

exp(i(nβz − mωt)). (2.4)

Substituting (2.4) into (2.2) and disregarding the second derivative of the mode shape
function φ̂mn in the streamwise direction, we obtain the nonlinear parabolized stability
equations for mode (m,n) as

D̂mnφ̂mn + Âmn
∂φ̂mn

∂x
+ B̂mn

∂φ̂mn

∂y
+ Ĉmn

∂2φ̂mn

∂y2 = F̂mn exp
(

−i
∫ x

x0

αmn dx
)

. (2.5)

The details of the coefficient matrices and nonlinear terms Fmn in this equation can be
found in Chang (2004). The calculation of the phase velocity for each mode is related to
the real part of the streamwise wavenumber, which can be calculated as

cmn = ωm

Re(αmn)
. (2.6)

The boundary conditions for each mode at the wall and far field are

y = 0 and ∞ : ûmn = ŵmn = v̂mn = T̂mn = 0. (2.7)

For the mean-flow distortion (0,0), the far-field boundary condition for the wall-normal
velocity is (Chang & Malik 1994)

y = ∞ :
∂v̂00

∂y
= 0, (2.8)

which accounts for the evolution of the boundary layer. To solve for the shape function
φmn and wavenumber αmn, the wavenumber is updated as

αnew = αold − i
1
E

∫ ∞

0
ρ̄

(
u∗ ∂ û

∂y
+ v∗ ∂v̂

∂y
+ w∗ ∂ŵ

∂y

)
dy, (2.9)

where

E =
∫ ∞

0
ρ̄(|û|2 + |v̂|2 + |ŵ|2) dy (2.10)

and superscript ∗ denotes the complex conjugate. The discretization of the NPSE in
the wall-normal direction utilizes a fourth-order central difference method to accurately
capture the flow dynamics. Furthermore, to maintain the stability of the calculations and
prevent the residual ellipticity that can arise in numerical simulations, the streamwise
direction is discretized using a first-order backward scheme with the Vigneron technique
(Chang & Malik 1994). This approach has been proven to be effective in producing
reliable and accurate results in previous studies. The base flow for the NPSE simulations
is obtained by the DNS, in which the inlet disturbance is not included. The validation of
DNS and NPSE solvers is conducted in the Appendix.
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Ma∞ Re (m−1) T∞ (K) Tw/T∞ γ Pr

4.5 7.2 × 106 65.15 4.0 1.4 0.72

Table 1. Free-stream flow condition.
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Figure 1. (a) Neutral curves obtained through linear stability analysis. (b) Contours of the linear amplitude,
ln Alin/Ain, at x = 1.025 m, where Alin is calculated using NPSE with only one oblique wave at the inlet. The
first and second mode regions are labelled with Roman numerals I and II, respectively. The vertical dashed line
indicates the inlet of DNS and NPSE.

2.3. Computational set-up
The current study focuses on a two-dimensional high-speed boundary layer and considers
the fluid to be a perfect gas. The free-stream conditions are based on the high-altitude
flight tests performed by Harvey (1978) and Schneider (1999), which have been proven to
induce transition; see table 1. The viscosity of the fluid is calculated using Sutherland’s
law. The inlet of both NPSE and DNS is set at xin = 0.45 m, where the boundary layer
thickness is δin ≈ 3.20 × 10−3 m; see figure 1(a). For the simulation grids, the streamwise
and spanwise distributions for DNS are equidistant, while the wall-normal direction for
LST and NPSE uses 175 equidistant points, which is consistent with the DNS. The grid
stretching in the wall-normal direction can be found in Zhou et al. (2021). The NPSE uses
at least 12 points within a wavelength of the fundamental wave in the streamwise direction.
The details of the domain size and grid resolution for the DNS will be presented in § 6.

3. Linear instability

The results of the linear stability analysis performed on a two-dimensional high-speed
boundary layer at Mach 4.5 using the LST method are presented in figure 1(a). The
fundamental frequency and spanwise wavenumber are defined as f0 = 5 kHz and β0 =
83.8 m−1, respectively. The relationship between the angular frequency and f (kHz) can
be found in Mayer et al. (2011). In the following, the combination (m,n) represents a mode
with frequency mf0 and spanwise wavenumber nβ0. The analysis reveals the existence of
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two unstable regions, referred to as the first and second modes (Mack 1984). It is observed
that the first mode region increases and then decreases in size as the spanwise wavenumber
increases, whereas the size of the second mode region decreases. Interestingly, when
the spanwise wavenumber is β = 2β0, the unstable region of the second mode is nearly
identical to that when β = 0. This is due to the fact that the amplification rate of the
oblique second mode with a small wave angle is comparable to that of the planar second
mode (Husmeier & Fasel 2007). As an illustration, consider the real part of the streamwise
wavenumber of the second mode (18,2) at the inlet, which is αr = 844.06 m−1, and the
corresponding wave angle is 11.23◦.

To further explore the linear stability of the Mach 4.5 boundary layer, the NPSE
simulations (neglecting nonlinear terms) are initiated with oblique waves (m,n) at the
inlet of the domain. The frequency extends from m = 1 to m = 17 and the spanwise
wavenumber ranges from n = 1 to n = 16, resulting in a total of 272 cases. The initial
amplitude of the streamwise velocity fluctuations of each mode is Ain = 10−5u∞ at
xin = 0.45 m. The contours of the amplitude of each oblique wave ( f ,β) at x = 1.025 m are
displayed in figure 1(b), which shows that the value of ln Alin/Ain is high in regions I and
II, corresponding to the unstable first and second mode regions, respectively. Although the
amplification rate of the second mode is higher than that of the first mode, the maximum
value of ln Alin/Ain is almost the same for both modes. This is due to the fact that the
unstable first mode region is wider in the streamwise direction compared with the second
mode region, as seen in figure 1(a). With an understanding of the linear stability of the
Mach 4.5 boundary layer, the nonlinear interactions between the second mode and the
broadband oblique waves will be discussed in the following sections.

4. Interaction between an oblique second mode and an oblique wave

4.1. Parametric study
For the parametric simulations, mode (18,2) is selected as the second mode because of
its high linear amplification rate, which is very close to that of the planar second mode
(18,0). In addition, it begins amplifying closer to the inlet than mode (14,0), which is
amplified to higher amplitude at x = 1.05 m; see figure 1(a,b). The second mode (18,2)
and an oblique wave (m,n) are initiated at the inlet of the domain with amplitudes of
the streamwise velocity fluctuation set to 1.5 × 10−3u∞ and 10−5u∞, respectively. The
frequency extends from m = 1 to m = 17 and the spanwise wavenumber ranges from
n = 1 to n = 16. In the NPSE simulations, only six modes are considered: the second mode
(18,2), its harmonic (36, 4), the oblique wave (m,n), the difference mode (18 − m, 2 − n),
the sum mode (18 + m, 2 + n) and the mean-flow distortion (MFD) (0,0). The main
interactions can be listed as

(18,2) − (m,n) → (18 − m,2 − n); (4.1)

(18,2) + (m,n) → (18 + m,2 + n); (4.2)

(18 + m,2 + n) + (18 − m,2 − n) → (36,4); (4.3)

(18,2) + (18,2) → (36,4). (4.4)

It is worth noting that the interactions between the MFD and modes are also taken into
account in the NPSE. After careful validation, it has been determined that this simple
model is sufficient; see the Appendix. There are 272 cases covering 17 frequencies and
16 spanwise wavenumbers, which are same as those set in § 3. The amplitude of the
streamwise velocity fluctuations of the other oblique wave is 10−5u∞. The wave angle
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Figure 2. Diagram showing the direction of evolution of oblique waves. Here, θ2 and θ1 represent the wave
angles of the oblique second mode and the other oblique wave, respectively. The first and fourth quadrants are
designated as I and IV, respectively.
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Figure 3. The contours of the amplitude of the oblique waves with negative spanwise wavenumber at x =
1.025 m: (a) contours of the nonlinear amplitude divided by the initial amplitude; (b) contours of the ratio of
the nonlinear amplitude to the linear amplitude. The first and second mode regions are labelled with Roman
numerals I and II, respectively, while Roman numerals III and IV indicate regions that are less and more
amplified, respectively, compared with the initial amplitude.

is calculated as

θ = arctan
αr

β
, (4.5)

where αr and β represent the real parts of the streamwise and spanwise wavenumbers,
respectively. There are two scenarios for the interactions between the oblique second mode
and other oblique waves, as shown in figure 2. The first scenario is where the evolution
direction of the other oblique wave is in the same quadrant as the second mode, and the
second scenario is where the evolution directions of the two oblique waves are in different
quadrants, as shown in figure 2. When the evolution direction of the oblique wave is in
the fourth quadrant, the value of the spanwise wavenumber is negative. As the frequency
and spanwise wavenumber of the second mode are fixed, the wave angle θ2 of the second
mode can be obtained through linear stability analysis and is set to a positive value in this
study.

The results of the amplitude of the oblique wave with negative and positive spanwise
wavenumbers in the n–f contours at x = 1.025 m are displayed in figures 3 and 4,
respectively. When the spanwise wavenumber of the oblique wave is negative, almost
all of the oblique waves, except those with a large spanwise wavenumber, are amplified
compared with the initial amplitude; see figure 3(a). However, as seen in figure 3(b), all
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Figure 4. The contours of the amplitude of the oblique waves with positive spanwise wavenumber at x =
1.025 m: (a) contours of the nonlinear amplitude divided by the initial amplitude; (b) contours of the ratio of
the nonlinear amplitude to the linear amplitude. The first and second mode regions are labelled with Roman
numerals I and II, respectively, while Roman numerals III and IV indicate regions that are less and more
amplified, respectively, compared with the initial amplitude.

of the oblique waves are amplified compared with the linear results, and oblique modes
with a large spanwise wavenumber are amplified the most. This is due to the fact that the
linear amplification rate of oblique waves with larger spanwise wavenumbers is damping,
and the damping rate increases as the spanwise wavenumber increases, which will be
further explained in the next section. Additionally, among the amplified oblique modes,
the one with a frequency around 45 kHz and a negative spanwise wavenumber around
−7 is the most amplified, as shown in region IV of figure 3(a). This is in contrast to
the damping or low amplification rate seen in region IV of the linear results in figure 1.
However, if the absolute spanwise wavenumber is less than 2.0, the oblique wave with
a frequency around 45 kHz experiences less amplification, as indicated by region III in
figure 3(a). Although the first and second modes exhibit high amplitudes in regions I and
II, respectively, figure 3(b) shows that they are amplified weakly compared with the linear
results.

The amplitude of oblique waves with a positive spanwise wavenumber at x = 1.025 m
is presented in figure 4. In comparison with the oblique waves with a negative spanwise
wavenumber shown in figure 3, there are some differences. Specifically, the absolute value
of the spanwise wavenumber of the most amplified mode in region IV is greater than that
in figure 3(a). The most amplified mode in figure 4(a) is (8,9), whereas in figure 3(a) it
is (9,−7). However, in view of the wave angle difference with the oblique second mode,
the most amplified modes are similar. The absolute initial wave angle difference between
modes (18,2) and (8,9) is 51.2◦ as calculated using the parabolized stability equations,
whereas the difference between modes (18,2) and (9,−7) is 49.5◦. Thus, the wave angle
difference between the second mode and the most amplified mode is around 50◦. Overall,
the distribution of the oblique wave’s amplitude in figure 4 is similar to that in figure 3.
Therefore, the results of the interaction between the second mode and an oblique wave
with only a negative value are presented in the following.

To further understand the interaction of the oblique second mode with the first oblique
waves, the evolution of modes with low frequencies 3f0, 8f0 and 9f0 is depicted in figure 5.
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Figure 5. Amplitude evolution of oblique waves with constant frequency but different spanwise wavenumbers:
(a) f = 3f0; (b) f = 8f0; (c) f = 9f0. The red dashed lines indicate the linear evolution of the oblique
waves.

These frequencies belong to the first mode, as shown in figure 1. As illustrated in figure 5,
almost all the modes are amplified when the amplitude of the second mode (18,2) reaches
its highest level at x ≈ 0.64 m, even the damping modes. The amplitude of modes with
frequency 3f0 is slightly increased. Modes with frequencies 8f0 and 9f0 grow rapidly,
particularly those with a spanwise wavenumber around n = −7, which aligns with the
results in figure 3. The reasons behind the promotion effects on the single first mode will
be discussed in § 4.2. The interactions between the oblique second modes are shown in
figure 6. For frequencies 14f0 and 16f0, the linear results indicate that the growth rate
of these modes decreases with increasing spanwise wavenumber. The ratio of nonlinear
amplitude to linear amplitude of the oblique waves with a larger spanwise wavenumber is
more amplified than that with a smaller wavenumber. However, the amplitude of oblique
waves with a larger spanwise wavenumber cannot surpass that of waves with a smaller
wavenumber, as these higher wavenumbers decrease to much lower amplitudes before
starting to grow rapidly. Similarly, the cause of rapid growth of the second mode will
be discussed in § 4.3.

4.2. Interactions between an oblique second mode and an oblique first mode wave
It has been observed that almost all the oblique waves are amplified using NPSE. However,
to determine the cause of the rapid growth of these waves, two possible paths are explored
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Figure 6. Amplitude evolution of oblique waves with constant frequency but different spanwise
wavenumbers: (a) f = 14f0; (b) f = 16f0. The red dashed lines indicate the linear evolution of the oblique
waves.

(Chen et al. 2017). The first path is the transfer of energy from the second mode to the
oblique waves. The second path is the high amplitude of the second mode acting as a
catalyst and allowing the oblique wave to gain energy from the mean flow. To further
understand this phenomenon, mode (8,−10) has been selected as a representative single
first mode to study in detail. The streamwise velocity amplitude of mode (8,−10) has been
set to 10−4u∞. Additionally, six modes, along with their higher-harmonic modes, have
been considered, resulting in a total of fifteen modes being analysed.

The evolution of the interaction between a first and a second mode is illustrated in
figure 7(a). As seen in figure 7(a), the high amplitude of the mode (18,2) results in the
rapid growth of the oblique wave (8,−10). Additionally, the slope of the amplification
rate of the difference mode (10,12) is similar to that of the oblique wave (8,−10) at a
downstream position of x ≈ 0.8 m, which indicates that these modes are in resonance. The
phase velocity of these modes is depicted in figure 7(b). It can be observed that the phase
speeds of the modes (8,−10) and (10,12) are nearly the same at x ≈ 0.8 m, suggesting that
they are phase locked. The role of the difference mode (10,12) will be further discussed in
§ 4.2.2.

4.2.1. Kinetic energy budget
The kinetic energy equation, as described by Orszag & Patera (1983) and Hajj, Miksad
& Powers (1993), is used to investigate the cause of the rapid growth of mode (8,−10).
Based on the work of Chen et al. (2017), the streamwise momentum equations from (2.5)
for each mode can be expressed as follows:

ρ̄
Du
Dt

= −Luφ + Nu, (4.6)

where Lu and Nu are the linear operator and nonlinear terms, respectively. Equation (4.6)
multiplies the complex conjugate of the streamwise velocity, while the conjugate of (4.6)
multiplies the streamwise velocity. Similar operations are performed on the wall-normal
and spanwise momentum equations. The six equations are then added to obtain the kinetic
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Figure 7. Streamwise evolution of (a) the maximum amplitude of the streamwise velocity fluctuation and
(b) the phase velocity of various modes in the streamwise direction. The higher-harmonic modes are denoted
by the grey lines.

energy equation for each mode:

ρ̄
D
Dt

(|u|2 + |v|2 + |w|2) = −2αiρ̄Ū(|û|2 + |v̂|2 + |ŵ|2) exp
(

−2
∫

αi dx
)

= L + N,

(4.7)

where
L = −u∗Luφ − v∗Lvφ − w∗Lwφ + c.c. (4.8)

and
N = u∗Nu + v∗Nv + w∗Nw + c.c. (4.9)

The linear term L represents the energy transfer between the mode itself and the mean flow.
However, the nonlinear term N not only captures the energy transfer between different
modes but also includes the energy transfer between the mode itself and the mean flow.
The linear transfer can be divided into four parts:

L = P + Ξ + Π + υ. (4.10)

Here, P, Ξ , Π and υ represent the production, energy transfer related to non-parallel
terms, pressure dilatation, and diffusion and viscous dissipation, respectively. They are
calculated as follows:

P = −ρ̄u∗v
∂Ū
∂y

− ρ̄v∗u
∂V̄
∂x

+ c.c., (4.11)

Ξ = −ρ̄u∗u
∂Ū
∂x

+
(

u∗ ∂u
∂y

+ v∗ ∂v

∂y
+ w∗ ∂w

∂y

)
− ρ̄v∗v

∂V̄
∂y

− ρu∗
(

Ū
∂Ū
∂x

+ V̄
∂Ū
∂y

)
+ −ρv∗

(
Ū

∂V̄
∂x

+ V̄
∂V̄
∂y

)
+ c.c., (4.12)

Π = −u∗ ∂p
∂x

− v∗ ∂p
∂y

− w∗ ∂p
∂z

+ c.c. (4.13)

The viscous dissipation and diffusion term is not shown because of its lengthy expression.
By integrating (4.7) in the wall-normal direction, the imaginary part of α can be expressed
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Figure 8. Contours of (a) linear and (b) nonlinear energy transfer of mode (8,−10). The value is normalized
by the maximum value at each streamwise station. The boundary layer and critical layer are denoted by the
solid and dashed lines, respectively.

as

− αi = LΓ + NΓ =
∫ ∞

0
L dy/𝞒 +

∫ ∞

0
N dy/𝞒, (4.14)

where

𝞒 =
∫ ∞

0
ρ̄Ū(|û|2 + |v̂|2 + |ŵ|2) exp

(
−2

∫
αi dx

)
dy. (4.15)

Here, LΓ and NΓ indicate the growth rates associated with the linear and nonlinear terms,
respectively.

The linear and nonlinear energy transfers of mode (8,−10) are depicted in figure 8(a,b),
respectively. As observed, both the linear and nonlinear energy transfers are concentrated
around the critical layer. The linear energy transfer is negative from the beginning to the
end of the domain and is slightly above the critical layer. Downstream of x ≈ 0.7 m, the
positive linear energy transfer concentrates on the critical layer and is slightly lower than
the boundary layer edge. The nonlinear energy transfer is slightly higher than the critical
layer and has a negative value downstream of x ≈ 0.7 m.

To understand the contribution of the linear and nonlinear energy to the evolution of
mode (8,−10), the evolution of the integrated linear and nonlinear energy transfer of
modes (18,2) and (8,−10) is shown in figure 9(a). It is observed that the contribution
of nonlinear energy transfer is small for both modes (18,2) and (8,−10), with the change in
the amplification rate being primarily due to the linear energy transfer. The linear energy
transfer of mode (18,2) is significant at the inlet of the domain, leading to the fast growth
of mode (18,2). However, downstream of x ≈ 0.65 m, the linear energy transfer becomes
negative, resulting in a decrease in the amplitude of mode (18,2). Similarly, mode (8,−10)
experiences a decrease in its amplitude upstream of x ≈ 0.65 m due to a negative linear
energy transfer. However, downstream of x ≈ 0.65 m, the significant linear energy transfer
results in the rapid growth of mode (8,−10). It can be concluded that mode (18,2) acts as
a catalyst, and the rapid growth of mode (8,−10) is directly caused by the energy transfer
from the mean flow, which is similar to the conclusions of the study on a flared cone
with hypersonic free stream (Chen et al. 2017). The linear energy budget of mode (8,−10)
shown in figure 9(b) reveals that the production term PΓ plays a major role in the rapid
growth of mode (8,−10), with a maximum value of approximately 0.006 at x ≈ 0.7 m,
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transfer of mode (8,−10). Black and red lines indicate that the modes (0,0) and (10,12) are forced to zero in the
simulation, respectively.

which is several times larger than the value upstream at x ≈ 0.6 m. These results indicate
that mode (8,−10) gains energy directly from the mean flow, not from mode (18,2).

4.2.2. Role of the mean-flow distortion and difference mode
The evolution of modes (18,2) and (8,−10) in a resonant system is shown in figure 10(a).
The importance of the MFD (0,0) and the difference mode (10,12) is highlighted in this
section. When the (0,0) mode is forced to zero, the amplitude of mode (18,2) decreases
faster downstream of x ≈ 0.6 m compared with the baseline. Meanwhile, the amplitude of
mode (8,−10) reaches its maximum value at x ≈ 0.9 m before decreasing. Figure 10(b)
shows that the maximum value of the linear energy transfer of mode (8,−10) is lower than
the baseline and the nonlinear term is less affected. This suggests that the MFD (0,0) plays
a role in maintaining the amplitude of mode (18,2), which in turn promotes the growth of
the oblique mode (8,10) through linear energy transfer. When the difference mode (10,12)
is forced to zero, the amplitude of mode (8,−10) decreases downstream and the rapid
growth disappears. The linear energy transfer is negative and the nonlinear energy transfer
is close to zero, indicating that the rapid growth is mainly due to the interactions between
the second mode (18,2), oblique first mode (8,−10) and difference mode (10,12). Both the
second mode (18,2) and the difference mode (10,12) act as catalysts, promoting energy
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transfer from the mean flow to the oblique wave (8,−10). The role of the sum mode is not
discussed here owing to its neglected impact in this promotion effect; see figure 18.

4.3. Interactions between oblique second modes
In this section, we discuss the interaction between oblique second modes, with mode
(14,−14) selected as the representative mode. Fifteen modes are considered in the
interaction between modes (18,2) and (14,−14). The evolution of the amplitude and phase
velocity of various modes is shown in figure 11. Like the results in figure 6(a), mode
(14,−14) experiences two rapid growths. However, the promotion effect on the evolution
of mode (14,−14) is weaker than the strong promotion effect on the first mode (8,−10).
Additionally, there is no phase locking observed between mode (14,−14) and the difference
mode (4,16), as seen in figure 11(b).

To understand the cause of the rapid growth of mode (14,−14), the contours of linear
and nonlinear energy transfer are shown in figure 12. The maximum linear and nonlinear
energy transfer is around the critical layer, with linear energy transfer being negative
upstream of x ≈ 0.64 m and positive downstream of x ≈ 0.64 m. The nonlinear energy
transfer is negative from the beginning to the end, with positive values observed at
x ≈ 0.7 m and x ≈ 1.0 m. The integrated linear and nonlinear energy transfers of modes
(18,2) and (14,−14) are shown in figure 13. Unlike for the first mode, where linear
energy transfer dominates the energy transfer during the rapid growth, both linear and
nonlinear energy transfers are high at x ≈ 0.65 where the second mode (14,−14) begins
to grow rapidly. The nonlinear energy transfer gradually decreases to a negative value as
it moves in the streamwise direction and becomes positive downstream of x ≈ 0.95 where
the amplitude of mode (14,−14) increases again. The linear energy transfer is positive
downstream of x ≈ 0.65 and experiences two rapid growths during the rapid growth of
mode (14,−14). Hence, the rapid growth of mode (14,−14) is a result of both linear and
nonlinear energy transfers. The linear energy transfer comes from the mean flow and mode
itself, while the nonlinear transfer can come not only from the mean flow but also from
other modes. To address this question, we forced only mode (18,2) at the inlet of NPSE.
The energy transfer of mode (18,2) between only the (18,2) initiated and both the modes
(18,2) and (14,−14) included coincides with the evolution in the streamwise direction,
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Figure 12. Contours of (a) linear and (b) nonlinear energy transfer of mode (14,−14). The values are
normalized by the maximum value at each streamwise station. The boundary layer and critical layer are denoted
by the solid and dashed lines, respectively.
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Figure 13. Evolution of the integrated linear and nonlinear energy transfer of modes (18,2) and (14,−14).

as shown in figure 14(c). Therefore, the rapid growth of mode (14,−14) is not from mode
(18,2), but from the linear energy transfer and mean flow through nonlinear energy transfer.

In the following, the effect of the mean-flow distortion mode (0,0) and difference mode
(4,16) will be examined. Modes (0,0) and (4,16) are both forced to zero. The evolution
of the maximum amplitudes of modes (18,2) and (4,16) is displayed in figure 14. When
mode (0,0) is forced to zero, it can be seen that the mode (18,2) decreases to a lower
amplitude compared with the baseline, and the amplitude of mode (14,−14) is also reduced
in comparison with the baseline; see figure 14(a). Meanwhile, the maximum value of the
linear energy transfer is lower than the baseline and is decreasing faster. The maximum
value of the nonlinear energy transfer is relatively unaffected; see figure 14(b). This
suggests that the role of mode (0,0) in interactions between the second modes and between
the second mode and the first mode is the same, promoting the increase of the second mode
(14,−14) by maintaining the amplitude of mode (18,2). When mode (4,16) is removed,
the amplitude of mode (14,−14) steadily decreases until the end of the domain, and the
overshoot of both linear and nonlinear energy transfers disappears; see figure 14(a,b).
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Figure 14. Evolution of (a) the amplitudes of modes (18,2) and (14,−14), (b) the integrated energy transfer of
mode (14,−14), and (c) the integrated energy transfer of mode (18,2).

This indicates that the interactions between modes (18,2), (14,−14) and (4,16) are crucial
in the rapid growth of mode (14,−14). Both modes (18,2) and (4,16) act as catalysts,
facilitating energy transfer from the mean flow to the oblique mode (14,−14).

It is worth noting that, compared with the amplifying effect of the second mode oblique
wave on the first mode, the amplifying effect of the second mode oblique wave on the
oblique second mode is weaker, and it is difficult for the second mode oblique wave to
enter the resonance state with the difference mode it produces.

5. Interaction between a pair of oblique second modes and an oblique wave

In this section, the interactions between a pair of oblique second modes with the same
frequency and opposite spanwise wavenumbers and an oblique wave are investigated. The
amplitude of each oblique second mode is set at 0.00075u∞, and the sum of the amplitudes
of the second mode pair is equal to 0.0015u∞, which is equivalent to the amplitude of a
single second mode in § 4. The high amplitude of steady modes will be generated by
the interactions between a pair of oblique second modes; thus, the interactions between
these steady modes and oblique modes are studied. The simulation involves a total of 25
modes, encompassing both the steady modes and the harmonic modes that result from the
interaction between the steady modes and oblique modes.

A parametric study is conducted by considering a pair of second mode oblique waves
(18,2) and (18,−2) and another oblique wave at the inlet of the domain. A total of 272 cases
are calculated, including 17 frequencies and 16 spanwise wavenumbers. The contours of
the nonlinear amplitude and the ratio of nonlinear to linear amplitudes at x = 1.025 are
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Figure 15. Amplitude of the oblique waves at x = 1.025 m: (a) contours of the nonlinear amplitude,
ln Anon/Ain; (b) contours of the ratio of the nonlinear amplitude to the linear amplitude, ln Anon/Alin.

plotted in figure 15. The nonlinear amplitudes of the unstable first and second modes
are the highest in the n–f contours, specifically modes (3,4) and (14,2), as shown in
figure 15(a). The ratio of nonlinear to linear amplitudes shows that modes with greater
spanwise wavenumbers are amplified more, while unstable first and second modes are less
amplified; see figure 15(b). Overall, the distributions of the nonlinear amplitude and ratio
of nonlinear to linear amplitudes are similar to those of the interactions between a single
second mode and a single oblique wave. The difference is that the maximum amplitude in
figure 15 is lower than that in figure 3. For instance, the maximum value of ln Anon/Ain is
greater than 5.0 in figure 3(a), whereas it is around 3.0 in figure 15(a).

The interactions between a pair of oblique second modes and an oblique wave are further
studied by selecting mode (8,10) as the representative oblique wave. The evolution of
various modes is depicted in figure 16(a). A high amplitude of the steady mode (0,4)
is observed, which is generated by the interactions between modes (18,−2) and (18,2).
Mode (0,8) is generated by interactions between harmonic modes, while modes (10,−8)
and (10,−12) are the difference modes and modes (26,8) and (26,12) are the sum modes.
The amplitude of mode (8,10) rapidly grows downstream of x = 0.68 m, resulting in a
phase lock between mode (8,10) and the difference modes; see figure 16(b). To investigate
the role of various modes, (0,4), (0,8), (0,0), sum modes and difference modes are forced
to zero.

The role of different modes on the evolution of oblique wave (8,10) is analysed as shown
in figure 17(a–c). The high amplitude of mode (0,8) has little effect on the growth of the
oblique wave (8,10), as the amplitude of mode (8,10) without mode (0,8) remains almost
the same as the baseline case. The linear and nonlinear energy transfer of modes (8,10)
and (18,2) is also found to be similar to the baseline. However, when mode (0,0) is forced
to zero, the amplitude of mode (18,2) decreased more quickly downstream of x = 0.63 m
due to reduced linear energy transfer, leading to a decrease in the amplitude of mode (8,10)
in the downstream region. Compared with the impact of mode (0,0), the effect of mode
(0,4) is weaker on the promotion effect. Overall, the MFD plays a more significant role in
promoting the rapid growth of mode (8,10), while the steady modes (0,4) and (0,8) have a
limited impact.
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Figure 16. Streamwise evolution of (a) the maximum amplitude of the streamwise velocity fluctuation and
(b) the phase velocity of various modes in the streamwise direction.
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and (c) the energy transfer of mode (18,2) in the streamwise direction.

The role of sum and difference modes is also studied, as shown in figure 18. Four cases
without modes (10,−8), (10,−12), (26,12) and (26,8) are considered. The results showed
that the difference modes (10,−8) and (10,−12) play a crucial role in the fast growth of
mode (8,10). When these modes are forced to zero, the amplification of mode (8,10) is
not observed. The amplification effect is weaker when only one of the difference modes
(10,−8) or (10,−12) is removed. Although phase locking is observed between modes
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Figure 18. Evolution of the amplitude of modes (18,2) and (8,10), sum modes (26,12) and (26,8), and
difference modes (10,−12) and (10,−8) along the streamwise direction.

(8,10) and the sum modes (26,8) and (26,12), the sum modes have negligible effect on
the evolution of mode (8,10). When the sum modes are forced to zero, the evolution of
mode (8,10) remained almost the same as in the baseline case.

The interactions between a pair of oblique second modes and a single oblique second
mode are not shown in this study as the mechanism behind these interactions is similar to
the ones discussed in present section and § 4.3.

6. Interaction between a pair of second modes and a pair of oblique waves

The interaction between a pair of oblique second mode waves and a pair of oblique waves
is studied using DNS. The use of DNS is necessary as the NPSE have a tendency to
diverge and become unreliable in strong nonlinear stages. Furthermore, the aim is to verify
two new nonlinear transition paths based on the results above and to thoroughly examine
the complete laminar-to-turbulent transition through these two new nonlinear paths using
DNS. It is important to note that in this section, (m,n) represents the sum of modes (m,n)
and (m,−n) for convenience.

The computational domain for the DNS extends from 0.45 to 1.25 m in the streamwise
direction, from 0.0 to 0.1 m in the wall-normal direction and from 0.0 to 0.0375 m in the
spanwise direction. The size of the domain normalized by the boundary layer thickness at
the inlet is approximately 250.0δin × 25.0δin × 11.7δin. The spanwise width of the domain
is equal to the widest spanwise wavelength of the modes in table 2. The grid resolution
consists of 2100 × 175 × 160 points in the three dimensions, with a maximum grid
resolution of �x+

max × �y+
w × �z+

max = 10.0 × 0.5 × 6.1 normalized by the maximum
wall shear stress τw. A similar grid resolution has been validated and used in previous
studies (Li et al. 2010a; Unnikrishnan & Gaitonde 2019). At the inlet of the DNS, an inflow
disturbance, obtained from solving the NPSE, is added. This disturbance is expressed as

φ
′ = φ̂m,n(x, y) exp(i(mβz − nωt)). (6.1)

The mode shapes of modes (18,2), (16,2) and (8,10) are depicted in figure 19, which are
normalized by the maximum streamwise velocity fluctuation. Modes (18,2) and (16,2)
constitute the oblique second mode, while mode (8,10) belongs to the first oblique mode,
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Cases Inlet modes Amplitude Lx × Ly × Lz (δin) nx × ny × nz

S1 (18,2) 0.0032

250.0 × 25.0 × 11.7
2100 × 175 × 160

S1w (18,2) 0.0016

S2 (18,2) 0.0016
(8,10) 0.00075

S2-1 (16,2) 0.0016
(8,10) 0.00075

S3
(18,2) 0.0008
(16,2) 0.0008
(8,10) 0.00075

Table 2. Details of test cases. Here, δin represents the boundary layer thickness at the inlet.
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Figure 19. The mode shapes of (a) mode (18,2), (b) mode (16,2) and (c) mode (8,10) at the inlet. The red
dashed, blue dash–dotted and solid lines represent the real part, imaginary part and magnitude of the mode
shapes, respectively.

as seen in figure 1. The second modes (18,2) and (16,2) exhibit a greater wall-normal
disturbance velocity than the first mode (8,10), which is responsible for the lift-up effect
and subsequent formation of streaks during the second mode oblique breakdown (Zaki &
Durbin 2005, 2006). Additionally, the mode shape of the second modes spans the edge
of the boundary layer, whereas that of the first mode is located closer to the edge. These
features have important implications for the transition mechanisms in the cases listed in
table 2.

6.1. Nonlinear interactions
Table 2 presents five cases for study. The reasons for using these five examples will be
explained in the following paragraphs.
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Figure 20. (a) Evolution of modes (18,2), (0,4) and (0,8) for cases S1 and S1w in the streamwise direction.
Instantaneous iso-surface of streamwise velocity at (b) u = 0.6 for case S1 and (c) u = 0.6 for case S1w,
coloured by the streamwise velocity fluctuations.

The first case, S1, is the second mode oblique breakdown, which is initiated by a
pair of second mode waves with an initial amplitude of streamwise velocity perturbation
of 0.0032u∞. Case S1w is the second mode oblique breakdown with a weaker initial
amplitude of 0.0016 than that of case S1. The second mode oblique breakdown has been
previously studied in Franko & Lele (2013) and Zhou et al. (2022b). The nonlinear stage
of the second mode oblique breakdown results in the generation of streamwise streaks
through the nonlinear interaction of oblique instability waves. These streaks can lead
to the self-sustained breakdown of the boundary layer. For instance, the breakdown of
streamwise streaks results in the breakdown of the boundary layer in figure 20(b). The
high amplitude of modes (0,4) and (0,8) in case S1 is responsible for the high amplitude of
streamwise streaks, as can be seen in figure 20(a). However, the self-sustained breakdown
of the streaks can only occur when their amplitude reaches a certain threshold value. In
case S1w, the amplitude of the steady modes (0,4) and (0,8) is lower than in case S1, and
the breakdown of streamwise streaks is not observed as in figure 20(c). This is because the
weaker amplitude of streaks cannot lead to a self-sustaining state of the boundary layer
breakdown. However, it is challenging to determine the exact amplitude of streaks that
leads to the self-sustaining breakdown of the boundary layer.

6.1.1. Path 1
It is interesting to see if the introduction of a damping first oblique mode with
low amplitude in case S1w can trigger transition and result in a fully developed
turbulent boundary layer, as a pair of low-amplitude oblique second modes or a pair of
low-amplitude oblique first modes with damping amplification alone cannot cause the
transition. This hypothesis is tested in case S2, which is called path 1 in the present study.
In this path, both the second mode (18,2) and the first mode (8,10) are introduced at the
inlet of the domain, with initial amplitudes of streamwise velocity disturbance of 0.0016
and 0.00075, respectively. The goal is to determine if this new transition path leads to a
self-sustaining state of the breakdown of the boundary layer and if it results in a fully
developed turbulent boundary layer. The results of case S2 will provide insights into the
effect of combining the oblique second mode and a damping first oblique mode on the
transition mechanism.

The breakdown of the boundary layer can be seen from figure 21(b–e). To determine the
cause of the boundary layer breakdown, the evolution of the modes in the streamwise
direction for case S2 is shown in figure 21(a). It is observed that the amplitude of
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Figure 21. (a) The evolution of various modes for case S2 in the streamwise direction. The instantaneous
iso-surfaces of the streamwise velocity for (b) u = 0.9, (c) u = 0.6 and (d) u = 0.3. (e) Instantaneous
iso-surface of Q = 0.0002 for case S2, coloured by the streamwise velocity fluctuations.

mode (8,10) decreases upstream of x ≈ 0.6 m and then rapidly grows downstream of
this streamwise station. This observation is consistent with the results of NPSE, which
found that the oblique second mode leads to the rapid growth of the first oblique modes.
Moreover, the interaction between modes (8,10) and (18,2) results in the generation of
difference modes (10,8) and (10,12) and sum modes (26,8) and (26,12). The amplitude of
difference modes is approximately one order of magnitude higher than that of sum modes.

The evolution of oblique waves (18,2) and (8,10) can be visualized using the Q-criterion
as shown in figure 21(e). The oblique wave induced by mode (18,2) dominates the flow
field upstream of x ≈ 0.75. As the amplitude of mode (18,2) decreases, this oblique wave
disappears. Subsequently, a second type of oblique wave in the form of Λ shapes is
observed due to the high amplitude of mode (8,10). Although the amplitude of mode
(8,10) grows to a high level, it is still lower than the amplitudes of modes (0,4) and
(0,8), which are generated by the nonlinear interactions of mode (18,2). Due to the high
amplitude of mode (8,10), the interaction between the oblique wave and streaks causes a
weak distortion of the streaks from x ≈ 0.7 to x ≈ 0.8 m; see figure 21(c,d). However, this
distortion is not enough to cause the breakdown of the boundary layer. The evolution of
modes (0,4) and (0,8) between cases S1w and S2 is almost the same upstream of x ≈ 1.0 m
where the boundary layer is about to break down in case S2, as shown in figures 22
and 21. This indicates that the rapid growth of mode (8,10) has limited effect on the

973 A27-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

68
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.681


Interactions between oblique second mode and oblique waves

(u
)′ m

ax
10–4

10–5

10–3

10–2

10–1

100

(0,8)

(0,20)
(0,4)

0.45 0.65 0.85 1.05 1.25

x (m)

Case S1w

Case S2

(18,2)

Figure 22. Evolution of modes (18,2), (0,4), (0,8) and (0,20) in the streamwise direction for cases S2 and S1w.

steady modes (0,4) and (0,8) generated during the nonlinear interactions of the second
mode oblique breakdown. The interactions between oblique waves and streaks generated
by the oblique second mode are relatively weak; however, the interactions between modes
(8,10) and (0,20) are quite strong. These nonlinear interactions between modes (8,10)
cause the high amplitude of mode (0,20) in figure 21(a) from approximately x = 0.8
to x = 1.0 m, which is even higher than for modes (0,4) and (0,8). As a result, the
high amplitude of mode (0,20) leads to high-amplitude streaks with smaller scale in the
spanwise direction, as seen in figure 21(c,d). The strong interaction between the oblique
wave and these streaks results in significant distortion of the streaks from approximately
x = 0.8 to x = 1.0 m, which eventually leads to the breakup of streaks at x = 1.0 m, as
shown in figure 21(c,d). The breakdown of the Λ-shaped structure occurs slightly upstream
of x = 0.95 m compared with the streaks, as seen in figure 21(c,e).

6.1.2. Path 2
As mentioned above, the oblique second mode has a promotion effect on the oblique
first mode. In addition, the unstable region of the second mode with lower frequency is
more downstream than that of the second mode with higher frequency. Based on these
two results, the addition of the oblique second mode (16,2) into case S2 results in the
formation of case S3. The aim of this set-up is twofold: first, to investigate if the transition
to turbulence can occur with a second mode of lower initial amplitude than in case S2.
Second, to verify that the oblique mode (8,10) can be promoted by the two oblique second
modes (18,2) and (16,2) at two different streamwise locations, creating a domino-like
effect. To achieve these objectives, the modes (18,2), (16,2) and (8,10) are added at the
inlet of case S3 with initial amplitudes of streamwise velocity perturbation of 0.0008u∞,
0.0008u∞ and 0.00075u∞, respectively. Thus, case S3 represents path 2.

The evolution of modes, including the instantaneous iso-surface of the streamwise
velocity and the iso-surface of the Q-criterion, are depicted in figure 23. As shown in
figure 23(d), the boundary layer breaks down into smaller scales. Furthermore, compared
with case S2, the breakup station of the boundary layer in case S3 occurs upstream. The
reason behind the early boundary layer breakdown can be found in the evolution of various
modes; see figure 23(a). The amplitude of mode (8,10) experiences a twofold increase,
with the first beginning at x ≈ 0.6 m, due to the promotion effect of mode (18,2), and the
second beginning at x ≈ 0.8 m, due to mode (16,2). As a result of the first promotion, the
amplitude of mode (8,10) increases to a high level, leading to stronger interactions between
modes (16,2) and (8,10) than between modes (18,2) and (8,10). For example, the amplitude
of the difference modes (8,8) and (8,12) generated by the interactions between modes
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Figure 23. (a) The evolution of various modes for case S3 in the streamwise direction. The instantaneous
iso-surfaces of the streamwise velocity for (b) u = 0.9, (c) u = 0.6 and (d) u = 0.3. (e) Instantaneous
iso-surface of Q = 0.0002 for case S3, coloured by the streamwise velocity fluctuations.

(16,2) and (8,10) is higher than that of the difference modes (10,8) and (10,12) generated
by modes (18,2) and (8,10), which is almost the same as that of the steady modes (0,4) at
x ≈ 0.87 m. The two-stage promotion process on mode (8,10) results in a high amplitude of
mode (0,20), leading to the boundary layer transition due to the high amplitude of oblique
modes, difference modes and steady modes. In the flow field structure, the breakdown of
streaks and Λ-shaped vortices leads to the breakdown of the boundary layer, which is in
agreement with the modal results; see figure 23(c,e).

In order to elucidate the specific roles played by modes (16,2) and (18,2) in the
two-stage promotion processes, case S2-1 is employed as an illustrative example. The inlet
disturbances consist of modes (16,2) and (8,10) with respective amplitudes of 0.0016 and
0.00075. The results pertaining to mode (8,10) for cases S2, S2-1 and S3 are depicted
in figure 24. It is observed that both modes (18,2) and (16,2) can induce significant
amplification of mode (8,10). In the case of S2-1, the rapid growth of mode (8,10)
commences at x ≈ 0.75 m, while in case S2 it initiates at x ≈ 0.6 m. Notably, these two
positions align with the locations where the two-stage promotion of mode (8,10) begins in
case S3. Consequently, the two-stage promotion of mode (8,10) in case S3 can be attributed
to modes (18,2) and (16,2).

In conclusion, the realization of path 1 by case S2 demonstrates that a pair
of low-amplitude second oblique waves alone cannot lead to the second mode
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Figure 24. Evolution of modes (18,2) and (8,10) for case S2, modes (16,2) and (8,10) for case S2-1, and mode
(8,10) for case S3 in the streamwise direction.

oblique breakdown. However, the addition of a pair of low-amplitude damping first oblique
modes does lead to the breakup of the boundary layer. This suggests that the transition
cannot be achieved by either of these two types of disturbances alone, but only through
their combination. Case S3 is an example of path 2 and demonstrates that a combination
of three low-amplitude modes can trigger a domino-like process, resulting in the rapid
breakdown of the boundary layer with a lower initial amplitude of the second mode than
in case S2.

6.2. Turbulent region
In the end, our goal is to determine if either of the two transition paths can lead to a
fully developed turbulent boundary layer. At a fully developed turbulent boundary layer,
the skin-friction coefficient and heat transfer on the wall can be described by theoretical
correlations as documented in White (2006). The adiabatic wall temperature Taw is
calculated using an approximation presented in White (2006),

Taw = T∞
(

1 + r
γ − 1

2
Ma2

∞

)
, (6.2)

where r = Pr1/3. The turbulent correlation of the skin-friction coefficient, as presented in
White (2006) and Bradshaw (1977), has been validated for the case of a non-adiabatic wall
and is used in this study:

Cf = 0.455
S

[
ln

(
0.06

S
(Rex − Rexin)

μ∞
μw

√
T∞
Tw

)]−2

, (6.3)

where

S =
√

(Taw/T∞ − 1)

arcsin(A) + arcsin(B)
. (6.4)

The subscripts ∞ and w denote the conditions at the free stream and wall, respectively.
The parameters A and B are defined as

A = 2a2 − b√
b2 + 4a2

, B = b√
b2 + 4a2

(6.5a,b)
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Figure 25. Evolution of (a) the skin-friction coefficient Cf and (b) the Stanton number St for cases S1, S1w,
S2 and S3.

where

a =
√

r
γ − 1.0

2
Ma2∞

T∞
Tw

, b =
(

Taw

Tw
− 1

)
. (6.6a,b)

Based on the Reynolds analogy (White 2006), the Stanton number is

St = Cf

2Pr2/3 . (6.7)

The evolution of the skin-friction coefficient Cf and Stanton number St is plotted in
figure 25. Owing to the high initial amplitude of the second mode, the transition onset in
case S1 is earlier than in other cases. And the skin friction shows good agreement between
the computational and theoretical results at the end of the domain. The skin friction
of case S1w stays at the laminar value. Case S3 exhibits the most developed turbulent
boundary layer owing to its rapid and early transition, with skin-friction values consistently
aligning with theoretical values from x ≈ 1.05 m. In contrast, case S2 exhibits a very short
turbulent region due to its late transition and skin-friction values that align with theoretical
values over a shorter range. The Stanton number shows an overshoot in heat transfer for
cases S2 and S3 in the transition region, with case S2 failing to recover its value to the
turbulent value due to the limited length of the computational domain. The DNS values
of the Stanton number for both cases S1 and S3 are lower than the theoretical values. An
additional overshoot in heat transfer is also observed in the laminar region for cases S2
and S1, with case S1 exhibiting a greater overshoot due to the higher initial amplitude
of the second mode. The additional heat transfer overshoot is caused by the dilatation
dissipation generated by the saturated oblique second mode, as reported in works such as
Zhu et al. (2018) and Zhou et al. (2022b). It should be noted that the additional heat transfer
overshoot in the laminar region vanishes in case S3 due to the low initial amplitudes of the
second modes (18,2) and (16,2), which cannot lead to strong dilatation dissipation.

Finally, the mean-flow scaling transformation is utilized to examine the development
of the mean streamwise profile, moving from the laminar to the turbulent boundary
layer. Two transformation methods, namely the Van Driest transformation (Van Driest
1951) and the total-stress-based transformation proposed by Griffin et al. (2021), are
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employed in this study. In comparison with the Van Driest transformation, the mean-flow
transformation introduced by Griffin et al. (2021) demonstrates broader applicability,
particularly for walls experiencing heat transfer. For the Van Driest transformation, the
streamwise velocity and length are normalized based on the friction velocity and the length
scale at the wall, respectively. They are defined as

U+
VD = UVD

uτ

(6.8)

and

y+ = ρwuτ y
μw

, (6.9)

respectively, where the friction velocity is calculated as

uτ =
√

τw

ρw
. (6.10)

The Van Driest transform is in form of

UVD =
∫ u

0

√
ρ

ρw
du. (6.11)

For the total-stress-based transformation of Griffin et al. (2021), a semilocal wall-normal
coordinate is used, which is calculated as

Y+ = y
√

τwρ

μ
. (6.12)

The form of the transformation is

U+ =
∫ Y+

0
S+
τ dY+. (6.13)

The details of the generalized non-dimensional mean shear S+
τ can be found in Griffin et al.

(2021). The scaled mean streamwise velocity for cases S2 and S3 is shown in figure 26. In
the turbulent region, the scaled mean profile should match the theoretical formulas

U+
VD = y+ and U+

VD = 2.5 ln y+ + 5.5, (6.14a,b)

at the viscous sublayer and the log layer (Coles 1956), respectively.
The simulation results demonstrate that the mean streamwise velocity profile, when

scaled using the approach proposed by Griffin et al. (2021), progressively approaches the
theoretical value as it evolves in the streamwise direction for cases S2 and S3, particularly
within the log layer at x = 1.225 m; see figure 26(b,d). In addition, the theoretical results
closely align with the results obtained from the Van Driest transformation at x = 1.225 m
for cases S2 and S3; see figure 26(a,c). However, a slight disparity is observed in the slope
rate of the scaled velocity between the theoretical values and those obtained using the
Van Driest transformation. Notably, a similar difference was reported in a previous study
by Guo et al. (2022). Overall, the results of the skin-friction distribution and the scaled
mean streamwise velocity provide evidence that these two new transition paths can lead to
a fully developed boundary layer.
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Figure 26. Evolution of the scaled mean streamwise velocity at different streamwise stations for (c,d) case S2
and (a,b) case S3. The blue and red lines are results scaled by the Van Driest transformation (Van Driest 1951)
and total-stress-based transformation of Griffin, Fu & Moin (2021), respectively.

7. Conclusions

The nonlinear interactions between oblique second mode and oblique waves in a
high-speed boundary layer at Mach 4.5 are investigated using a combination of LST, NPSE
and DNS.

The results of the LST reveal the presence of first and second mode instabilities in
the boundary layer. Further parametric analysis of the interactions between oblique waves
using NPSE shows that the presence of an oblique second mode can enhance a broad range
of oblique waves, including both first and second modes. The low-amplitude oblique waves
with a small spanwise wavenumber have been found to be less amplified by the oblique
second mode. However, as the spanwise wavenumber of the oblique wave increases,
the rate of amplification predicted by NPSE becomes greater compared with the linear
results. Despite this, the linear amplification rate of oblique waves with larger spanwise
wavenumbers is more damping. As a result, the oblique wave with the greatest nonlinear
amplification may not necessarily be the most amplified wave when considering both
linear and nonlinear amplification. The frequency of the most amplified oblique waves
is around 40 kHz, and the wave angle between the oblique second mode and the oblique
wave is approximately 50◦. The interaction between the rapidly growing second mode
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and the oblique modes results in the formation of a difference mode, and the parametric
resonance between the difference mode and the oblique waves is the key factor driving the
amplification effect. Mean-flow distortions (0,0) also play a beneficial role in amplifying
the oblique waves. Kinetic energy transfer shows that the oblique wave gains energy from
the mean flow, not the oblique second mode. The results of parametric and kinetic energy
transfer studies suggest that the mechanisms and outcomes of the interactions between
a pair of oblique second modes and a single oblique wave are similar to those between
a single second mode and an oblique wave, as the steady modes generated by a pair of
oblique second modes have a limited impact on the oblique wave.

Based on the results of the NPSE study, we propose two transition paths that have been
analysed using DNS. The first path involves the combination of a pair of low-amplitude
oblique second modes and a pair of low-amplitude oblique first modes with damping
amplification. It is important to note that a pair of low-amplitude oblique second modes
or a pair of low-amplitude oblique first modes with damping amplification alone cannot
cause the transition. It leads to the transition of the boundary layer, as the amplified effect
of the second mode on the first mode causes a high amplitude of the oblique first mode.
Then, the interaction between a pair of high-amplitude oblique first modes results in a
high-amplitude steady mode. The breakup of the oblique first mode and this steady mode
results in the boundary layer breakdown. The second path involves the combination of
different types of oblique waves with appropriate parameters, which leads to a domino-like
effect and the rapid breakup of the boundary layer, even with a lower initial amplitude
than for the first path. Our DNS analysis has identified the domino-like process, where two
oblique second modes cause oblique first modes to be amplified at two different streamwise
stations, leading to a rapid breakdown of the boundary layer. Finally, our DNS results show
that both of these transition mechanisms can lead to a fully developed turbulent boundary
layer.
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Appendix. Validation of solvers

To validate the DNS and NPSE solver used in the current study, simulations of the second
mode oblique breakdown are conducted using both DNS and NPSE. The free-stream
conditions are the same as those listed in table 1. A pair of oblique second modes,
(18,2) and (18,−2), with an amplitude of 0.001u∞ of the streamwise velocity fluctuation,
is seeded at the inlet located at x0 = 0.45 m. As shown in figure 27(a), there is good
agreement between the results obtained from DNS and NPSE. In addition, the results
from our NPSE solver agree well with those reported in Chang & Malik (1994), which can
be found in our previous study (Zhou et al. 2023).
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Figure 27. (a) Comparison of the evolution of modes in a Mach 4.5 boundary layer solved by the NPSE and
DNS methods used in the present study. (b) The evolution of five modes involved in the interactions with a
single second mode for cases of six modes and fifteen modes reserved.

Finally, the accuracy of considering only six modes to capture the interactions between a
single second mode and an oblique wave in § 4 is validated by comparing it with the case
where fifteen modes are included. As mentioned earlier, the fifteen modes include the
six modes along with their higher-harmonic modes. The initial amplitude of the oblique
second mode (18,2) is 0.0015u∞, and is 10−5u∞ for the five oblique waves. The evolution
of five modes interacting with the single mode (18,2) separately is depicted in figure 27(b).
It is evident that the nonlinear evolution of the different modes obtained from the six-mode
and fifteen-mode cases exhibits good agreement. This agreement confirms the reliability of
the DNS and NPSE solvers employed in this study. Thus, the utilization of the six reserved
modes in the computation is considered accurate. The validation of the LST solver can be
found in Zhou et al. (2022a).
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