Wolf-Rayet star parameters from spectral analyses

Wolf-Rainer Hamann¹, Götz Gräfener¹, and Lars Koesterke²

Abstract. The Potsdam non-LTE code for expanding atmospheres, which accounts for clumping and iron-line blanketing, has been used to establish a grid of model atmospheres for WC stars. A parameter degeneracy is discovered for early-type WC models which do not depend on the 'stellar temperature'. 15 Galactic WC4-7 stars are analyzed, showing a very uniform carbon abundance (He:C = 55:40) with only few exceptions.

1. A grid of models for WC stars

The Potsdam non-LTE code, which accounts for complex model atoms, irongroup line blanketing and clumping (cf. Gräfener et al. 2002), has been employed to establish a grid of WC-type model atmospheres. The following parameters are kept constant for the whole grid: chemical composition He:C:O:Fe = 55:40:5:0.16 (by mass), luminosity $\log L/\mathrm{L}_\odot=5.3$, terminal wind velocity $v_\infty=2000~\mathrm{km~s^{-1}}$, clumping factor D=10. Grid variables are the stellar (effective) temperature T_* (referring to $\tau_\mathrm{Ross}=20$), and the 'transformed radius' $R_\mathrm{t}=R_*[v_\infty/(\dot{M}\sqrt{D})]^{2/3}$ (unit convention: v_∞ in 2500 km s⁻¹, \dot{M} in $10^{-4}~\mathrm{M}_\odot~\mathrm{yr^{-1}}$, cf. Hamann & Koesterke 1998). For a fixed T_* , emission line equivalent widths of WR models depend to a good approximation only on R_t irrespective of different combinations of R_* , \dot{M} , v_∞ and D, while absolute fluxes scale with R_*^2 .

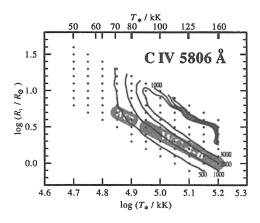


Figure 1. Grid of WC models: contours of equivalent widths for one specific spectral line (labels: $-W_{\lambda}/\text{Å}$). Small circles mark the calculated grid models. The grey bars indicate the location of the analyzed Galactic WC 4-6 ($T_{\star} \gtrsim 90\,\text{kK}$) and WC 7 ($T_{\star} \lesssim 80\,\text{kK}$) stars. Note that for the hotter part the contours almost align with the grey strip.

Lehrstuhl Astrophysik, Institut für Physik, Universität Potsdam, Am Neuen Palais 10, D-14469 Potsdam, BRD
 NASA Goddard Space Flight Center, Greenbelt MD 20771, USA

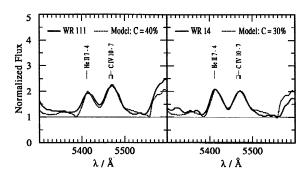


Figure 2. Determination of the carbon abundance from He II 5412 and C IV 5471. The observed spectrum (full line) of WR 111 is fitted by a model (dotted line) with He:C=55:40 (by mass), while WR 14 shows less carbon (right panel).

The contours of equivalent widths in the $\log T_*$ - $\log R_{\rm t}$ -plane (e.g. Figure 1) reveal a further degeneracy for hot, dense expanding atmospheres. For $T_* \gtrsim 100\,{\rm kK}$, the contours almost align with $R_{\rm t} \propto T_*^{-2}$ (cf. the grey strip in Figure 1). This means that early-type WC models basically depend on one single parameter only, which we may define as

$$R_{
m t100kK} = R_{
m t} \left(rac{T_*}{100\,{
m kK}}
ight)^2 \; , \quad {
m implying} \quad R_{
m t100kK} \propto L^{1/2} \left(rac{\dot{M}\sqrt{D}}{v_\infty}
ight)^{-2/3}$$

Inspection of synthetic spectra confirms that they are indeed very similar for models with the same $R_{\rm t100kK}$, irrespective of T_* . The physical reason is that in dense winds, all radiation (including continuum) arises from rapidly moving layers, and their location is determined by \dot{M} alone. Note that the same $R_{\rm t100kK}$ implies the same ratio $L/\dot{M}^{4/3}$ (v_{∞} , D fixed).

2. Grid analysis of Galactic WC stars (12 WC 4-6 and 3 WC 7)

Spectra of 15 (putatively) single WC 4-7 stars were taken from own ESO and Calar Alto observations, the Torres & Massey (1987) atlas, and the *IUE* archive. The interstellar reddening is derived from fitting the spectral energy distribution. The line spectra of all WC 4-6 stars look amazingly similar. They all fall into the regime of parameter degeneracy $(T_*>90\,\mathrm{kK})$, whereas the WC 7 stars are less hot $(T_*<80\,\mathrm{kK})$. The coarse fits with grid models yield $\log R_{\rm t100kK}=0.4$ with only small scatter, which implies $\log(L/L_\odot)-\frac{4}{3}\log(\dot{M}/(\mathrm{M}_\odot\,\mathrm{yr}^{-1})=11.9$. Only four of the program stars have known distances, allowing for an estimate of their luminosity: $\log(L/L_\odot)=5.4$, 5.1, 5.2, 5.3 for WR 23, WR 111, WR 154 and WR 68, respectively. The helium/carbon abundance ratio is determined (cf. Figure 2). Again, most program stars are very similar and give a good fit with He:C = 55:40 (by mass) as chosen for the grid. Only four stars show slightly less carbon: WR 5 and WR 14: 30%; WR 17 and WR 68: $\lesssim 30\%$.

References

Gräfener, G., Koesterke, L., Hamann, W.-R. 2002, A&A 387, 244 Hamann, W.-R., Koesterke, L. 1998, A&A 335, 1003 Torres, A.V., Massey, P. 1987, ApJS 65, 59