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A NOTE ON THE GEOMETRIC ERGODICITY OF A MARKOV CHAIN

K. S. CHAN,* University of Chicago

Abstract

It is known that if an irreducible and aperiodic, Markov chain satisfies a
'drift' condition in terms of a non-negative measurable function g(x), it is
geometrically ergodic. See, e.g. Nummelin (1984), p. 90. We extend the
analysis to show that the distance between the nth-step transition probabil-
ity and the invariant probability measure is bounded above- by pn(a +
bg(x)) for some constants a, b > 0 and p < 1. The result is then applied to
obtain convergence rates to the invariant probability measures for an
autoregressive process and a random walk on a half line.

AUTOREGRESSIVE PROCESS; DRIFT CONDITION; RANDOM WALK

1. Introduction

Let (R, ~) be a measurable space, ~ being assumed countably generated. Let (j> be a
non-trivial a-finite measure on (E, ~). An E-valued Markov chain (Xn)neN is said to be
(j>-irreducible if

(1.1) ~O~n<oopn(x, A) > 0 for all A E ~ with (j>(A) > 0,

where P(., .) denotes the transition probability. In Sections 1 and 2, (Xn) is assumed to be a
(j>-irreducible Markov chain. (Xn ) is said to be geometrically ergodic if it admits an invariant
probability measure x, a J'l-integrable function M and a constant p < 1 such that

(1.2) \Ix E E, n ~O,

where 11.11 denotes the total variation norm.
It is known that if (Xn ) is aperiodic and satisfies a 'drift' condition in terms of a

well-behaved non-negative measurable function g(.), then it is geometrically ergodic. We
extend the analysis to show that M(x) in (1.2) can be taken as a + bg(x) for some positive
constants a and b. We follow the notation adopted in Nummelin (1984) and refer the reader
to it for any unexplained notation.

2. Main result

We now state the main theorem.

Theorem 1. Suppose that (Xn ) is aperiodic and that for some small set C, a non-negative
measurable function g, a constant r > 1 such that

(2.1a)

(2.1b)

sup lE(rg(Xn + t ) - g(Xn ) IX; =x) == y < 0;
xeCC

sup lE(g(Xn + t ) ; X n + t E CC IX; =x) == B < 00;
xeC

(2. Ic) g(x) is bounded away from 0 and +00 on C.

Then (Xn ) is geometrically ergodic and M(x) in (1.2) can be taken as a + bg(x) for some
constants a and b.
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(2.3)

Before we prove the theorem, first some remarks. Suppose that condition (2.1) hold. Then
Proposition 5.21 in Nummelin (1984) shows that (Xn ) is geometrically recurrent. Thus if (Xn )

is aperiodic, then it is geometrically ergodic. It also follows from Theorem 4 in Tweedie
(1983) that g(.) is n-integrable. Here, we extend the analysis to show that actually M(x) in
(1.2) can be taken as a + bg(x) for some positive constants a and b.

Condition (2.1) is referred to as a kind of 'drift' condition in the literature.

Proof of Theorem 1. It follows from the smallness of C that there exist an integer nt«, a
constant 1~ f3 > 0, a probability measure v such that

(2.2) pmo(x,A) ~ f31 c(x )v(A), Vx E E, A E ~.

Let f31 c(x) be denoted by s(x). The pair (s, v) is called an atom and is denoted by ct'. Since
Ilpn(x, .) - nil is non-increasing in n, with no loss of generality, we can assume that m., = 1
lest we work with (Xnmo).

Arguing as in the proof of Theorem 6.14 in Nummelin (1984), we have

~nrn IIpn(x, .) - nil ~ G~)I(x) + rG~)s(x)~mrm IUm - M;tl vG~)1
+ r(r - 1)-tn(s)vG~)I(G~)s(x) + 1),

all summations being from 0 to 00.

It follows from condition (2.1) and the proof of Proposition 5.21 in Nummelin (1984) that,
after some arrangement,

(2.4) lEx(rSC
) ~ at + btg(x)

where at and b t can be chosen as r«r - I)B/y + 1) + 1 + rand (r - 1)/y respectively.
From (2.2), we see that there is a probability f3 > 0 that X; E ct' given that X; E C. Thus, in

view of the smallness of C, it follows from Lemma 5.6 in Nummelin that there exists a
constant az such that

(2.5)

Now,

(2.6) G~)s(x) = lEx(r Ta
) ~ lEx(rSa

) .

Applying Lemma 6.2 in Nummelin (1984) with A there chosen as Ex, the probability measure
with all its mass at x, we have

(2.7) G~)I(x) < (r - 1)-tG~)s(x).

Now arguing again as in the proof of Theorem 6.14 in Nummelin (1984), by decreasing
r> 1 if necessary, we have both ~mrm IUm - M;tl and vG~)1 being finite. Combining (2.3),
(2.5), (2.6) and (2.7), it is readily seen that there exist positive constants a and b such that
~nrn IIpn(x, .) - nil ~ a + bg(x). So, by taking p = -:', the proof of the theorem is
completed.

3. Examples

Theorem 1 provides an upper bound on the convergence rate to the invariant probability
measure in the form of pn(a + bg(x)) with p < 1. We now consider two examples in which
g(x) may be chosen as linear in Ix1and exponential in x respectively. It is also noted that the
convergence rate in x thus obtained is exact for some special cases.

Example 1. Let (Xn ) be the stable first-order autoregressive process, i.e.,

(3.1) n = 1,2,3, ...

where ItPl < 1, (an) i.i.d. with finite first absolute moment and an independent of
Xn- t, Xn- Z , ••• ,Xo. It is assumed that at has an absolutely continuous component which
admits a density positive over some open interval about O. Then (Xn ) is irreducible and
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(3.3)

aperiodic. Let g(x) = Ixl + 1. Then condition (2.1) holds with C chosen as [-c, c] for some
c > O. It follows from Theorem 1 that an upper bound on the rate of convergence to the
invariant probability measure is linear in [z]. In the case of an being Gaussian, it can be
directly verified that the rate of convergence is indeed linear in Ix I.

Example 2. Let (Xn ) be a random walk on ~+, i.e.,

(3.2) Xn+t = (Xn+ an)+, n = 1, 2, 3, ...

where (an) is i.i.d.; an independent of X n- t , Xn-Z , ••• ,Xo; E(a t ) < 0 and, for some M < 00

and p > 0, Pr (at> y) ~ M exp (-py), Vy > O. Then (Xn ) is aperiodic and irreducible. It is
shown in Nummelin and Tuominen (1982) that condition (2.1) holds with g(x) = exp (tx) + 1
for some positive t and C chosen as [0, c] for some c > O. It follows from Theorem 1 that an
upper bound on the convergence rate to the invariant probability measure is exponential in x.
In the special case when

_ { -1 with probability p
at - 0 with probability q

with p + q = 1 and 0 < p < 1, it is readily seen that the rate of convergence is indeed
exponential in x.
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