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Bileaflet mechanical heart valves (BMHV) create unphysiological turbulent flow. Such
turbulent flow involves multiple instability mechanisms interacting with one another in
a confined geometry. For instance, an impinging leading-edge vortex (ILEV) instability
creates disturbances at the leading edge of the valve leaflets, while potentially promoting
turbulence downstream of the BMHV (Zolfaghari and Obrist, Phys. Rev. Fluids, vol. 4,
2019). In this article, we use adjoint-based methods to study the structural sensitivity of the
ILEV instability in the BMHV, and to quantify the role of this instability in the maximum
disturbance energy growth in the wake of the BMHV. We first present a direct numerical
simulation to show the effect of the ILEV instability on the turbulent flow in the wake
of the valve. Second, we perform a modal linear stability analysis on a two-dimensional
subdomain attached to the leading edge of one leaflet. We investigate the sensitivity of
the global modes associated with this flow using their adjoints, and then show a passive
control scenario using a local feedback source. This results in a partial improvement in the
flow oscillations downstream of the leaflets. We finally present a non-modal approach to
identify the optimal initial conditions for achieving maximum energy growth at arbitrary
locations. We show that, for sufficiently large times, the optimal initial condition for
highest energy growth in the wake points at the leading edge, which includes the ILEV
instability. Our study illustrates that an improved leading-edge shape can effectively reduce
turbulence in the wake of the BMHV.
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1. Introduction

1.1. Physiological background
The aortic valve regulates the oxygenated blood flow from the heart to the rest of the
organs. This valve is located between the left ventricle and the aorta, and possesses three
flexible cusps. Diseases of the aortic valve make up a significant portion of valvular heart
diseases (Iung & Vahanian 2011), which mainly involve thickening of the valve cusps
(aortic stenosis). In severe conditions, the diseased valve must be replaced by a prosthetic
valve (Yoganathan, He & Casey 2004; Sotiropoulos, Le & Gilmanov 2016).

One example of widely used prosthetic heart valves is the bileaflet mechanical heart
valve (BMHV). This consists of two semi-elliptical metallic plates which regulate blood
flow by pivoting in a ring-shaped housing frame (see figure 1a). These valves are favoured
for younger patients thanks to their high durability. However, BMHVs are associated with
high risk of blood clotting, for which the recipients of these valves should receive life-long
blood thinning drugs to combat the risk of stroke. Shear-induced platelet activation (Holme
et al. 1997; Alemu & Bluestein 2007), which is linked to turbulent blood flow in the valve,
has been attributed to the platelet activation process. It is therefore beneficial to improve
the flow in BMHVs, perhaps through design modifications, to mitigate the risk of blood
clotting and stroke. Recent efforts in this area include passive control via deploying vortex
generators (Hatoum & Dasi 2019) or superhydrophobic surfaces (Hatoum et al. 2020) on
the valve leaflets, both with the goal of reducing the intensity of turbulent flow downstream
of the valve.

1.2. Brief overview of BMHV fluid mechanics
The fluid mechanics of BMHVs have been previously studied using experimental (Ge et al.
2008; Bellofiore, Donohue & Quinlan 2011; Haya & Tavoularis 2016) and computational
(Dasi et al. 2007; Borazjani, Ge & Sotiropoulos 2008; Yun et al. 2014b) investigations.
These studies revealed a complex flow scenario including multiple instability mechanisms
interacting in a confined and complex geometry. The flow in the wake of the valve is
described as chaotic or turbulent, which has been attributed with shear-induced platelet
activation risk in the bulk flow as well as in the hinge area of these prostheses (Yun et al.
2012; Hedayat, Asgharzadeh & Borazjani 2017; Hedayat & Borazjani 2019). Hedayat et al.
(2017) showed that the platelet activation potential was significantly higher for BMHVs
than bioprosthetic valves (i.e. valves with soft tissue cusps to mimic the native valve)
at peak flow. They speculated that this could be due to the larger extent of small-scale
structures for this flow. In addition to platelet activation, the relation of a flow rich in
small-scale vortices and red blood damage has been studied by Quinlan & Dooley (2007).
Their results showed that the root mean square of the fluid stress on cells is at least an
order of magnitude less than the Reynolds stress, which is in line with the hypothesis that
smaller flow eddies cause more stress on the blood cells.

The importance of vortical or turbulent flows to the forces exerted on blood components
demands more investigation of the mechanisms of laminar–turbulent transition in flow
through BMHVs. This can provide a more in-depth understanding of the turbulent flow
and also point towards efficient ways to delay or reduce turbulence in these prostheses.
Despite this importance, little attention has been paid to this area, perhaps due to the
complexity of the flow. Dasi et al. (2007) used experimental and numerical tools to
study the vorticity dynamics in a BMHV. They discussed the resulting coherent structures
such as vortex rings and shear-layer instabilities, but the quantitative underpinnings of
disturbance growth mechanisms leading to these vorticity phenomena were not addressed.
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Figure 1. (a) Leading-edge view of a Regent mechanical valve (https://www.structuralheartsolutions.com). The
valve leaflets are hinged within a metal frame housing, which is sutured to the aortic root. (b) Leaflet kinematics
of BMHV: (–) numerical fluid–structure interaction simulation of Borazjani et al. (2008) and (◦) experimental
investigation of Dasi et al. (2007). The shaded area in blue shows the interval in which the valve is fully open,
while the shaded area in grey shows the valve opening phase.

Bellofiore et al. (2011) conducted a more elaborate experimental study using up-scaled
model of the valve. Using specific flow probes located downstream of the leaflets, they
reported principal frequencies by calculating the frequency spectrum for an impulsively
started flow as well as a systolic waveform. Based on their up-scaled model, they reported
flow field data at higher spatial and temporal resolutions compared with experiments at
physiologic scales. In particular, their results showed vortices entering the wake of the
valve from within the leaflets, but the origin of these vortices was not investigated. They
reported shedding frequencies as high as 152 Hz (St = 0.23, based on the projection of the
leaflet length on the cross-stream plane and maximum free-stream velocity). Time history
of velocity fluctuations showed that the peak frequency corresponds to peak flow time and
locations downstream of the leaflets’ central orifice. Motivated by this outcome and by the
existing insight on flow around blunt plates in canonical settings (Hourigan, Thompson &
Tan 2001), Zolfaghari & Obrist (2019) investigated the potential source of the high-velocity
disturbances in the wake of the BMHV. Resorting to a bottom-up approach and employing
a two-dimensional submodel, they showed that the impinging leading-edge vortex (ILEV)
instability has a strong influence on the breakdown to chaotic flow in the wake of the valve.

1.3. ILEV instability in BMHVs
BMHV leaflets are mounted at a low angle of incidence (5◦) during a significant part
of a typical heartbeat (Borazjani et al. 2008). Because the Reynolds number (based on
the aortic diameter and the mean inflow velocity at peak flow rate) can reach values as
high as Re = 10 000, this flow configuration becomes highly susceptible to developing
an ILEV instability (Deniz & Staubli 1997; Hourigan et al. 2001) downstream of the
leaflets’ leading edges. The ILEV instability has been addressed using several canonical
configurations (i.e. usually horizontal blunt plates at different chord-to-thickness aspect
ratios and Reynolds numbers). These studies reveal a complex mixture of convective
and absolute instabilities (Soria & Wu 1992), which could significantly affect the flow
downstream of the trailing edge of these plates (Naudascher & Wang 1993). Having
noticed these findings, Zolfaghari & Obrist (2019) investigated the local linear instability
of the ILEV flow scenario in the BMHV. Using a two-dimensional submodel justified by
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the shape of the BMHV leaflets, unstable temporal Orr–Sommerfeld modes were obtained
for this flow. The cusp map procedure (Kupfer, Bers & Ram 1987) was then applied to the
velocity profiles in the ILEV zone, where a pocket of absolute instability was identified.
It was shown by means of two-dimensional (2-D) direct numerical simulation (DNS) that
the absolute instability (wave maker) could be eliminated using a suitable modification
of the leaflet’s shape, which subsequently preserved the laminar flow in the wake of the
BMHV.

1.4. Scope and structure of the present work
Although the 2-D DNS of Zolfaghari & Obrist (2019) and experimental investigations
of Bellofiore et al. (2011) both show incoming vortices from the central orifice causing
high-frequency flow oscillations and small-scale flow structures, it is useful to reproduce
these phenomena using 3-D DNSs. Taking into account the complex 3-D structure of the
valve leaflets not only enhances our view regarding turbulent flow in the wake of the valve,
but also reveals the structure of primary mechanisms at the leading edges of the leaflets.

From a hydrodynamic stability standpoint, even though the work of Zolfaghari &
Obrist (2019) provides insight on local parallel flow instabilities of ILEV structures in
BMHV, a 2-D global analysis is needed to further demonstrate the 2-D spatial structure
of this instability. The use of global instability analysis (Theofilis 2011) allows a more
targeted geometric design effort for ameliorating turbulent flow in the wake of the BMHV.
Finally, both the local parallel and the 2-D global instability analyses only consider
the ILEV zone and disregard the effect of other wave makers in the system. It is thus
important to re-evaluate the role of the ILEV instability in disturbance energy growth in
comparison with other driving mechanisms such as the flow in the cavities. To this end, a
gradient-based approach will be chosen as it can quantify whether instability growth in the
wake area is more strongly promoted by the ILEV instability mechanism or by alternative
and competing mechanisms.

In this present study, we first present a 3-D DNS of systolic BMHV flow. We model
the systolic flow within a 3-D model, which involves fully open leaflets following the
kinematic assumptions given in Zolfaghari & Obrist (2019) and Bellofiore et al. (2011).
We make use of our in-house multi-GPU data-parallel incompressible Navier–Stokes
solver (Zolfaghari & Obrist 2021) for generating the DNS data at very high resolution
(a total of 337 644 801 grid points were used). This simulation was completed in 3 days on
20 GPUs of the Cray XC40/50 (Piz Daint). An equivalent simulation using our massively
parallel CPU-based solver (Henniger, Obrist & Kleiser 2010b) would have taken 1.5 years
to complete with equivalent compute node resources. To our knowledge, this is by far the
highest grid resolution that has been used in a heart-valve simulation. The velocity fields
and the Lagrangian coherent structures show the complex nature of ILEV instabilities and
demonstrate the role these instabilities play in the onset and intensity of turbulent flow past
the valve.

Second, a 2-D global linear instability formulation is developed (Theofilis 2011) for
a subdomain attached to the leading edge of only one leaflet. The considered area was
sufficiently large to cover the full extent of the time-averaged ILEV. We calculated the
temporally unstable modes of this flow by performing a temporal Fourier decomposition
of the linearised Navier–Stokes equations (LNSE). Two zero-frequency unstable global
modes were identified. Furthermore, we calculated the adjoint of these global modes
to obtain their structural sensitivity to the local momentum feedback sources (Hill
1992; Giannetti & Luchini 2007). Regions of high sensitivity were concentrated over
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the wave-maker zone for one mode (mode A), while high sensitivities were also found
upstream of the wave-maker zone for the second mode (mode B). This could be related,
although not shown here, to the capability of the wave maker itself to amplify the
disturbances (mode A), as well as cooperation of the wave maker and base flow (which
includes recirculation over the wave-maker zone) to amplify or weaken the unstable mode
(mode B). Using the sensitivity fields, we attempted to stabilise the flow by introducing
local momentum feedback sources. To this end, small bluff bodies were introduced at
areas of high structural sensitivity, and the effectiveness of these scenarios was tested
using 2-D DNS. This approach failed for mode A, as expected, because its region of
high sensitivity was relatively far from the wall. As a result, the introduced bluff body
created more instability owing to the high Reynolds number of the flow. However, the
same approach worked well for mode B, where it resulted in reduced flow oscillations
between and downstream of the leaflets.

Third, we examine the effect of ILEV instability on energy growth downstream of the
instability source, particularly near the trailing edge and in the wake of the valve. We
resort to the 2-D submodel of Zolfaghari & Obrist (2019) and develop a gradient-based
procedure to obtain optimal initial conditions for achieving maximum disturbance energy
growth for specific locations in the flow. The LNSE are solved over the full domain, so
that possible contributions of other instability mechanisms in the system can be accounted
for. We define a cost functional to maximise the energy growth within a user-defined
geometric mask and to simultaneously constrain the magnitude of the initial energy.
After validating the adjoint looping formulation using transient growth calculations for
plane channel flow at Re = 3000 (Reddy & Henningson 1993), we performed iterative
direct–adjoint looping simulations using various masks at various times. It was found that
for sufficiently large times the optimal initial conditions for maximum disturbance energy
growth are focused around the leading edge of the leaflet, including the ILEV zone. This
was further confirmed for masks that were located between the leaflets (high probability
of ILEV contribution), at the trailing edge of the leaflets, and in the wake of the valve. The
latter case required more time to reveal the leading-edge instability signature, which was
more apparent closer to the instability source, i.e. between the leaflets.

2. Direct numerical simulation

We model the flow with the non-dimensional Navier–Stokes equations for incompressible
flow

∂ ũ

∂t
+ ũ · ∇ũ = −∇p̃ + 1

Re
∇2ũ + f̃ , ∇ · ũ = 0, (2.1a,b)

where ũ denotes the velocity field, p̃ stands for pressure and f̃ is the body force density
(non-dimensional quantities are indicated by ·̃). The Reynolds number is defined as

Re = U0L0

ν
, (2.2)

where U0 = 0.75 m s−1 (one half of the inflow velocity at peak flow rate,), L0 = 3 × rr =
36 mm (three times the aortic root radius) and ν = 2.7 × 10−6 m2 s−1 are the velocity
scale, length scale and the kinematic viscosity (ν = ρ/μ), respectively.

The equations (2.1a,b) are solved using a sixth-order finite-difference scheme in space
on a staggered Cartesian grid, and a third-order explicit low-storage Runge–Kutta scheme
in time (Henniger et al. 2010b; Zolfaghari et al. 2019; Zolfaghari & Obrist 2021).
The solver has been exhaustively validated and used to study various transitional flows
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(Henniger, Kleiser & Meiburg 2010a; Obrist, Henniger & Kleiser 2012; John, Obrist
& Kleiser 2014, 2016). For integrating complex surfaces (e.g. valve leaflets) into the
Cartesian grid solver, sharp-interface immersed boundary techniques are used (Mittal &
Iaccarino 2005; Mittal et al. 2008; Zolfaghari, Izbassarov & Muradoglu 2017).

2.1. Configuration of the numerical simulation

2.1.1. Kinematic assumptions
The kinematics of the BMHV leaflets (figure 1b) consist of a rapid opening (Δt ≈
20–50 ms) at the onset of systole (Vennemann et al. 2018), a longer phase (Δt ≈ 350 ms
for a typical heart rate at rest) where the leaflets remain in the open position and a rapid
closing (Δt ≈ 25 ms) (Dasi et al. 2007; Borazjani et al. 2008; Yun et al. 2014a). The
valve leaflets remain fully open at a low angle of incidence (5◦) during a large part of
systole, which provides a suitable configuration for the creation of ILEV instabilities, as
for larger angles of incidence the flow features will differ markedly from ILEV (Deniz &
Staubli 1997). Starting from the time instant that the leaflets are fully open, we focus on the
systolic acceleration phase, which spans approximately 200 ms. Similar to Bellofiore et al.
(2011) and following additional justifications presented in Zolfaghari & Obrist (2019), we
assume that the leaflets are fixed at an angle of θ = 5◦.

2.1.2. Three-dimensional aortic root and valve model
We define our 3-D model, as an extension of the 2-D model used in Zolfaghari & Obrist
(2019). We place the leaflets of a bileaflet mechanical heart valve in the fully open position
(position 1 in black colour in figure 2a). The sinuses of Valsalva are included in the 3-D
model as three spherical cavities with a radius of rs (figure 2b, bottom). The centres of
these cavities are located on the x = 0 plane and fall on the sides of an equilateral triangle,
to which the aortic root’s cross-section is circumscribed. Leaflets of the BMHV are
modelled as blunt plates with a triangular leading- and trailing-edge geometry (figure 2a).
The spanwise view of the leaflets is provided on the top panel of figure 2(b). The model
geometry resembles the semi-elliptical trailing edge of a Regent BMHV. The leaflets’
thickness faces at leading and trailing edges follow the same geometry as this prosthesis.
The main differences between the 3-D model geometry and a Regent BMHV are the
absence of the housing ring and the valve ear/hinge recess in the 3-D model. However,
these differences are located far from the centreline, hence they are not expected to notably
affect the bulk flow downstream of the central orifice which is of interest in this paper.

2.1.3. Boundary conditions and flow forcing
The flow is smoothly accelerated from zero to the mean velocity of Uin = 2U0 at
t = 200 ms (figure 3). No-slip boundary conditions are imposed via an immersed boundary
method on the rigid valve leaflets and aortic root boundaries. Periodic boundary conditions
are specified in the streamwise direction x, where the systolic waveform is forced using a
fringe region technique (Nordström, Nordin & Henningson 1999) upstream of the valve

f̃ = λ(x)(ũ − ũ0(t)), (2.3)

where λ(x) is the fringe function and ũ0(t) is a uniform flow profile. The amplitude
of ũ0(t) and the fringe function λ(x) are tuned ad hoc to provide the desired systolic
flow acceleration (figure 3). The fringe region forces the appropriate inflow profile, and
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Figure 2. (a) A 3-D model of the BHMV in the aortic root. The 2-D cross-sections of leaflets in their plane
of symmetry are shown in (1) open and (2) closed positions. (b, bottom) The cross-section of the root model
at x = 0 is shown. The three grey solid points indicate the centres of the spherical cavities representing the
sinuses of the Valsalva. These cavities are positioned on the centres of the sides of an equilateral triangle, to
which the aortic root cross-section is circumscribed (rs = rr

√
3/2). (b, top) The geometry of the leaflet in the

spanwise direction. The spanwise profile of the leading edge of the leaflet is modelled as a semicircle whose
centre is located on the domain’s axis of symmetry and on the leading edge (grey cross mark), and has a radius
of ll. All geometrical parameters of the model except those related to the cavities are given in table 1.

Parameter Notation Value

Root radius rr 12 mm
Sinus radius rs 0.86rr
Leaflet length ll 1.15rr
Leaflet spanwise length wl 1.963rr
Leaflet thickness δl 0.09rr
Hinge longitudinal position xh −1.062rr
Hinge radial position rh −0.19rr

Table 1. Geometrical parameters of the 3-D model.

simultaneously damps out the outflow disturbances re-entering the domain at the domain’s
inlet due to periodic boundary conditions.

A highly resolved numerical simulation using 2561 × 513 × 257 = 337 644 801 degrees
of freedom in a cuboid domain of size 3rr × 3rr × 15rr is performed. Such a high spatial
resolution is set to deal with the non-conforming geometry of the leaflets, and also to
resolve the spatio-temporal instability waves and their interactions (refer to the effect
of grid resolution in Zolfaghari & Obrist 2021). Grid stretching is applied in all three
directions, so that a grid resolution similar to the one reported by Zolfaghari & Obrist
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Figure 3. Acceleration part of the waveform used in the DNS. The horizontal dashed line marks the peak
flow rate, corresponding to a mean flow velocity Uin = 2U0.

(2019) is achieved near the leaflets (31 grid points are placed along each leaflet’s thickness
length δl). A dimensionless time-step size of dt = 10−4 was set, and a total of 29.1K time
steps were integrated (up to the physical time of t ≈ 200 ms). To the best of our knowledge,
this is the highest resolution that has been used for a numerical simulation of BMHV flow
using the incompressible Navier–Stokes equations. This simulation was completed using
our novel hybrid multi-GPU task and data parallel Navier–Stokes solver on 20 GPUs in
three days. Because our GPU-based implementation is approximately 150 times faster than
the CPU-based MPI-parallel flow solver (using the same node configuration, i.e. 20 nodes
of Cray XC40/50, Piz Daint), the present simulation ported onto an equivalent number of
CPU cores (20 × 16 = 320 cores with hyper-threading) would have taken approximately
1.5 years to complete. The size of each data output of the velocity field amounted to
≈8.1 GB. Further details on this DNS and the numerical and parallelisation methodologies
can be found in Zolfaghari & Obrist (2021).

2.2. Highly resolved flow structures in the valve model
The growth and instability of the ILEV structures are first demonstrated through
realisations of the streamwise velocity fields taken at the plane of symmetry of the leaflets
(cf. z = 0 plane in figure 2). This plane cuts through the leaflets at their maximum chord
length and is expected to exhibit the strongest ILEV instabilities, as it corresponds to the
largest chord-to-thickness ratio. Three snapshots of the streamwise velocity are shown
in figure 4. Various flow features are present. Laminar flow structures similar to Burgers
vortices are first observed in the wake of the leaflets. Second, a complex form of shear-layer
instabilities is observed in the sinus cavities. This instability only interacts with flow
structures in the bulk flow near the centreline after the breakdown in that region has
already started. Third, ILEV instabilities are observed downstream of the leading edges
of both leaflets, and on their inner surfaces. We note that this latter instability mechanism
creates strong flow disturbances which are convected downstream and interact with the
other organised wake structures. The interaction of the disturbances created by the ILEV
instability mechanism with the wake structures initiates the transition to turbulence in the
wake (see the area within the dashed circle in figure 4). Finally, Falkner–Skan boundary
layers on the outer sides of the leaflets seem to remain stable in the valve model.

Figure 5 shows the Lagrangian coherent structures around one valve leaflet. The flow
field is taken at the peak flow t = 200 ms. Four stages of the flow instability are marked
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(i)

(iv)

(v)

(ii) (iii)

r

x

Figure 4. Evolution of the streamwise velocity for the subset of flow field corresponding to the z = 0 plane.
This plane cuts through the leaflets at their axis of symmetry. Snapshots, from left to right, are taken at t =
60, 96 and 132 ms through the acceleration waveform (cf. figure 3). Dark red and dark blue regions show
maximum and minimum velocities. Observed flow instabilities include, (i) laminar Burgers-like structures
straining in the wake, (ii) 3-D instability in the cavities, (iii) stable Falkner–Skan-type boundary layers with
favourable pressure gradients on the outer side of the valve leaflets, (iv) unstable ILEV on the inner sides of the
leaflets and (v) nonlinear breakdown in the wake due to an interaction of the instabilities induced by the ILEV
with the Burgers vortices in the wake.

with labels LS, PR, SI and TWB, which stand for ‘laminar separation’, ‘primary rolls’,
‘secondary instabilities’ and ‘turbulent wake breakdown’, respectively. LS corresponds
to the shear layer which separates at the leading edge (the laminar part of ILEV) and is
inherently uniform in the spanwise direction. This verifies the planar assumption that was
used for adopting the 2-D submodel in Zolfaghari & Obrist (2019). It is further quantified
here using velocity profiles in the central orifice and over the LS zone (figure 6), which
show only small spanwise variations. PR marks the relatively narrow zone where primary
instabilities appear on the separated shear layer. The resulting vortex seems to consist
of essentially 2-D spanwise rolls. The SI zone shows the area where the primary rolls
appearing on the ILEV undergo a secondary instability, triggering a predominantly 3-D
dynamics. TWB shows the area where ILEV instabilities interact with the wake structures
and create a turbulent state. We will focus on this ILEV instability and on designing
possible control strategies to eliminate or attenuate this instability. Ideally, suppressing
the primary instability mechanism would result in a laminar flow over the leaflet, and
thereby reduce turbulence in the wake area. This was shown using a 2-D control case
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Figure 5. Iso-surfaces of λ2 = −0.01 coloured by the streamwise velocity, for a cuboid subset of the flow
field encompassing one leaflet in the central orifice area (2rh ≤ r ≤ 0). Light yellow and light blue regions
show maximum and minimum streamwise velocities, respectively. The red dashed line shows the leading edge,
and the green dashed line shows the trailing edge. Four zones of flow instability are marked in the streamwise
direction. LS denotes the laminar separation zone, which corresponds to a shear layer that is inherently uniform
in the spanwise direction. PR shows the narrow extent over which primary rolls appear as a result of a primary
ILEV instability. SI marks the approximate interval where primary rolls undergo a secondary instability and
become rapidly three-dimensional. TWB shows the turbulent wake breakdown area, where ILEV instabilities
interact with leaflet wake structures, causing a turbulent wake.
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Figure 6. Small spanwise variations in velocity profiles inside the laminar extent of ILEV. Streamwise
(black) and cross-stream (blue) velocity profiles are shown for three different spanwise locations z = 0 mm,

z = −4.5 mm and z = −9 mm at t = 72 ms.

by Zolfaghari & Obrist (2019). Here, we verify this effect in the 3-D model. We modify
the leaflets’ leading edges in the z = 0 plane the same way as in Zolfaghari & Obrist
(2019), and apply this modification homogeneously in the spanwise direction. Figure 7
shows that the control case results in a significantly lower oscillations in the wake flow.
The cross-section profiles on the right side of this figure show that the elimination of ILEV
has resulted in no oscillations in the central orifice.
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Figure 7. Effect of ILEV instability on the wake turbulence: streamwise velocity on the r = 0 plane (left
panels, which correspond to the dotted line on the right panels) and x = 0 plane (right panels, which correspond
to the dashed line on the left panels) at t = 84 ms are shown for the original BMHV design (top) and for
the modified leaflet design (bottom). Significantly less wake oscillations are seen for the control case. The
cross-sections in the right panels show no oscillatory flow in the central orifice for the control case.

3. Modal linear instability

3.1. Two-dimensional modal formulation for temporal instability
We investigate the global linear temporal stability of the time-averaged velocity profiles
in the ILEV, as described in Zolfaghari & Obrist (2019). To avoid issues of intractability
of the associated eigenvalue problem, we focus on a subdomain covering the extent of the
mean 2-D ILEV profile near one leaflet (figure 8). The mean ILEV flow is generated using
the same 2-D DNS set-up presented in Zolfaghari & Obrist (2019). Accordingly, the local
(ξ, η)-coordinate system described there is used here as well. Briefly recalling relevant
details, ξ denotes the streamwise axis with the origin at the leading edge of the leaflets,
and η represents the cross-stream axis which originates from the centreline and spans the
space between the two leaflets. The η-axis then intersects the upper leaflet at η∗(ξ) and the
lower leaflet at −η∗(ξ).

3.1.1. Governing equations
Decomposing the flow field at the leading edge q̃ = (ũ, p̃) into a mean flow Q̃ = (Ũ, P̃)

and a perturbation q̃′ (q̃ = Q̃ + q̃′; ‖q̃′‖ 
 ‖Q̃‖) and substituting into the Navier–Stokes
equations leads to the linearised Navier–Stokes equations which read

∂tũ
′ + ũ′ · ∇Ũ + Ũ · ∇ũ′ = −∇p̃′ + 1

Re∗
∇2ũ′; ∇ · ũ′ = 0. (3.1a,b)

Here, Ũ denotes the 2-D time-averaged flow field obtained as

Ũ(ξ, η) = 1

T̃

∫ t0+T̃

t0

ũ(ξ, η, t)
Umax,ξ=0(t)

dt. (3.2)

The Reynolds number Re∗ is based on the maximum streamwise velocity at the leading
edge (Umax,ξ=0) as the reference velocity and the distance between the leaflets at the
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η = η∗(ξ)
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∂∞

Ωlocked

η = 0

η
ξ = 0

ξ

Figure 8. The local subdomain used for the global stability analysis. The grey lines show the background
grid G̃. The true spatial resolution is three times higher than the finer grid patches illustrated near the leaflet
boundary. The shaded subdomain represents the grid subset W , for which the global matrices are formed.
The grid points near the boundary (labelled as ∂wall) are treated by the sharp-interface immersed boundary
method. The local coordinate system (ξ, η) used for the global instability analysis is also given. The origin of
the streamwise axis ξ is located at the leaflet’s leading edge. The cross-stream axis η extends from the centreline
(η = 0) to the leaflet surface (η = η∗(ξ)) at each streamwise location ξ (see red dashed line).

leading edge (η∗
0 = η∗(ξ = 0)) as the reference length. We have

Re∗ = Umax,ξ=0η
∗
0

ν
, (3.3)

where

Umax,ξ=0 = 1

T̃

∫ t0+T̃

t0
Umax,ξ=0(t) dt. (3.4)

Introducing a global mode ansatz of the form q̃′(x, t) = q̂(x) e−iβ̃t, where x and t denote
the 2-D spatial coordinates and time, into the LNSE (3.1a,b) yields a system of partial
differential equations (PDEs)⎡

⎣L {Ũ; Re∗} + Ũξ Ũη Dξ

Ṽξ L {Ũ; Re∗} Dη

Dξ Dη 0

⎤
⎦

⎡
⎣û

v̂

p̂

⎤
⎦ = iβ̃

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦

⎡
⎣û

v̂

p̂

⎤
⎦ (3.5)

where L {Ũ; Re∗} = ŨDξ + ṼDη − 1/Re∗(Dξξ + Dηη), and q̂ = (û, p̂) with the
velocity vector û = (û, v̂). In the above expression Dξ and Dξξ denote the first and second
derivatives with respect to the ξ -direction, respectively.

Temporal global modes with Im{β̃} > 0 are sought. To this end, we discretise (3.5) using
second-order finite-differences with np = 123 71 grid points. This results in a complex
generalised eigenvalue problem of the form

A3np×3np(Re∗, Ũ)q̂3np×1 = iβ̃B3np×3np q̂3np×1, (3.6)

where q̂ is the discretised form of q̂.

3.1.2. Integration of the immersed boundaries
The sharp-interface immersed boundary method (Mittal et al. 2008) is used to integrate
the boundary conditions associated with the leaflet walls into the matrices A and B (see
(3.6)). The workflow of labelling the grid points according to their position with respect
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to the boundaries is demonstrated in algorithm 1. Compatibility boundary conditions for
pressure are imposed on the domain’s inlet and outlet as well as on the solid walls. These
conditions, in general, read

∇p̃′ = −Ũ · ∇ũ′ + 1
Re∗

∇2ũ′. (3.7)

On the leaflet walls, this condition simplifies since Ũ = 0, and (3.7) reduces to

∇p̃′ = 1
Re∗

∇2ũ′. (3.8)

The compatibility boundary conditions, together with zero-disturbance Dirichlet boundary
conditions for the velocity vector given by

ũ′(x, t) = 0, x ∈ ∂in ∪ ∂walls ∪ ∂out ∪ ∂∞, (3.9)

are discretised and integrated into the matrices A and B. To save computational time, and
owing to the symmetry of the velocity profiles, only half of the profile is considered, which
is results in a symmetry boundary condition at η̃ = 0.

Algorithm 1: Two-dimensional global instability solver with immersed
boundaries
Result: Subset of eigenvalues and eigenfunctions S = {(βs, q̂s)|1 ≤ s ≤ N}.
Data: Time-resolved DNS flow field data q̃(t) = (ũ, p̃) on grid G̃.
1. Compute the time-averaged velocity field Ũ ;
2. Create a subset of G̃ called Gm×n with favourable resolution and encompassing

the ILEV domain ;
3. Cut off the solid subset of the Gm×n :
for x ∈ Gm×n do

if fluid then
append x to the work grid W ;
label x as Ωlocked︸ ︷︷ ︸

inner point

, ∂in︸︷︷︸
inflow

, ∂out︸︷︷︸
outflow

, ∂wall︸︷︷︸
on leaflet

, ∂∞︸︷︷︸
centreline

;

end
end
4. Form A and B:
for each point x ∈ W do

get label of x;
calculate Ũξ , Ũη, Ṽξ , Ṽη on Gm×n;
form operators Dξ ,Dξξ ,Dη,Dηη and
L {Ũ; Re∗} = ŨDξ + ṼDη + 1/Re∗(Dξξ + Dηη);

fill up rows 3j − i, i = 1, 2, 3 and 1 ≤ j ≤ size(W) in A and B;
end
5. Solve the eigenvalue problem Aq̂ = iβ̃Bq̂;
6. Retrieve eigenvectors on G̃ by an inverse mapping W → G̃.

Figure 9 shows the real part of the streamwise velocity component of the two
zero-frequency global eigenmodes with positive temporal growth rates. Mode A, which
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Figure 9. Global modes (a) A and (b) B, visualised by the real part of the streamwise velocity component.
Dashed lines mark the extent of the local absolute instability. Approximate separation streamlines for the mean
flow are drawn as solid black lines. Dark red and dark blue colours indicate the colour map extrema.

has a higher growth rate, has a similar spatial structure than the one found for X-junction
flow (Lashgari et al. 2014), stretching from the separation point to the trailing end of
the wave-maker zone. This could be related to similarities in the two base flows: both
include flow separation downstream of a sharp edge. Yet, our mode presents more waviness
past the wave maker, which includes the area where the separated shear layer reattaches.
This waviness may be attributed to the strong fluctuations that are observed over the
reattachment zone of ILEV structures, which were also reported by Cherry, Hillier &
Latour (1984). Mode B, on the other hand, is more concentrated near the leading edge of
the wave-maker zone. It slowly emerges on the separated shear layer nearly two thickness
lengths downstream of the leading edge, and vanishes towards the reattachment zone.
Provided this mode is present where the shear layer has the highest reverse-to-forward flow
ratio, it projects the dynamics of the shear layer seemingly uninfluenced by the presence
of the wall. This is in contrast to mode A, where oscillatory effects can be observed at
locations where this latter ratio is low. In line with this, mode A includes a wavy structure
that is extended to the outflow boundary, before it is affected by the homogeneous Dirichlet
boundary conditions there. We will show in Appendix A that the structure of this mode
and mode B (as well as their associated eigenvalues) do not change when the outflow
boundary is extended further downstream.

3.2. Structural sensitivity of the linear global modes

3.2.1. Adjoint modal formulation
For investigating the sensitivity of the global modes characteristics (e.g. their growth rates)
to the underlying flow, adjoints of the global modes are studied. For the pairs (ũ′, p̃′) and
(ũ′,†, p̃′,†) the following Lagrange identity holds as:

[P · ũ′,† + ∇ · ũ′p̃′,†] + [ũ′ · P†+∇ · ũ′,†p̃′] = ∂t(ũ
′ · ũ′,†) + ∇ · M†, (3.10)

where

P{ũ′, p̃′, Ũ, Re∗} = ∂tũ
′ + Ũ · ∇ũ′ + ũ′ · ∇Ũ + ∇p̃′ − 1

Re∗
∇2ũ′,†, (3.11)

and

P†{ũ′,†, p̃′,†, Ũ, Re∗} = ∂tũ
′,† + Ũ · ∇ũ′,† − ũ′,† · (∇Ũ)T + ∇p̃′,† + 1

Re∗
∇2ũ′,†.

(3.12)
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Here, M† is the bilinear concomitant defined as

M†=Ũ(ũ′ · ũ′,†) + 1
Re∗

(∇ũ′,† · ũ′ − ∇ũ′ · ũ′,†) + p̃′,†ũ′ + p̃′ũ′,†. (3.13)

Integrating the Lagrange identity over the entire domain and over the chosen time horizon
and using the divergence theorem for the last term, we obtain the adjoint LNSE in the form

P†{ũ′,†, p̃′,†, Ũ, Re∗} = 0; ∇ · ũ′,† = 0. (3.14a,b)

Fourier transformation of (3.10) using the ansatz q̃′,†(x, t) = q̂†(x) e−iβ̃†t, where x and t
are the 2-D spatial coordinates and time, gives the coupled form of the adjoint LNSE⎡

⎣L †{Ũ; Re∗} − ∂ξ Ũ −∂ξ Ṽ Dξ

−∂ηŨ L †{Ũ; Re∗} − ∂ηṼ Dη

Dξ Dη 0

⎤
⎦

⎡
⎣û†

v̂†

p̂†

⎤
⎦ = iβ̃†

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦

⎡
⎣û†

v̂†

p̂†

⎤
⎦ ,

(3.15)

where L †{Ũ; Re∗} = ŨDξ + ṼDη + Re−1∗ (Dξξ + Dηη), q̂† = (û†, p̂†) and û† = (û†
, v̂†).

The operators Dξ and Dξξ denote the first and second derivatives with respect to ξ ,
respectively. Discretisation yields the generalised eigenvalue problem

A†
3np×3np

(Ũ, Re∗)q̂†
3np×1 = iβ̃

†
B†

3np×3np
(Ũ, Re∗)q̂†

3np×1, (3.16)

where q̂† is the discretised form of adjoint state vector. Homogeneous Dirichlet
boundary conditions for the adjoint velocity disturbances ũ′,† are applied, together
with compatibility boundary condition for the adjoint pressure disturbance p̃′,†. The
compatibility boundary conditions for p̃′,† prove to be the proper choice for the domain’s
inflow and outflow. To obtain the adjoint compatibility boundary conditions, we first
substitute this condition for the direct problem (3.7) into the momentum component of
the direct linearised Navier–Stokes equations (3.1a,b). This yields

∂tũ
′ + ũ′ · ∇Ũ = 0, (3.17)

which, in the adjoint form, becomes

∂tũ
′,† + Ũ · ∇ũ′,† = 0. (3.18)

Equation (3.18) is incorporated into A† and B† at the inflow, centreline, and outflow
locations, where Ũ /= 0.

Figure 10 shows the adjoint global modes corresponding to the direct global modes A
and B. The adjoint modes can be used to quantify the sensitivity of the global direct modes
to external forcing (Giannetti & Luchini 2007). We use both direct and adjoint modes for
constructing the structural sensitivity tensor which can be used to guide the stabilisation
of these modes.

3.2.2. Structural sensitivity to a local feedback source
We follow the localised momentum feedback approach pioneered by Hill (1992) and
Giannetti & Luchini (2007). We perturb the momentum equation of the LNSE, after
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Figure 10. Adjoint global modes (a) A and (b) B, visualised by the streamwise velocity component. Dashed
lines mark the extent of the local absolute instability. Approximate separation streamlines for the mean flow are
drawn as solid black lines. Dark red and dark blue colours indicate the colour map extrema. Larger magnitudes
correspond to higher sensitivities of the global modes to the underlying flow.

Fourier decomposition in time, by the linear operator δM

β̃ ′û′ + L +{Ũ, Re∗}û′ + ∇p̂′ = δM (û′, p̂′)

∇ · û′ = 0,

}
, (3.19)

where the L + operator is given as

L +{Ũ, Re∗}û′ = û′ · ∇Ũ + Ũ · ∇û′ − 1
Re∗

∇2û′. (3.20)

Given the eigenvalue drift δβ̃ and the perturbation eigenmode (δû, δp̂), where û′ = û +
δû, p̂′ = p̂ + δp̂ and β̃

′ = β̃ + δβ̃, we arrive at

β̃δû + L +{Ũ, Re∗}δû + ∇δp̂ = −δβ̃û + δM (û, p̂)

∇ · δû = 0,

}
(3.21)

using the Lagrange identity (similar to (3.10)) for (δû, δp̂) and (û†, p̂†). Taking δM =
KûδD(ξ − ξ+, η − η+) and integrating over the entire computational domain, one obtains

δβ̃ = 〈û† · δM 〉
〈û · û†〉 = 〈û† · KûδD(ξ − ξ+, η − η+)〉

〈û · û†〉 = κ0û(ξ+, η+)û†(ξ+, η+)

〈û · û†〉 . (3.22)

In the above formulation, δD is the Dirac delta function, 〈·〉 is the integral over the
computational domain and K and κ0 = K(ξ+, η+) indicate the strength of the momentum
feedback on the entire domain and at point (ξ+, η+), respectively. It follows that the
response of each component of momentum feedback on the growth rate and frequency
of the global modes can be realised by assessing the real and imaginary parts of the
sensitivity tensor S = û ⊗ û†, which consists of the dyadic product of the direct and
adjoint velocity modes. The imaginary part of the components of S measure the sensitivity
of the global mode with respect to the growth rate, while the real part determines the
sensitivity with respect to the frequency. Here, we focus on the imaginary part, as we are
interested in stabilisation of the modes, hoping to eliminate the vortex shedding between
and downstream of the leaflets of the BMHV.

The components of the sensitivity tensor associated with modes A and B are given in
figures 11 and 12. For mode A, the highest sensitivities are generally concentrated in the
wave-maker zone. This is not surprising as a local absolute instability is defined by an
instability with infinite impulse response at a fixed location. A feedback, if sufficiently
small to preserve the instability characteristics of the base flow, could be seen in extreme
cases as an input, which will be maximally amplified in the wave-maker zone. In terms of
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Figure 11. Components of the sensitivity tensor S for mode A. Yellow areas denote the maximum, blue areas
denote the minimum sensitivity. The domain between the dashed white lines is locally absolutely unstable.
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Figure 12. Components of the sensitivity tensor S for mode B. Yellow areas denote the maximum, blue areas
denote the minimum sensitivity. The domain between the dashed white lines is locally absolutely unstable
(wave-maker region).

different components of sensitivity, S12 = ûv̂† appears to have a slightly higher magnitude
than other components. This implies that, within a linear regime, a forcing in the
cross-stream direction will trigger the largest response in the streamwise component of
the direct mode. This could be explained by further investigating the characteristics of
the base flow, such as the properties of the rate of strain tensor, but such an analysis will
be postponed to a future effort. For mode B, the maximum structural sensitivity occurs
upstream and almost completely outside the wave-maker zone. This observation signals a
large influence of the base flow on the dynamics of this shear-layer mode, possibly through
a feedback mechanism supported by recirculation.

3.2.3. Passive control based on localised feedback
Motivated by the original experimental work of Strykowski & Sreenivasan (1990) and
the follow-up theoretical study of Hill (1992) who tried to suppress the first instability
of cylinder wake flow at Re ≈ 50 by introducing localised roughness elements into the
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system, we use this technique to try to suppress the ILEV instabilities in the BMHVs.
Several differences exist between the two cases, the most importantly, the two orders
of magnitude larger Reynolds number of the BMHV flow compared with the cylinder
wake flow. It is also not clear whether a localised feedback will strengthen, or weaken the
instability. Besides, given that more than one global mode is involved, with high structural
sensitivities in distinct locations, the likelihood that only one feedback source may
eliminate the instability entirely is likely small. It is also important to note that, because the
Reynolds number is relatively high in our case, a localised feedback, positioned relatively
far from the wall may cause more instability, e.g. via introducing von-Kármán-type vortex
streets. Despite these apprehensions, we nonetheless put our findings from the linear
structural sensitivity analysis to the test by performing 2-D DNSs. We introduce small
feedback sources in the form of small cylinders (far from the wall, for mode A), or in
the form of a semicircular bump (close to the wall, for mode B), and perform 2-D DNS
using the parameters from Zolfaghari & Obrist (2019). For mode A, we observed that a
localised feedback did not seem to improve the flow scenario (not shown). The inserted
cylinder near the upstream end of the wave-maker zone created instabilities which evolved
into travelling vortices downstream of the feedback source. Given that mode B was not
triggered, it induced waviness in the ILEV which interacted with the instabilities created
by the cylinder. For mode B, we anticipated a more positive outcome, as this mode has
a more localised sensitivity compared with mode A. This localised area is closer to the
wall which, due to lower velocities and a smaller surface, generates less drag force on
the original base flow. Thus, the base flow characteristics are likely to change less than
for mode A. Significant changes in the base flow Ũ may render the structural sensitivity
analysis invalid, because the eigenvalue shift δβ based on (3.22) assumes small and thus
negligible changes in the base flow. A better outcome is also expected because the area
to be triggered lies outside the absolute instability zone. For this reason, the chances of
triggering more instabilities by the large impulse response of the wave maker are rather
low.

Figure 13 shows the outcome of passive control via local feedback associated with
mode B. For the local feedback, two small and equal circular bumps with a radius of
Rc = 0.126 mm were added on both leaflet surfaces at ξc = 4.95 and ηc = ±1.68 mm. The
positions of these bumps were chosen to be approximately in the centre of the maximum
sensitivity area for mode B. It can be observed that with passive control the vorticity
production between the leaflets was diminished, but not eliminated. In more detail, as
shown using instantaneous vorticity fields, the location where first vortices, forming due
to ILEV instabilities, detach into the bulk flow could be moved downstream by nearly
one third of a chord length. Thanks to this improvement, the mutual interaction between
the vortices, generated by ILEVs and forming on the top and bottom leaflets, was nearly
eliminated. In general, even though the ILEV instability could not be fully controlled, this
passive control device resulted in a noticeably less chaotic wake flow past the valve. This
is further quantified in figure 14 using area-normalised enstrophy defined as

ES(ωωω) = 1
S

∫
S
ωωω · ωωω dS, (3.23)

where ωωω = ∇ × u is the vorticity and S indicates the circular area where the integration
is performed. Significantly lower enstrophy is found for the control case both within the
central orifice and in the wake, which demonstrates the efficacy of the control.
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Figure 13. Instantaneous vorticity for (a) baseline ILEV flow and (b) ILEV flow with local feedback control
corresponding to mode B.
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Figure 14. Effect of passive control based on momentum feedback on normalised enstrophy ES(ωωω) at ((a), in
central orifice) 5.76 mm and ((b), in the wake) 12.96 mm downstream of the leading edge. The integration area
S was a circle of radius 3.6 mm and centred on r = 0 mm.

4. Disturbance energy growth analysis

The hydrodynamic stability analyses performed in the previous section and by Zolfaghari
& Obrist (2019) were asymptotic and focused on the ILEV zone of the BMHV flow.
While this type of analysis is useful for understanding the instability mechanism itself,
the influence of the ILEV instability on disturbance energy growth farther from its origin
is also worth investigating. Zolfaghari & Obrist (2019) showed by a geometry modification
that the ILEV instability plays a key role in the laminar–turbulent transition of the valve
wake. Without this modification, it would have been difficult to distinguish between ILEV
instabilities and other mechanisms, e.g. the wake instability or driving by the cavities.
Ideally, the strongest mechanism contributing to transition in a certain location, such as the
wake, should be identified and analysed. In addition, the influence of various mechanisms
is mostly time dependent, with the disturbance energy growth at a given location being
driven by local mechanisms over shorter times. In the following, we formulate a linear
gradient-based approach (Schmid 2007; Schmid, de Pando & Peake 2017) to study the
contribution of the ILEV instabilities at arbitrary locations and over given short-time
horizons.

4.1. Direct non-modal formulation

4.1.1. Governing equations
We again consider the incompressible Navier–Stokes equations for a disturbance (ũ′, p̃′)
around a global mean flow (Ũ, P̃),

∂tũ
′ + ũ′ · ∇Ũ + Ũ · ∇ũ′ = −∇p̃′ + 1

Re
∇2ũ′; ∇ · ũ′ = 0, (4.1a,b)
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Figure 15. Time-averaged (a) streamwise and (b) cross-stream velocity components around the ILEV in the
BMHV.

and seek to recover the ILEV instabilities as disturbances superimposed on a mean flow
Ũ at each time t. Note that we use a different mean flow for the nonlinear non-modal
analysis than for the earlier linear modal approach give in (3.1a,b). Here, Ũ is obtained by
temporally averaging of the velocity field ũ; no scaling is involved, and the averaging is
performed over the entire flow domain. We have

Ũ(x, r) = 1

T̃

∫ t0+T̃

t0
ũ(x, r, t) dt, (4.2)

which also implies that the statistical averaging is performed over the global (x, r) instead
of the local (ξ, η) coordinates. The time-averaged flow field around the ILEV is shown in
figure 15.

4.2. Adjoint equations with focus on arbitrary geometric energy masks
In order to study the optimal perturbations for maximising energy growth in specific
locations within the computational domain (e.g. around the ILEV zone, or in the wake)
we formulate the Lagrangian

L = 1
2

〈
G ũ′(x, T) · G ũ′(x, T)

〉
︸ ︷︷ ︸

JG

+φ

{
1
2

〈
ũ′(x, 0) · ũ′(x, 0)

〉 − E0

}

+
∫ T

0

〈
ũ′,‡ · {∂tũ

′ + ũ′ · ∇Ũ +Ũ · ∇ũ′+∇p̃′ − Re−1∇2ũ′}
〉

dt +
∫ T

0

〈
p̃′,‡∇ · ũ′

〉
dt,

(4.3)

where JG is an objective equipped with a sharp-interface geometric mask function G :
Ω → Ωv , which projects the global flow field onto the subdomain of interest Ωv . This
function is used to focus the optimisation procedure on the disturbance kinetic energy
within Ωv , which is moved over various areas of interest such as the wake and the trailing
edge, to inspect the potential role of ILEV instabilities. The pair (ũ′,‡, p̃′,‡) denotes the
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adjoint of the direct disturbances (ũ′, p̃′), and 〈·〉 stands for the integral over the entire
domain Ω . By using first variations of the Lagrangian with respect to the variables p̃′, ũ′,
integration by parts and forming the associated Frechet derivatives (see Appendix B), the
adjoint linearised Navier−Stokes equations are found.

For optimality, the Frechet derivative of L with respect to δũ′, δũ′(0) and δũ′(T) must
vanish. These constraints yield the following identities:

∂δũ′L = 0 ⇒ ∂tũ
′,‡ + Ũ · ∇ũ′,‡ − ũ′,‡ · (∇Ũ)T − ∇p̃′,‡ + Re−1∇2ũ′,‡ = 0, (4.4)

which is the adjoint momentum of the incompressible Navier–Stokes equations,

∂δũ′(x,0)L = 0 ⇒ φũ′(x, 0) = ũ′,‡(x, 0), (4.5)

which gives the initial condition for the direct problem, and

∂δũ′(x,T)L = 0 ⇒ G ũ′(x, T) = −ũ′,‡(x, T), (4.6)

which provides the initial condition for the adjoint problem. Note that the geometric
mapping function G , which we introduced in the objective JG , appears in the terminal
condition.

Direct and adjoint fields are then computed via iterative direct–adjoint looping (DAL)
simulations. At each iteration of DAL, (i) the direct problem (3.1a,b) is integrated forward
in time from t = 0 to t = T; (ii) initial conditions for the adjoint problem (4.6) are set; (iii)
the adjoint problem (4.4) is integrated backward in time from t = T to t = 0; (iv) initial
conditions for the direct problem are updated as follows and the next iteration starts. The
initial condition ũ′(0) is corrected based on a steepest ascent procedure

ũ′(x, 0)k+1 = ũ′(x, 0)k + εs

φ
∂ũ′(x,0)L = (1 + εs)ũ

′(x, 0)k − εs

φ
ũ′,‡(x, 0)k, (4.7)

where εs is a user-specified parameter, while φ is updated to enforce

1
2

〈
ũ′(x, 0)k+1 · ũ′(x, 0)k+1

〉
= E0. (4.8)

We validate our implementation by reproducing the transient growth calculations for
plane Poiseuille flow at Re = 3000. Good agreement is found, which is reported in
Appendix C.

4.3. Initial conditions for maximum energy growth at arbitrary locations
We perform DAL simulations to locate the optimal initial conditions for maximum growth
using various location masks G and time horizons T . The simulations are continued until
the gain value G defined as

G =
〈
G ũ′(x, T) · ũ′(x, T)

〉〈
ũ′(x, 0) · ũ′(x, 0)

〉 (4.9)

is converged. Given that the simulations become rather costly for longer times, we start by
choosing short horizons T and increase gradually to probe larger time spans. By changing
G , we explore whether maximum energy growth at an arbitrary location, e.g. downstream
of the leading edge, is linked to an optimal initial condition upstream, perhaps close to
the leading edge. Such an analysis would reveal a footprint of the wave maker on the
subsequent vorticity generation at any given location.
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Figure 16. Growth (left axis) and residual (right axis) for the mid-leaflet mask and for T = 0.01.

4.3.1. Maximum energy growth between the leading and trailing edges
We start by analysing the energy growth between the leading and trailing edges (referred
to as mid-leaflet in what follows). This area Ωv is located downstream of the ILEV zone
and overlaps with the wave maker. It is expected that the optimal initial condition will be
mainly focused around the leading edge, particularly in the ILEV zone, due to its close
proximity and small value of T .

A circular energy probe of radius R = 3.6 mm is located at (ξ, r) = (5.76, 0 mm). DAL
simulations are then performed for different times T = 0.01, T = 0.05 and T = 0.1. In
contrast to the DAL simulations for channel flow, (see Appendix C) the current simulations
require larger numbers of iterations to converge (see figure 16). This may be a consequence
of the presence of multiple globally unstable modes in the system, e.g. stemming from the
ILEV, cavities and the wake.

Figure 17(a,b) shows the initial (t = 0) and terminal (t = T) states corresponding to
maximum energy growth at the mid-leaflet mask and T = 0.01 (smallest computed time).
Due to the short terminal time, the optimal initial conditions are mainly focused within the
mask. This suggests that instability growth for this mask remains almost entirely locally
for small time scales. An exploration of instabilities outside the mask requires a larger
time horizon T. Panels (c,d) and (e, f ) of figure 17 show results for T = 0.05 and T =
0.1, respectively. As expected, the optimal initial condition moves towards the leading
edge, including a part of the ILEV zone, as T is increased. These results furthermore
reveal an additional ‘actor’ besides the ILEV: the flow impingement zone located on the
leaflet’s thickness (area upstream of the green dashed line in the bottom row of figure 17).
This area displays high potential for creating disturbances that are subsequently amplified
by the ILEV. Figure 17(c–f ) also shows that the initial and terminal states are slightly
asymmetric despite the symmetry of the leaflets. This is due to minor differences in the
depth of the cavities in the 2-D submodel (Zolfaghari & Obrist 2019), which results in
slightly asymmetric ILEV profiles on the upper and lower leaflets.

4.3.2. Maximum energy growth at the trailing edge
Next, we displace the mask G farther downstream, such that it targets the area at the
trailing edge of the leaflets. This area was identified by Zolfaghari & Obrist (2019) as
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Figure 17. Streamwise component of (a,c,e) optimal initial and (b,d,f ) final states are demonstrated for a
mid-leaflet mask. From top to bottom, cases with T = 0.01, T = 0.05 and T = 0.1 are shown, respectively. The
domain within the circle identifies the mask Ωv . Dark blue and light yellow areas signify minimum negative
and maximum positive velocity disturbances, respectively.

the interaction zone where the vorticity waves produced by the ILEV interacted with
the wake structures, to ultimately force their breakdown. It is important to explore
the possibility of this breakdown, which visually seemed to be caused by ILEV,
being additionally driven by other instabilities originating in the cavities or the wake
itself.

DAL simulations were performed using a circular energy probe of radius R = 3.6 mm
located at (ξ, r) = (14.76, 0 mm). Due to an increased distance from the leading edge,
larger times may be needed for revealing the leading-edge signature. For this reason, we
performed looping simulations for the mid-leaflet case for a fourth terminal time of T =
0.2, in addition to the previous values of T = 0.01, T = 0.05 and T = 0.1.

Figure 18(a,b) shows the initial and terminal conditions corresponding to a maximum
gain G at trailing edge for T = 0.01. Similar to the mid-leaflet mask, for the smallest time,
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ũ′ (x, 0) ũ′ (x, T = 0.05)
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ũ′ (x, T = 0.2)

Gmax = 1.15

Gmax = 1.93

Gmax = 4.04

Gmax = 9.93

Figure 18. Streamwise component of the (a,c,e,g) optimal initial and (b,d, f,h) final states are demonstrated
for a trailing-edge mask. From top to bottom, cases with T = 0.01, T = 0.05, T = 0.1 and T = 0.2 are shown,
respectively. The domain within the circle identifies the mask Ωv . Dark blue and light yellow areas signify
minimum negative and maximum positive velocity disturbances, respectively.
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Figure 19. Initial (a) and final (b) states for a wake mask and a terminal time T = 0.4. The domain within the
circle identifies the mask Ωv . Dark blue and light yellow areas indicate the minimum negative and maximum
positive velocity disturbances, respectively.

the optimal initial condition is concentrated on the mask itself. However, by increasing
the time horizon T , the instability is progressively driven by disturbances created farther
upstream (see, from top to bottom the second, third and fourth rows of figure 18).
Figure 18(e, f ) shows that the optimal initial condition mainly consists of Orr structures
linked to the shear profile that is formed downstream of the ILEV zone. These structures
become skewed within the ILEV zone, due to the specific shape of the velocity profiles
in this area (Zolfaghari & Obrist 2019). Figure 18(g,h) is particularly relevant, as it shows
that, for sufficiently large T , the initial conditions for maximum energy growth near the
trailing edge are mostly influenced by the leading-edge structures, including the ILEV
instability.

4.3.3. Maximum energy growth in the wake region
Finally, we study the optimal energy growth in the wake area of the 2-D BMHV submodel.
To this end, we place Ωv downstream of the trailing edge where growth can be influenced
by upstream wake structures as well as other instability mechanisms such as those arising
from the cavities.

The DAL simulations were performed using a circular energy probe of radius R =
3.6 mm located at (ξ, r) = (23.7, 0 mm). Figure 19 shows the initial condition for
maximum energy growth at this location. Given a sufficiently long time T = 0.4, the
maximum growth for this area is driven by an optimal initial condition originating at
the leading edge. This is an important observation, as it verifies the crucial role the
leading-edge design of the leaflet plays on the disturbance energy growth, triggering or
promoting turbulent flow features in the wake of the valve. This phenomenon has been
observed in Zolfaghari & Obrist (2019), but is verified quantitatively here. A 3-D transient
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growth analysis, regardless of prohibitive computational costs, is unlikely to change the
key outcome here, that is, the energy growth in the wake is promoted mainly by ILEV
mechanism. This is supported by DNS evidence (see figure 7) where elimination of
ILEV significantly reduced the turbulence in the wake of the valve, while other instability
mechanisms were present.

4.4. Computational aspects of the adjoint-looping simulations
All BMHV DAL simulations presented above were performed on the 2-D BMHV
submodel of Zolfaghari & Obrist (2019). The computational domain including the aortic
root and the valve model was discretised using 1025 × 5120 ≈ 5.24M grid points. Such
high resolution is necessary to resolve the ILEV instabilities (Zolfaghari & Obrist 2019).
DAL simulations proved to be computationally demanding, even for the 2-D model. As can
be seen from figure 16, 300 iterations were needed for convergence, using a fixed step size
for updating the initial condition at each iteration. DNSs were performed using a time-step
size of dt = 0.0005, while a smaller time-step size of approximately dt = 0.0002 (for the
backward in time integration) was used for the adjoint simulations to ensure numerical
stability. The cost of one iteration in the DAL procedure was hence 3.5 times the cost of a
DNS.

The computational cost was considerable for larger values of the terminal time
T . For instance, 2034 core hours were needed to complete 50 iterations with the
farthest downstream mask (cf. § 4.3.3), using the Haswell nodes of the Cray XC40/50
supercomputer (Piz Daint).

5. Conclusions

This study presented results from an analysis of the structural sensitivity and downstream
influence of the impinging leading-edge instability in a BMHV. The ILEV instability
mechanism has been shown previously to contribute strongly to the onset and intensity
of turbulent flow past a 2-D BMHV submodel using local linear instability theory and 2-D
DNS. Here, we first use 3-D DNS to show the significant influence of the ILEV mechanism
on the laminar–turbulent transition in BMHV flow. Then, we investigate the 2-D global
instability of the ILEV flow using a 2-D submodel taken from Zolfaghari & Obrist (2019).
We subsequently performed a sensitivity analysis using adjoints of the global modes
with the aim of designing a passive device to reduce the impact of ILEV instabilities
on the wake flow. We introduced small bluff bodies into the BMHV flow at areas of high
sensitivity as means to stabilise the identified global modes. The efficiency of this attempt
has been tested using 2-D DNS. Finally, an extension of our instability analysis to take into
account the effect of alternative instability mechanisms in the flow concluded our analysis.
Using a non-modal approach, we sought to (i) clarify the role of ILEV on energy growth
leading to increased turbulent effects in the wake of the valve, particularly, in the presence
of other mechanisms, (ii) understand the time-dependent growth mechanisms leading to
instability at locations of interest and (iii) create a generalised model for efficient control
strategies to reduce the influence of ILEV flow on the wake.

Even though Zolfaghari & Obrist (2019) identified a pocket of absolute instability in
the BMHV flow, local theory could not produce targeted control strategies for reducing
the ILEV instability. These configurations often require a global approach. As such a
2-D global instability mechanism can provide the structure of 2-D unstable modes, for
which suitable control scenarios can be designed. This global approach may also provide
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the necessary flexibility for studying other types of modifications, which is especially
important for a prosthetic heart-valve design that is constrained by physiological and
manufacturing restrictions. In line with this rationale, we extended the local analysis of
Zolfaghari & Obrist (2019) to a 2-D global analysis that incorporated the entire span
of the ILEV flow. We investigated the temporal instability of mean ILEV flow profiles.
Two zero-frequency unstable modes were identified for this flow, in agreement with the
existence of a wave maker, as shown in Zolfaghari & Obrist (2019). We then attempted
to stabilise these modes by introducing local feedbacks (e.g. small bluff bodies, see Hill
1992) into the flow. To this end, the structural sensitivity of the identified globally unstable
modes has been assessed based on their adjoints. Areas of high sensitivity in the ILEV
zone included an area upstream of the wave-maker zone (identified using a local stability
analysis) for one mode, and a second part approximately within the wave-maker zone.
The same sensitivity analysis was employed to probe the placement of small momentum
feedback as a roughness element on the valve leaflet, and the resulting modified flow was
investigated by 2-D DNS. Our results showed a notable reduction in vorticity production
between the leaflets and in the wake for one mode. For the second mode, the momentum
feedback enhanced the instability, and the resulting flow was more chaotic. In essence,
we demonstrated that by triggering only one mode, the instability can diminished, but not
fully suppressed.

We proceeded by developing a model to investigate the effect of the ILEV zone on
transient energy growth in the BMHV model. This analysis was based on a cost functional
to identify optimal initial conditions for maximum energy growth in selected areas in the
flow domain and over specific time horizons. Coupled with an adjoint-looping simulation
code and considering the full flow domain including cavities and wake regions, we showed
that, for sufficiently large times, the optimal initial conditions for maximal energy growth
in the wake, the trailing edge and between the leaflets concentrated around the leading
edge of the valve. This identified area further breaks down in a part upstream of the
leaflets (marked by flow impingement due to the thickness of the valve leaflets) and a
part downstream of the leading edge (marked by the ILEV mechanism).

Even though based on simplifying assumptions about the valve system, this present
study represents a primary and encouraging step towards employing gradient-based
approaches for uncovering the sources of instabilities in complex biomedical systems,
such as the blood flow about a prosthetic heart-valve configuration. It also provides
the necessary groundwork for future attempts on deploying these gradient-based
methodologies for suppressing the unphysiological instabilities in these prostheses.

Funding. The authors acknowledge the Platform for Advanced Scientific Computing (PASC) for funding
this work through the AV-FLOW and HPC-PREDICT projects. H.Z. would like to additionally acknowledge
the financial support of the Swiss National Science Foundation (SNSF) through the Early PostDoc Mobility
Fellowship P2BEP2 191786. We are also grateful to the Swiss National Supercomputing Center (CSCS) for
providing technical support and GPU-node resources on the Cray XC40/50 supercomputer Piz Daint.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Hadi Zolfaghari https://orcid.org/0000-0002-0953-5939;
Rich R. Kerswell https://orcid.org/0000-0001-5460-5337;
Dominik Obrist https://orcid.org/0000-0002-6062-9076;
Peter J. Schmid https://orcid.org/0000-0002-2257-8490.

936 A41-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0002-0953-5939
https://orcid.org/0000-0002-0953-5939
https://orcid.org/0000-0001-5460-5337
https://orcid.org/0000-0001-5460-5337
https://orcid.org/0000-0002-6062-9076
https://orcid.org/0000-0002-6062-9076
https://orcid.org/0000-0002-2257-8490
https://orcid.org/0000-0002-2257-8490
https://doi.org/10.1017/jfm.2022.49


H. Zolfaghari, R.R. Kerswell, D. Obrist and P.J. Schmid

3

2

1

0

3

2

1

0

3

2

1

0
0 2 4 6 8 10

(a)

(b)

(c)

r (
m

m
)

r (
m

m
)

r (
m

m
)

ξ (mm)

Lξ = L0

Lξ = 1.25L0

Lξ = 1.5L0

Figure 20. Independence of the structure of mode A (β̃ = 0.00181i) from the location of outflow boundary.
From top to bottom, the modes are calculated for domain longitudinal extents of L0 (original case), 1.25L0 and
1.5L0.

Appendix A. Validation of global modes subject to domain truncation: influence of
outflow boundary

Here, we show that the global modes A and B obtained in § 3 are not affected when the
position of outflow boundary is moved downstream. The domain length (referred to as Lξ

which was set to L0 = 7.69 mm in § 3) is increased by 25 % and 50 % and the unstable
modes A and B are computed. Figures 20 and 21 show that such extension does not affect
the structure of the modes within Lξ = L0. Further, their associated eigenvalues, i.e. β̃ =
0.00181i for mode A and β̃ = 0.00175i for mode B, remain the same as well.

Appendix B. Adjoint of the LNSE with geometric masks

Taking the first variation of L with respect to p̃′, using the integration by parts, gives

(
δL
δp̃′ , δp̃′

)
=

∫ T

0

〈
ũ′,‡ · ∇δp̃′

〉
dt =

∫ T

0

〈
∇ · (ũ′,‡δp̃′)

〉
dt −

∫ T

0

〈
δp̃′(∇ · ũ′,‡)

〉
dt. (B1)

This expression vanishes, if ũ′,‡ vanishes at the domain boundaries, resulting in

∇ · ũ′,‡ = 0, (B2)

936 A41-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.49


Diagnosing root causes of energy growth in BMHV

3

2

1

0

3

2

1

0

3

2

1

0
0 2 4 6 8 10

(a)

(b)

(c)

r (
m

m
)

r (
m

m
)

r (
m

m
)

ξ (mm)

Lξ = L0

Lξ = 1.25L0

Lξ = 1.5L0

Figure 21. Independence of the structure of mode B (β̃ = 0.00175i) from the location of outflow boundary.
From top to bottom, the modes are calculated for domain longitudinal extents of L0 (original case), 1.25L0 and
1.5L0.

thus confirming that the adjoint velocity field ũ′,‡ is also incompressible. Next, we consider
the first variation of L with respect to ũ′

(
δL
δũ′ , δũ′

)
= 〈

G ũ′(x, T) · δũ′(x, T)
〉 + φ

{〈
ũ′(x, 0) · δũ′(x, 0)

〉}
+

∫ T

0

〈
ũ′,‡ · {∂tδũ′ + δũ′ · ∇Ũ + Ũ · ∇δũ′ + Re−1∇2δũ′}

〉
dt +

∫ T

0

〈
p̃′,‡∇ · δũ′

〉
dt.

(B3)

Note that, when taking the variation of the first term in the objective JG ,E0 , we used the
following property of the geometric mapping function G :〈

G δũ′ · G δũ′〉 = 〈
δũ′ · G δũ′〉 = 〈

G δũ′ · δũ′〉 . (B4)

The first and second integrals over the time period [0, T] can be simplified using
integration by parts as follows. The first term of the first integral becomes∫ T

0

〈
ũ′,‡ · ∂tδũ′

〉
dt =

∫ T

0
∂t

〈
ũ′,‡ · δũ′

〉
dt −

∫ T

0

〈
∂tũ

′,‡ · δũ′
〉

dt

=
〈
ũ′,‡(T) · δũ′(T)

〉
−

〈
ũ′,‡(0) · δũ′(0)

〉
−

∫ T

0

〈
∂tũ

′,‡ · δũ′
〉

dt. (B5)
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For proceeding with the second, third, fourth and fifth terms, we use the following
identities for an arbitrary vector ã with the same size as ũ′

〈
ũ′,‡ · {ã · ∇δũ′}

〉
=

〈
∇ · {(ũ′,‡ · δũ′)ã}

〉
−

〈
ũ′ · {ã · ∇ũ′,‡}

〉
=

∫
∂Ω

(ũ′,‡ · δũ′)ã dS −
〈
ũ′ · {ã · ∇ũ′,‡}

〉
= −

〈
ũ′ · {ã · ∇ũ′,‡}

〉
, (B6)

and 〈
ũ′,‡ · {(δũ′ · ∇)ã}

〉
=

〈
δũ′ · {ũ′,‡ · (∇ã)T

〉
. (B7)

The viscous term, using Green’s second identity, can be written as∫ T

0

〈
ũ′,‡ · {−Re−1∇2ũ′}

〉
dt = −Re−1

∫ T

0

〈
ũ′,‡ · ∇2ũ′

〉
dt

= −Re−1
∫ T

0

〈
ũ′ · ∇2ũ′,‡

〉
dt +

∫ T

0

∫
∂Ω

ũ′,‡ · ∂ ũ′

∂ ñ
dS dt +

∫ T

0

∫
∂Ω

ũ′ · ∂ ũ′,‡

∂ ñ
dS dt

= −Re−1
∫ T

0

〈
ũ′ · ∇2ũ′,‡

〉
dt, (B8)

where ñ is the unit vector normal to the domain surface S. Lastly, the second time integral
is integrated by parts to yield∫ T

0

〈
p̃′,‡ · {∇ · ũ′}

〉
=

∫ T

0

〈
∇ · {p̃′,‡δũ′}

〉
dt −

∫ T

0

〈
δũ′ · ∇p̃′,‡

〉
dt

=
∫ T

0

∫
∂Ω

p̃′,‡δũ′dS dt −
∫ T

0

〈
δũ′ · ∇p̃′,‡

〉
dt = −

∫ T

0

〈
δũ′ · ∇p̃′,‡

〉
dt. (B9)

Substituting all reformulated terms for the first and second time integrals into (B3), we
obtain (

δL
δũ′ , δũ′

)
= 〈

G ũ′(x, T) · δũ′(x, T)
〉 + φ

{〈
ũ′(x, 0) · δũ′(x, 0)

〉}
+

〈
ũ′,‡(x, T) · δũ′(x, T)

〉
−

〈
ũ′,‡(x, 0) · δũ′(x, 0)

〉
−

∫ T

0

〈
∂tũ

′,‡ · δũ′ − δũ′ · {Ũ · ∇ũ′,‡}

+δũ′ · {ũ′,‡ · (∇Ũ)T} − Re−1δũ′ · ∇2ũ′,‡ + δũ′ · ∇p̃′,‡
〉

dt. (B10)

Appendix C. Validation of the linear DAL calculation

Our validation closely follows the analysis of maximum linear energy growth in
plane Poiseuille flow performed by Reddy & Henningson (1993). The base flow
Ũ = (1 − y2, 0)x̂ is considered across the channel (x, y) ∈ [0, 2π] × [−1, 1]. Substituting this
base flow into the LNSE and performing a Fourier transform using the ansatz q̃′(x, y, t) =
936 A41-30
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Figure 22. Growth (a) and residual (b) for the adjoint looping simulation for plane channel flow at
Re = 3000 and α = 1. The calculated value for the maximum growth based on eigenfunctions is shown on
the panel a as Gmax.

q̂( y) exp(i(γ̃ t + αx)), results in⎡
⎣L {Ũ; Re} 2y −iα

0 L {Ũ; Re} −Dy
Dx Dy 0

⎤
⎦

⎡
⎣û

v̂

p̂

⎤
⎦ = iγ̃

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦

⎡
⎣û

v̂

p̂

⎤
⎦ (C1)

where L {Ũ; Re} = −iα(1 − y2) + 1/Re(Dyy − α2); q̂ = (û, p̂) and û = (û, v̂). The
operators Dy, and Dyy denote the first and second derivatives in the wall-normal direction,
respectively.

Equation (C1) is solved using a Chebyshev spectral collocation method (Clenshaw
1957). To save computational time, only half the channel height (0 ≤ y ≤ 1) is considered,
resorting to the case where v̂ is symmetric and û and p̂ are antisymmetric for the known
optimal solution. The collocation points yi with

yi = cos
(

(i − 1/2)π

2N + 1

)
(C2)

are taken as the roots of the Chebyshev polynomial of degree 2N + 1 (T2N+1).
Following Reddy & Henningson (1993) the maximum growth at time T was then

calculated as

Gmax,K(α, Re, T) = sup
∀û( y,t=0)

∥∥ûK( y, t = T)
∥∥2

2∥∥ûK( y, t = 0)
∥∥2

2

, (C3)

where K is the number of eigenfunctions used in an expansion of û( y, t)

ûK( y, t) =
K∑

i=1

ai eiγitûi( y). (C4)

The eigenfunctions are ordered by growth rate γi. For sufficiently large K, Gmax,K
converges to Gmax for a given T . For Re = 3000 and α = 1, a maximum gain of
Gmax = 20.3625 was obtained for time T = 15. Convergence was achieved using K = 40
eigenfunctions in the expansion of ûK( y, t = T).

Figure 22 shows the gain G and the residual
∥∥∂ũ′(0)L

∥∥ for the iterations of two
simulations with wall-normal resolutions of 1024 and 2048. The simulated maximum
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Figure 23. Optimal initial conditions for the maximum energy growth for disturbances with α = 1 at time
T = 15 in plane channel flow at Re = 3000. Colours are magnified tenfold for ṽ′(x, 0) for visualisation clarity.

growth of Gmax,s = 20.3605 was obtained at a resolution of 2048 points. This value
corresponds to a relative error of 0.009 %. The optimal initial conditions obtained from
the adjoint looping simulation are given in figure 23.
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