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Given a group G acting faithfully on a set S, we characterize precisely when the
twisted Brin–Thompson group SVG is finitely presented. The answer is that SVG is
finitely presented if and only if we have the following: G is finitely presented, the
action of G on S has finitely many orbits of two-element subsets of S, and the
stabilizer in G of any element of S is finitely generated. Since twisted
Brin–Thompson groups are simple, a consequence is that any subgroup of a group
admitting an action as above satisfies the Boone–Higman conjecture. In the course of
proving this, we also establish a sufficient condition for a group acting cocompactly
on a simply connected complex to be finitely presented, even if certain edge
stabilizers are not finitely generated, which may be of independent interest.
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1. Introduction

Twisted Brin–Thompson groups are a family of groups SVG, parameterized by
an arbitrary group G and a set S on which G acts faithfully. These groups were
introduced by Belk and the author in [7], as a way of ‘twisting’ the Brin–Thompson
groups introduced by Brin in [11]. The original Brin–Thompson groups amount to
the G = {1} case. Perhaps the most important fact about twisted Brin–Thompson
groups is that they are always simple, for any G and S [7, theorem 3.4]. It is also
easy to characterize when SVG is finitely generated: this happens if and only if G is
finitely generated and the action of G on S has finitely many orbits [7, theorem A].
In particular, twisted Brin–Thompson groups provide an easy way to embed an
arbitrary finitely generated group G into a finitely generated simple group SVG,
for appropriate choice of S.

It is much more difficult to characterize when SVG is finitely presented. In [7, the-
orem D], a sufficient condition was given, with restrictions on orbits and stabilizers
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2 M. C. B. Zaremsky

for all finite subsets of S. We also posed a conjecture, the n =2 case of [7, conjec-
ture H], predicting that these conditions could be relaxed to only involve orbits of
subsets of size 2 and stabilizers of subsets of size 1. In this article, we prove this
conjecture, thus characterizing when a twisted Brin–Thompson group is finitely
presented. Let us state this more precisely. Let G be a group acting on a set S. We
will say that the action is of type (A) if the following holds:

(A): The action is faithful, the group G is finitely presented, each StabG(s) for
s ∈ S is finitely generated, and there are finitely many G-orbits of two-element
subsets of S.

Our main theorem is now the following:

Theorem A. Let G be a group acting faithfully on a set S. Then the twisted
Brin–Thompson group SVG is finitely presented if and only if the action of G on
S is of type (A).

As a remark, the sufficient conditions in [7] to get SVG to be finitely presented,
assuming G is, required that StabG(T ) be finitely presented for all finite T ⊆ S,
and that for each k ∈ N there are finitely many G-orbits of k -element subsets.
In [26], finite presentability of the stabilizers was relaxed to finite generation. The
‘if’ part of our main theorem here is therefore a significant improvement on these
existing results, since now one only needs to understand stabilizers of single points,
and orbits of pairs.

We should also point out one crucial aspect of our proof of theorem A, which is
a generalization of the so-called Stein complex X of SVG from [7] to a family of
subcomplexes X (k) (k ∈ N) that are significantly smaller. These may no longer be
contractible like X but are still simply connected for large enough k, and thus still
useful for trying to deduce finite presentability of SVG.

An immediate consequence of theorem A is the following sufficient condition for
a group to satisfy the Boone–Higman conjecture.

Corollary B. Any subgroup of a group admitting an action of type (A) (has
solvable word problem and) satisfies the Boone–Higman conjecture.

The Boone–Higman conjecture predicts that a finitely generated group has solv-
able word problem if and only if it embeds into a finitely presented simple group.
The backward direction is easy, but the forward direction has been open for decades.
This conjecture was posed by Boone and Higman in the early 1970s [10] and has
attracted renewed attention in recent years. Prominent examples of groups known
to satisfy the conjecture include GLn(Z) [22], hence virtually special and virtually
nilpotent groups, and also hyperbolic groups [4], finitely presented or contracting
self-similar groups [4, 6, 25], and Baumslag–Solitar groups and (finite rank free)-
by-cyclic groups [14]. See [5] for more on the history and progress around this
conjecture.

From now on, whenever we say that a group ‘satisfies the Boone–Higman con-
jecture’, we are implicitly saying that it has solvable word problem and explicitly
saying that it embeds into a finitely presented simple group. We should mention
that we are not aware of any examples of groups for which the Boone–Higman
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Finite presentability of twisted Brin–Thompson groups 3

conjecture is known to hold but the group does not embed into a group admit-
ting an action of type (A). Thus, it is an interesting question (see question 6.13)
whether embedding into a group admitting an action of type (A) could possibly be
equivalent to embedding into a finitely presented simple group. In §6, we give some
new examples of groups admitting actions of type (A) and discuss some general
results related to the Boone–Higman conjecture.

We should mention that theorem A has a direct connection to finite presentability
of permutational wreath products. By [17], the permutational wreath productW oS
G :=

⊕
SWoG is finitely presented if and only if the action of G on S is of type (A)

and W 6= {1} is finitely presented. Thus, a more concise way to phrase theorem A
is to say that SVG is finitely presented if and only if W oS G is finitely presented,
for any choice of finitely presented non-trivial W, for example W = Z. (Note that
in [17] the action of G on S need not be faithful, but with twisted Brin–Thompson
groups we always want the action to be faithful.) As a remark, in [4], it is explained
that SVG is the ‘topological full group’ of the wreath product V oS G, so the above
is especially relevant for W =V.

Finally, let us emphasize one new technical result that we use to prove the rel-
evant SVG are finitely presented, namely proposition 4.1. It is well-known that if
a group acts cocompactly on a simply connected complex, with finitely presented
vertex stabilizers and finitely generated edge stabilizers, then the group is finitely
presented. In proposition 4.1, we find a way to still achieve finite presentability of
the group even if certain edge stabilizers are not finitely generated, which could be
of independent interest.

This article is organized as follows. In §2, we recall some background on twisted
Brin–Thompson groups SVG. In §3, we prove that Z oSG is a quasi-retract of SVG,
thus establishing the ‘only if’ direction of theorem A. In §4, we prove a criterion,
proposition 4.1, for deducing finite presentability of a group from its action on a
complex, even if some edge stabilizers are not finitely generated. This leads in §5 to
the proof of the ‘if’ direction of theorem A, using a variation of the Stein complex for
SVG. Finally, in §6, we discuss some implications for the Boone–Higman conjecture.

2. Twisted Brin–Thompson groups and groupoids

Let C = {0, 1}N be the usual Cantor set. For a set S, we can consider the Cantor
cube CS , that is the set of all functions from S to C, with the usual product topology.
Let {0, 1}∗ be the set of all finite binary sequences, and write ∅ for the empty word.
Given a function ψ : S → {0, 1}∗ such that ψ(s) = ∅ for all but finitely many s ∈ S,
we define the dyadic brick B(ψ) to be

B(ψ) := {κ ∈ CS | ψ(s) is a prefix of κ(s) for each s ∈ S}.

This is a (basic) open set in CS . There is a canonical homeomorphism hψ : C
S →

B(ψ) given by

hψ(κ)(s) := ψ(s) · κ(s).

Any composition hψ ◦h−1
ϕ will also be called a canonical homeomorphism, from one

dyadic brick to another.
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Definition 2.1. (Brin–Thompson group). The Brin–Thompson group SV is the
group of homeomorphisms of CS obtained by partitioning CS into dyadic bricks in
two ways, B(ϕ1), . . . , B(ϕn) and B(ψ1), . . . , B(ψn), and mapping each B(ϕi) to
B(ψi) via the canonical homeomorphism.

When S is finite, say |S| = n, we will write nV. These groups were first introduced
by Brin in [11], as an infinite family generalizing Thompson’s group V = 1V .

Given a group G acting faithfully on S, for each γ ∈ G define the twist home-
omorphism τγ of CS to be the homeomorphism permuting the coordinates via γ,
i.e.,

τγ(κ)(s) := κ(γ−1s).

More elegantly, this means τγ(κ)(γs) = κ(s). As in [7], we view the action of G on
S as a left action, and the left/right, inverse/not inverse conventions here ensure
that τγγ′ = τγτγ′ . We will also say twist homeomorphism for anything of the form
hψ ◦ τγ ◦ h−1

ϕ , so this is the twist homeomorphism from B(ϕ) to B(ψ) using γ.
Now we can define twisted Brin–Thompson groups, first introduced in [7]. See

also [26] for a shorter introduction.

Definition 2.2. (Twisted Brin–Thompson group). The twisted Brin–Thompson
group SVG is the group of homeomorphisms of CS obtained by partitioning CS into
dyadic bricks in two ways, B(ϕ1), . . . , B(ϕn) and B(ψ1), . . . , B(ψn), and mapping
each B(ϕi) to B(ψi) via a twist homeomorphism using some γi ∈ G.

Now let CS(m) be the disjoint union of m copies of the Cantor cube CS . We have
a notion of dyadic bricks in CS(m), just by taking dyadic bricks in the cubes, and
thus we have canonical homeomorphisms and twist homeomorphisms even between
dyadic bricks in different cubes.

Definition 2.3. ((Twisted) Brin–Thompson groupoids, rank, corank). The
Brin–Thompson groupoid SV is the groupoid of all homeomorphisms from some
CS(m) to some CS(n) given by partitioning the domain into some number of dyadic
bricks, partitioning the codomain into the same number of dyadic bricks, and send-
ing the domain bricks to the codomain bricks via canonical homeomorphisms. If
we instead use twist homeomorphisms, we get the twisted Brin–Thompson groupoid
SVG. A homeomorphism from CS(m) to CS(n) has rank n and corank m.

Note that SVG is the subgroup of SVG consisting of all elements with rank and
corank 1. Let us also record here the definition of some other elements that will
turn out to be important later, namely, simple splits.

Definition 2.4. (Simple split). The simple split xs for s ∈ S is the element of SV
with corank 1 and rank 2 given by partitioning CS into the dyadic bricks B(ψ0) and
B(ψ1), where ψi : S → {0, 1}∗ sends s to i and all other s

′
to ∅, and then mapping

B(ψ0) to the first cube of CS(2) and B(ψ1) to the second cube, both via canonical
homeomorphisms.
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3. Quasi-retractions

In this section, we prove the forward direction of theorem A:

Proposition 3.1. If SVG is finitely presented, then the action of G on S is of
type (A).

As a first step, we relate condition (A) to the permutational wreath product
Z oS G. Given a group G acting on a set S, and a group W, the permutational
wreath product W oS G is the semidirect product

W oS G :=
⊕
s∈S

W oG,

where the action of G on the direct sum is given by permuting coordinates; more
precisely, γ ∈ G sends (ws)s∈S to (wγ−1s)s∈S . Viewing elements of

⊕
SW as

functions from S to W, this action amounts to precomposition by γ−1, so it is
a left action. Cornulier proved a precise characterization of when W oS G is finitely
presented, namely:

Citation 3.2. [17, theorem 1.1] ForW 6= {1}, the groupW oSG is finitely presented
if and only if W is finitely presented and the action of G on S is of type (A).

Note that in [17] the condition of having finitely many orbits of two-element
subsets of S is phrased as having finitely many orbits in S × S under the diagonal
action of G, but this is equivalent.

Since Z is non-trivial and finitely presented, citation 3.2 implies that if Z oS G
is finitely presented, then the action of G on S is of type (A). Thus, to prove
proposition 3.1, it suffices to prove that if SVG is finitely presented then so is
Z oS G. We will do this by showing that Z oS G is a quasi-retract of SVG.

Definition 3.3. (Quasi-retract). A quasi-retraction ρ : X → Y from a metric
space X to a metric space Y is a coarse Lipschitz function such that there exists a
coarse Lipschitz function ζ : Y → X with ρ ◦ ζ uniformly close to the identity on
Y. In this case, we call Y a quasi-retract of X.

Here a function f : X → Y is coarse Lipschitz if there exist constants C,D > 0
such that d(f(x), f(x′)) ≤ Cd(x, x′) +D for all x, x′ ∈ X.

If G and H are finitely generated groups, viewed as metric spaces with word
metrics coming from some finite generating sets, then Alonso proved in [1] that if
G is of type Fn and H is a quasi-retract of G then H is of type Fn. In particular,
when n =2, we get that every quasi-retract of a finitely presented group is finitely
presented.

Let us now begin to construct a quasi-retraction SVG → Z oS G. The idea of this
quasi-retraction is due to Jim Belk. Let h ∈ SVG, so h is a homeomorphism from CS

to itself given by partitioning the domain into dyadic bricks B(ϕ1), . . . , B(ϕn), par-
titioning the range into dyadic bricks B(ψ1), . . . , B(ψn), and mapping each B(ϕi)
to B(ψi) via a twist homeomorphism using some γi ∈ G. Let κ ∈ CS , say κ ∈ B(ϕi),
so h(κ) ∈ B(ψi). For each s ∈ S, let dsκ(h) be the length of ϕi(s) ∈ {0, 1}∗ and let
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rsh(κ)(h) be the length of ψi(s) ∈ {0, 1}∗. (Note that dsκ(h) and r
s
h(κ)(h) depend on

the choice of domain and range partitions and are not actually well-defined solely
in terms of h; including ϕi and ψi in the notation is just too bulky.) Note that
dsκ(h) and rsh(κ)(h) are zero for all but finitely many s ∈ S, and intuitively they
are measuring how many times the dyadic bricks containing κ and its image have
been halved in the s dimension, which can be viewed as a sort of ‘depth’ in that
dimension.

Finally, with all the above notation, define

ρκ : SVG → Z oS G via h 7→ ((rsh(κ)(h)− d
γ−1
i

s
κ (h))s∈S , γi).

Intuitively, this measures the ‘change in depth’ at κ, in every dimension, and also
records the twist used at κ.

To see why these ρκ are useful for getting a quasi-retraction from SVG to Z oSG,
we need a series of lemmas.

Lemma 3.4. The function ρκ is well-defined.

Proof. We need to prove that the measurements rsh(κ)(h)−d
γ−1
i

s
κ (h) for each s ∈ S,

and the element γi, only depend on h, and not on the choice of partitions into
dyadic bricks. It suffices to prove that refining the partitions does not change these
measurements, and for this it is enough to consider a domain partition refinement
that just partitions B(ϕi) into two halves in some dimension; see [7, remark 1.1].
More precisely, fix some s0 ∈ S, and let ϕ0

i , ϕ
1
i : S → {0, 1}∗ be the functions sat-

isfying ϕ0
i (s) = ϕ1

i (s) = ϕi(s) for all s 6= γ−1
i s0, and ϕ0

i (γ
−1
i s0) = ϕi(γ

−1
i s0)0

and ϕ1
i (γ

−1
i s0) = ϕi(γ

−1
i s0)1. Since κ ∈ B(ϕi), either κ ∈ B(ϕ0

i ) or κ ∈ B(ϕ1
i ).

Viewing h using this new domain partition, we have that d
γ−1
i

s
κ (h) does not change

unless s = γ−1
i s0, in which case it goes up by one. Now consider the resulting

new range partition. The image of B(ϕ0
i ) under h is B(ψ0

i ) or B(ψ1
i ), where

ψ0
i , ψ

1
i : S → {0, 1}∗ are defined by ψ0

i (s) = ψ1
i (s) = ψi(s) for all s 6= s0, and

ψ0
i (s0) = ψi(s0)0 and ψ1

i (s0) = ψi(s0)1 (intuitively, twisting via γi takes the ‘cut’
in the γ−1

i s dimension to a cut in the s dimension). Now rsh(κ)(h) is the same as
before, unless s = s0 in which case it goes up by one. In particular, for any s ∈ S,

the difference rsh(κ)(h)−d
γ−1
i

s
κ (h) is the same whether we use the original partitions

or the refinements. Finally, it is obvious that the element γi does not depend on
the choice of partitions (to use the language of [7, §2], γi is the ‘germinal twist’ of
h at κ), so we conclude that ρκ is well-defined. �

Lemma 3.5. For any h, g ∈ SVG and any κ ∈ CS we have ρκ(hg) = ρg(κ)(h)ρκ(g).

Proof. Choose the range partition for g to equal the domain partition for h; say in
the domain of g we have B(ϕj), in the range of g and domain of h we have B(ψj),
and in the range of h we have B(χj). Say B(ϕi) contains κ, and let γi ∈ G be
such that g sends B(ϕi) to B(ψi) via the twist homeomorphism using γi. Similarly
choose δi ∈ G such that h takes B(ψi) to B(χi) via the twist homeomorphism
using δi. Note that hg takes B(ϕi) to B(χi) via the twist homeomorphism using
δiγi. Now we compute
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ρκ(hg) =

((
rshg(κ)(hg)− d

(δiγi)
−1s

κ (hg)
)
s∈S , δiγi

)
=

((
rshg(κ)(h)− d

γ−1
i

δ−1
i

s
κ (g)

)
s∈S , δiγi

)
=

((
rshg(κ)(h)− d

δ−1
i

s

g(κ) (h) + r
δ−1
i

s

g(κ) (g)− d
γ−1
i

δ−1
i

s
κ (g)

)
s∈S , δiγi

)
=

((
rshg(κ)(h)− d

δ−1
i

s

g(κ) (h)
)
s∈S , 1

)((
r
δ−1
i

s

g(κ) (g)− d
γ−1
i

δ−1
i

s
κ (g)

)
s∈S , δiγi

)
=

((
rshg(κ)(h)− d

δ−1
i

s

g(κ) (h)
)
s∈S , δi

)((
rsg(κ)(g)− d

γ−1
i

s
κ (g)

)
s∈S , γi

)
= ρg(κ)(h)ρκ(g).

�

Note that we are still assuming SVG is finitely presented, hence finitely generated,
so by [7, theorem A] we know G is finitely generated and S has finitely many G-
orbits, which also tells us that Z oS G is finitely generated (see for example [17,
proposition 2.1]). At this point, we fix some finite symmetric generating set A for
SVG. (Here a subset of a group is symmetric if it is closed under taking inverses.)

Lemma 3.6. There exists a finite symmetric generating set B for Z oS G such that
B contains {ρκ(a) | κ ∈ CS , a ∈ A}.

Proof. Since we already know Z oSG is finitely generated, all we have to do is prove
that {ρκ(a) | κ ∈ CS , a ∈ A} is finite. Indeed, we claim that for any h ∈ SVG
the set {ρκ(h) | κ ∈ CS} is finite. This is because, fixing a domain and range
partition that encode h, if κ and κ′ share a domain block then by construction we
have ρκ(h) = ρκ′(h). Since our fixed domain partition has finitely many blocks,
{ρκ(h) | κ ∈ CS} is finite. Now since A is finite, {ρκ(a) | κ ∈ CS , a ∈ A} is finite. �

We will use left word metrics with respect to the finite generating sets A and
B. Now we want to show that ρκ0 is a quasi-retraction with respect to these word

metrics, where κ0 is the point satisfying κ0(s) = 0 for all s ∈ S.

Proposition 3.7. The function ρκ0 is a quasi-retraction.

Proof. First we need to construct a function ζ : Z oSG→ SVG. Embed Z into V by
sending 1 to some element that acts by sending the dyadic brick B(0) in C to B(00)
via 0κ 7→ 00κ. Extend this to

⊕
S Z →

⊕
S V . Now observe that

⊕
S V embeds into

SV by having the copy of V corresponding to s ∈ S act on the factor of C in CS

corresponding to s, and fixing all other coordinates. Finally, G embeds into SVG as
a group of global coordinate permutations; following [7] we write ι∅ : G→ SVG for
this embedding. Clearly, this copy of G normalizes the copy of

⊕
S V and acts by

permuting coordinates, so together they form a copy of V oS G. Putting everything
together, we get a monomorphism ζ : Z oS G→ SVG.

Now we claim that ρκ0 ◦ ζ is the identity on Z oS G. Note that every element
in the image of ζ fixes κ0, so restricted to this image, ρκ0 is a homomorphism by
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lemma 3.5. Thus, it suffices to check that ρκ0 ◦ ζ is the identity on both the
⊕

S Z
and G factors individually or even just on some generating sets thereof. On the G
factor, ζ(γ) = ι∅(γ), which ρκ0 sends to γ as desired. Now let (zs)s∈S ∈

⊕
S Z,

and assume that it comes from the standard generating set, so zs = 1 for some
s ∈ S and zt = 0 for all t 6= s. Let ϕ : S → {0, 1}∗ send s to 0 and all other t to
∅. Restricted to B(ϕ), the element h = ζ((zs)s∈S , 1G) acts in the s dimension by
prepending a zero and acts trivially in all other dimensions. Since B(ϕ) contains
κ0, and it is possible to find for h a domain partition into dyadic bricks including
B(ϕ) and a range partition into dyadic bricks including the image of B(ϕ) under
h, this shows that rsκ0(h) − dsκ0(h) = 1 and rtκ0(h) − dtκ0(h) = 0 for all t 6= s. We

conclude that ρκ0(h) = ((zs)s∈S , 1G) as desired.
Finally, we need to prove that ρκ0 and ζ are coarse Lipschitz, with respect to the

generating sets A and B. This is immediate for ζ since it is a homomorphism, so
we just need to handle ρκ0 . In fact, we will show that every ρκ is non-expanding,
i.e., d(ρκ(h), ρκ(h

′)) ≤ d(h, h′) for all h, h′ ∈ SVG. It suffices to do this in the
case when h′ = ah for a ∈ A, i.e., to prove that d(ρκ(h), ρκ(ah)) ≤ 1. Indeed,
ρκ(ah) = ρh(κ)(a)ρκ(h) by lemma 3.5 and ρh(κ)(a) ∈ B by lemma 3.6. �

Now we can prove the main result of this section.

Proof of proposition 3.1. Since Z oS G is a quasi-retract of SVG by proposition 3.7,
we have that Z oS G is finitely presented. Thus, by citation 3.2, the action of G on
S is of type (A). �

Remark 3.8. This also shows that if SVG is of type Fn then so is Z oS G, which
imposes restrictions on G and S, thanks to [3, theorem B]. Namely, we must have
that G is of type Fn, each StabG(T ) for T ⊆ S with |T | < n is of type Fn−|T |,
and there are finitely many orbits of n-element subsets of S. Let us call the action
of G on S in this case an action of type (An), so type (A2) means type (A). This
is conjectured to be an if and only if in [7, conjecture H], so it is worth remarking
here that our quasi-retract argument in this section has now proven the ‘only if’
direction of this conjecture (and the main result of the present article is that the
‘if’ direction is also true for n =2). It remains open whether the action of G on S
being of type (An) implies SVG is of type Fn.

4. Finite presentability from actions with bad edge stabilizers

It is a classical fact that if a group Γ acts cellularly and cocompactly on a simply
connected CW-complex, with every vertex stabilizer finitely presented and every
edge stabilizer finitely generated, then Γ is finitely presented. See for example [13,
proposition 3.1]. If not every edge stabilizer in Γ is finitely generated, then this is
an impediment to obtaining finite presentability of Γ. In this section, we prove a
technical result that provides a way of getting around this impediment (somewhat
literally).

Let us first recall how a group presentation falls out of a cellular action on a
simply connected complex. In [12], the complex can be any CW-complex and the
action is allowed to stabilize cells without fixing them. For simplicity, here we will
follow [2] and assume the complex is simplicial and the action is rigid, meaning
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the stabilizer of each cell equals its fixer. See also [21] for a nice simplification
in the case when the orbit space is 2-connected (which is unfortunately not the
case for the situations we will care about later). All this coming discussion before
proposition 4.1 is taken directly from [2].

Let K be a simply connected simplicial complex. View the 1-skeleton K(1) as a
(simplicial) graph. As in [2], following Serre [23], each edge e can be made into a
pair of directed edges by specifying which endpoint is the origin o(e) and which is
the terminus t(e). Write e for e with the opposite orientation, so o(e) = t(e) and
t(e) = o(e), and both e and e are viewed as (directed) edges in K(1). Let Γ be
a group with an orientation preserving action on K, i.e., for any edge e and any
γ ∈ Γ we have o(γ·e) = γ·o(e) and t(γ·e) = γ·t(e). Let M be a maximal tree in
the orbit space Γ\K(1), and let T be a choice of lift of M to a subtree of K(1).
Note that the vertices of T form a set of representatives of the Γ-orbits of vertices
of K. For each edge f of (Γ\K(1)) \M , choose a lift f̃ of f in K(1) such that one

endpoint of f̃ lies in T, call it the origin o(f̃). The other endpoint of f̃ , its terminus

t(f̃), necessarily lies outside T. Let zf be the vertex of T that shares a Γ-orbit with

t(f̃), and choose some γf ∈ Γ such that γf ·zf = t(f̃). Note that for each f we are

free to choose γf to be any element we like, as long as it satisfies γf ·zf = t(f̃).

We will also always choose the lift (̃f) of f to have zf specifically as its origin, so

consequently zf is the origin of f̃ , and we can take γf = γ−1
f . For each edge f of M,

set γf = 1.
Let us say triangle for 2-simplex. From each orbit of triangles in K(2), we can

choose one that has at least one vertex in T. Given a triangle ∆ in K(2) with a
vertex v in T, view the boundary of ∆ as an edge path (of length three) from v
to v, say e1, e2, e3. (Up to possibly switching the roles of some ei and ei, we can
assume that this is a directed cycle, i.e., t(ei) = o(ei+1) for all i mod 3.) For each

i = 1, 2, 3, let fi be the image of ei in Γ\K(1), and let f̃i be the lift as above. If fi is

in M then f̃i is in T, and if not then the origin o(f̃i) lies in T but not the terminus.

Since e1 and f̃1 share a Γ-orbit, and both of their origins lie in T, they must have
the same origin, namely v. Since they share an orbit and have the same origin v,
and the action is orientation preserving, we can choose a1 ∈ Γv := StabΓ(v) taking

f̃1 to e1. Now observe that a1γf1 takes zf1 to the terminus of e1, which is the origin

of e2. Since the origin of f̃2 is the vertex of T sharing an orbit with the origin of
e2, the origin of f̃2 is zf1 . Now similar to before, we can choose a2 ∈ Γzf1

such

that a1γf1a2 takes f̃2 to e2, and so a1γf1a2γf2 takes zf2 to the terminus of e2,
which is the origin of e3. Finally, we do this trick again and get a3 ∈ Γzf2

such that

a1γf1a2γf2a3γf3 takes zf3 to the terminus of e3, which is v. But zf3 is a vertex in
T sharing an orbit with v, hence must be v. We conclude that a1γf1a2γf2a3γf3 lies
in Γv, write a1γf1a2γf2a3γf3 = av. Now we have a−1

v a1γf1a2γf2a3γf3 = 1, and up

to forgetting how a1 arose in Γv specifically taking f̃1 to e1 we can rename a−1
v a1

as the new a1. Thus we have a relation

a1γf1a2γf2a3γf3 = 1,
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with a1, a2, and a3 coming from various vertex stabilizers, and we call this relation
r∆. We can phrase r∆ as saying that a1γf1a2γf2a3 = γ−1

f3
, so in particular if we

have already chosen γf1 and γf2 , then we can choose γf3 in terms of γf1 , γf2 , and
elements of the various vertex stabilizers.

With this set-up, we get a presentation for Γ (see the Presentation Theorem at
the end of §2 of [2]). The set of generators is the (disjoint) union of the vertex
stabilizers Γv for v a vertex of T, together with a generator λf for each f an edge
of Γ\K(1). If an element g lies in more than one Γv, write gv when viewing it
specifically as an element of Γv. The defining relations consist of the relations in
each Γv, called vertex relations, the set of relations

rλ∆ : a1λf1a2λf2a3λf3 = 1

obtained by replacing each γ with λ in r∆, called triangle relations, the relations
λf = 1 for all f in M, called tree relations, and the relations

R(f, g) : (go(f̃))
λf = (gγf )zf

for all f in (Γ\K(1)) \M and g ∈ Γf̃ , called edge relations. Here as usual xy :=

y−1xy. (To be more clear about γ versus λ, the γf are elements of the group
Γ, whereas the λf are formal symbols used as generators in the abstract group
presentation. The tree relations λf = 1 essentially account for the fact that we
chose γf = 1 whenever f in the tree M.)

For a fixed f, write R(f, ∗) for the family of relations R(f, g) for g ∈ Γf̃ . Note

that all the R(f, g) are consequences of those for which g comes from a generating
set of Γf̃ . At this point, it is clear that if each Γv is finitely presented and each Γf̃
is finitely generated, and the action is cocompact, then Γ is finitely presented. Now
we will inspect the case when not every Γf̃ is finitely generated.

Proposition 4.1. Let K be a simply connected simplicial complex and Γ a group
with an orientation preserving, cocompact action on K, such that every vertex stabi-
lizer Γv is finitely presented. Suppose that for each edge e = {v, w}, there exists an
edge path e1, . . . , en from v to w such that each stabilizer Γei is finitely generated,

and the subgroup
n⋂
i=1

Γei of Γe has finite index. Then Γ is finitely presented.

Proof. Let f be an edge in Γ\K(1) such that Γf̃ is not finitely generated. Let

e1, . . . , en be an edge path in K(1) from v = o(f̃) to w = t(f̃) such that each Γei

is finitely generated, and
n⋂
i=1

Γei has finite index in Γf̃ . Let fi be the image of ei in

Γ\K(1), with f̃i the chosen lift to K(1) (so o(f̃i) lies in T ). We now claim that the
edge relations R(f, ∗) are all consequences of the edge relations R(fi, ∗) together
with the (finitely many) non-edge relations. By extrapolating the triangle relations,
and noting that the path e1, . . . , en, f is a directed cycle, we see that we are free to
choose γf (which equals γ−1

f
) so that
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γf = a1γf1a2γf2 · · · anγfnan+1,

for some a1, . . . , an+1 coming from the various stabilizers of vertices of T. From the
triangle relations, we also have

λf = a1λf1a2λf2 · · · anλfnan+1.

Now for any g in the finite index subgroup of Γf̃ fixing the path e1, . . . , en, the

relation R(f, g), which is (gv)
λf = (gγf )zf , can be rewritten as

(gv)
a1λf1

a2λf2
···anλfnan+1 = (g

a1γf1
a2γf2

···anγfnan+1)zf .

This shows that R(f, g) is a consequence of vertex relations and edge relations from
the R(fi, ∗) (and tree relations if needed). Since this holds for all g coming from a
finite index subgroup of Γf̃ , we can choose some (finite) set of representatives in Γf̃
of the cosets of this subgroup and conclude that all the R(f, g) are consequences
of the vertex relations, triangle relations, tree relations, edge relations from the
R(fi, ∗), and finitely many edge relations from R(f, ∗). Doing this for every such
f proves that all the defining relations are consequences of a finite set of relations,
i.e., Γ is finitely presented. �

It seems likely that some sort of higher dimensional analog of this result is also
true and could be used for deducing that groups admitting certain actions are of
type Fn, perhaps using spectral sequence techniques. However, some results in the
next section, specifically lemma 5.9, do not have clear higher dimensional analogs,
and so we will not pursue this further here.

5. Stein complexes and subcomplexes

In this section, we recall the construction of the Stein complex X for SVG and
establish some important subcomplexes of X. Given two elements h and h

′
of SVG,

say h has rank n and corank m, and h
′
has rank n

′
and corank m

′
, define the direct

sum h ⊕ h′ to be the element of SVG with rank n + n′ and corank m +m′ given
by sending the first m cubes of CS(m+m′) to the first n cubes of CS(n+ n′) via
h, and sending the last m

′
cubes of CS(m+m′) to the last n

′
cubes of CS(n+ n′)

via h
′
.

Given a permutation σ in the symmetric group Σm, the permutation homeo-
morphism pσ of CS(m) is defined by sending the ith Cantor cube to the σ(i)th
Cantor cube via the canonical homeomorphism. By a twisted permutation, we will
mean any composition of a permutation homeomorphism with a direct sum of twist
homeomorphisms. It is easy to see that the twisted permutations with rank (and
corank) m form a group isomorphic to G om Σm :=

⊕m
i=1G o Σm; we denote this

group by G(m).
Next, define a multicoloured tree recursively, by saying that the identity on CS

and all simple splits xs are multicoloured trees, and if f 1 and f 2 are multicoloured
trees and σ is a permutation, then f = pσ(f1 ⊕ f2)xs is a multicoloured tree. The
name comes from viewing S as a set of colours, and xs as a caret with colour s.
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Note that multicoloured trees have corank 1 and can have any rank. Amulticoloured
forest is any element of SV of the form pσ(f1 ⊕ · · · ⊕ fm) for multicoloured trees fi
and σ a permutation. Note that the set of all multicoloured forests is the smallest
subset of SV that contains all permutations and simple splits and is closed under
direct sums and compositions.

Let P be the set of equivalence classes [h] = G(m)h, where h is an element of
SVG with rank m. That is, P is the set of elements of the twisted Brin–Thompson
groupoid, up to postcomposing by twisted permutations. Let P1 be the subset of ele-
ments with corank 1. We have a (right) action of SVG on P1 given by precomposing.
The set P has a partial order ≤, given by

[h] ≤ [fh]

whenever f is a multicoloured forest (whose corank equals the rank of h). Note that
P1 is a subposet of P. By [7, lemma 5.1 and proposition 5.2], ≤ is a partial order and
the subposet P1 is directed, so the geometric realization |P1| is contractible. One
key to ≤ being a partial order is the following result, which will also be important
here.

Citation 5.1. [7, lemma 2.3] If f is a multicoloured forest and g is a twisted per-
mutation such that the composition fg is defined, then fg = g′f ′ for some twisted
permutation g

′
and some multicoloured forest f

′
. Moreover, if f is a multicoloured

tree then g
′
is a direct sum of copies of g.

In [7], a certain subcomplex X of |P1| called the Stein complex was constructed,
using a notion of ‘elementary’ multicoloured forests, to provide a smaller and more
manageable, but still contractible, complex for SVG to act on. Our goal now is to
find an even smaller subcomplex that is even more manageable and is still simply
connected (if not contractible). This will be enough to lead to finite presentability
of SVG, with weaker hypotheses.

Definition 5.2. (Elementary, spectrum). We will recall what it means for a mul-
ticoloured tree to be elementary, and at the same time recall the notion of spectrum,
recursively. First, the identity on CS is declared to be elementary with empty spec-
trum. Given elementary multicoloured trees f1 and f2 with spectra S1, S2 ⊆ S, if
s ∈ S \ (S1 ∪ S2) then we declare that the multicoloured tree pσ(f1 ⊕ f2)xs (for any
σ) is elementary and has spectrum S1 ∪ S2 ∪ {s}.

Intuitively, the spectrum of a multicoloured tree is the set of colours ‘involved’ in
the tree, and a tree is elementary if no colour occurs more than once going from the
root to a leaf. Note that it is fine if S 1 and S 2 intersect. We extend these definitions
to multicoloured forests in the obvious way: a multicoloured forest is elementary if
it is a direct sum of elementary multicoloured trees, composed with a permutation
homeomorphism, and its spectrum is the union of the spectra of these elementary
multicoloured trees.

Now we introduce a new, crucial definition.

Definition 5.3. (k -elementary). Call an elementary multicoloured forest k-
elementary if its spectrum has size at most k.
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For example, the only 1-elementary multicoloured forests are the direct sums of
copies of identity elements and copies of some simple split xs, composed with a
permutation homeomorphism. As another example, the multicoloured tree ((xu ⊕
xt))xs is 3-elementary if s, t, and u are distinct, 2-elementary if s 6= t = u, and
non-elementary if s ∈ {t, u}.

For [h] � [fh] in P1, write [h] �k [fh] whenever the multicoloured forest f is
k -elementary. Given a simplex in |P1|, i.e., a chain v0 < v1 < · · · < vk of elements
of P1, call the simplex k-elementary if v0 �k vk (and hence vi �k vj for all i < j ).
These simplices form a subcomplex of |P1|, which we denote by X (k), and call
the k-elementary Stein complex for SVG. The Stein complex X is X = X(∞),
i.e., the complex dictated by using all elementary multicoloured forests rather than
restricting to just the k -elementary ones for some k.

Let φ : X(0) → N be the function sending v to its rank, and also denote by φ the
map X → R given by affinely extending φ to each simplex. For each m ∈ N let Xm

be the full subcomplex of X spanned by vertices with rank at most m. (In [7] Xm

is defined to be φ−1([1,m]), but this is homotopy equivalent to what we are calling
Xm, thanks to standard discrete Morse theory, for example [8, lemma 2.5]. We do
things this way since it will be convenient for us to have Xm be a subcomplex.)
Call Xm the truncation of X at m. Since φ is invariant under the action of SVG on
X, each Xm is stabilized by SVG. Write Xm(k) for the intersection

Xm(k) := Xm ∩X(k).

By [7, proposition 7.9], which establishes connectivity properties of the descending
links, together with standard discrete Morse theory, e.g., [8, corollary 2.6], one can
compute that for any n, the complex Xm is (n−1)-connected form sufficiently large.
For example, Xm is simply connected for all m ≥ 21, since [7, proposition 7.9] says
the descending link of any vertex with rank greater than m is simply connected as
soon as b((m+1)/2−2)/3c−2 ≥ 1 and log2((m+1)/2)−2 ≥ 1, which is equivalent
to m ≥ 21.

Proposition 5.4. Let k ≥ n. The complex X(k) is (n−1)-connected, and moreover
for any m ∈ N, if m is large enough that the truncation Xm is (n − 1)-connected
then Xm(k) is also (n− 1)-connected. For example, X21(2) is simply connected.

Proof. We will begin by mimicking part of the proof of [7, proposition 5.6]. By that
proposition, the Stein complex X is contractible. We can build up from X (k) to X
by attaching the geometric realizations of closed poset intervals of the form [v, w]
for v <w satisfying v � w but v 6�k w. We do so in increasing order of the rank
of w minus the rank of v, so at the point when we attach |[v, w]|, we do so along
an intersection equal to |[v, w) ∪ (v, w]|. This is the suspension of |(v, w)|. In order
to conclude that X (k) is (n − 1)-connected, it therefore suffices to prove that the
suspension of |(v, w)| is (n − 1)-connected, i.e., that |(v, w)| is (n − 2)-connected.
Since k ≥ n, it suffices to show that |(v, w)| is (k − 2)-connected.

Say v = [h] and w = [fh] for f an elementary (and not k -elementary) mul-
ticoloured forest. Let r be the rank of h, which is also the corank of f. For any
u ∈ (v, w), since v < u we can write u = [f ′h] for some non-trivial multicoloured
forest f

′
(here we have used lemma 5.1), so in particular there exists a simple split xs
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such that v < [(idp⊕xs⊕idr−p−1)h] ≤ u < w for some 0 ≤ p ≤ r−1. Here idp is the
identity element with rank (and corank) p. In particular, every simplex of |(v, w)|
lies in the star of a vertex of |(v, w)| of the form up(s) := [(idp⊕xs⊕idr−p−1)h]. The
complex |(v, w)| is therefore covered by these stars, and we can use a Nerve Lemma,
for example [9, lemma 1.2], to inspect its connectivity. Note that the distinguishing
feature of these vertices up(s) is that v �1 up(s).

To simplify notation, we can assume without loss of generality that h = idr, so all
the vertices in |(v, w)| are represented by (elementary) multicoloured forests. By [7,
proposition 5.3], any two elements of the poset P represented by (elementary) mul-
ticoloured forests [f1], [f2] with the same corank have a unique least upper bound,
their join [f1] ∨ [f2], which is again represented by an (elementary) multicoloured
forest. It is also clear from the proof of [7, proposition 5.3] that if [f3] = [f1] ∨ [f2]
then the spectrum of f 3 equals the union of the spectra of f 1 and f 2. In particu-
lar, for any up1(s1), . . . , up`(s`) in |(v, w)|, the join of these elements is represented
by an elementary multicoloured forest with spectrum of size at most `. Since f
is not k -elementary, whenever ` ≤ k we have that this join lies in (v,w), and so
we conclude that for any 1 ≤ ` ≤ k and any up1(s1), . . . , up`(s`) in |(v, w)|, the
stars of these upi(si) have contractible intersection, namely the star of the join
of up1(s1), . . . , up`(s`). This shows that the (k − 1)-skeleton of the nerve of the
covering by all these stars equals the (k−1)-skeleton of a simplex, hence is (k−2)-
connected. (The dimension of the simplex is one less than the total number of such
stars, which could be less than k − 1, in which case the nerve is the entire simplex,
hence contractible.) This also shows that the (k − 1)-skeleton of |(v, w)| has the
same connectivity as the (k − 1)-skeleton of the nerve [9, lemma 1.2], and so we
conclude that |(v, w)| is (k−2)-connected, and hence (n−2)-connected, as desired.

Now consider the truncation Xm(k) for m large enough that Xm is (n − 1)-
connected. We can do the exact same procedure as above since all the vertices
in the open interval (v,w) have rank less than the rank of w, hence less than m.
We conclude that Xm(k) is (n − 1)-connected for all k ≥ n and all sufficiently
large m. �

The action of SVG on |P1| stabilizes Xm(k) for each m and k, so we can inspect
the action of SVG on Xm(k). If m and k are large enough, this is simply con-
nected, for example X21(2). In order to get SVG to be finitely presented, we
need to know things about cocompactness and about stabilizers. First we establish
cocompactness.

Lemma 5.5. Cocompact If the action of G on S has finitely many orbits of k-
element subsets of S, then the action of SVG on Xm(k) is cocompact, for each
m ∈ N.

Proof. We follow the proof of [7, proposition 6.7]. There are finitely many SVG-
orbits of vertices in Xm(k), since SVG is transitive on vertices of a given rank, and
there are only finitely many ranks between 1 and m. Now we need to show that for
each vertex v of rank r ≤ m, there are finitely many StabSVG(v)-orbits of simplices
in Xm(k) having v as their vertex of minimum rank. Since each closed interval
[v, w] is finite, it is enough to check that there are finitely many StabSVG(v)-orbits
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of edges of the form v <w in Xm(k) or equivalently finitely many StabSVG(v)-
orbits of vertices w satisfying v �k w. Without loss of generality v = [idr], so
we want to show that there are finitely many G(r)-orbits of vertices of the form
[f ] for f a k -elementary multicoloured forest with rank at most m. Since f is k -
elementary and S has finitely many G-orbits of k -element subsets, we can fix some
k -element subset T of S such that every such G(r)-orbit contains an element [f ] such
that the spectrum of f lies in T. The result now follows from the fact that there
are only finitely many multicoloured forests with rank at most m and spectrum
lying in T. �

We can also establish some results about stabilizers. Recall that two groups are
commensurable if they have isomorphic finite index subgroups. Note that any group
commensurable to a group of type Fn is also of type Fn, and a direct product of
finitely many groups of type Fn is of type Fn. This is because, on the level of
classifying spaces, a complex has finite n-skeleton if and only if every finite-sheeted
cover does, and a product of complexes with finite n-skeleta has finite n-skeleton.

Citation 5.6. [7, lemma 6.3] Let v be a vertex of X with rank m. Then the stabilizer
of v in SVG is isomorphic to G om Σm, hence commensurable to Gm. In particular,
if G is of type Fn then so is this stabilizer.

Definition 5.7. (Short/long edges). Let [h] < [fh] be an edge in X, so f is
an elementary multicoloured forest. Call this edge short if f is a direct sum of one
simple split and some number of copies of the identity, composed with a permutation
homeomorphism. In other words, this edge is short provided that the rank of [fh] is
only one more than that of [h]. Call an edge long if it is not short.

The following is immediate from [7, proposition 6.5], since the spectrum of a
simple split has size one.

Citation 5.8. (Short edge stabilizers). The stabilizer of any short edge in SVG

is commensurable to a direct sum of finitely many copies of G and StabG(s) for
s ∈ S. In particular, if G and each StabG(s) are of type Fn, then so is the stabilizer
of any short edge.

Lemma 5.9. (Long edge stabilizers). Let v<w be a long edge. Then there is a path
of short edges from v to w such that the fixer in SVG of this path has finite index
in the stabilizer of v<w.

Proof. Since the closed interval [v, w] is finite, the fixer of this entire interval has
finite index in the stabilizer of v <w. Clearly, there is a path of short edges from
v to w lying in |[v, w]|, so the fixer of this path has finite index in the stabilizer of
v <w. �

Note that even if every short edge stabilizer is finitely generated, this does not
imply every long edge stabilizer is too. Indeed, in this case, the fixer of a path of
short edges is an intersection of finitely generated subgroups, which has no reason
to also be finitely generated. However, we can use proposition 4.1 to get around
this issue and are now poised to prove theorem A.
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Proof of Theorem A. The forward direction is proposition 3.1. Now we do the
backward direction. Suppose G is a group with an action of type (A) on a set
S, and we need to prove that SVG is finitely presented. Consider the (orientation
preserving) action of SVG on the complex Xm(2), for m ≥ 21. This complex is
simply connected by proposition 5.4, and the action is cocompact by lemma 5.5.
Every vertex stabilizer is finitely presented by citation 5.6. Any stabilizer of a short
edge is finitely generated by citation 5.8. Finally, for any long edge, by lemma 5.9,
there is a path of short edges connecting its endpoints, such that the fixer of the
path has finite index in the stabilizer of the long edge. Now proposition 4.1 tells us
that SVG is finitely presented. �

It would be interesting to try and prove some sort of higher dimensional analog
of lemma 5.9, but it is unclear what to hope for. The crucial difference between
the one-dimensional versus higher dimension situations is that even if an edge is
‘long’, its proper faces are all ‘short’ (being vertices), whereas for whatever notion
of ‘long’ we try for higher simplices, proper faces will likely also be able to be long.

6. Applications to the Boone–Higman conjecture

Recall corollary B that any subgroup of a group admitting an action of type (A)
(has solvable word problem and) satisfies the Boone–Higman conjecture. In this
section, we investigate this further.

6.1. Permutational Boone–Higman

First, let us define the following relative of the Boone–Higman conjecture:

Conjecture 6.1 (Permutational Boone–Higman conjecture). A finitely generated
group has solvable word problem if and only if it embeds in a group admitting an
action of type (A).

The ‘if’ direction is clear from the ‘if’ direction of the Boone–Higman conjecture
together with theorem A. When we say a group ‘satisfies’ this conjecture, we mean it
(has solvable word problem and) embeds in a group admitting an action of type (A).
We do not know whether a group can satisfy the Boone–Higman conjecture without
satisfying the permutational version (see question 6.13). Let us also emphasize that
when we say a group satisfies the permutational Boone–Higman conjecture, we do
not require the group itself to admit an action of type (A), just that it embeds into
a group that does.

Let us give a new example of a family of groups satisfying the permutational
Boone–Higman conjecture, and hence the Boone–Higman conjecture. Our examples
come from so-called shift-similar groups, introduced by Mallery and the author in
[19]. These can be viewed as an analog of self-similar groups (as in [20]) that relate
to Houghton groups rather than Thompson groups.

Definition 6.2. ((Strongly) shift-similar). Consider Sym(N), the group of per-
mutations of N. For each j ∈ N let sj : N → N \ {j} be the bijection sending i to i
for all 1 ≤ i ≤ j−1 and sending i to i+ 1 for all i ≥ j. Let ψj : Sym(N) → Sym(N)
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be the function defined by

ψj(g) := s−1
g(j) ◦ g|N\{j} ◦ sj.

Call a subgroup G ≤ Sym(N) shift-similar if for all g ∈ G and all j ∈ N we have
ψj(g) ∈ G. Call G strongly shift-similar if each ψj restricted to G is surjective.

One of the most notable properties of shift-similar groups is that every finitely
generated group embeds into a finitely generated, strongly shift-similar group [19,
theorem 3.28]. Thus, finitely generated (strongly) shift-similar groups are abundant
and can be quite wild. In contrast, for finite presentability we can now prove the
following:

Proposition 6.3. Every finitely presented, strongly shift-similar group admits an
action of type (A), and so in particular has solvable word problem (and satisfies the
(permutational) Boone–Higman conjecture).

Proof. Let G ≤ Sym(N) be finitely presented and strongly shift-similar. We claim
the action of G on N is of type (A). If G is finite there is nothing to prove, so
assume G is infinite. By [19, theorem 3.12], we know that G contains Symfin(N),
the subgroup of elements of Sym(N) that are the identity outside a finite subset.
In particular, the action of G on N has finitely many orbits of two-element subsets
(in fact it is highly transitive). It remains only to prove that each point stabilizer
is finitely generated. Let Gj = StabG(j). Since G is strongly shift-similar, by [19,
lemma 3.19], the restriction of ψj to Gj is an isomorphism ψj : Gj → G. Hence Gj

is finitely generated (even finitely presented). �

Actually, it is not hard to see that all stabilizers of finite subsets are isomor-
phic to G, hence finitely presented, so the results from [7] already tell us that the
corresponding twisted Brin–Thompson group is finitely presented.

As a remark, proposition 6.3 is somewhat analogous to the self-similar case;
indeed, every finitely presented self-similar group satisfies the Boone–Higman con-
jecture [25]. This also gives us the following, which shows that the analog of [19,
theorem 3.28] for finite presentability is false:

Corollary 6.4. It is not true that every finitely presented group embeds into a
finitely presented strongly shift-similar group.

Proof. By proposition 6.3, every finitely presented, strongly shift-similar group has
solvable word problem, and so a finitely presented group with unsolvable word
problem cannot embed into such a group. �

See [19, example 3.31] for more on possible future connections between shift-
similar groups and the Boone–Higman conjecture.

We close this subsection by establishing some closure properties for groups sat-
isfying the permutational Boone–Higman conjecture. First we prove closure under
direct products.

Proposition 6.5. If two groups satisfy the permutational Boone–Higman conjec-
ture, then so does their direct product.
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Proof. A direct product of monomorphisms is a monomorphism, so it suffices to
prove that if the groups G and H act on the sets S and T respectively, with both
actions of type (A), then G×H admits an action of type (A) on some set. Indeed,
the action of G×H on S t T , where G fixes T and H fixes S, is easily checked to
be of type (A). �

We can also prove closure under commensurability. This proof is due to Francesco
Fournier-Facio.

Proposition 6.6. Let G be a group. If a finite index subgroup of G satisfies the
permutational Boone–Higman conjecture, then so does G. In particular, satisfying
the permutational Boone–Higman conjecture is a commensurability invariant.

Proof. Let H ≤ G be a finite index subgroup that satisfies the permutational
Boone–Higman conjecture. Say H embeds into a group E admitting an action of
type (A) on a set S. Up to passing to a deeper finite index subgroup, we may assume
that H is normal in G. By the Kaloujnine–Krasner extension theorem [18], there is
an embedding of G into the regular wreath product H o (G/H). Now consider the
permutational wreath product E on Σn with its natural action on S × {1, . . . , n}.
Since Σn is finite and the action of E on S is of type (A), it is straightforward to
check that the action of EonΣn on S×{1, . . . , n} is of type (A). Choosing n = |G/H|,
and embedding G/H into Σn via the regular action, we get embeddings

G ↪→ H o (G/H) ↪→ E on Σn,

proving that G embeds into a group with an action of type (A). �

As far as we can tell, neither of these results obviously holds for the
Boone–Higman conjecture, without assuming the starting groups satisfy the per-
mutational version. That is, it is not clear how to prove that a direct product of
two finitely presented simple groups embeds into a finitely presented simple group,
nor how to upgrade a virtual embedding into a finitely presented simple group to
a full embedding. Some related combination-type results are unclear to us even for
the permutational Boone–Higman conjecture, for example:

Question 6.7. If two groups G and H admit actions of type (A) then does their
free product G ∗H admit an action of type (A)? What about wreath products? Or
general semidirect products?

Regarding free products, for example, it is not even clear to us how to prove that
the free product of two copies of Thompson’s group V satisfies the Boone–Higman
conjecture.

6.2. Cosets and double cosets

In this subsection, we pin down some abstract sufficient conditions for a group to
admit an action of type (A), which could potentially be useful in the future. Recall
that for H,K ≤ G, a double coset of H and K is a subset of G of the form HgK
for g ∈ G, and we denote the set of all double cosets of H and K by H\G/K.
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Proposition 6.8. Let G be a finitely presented group and H1, . . . , Hn ≤ G finitely
generated subgroups. Suppose that the intersection of all conjugates of all the Hi is
trivial, and that there are finitely many double cosets in Hi\G/Hj, for all 1 ≤ i, j ≤
n. Then G admits an action of type (A), and hence satisfies the (permutational)
Boone–Higman conjecture.

Proof. Let S = G/H1 t · · · tG/Hn, with the action of G by left translation. This
action is faithful since the intersection of all conjugates of all the Hi is trivial. It
has finitely many orbits of two-element subsets since there are finitely many double
cosets in Hi\G/Hj for each i and j. Every point stabilizer is a conjugate of some
Hi, hence is finitely generated. Thus, the action of G on S is of type (A). �

Note that the n =1 case of proposition 6.8 is already interesting: we want a
finitely presented group G and a finitely generated subgroup H, such that the
intersection of all conjugates of H is trivial and there are finitely many double
cosets in H\G/H. In this case, compared to the n > 1 case, it is more difficult for
the intersection of conjugates to be trivial but easier for there to be finitely many
double cosets.

One natural situation where interesting actions on sets of cosets arise is semidirect
products, or more generally Zappa–Szép products. Recall that a group G is the
(internal) Zappa-Szép product of subgroups H,K ≤ G provided that G =HK and
H ∩K = {1}. Write G = H ./ K. This generalizes semidirect products, in that we
do not require either H or K to be normal. Note that for all h ∈ H and k ∈ K
there exist unique h′ ∈ H and k′ ∈ K such that kh = h′k′. Since G =HK, every
double coset in H\G/H is of the form HkH for some k ∈ K. Moreover, if kh = h′k′

for h, h′ ∈ H and k, k′ ∈ K, then HkH = Hk′H. Let φ : K × H → K be the
function sending (k, h) to the k

′
satisfying kh = h′k′ for some h′ ∈ H, so this is a

right action of H on the set K.

Lemma 6.9. Let G = H ./ K as above, with G finitely presented and H finitely
generated. Suppose that the action φ of H on K is faithful and has finitely many
orbits. Then G admits an action of type (A), and hence satisfies the (permutational)
Boone–Higman conjecture.

Proof. Since the action of H on K is faithful, for all 1 6= h ∈ H, there exists
k ∈ K such that when we write kh = h′k′ as above, k′ 6= k. In particular, khk−1 =
h′(k′k−1) 6∈ H. Hence, the intersection of all conjugates of H is trivial, which
implies that the right action of G on the set of right cosets H\G is faithful. An
arbitrary right coset looks like Hk for k ∈ K. The action of H on K has finitely
many orbits, so there are finitely many double cosets HkH. The result now follows
from proposition 6.8. �

We emphasize that very little needs to be assumed about K here—it does not
need to be finitely generated, and the action of H on K does not need to be an
action by group automorphisms.

In case K is normal in G we have G = H nK, and we get the following, which
is worth recording.
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Corollary 6.10. Let G be a finitely presented group. Suppose that G decomposes
as a semidirect product G = H nK such that the action of H on K is faithful and
has finitely many orbits. Then G admits an action of type (A), and hence satisfies
the (permutational) Boone–Higman conjecture.

Proof. This is immediate from lemma 6.9, after we note that H is a quotient of G
and hence is finitely generated. �

This is less clearly useful, since now the action of H on K is by automorphisms,
and it is rather difficult for a group to have finitely many orbits under actions by
automorphisms. Thus, we anticipate the general Zappa–Szép result is more likely to
be useful in the future than this semidirect product result. We should also mention
that, as best we can tell, the solvability of the word problem for a Zappa–Szép
product (or even semidirect product) of groups with solvable word problem does
not obviously follow, if the actions involved are very wild.

6.3. Simple groups themselves

A particularly intriguing question is whether satisfying the Boone–Higman con-
jecture is equivalent to satisfying the permuational version. In other words, we
want to know whether every finitely presented simple group itself embeds into a
group admitting an action of type (A). Simple groups make it particularly easy for
an intersection of conjugates of a subgroup to be trivial, so we can phrase some
interesting sufficient conditions for satisfying the permutational Boone–Higman
conjecture.

First recall the Boone–Higman–Thompson theorem, that every finitely generated
group with solvable word problem embeds into a finitely generated simple group
H that embeds into a finitely presented group G [10, 24] (so the Boone–Higman
conjecture is that this can be accomplished in a single embedding). We now have the
following two sufficient conditions for satisfying the (permutational) Boone–Higman
conjecture, which are immediate from proposition 6.8:

Corollary 6.11. Let H be a finitely generated simple subgroup of a finitely pre-
sented group G, and assume H is not normal in G. If there are finitely many double
cosets in H\G/H, then G admits an action of type (A), and hence satisfies the
(permutational) Boone–Higman conjecture.

Proof. Since H is simple and is not normal in G, the intersection of all conjugates
of H is trivial. The result is now immediate from proposition 6.8. �

In other words, if the two embeddings from the Boone–Higman–Thompson the-
orem can be done in such a way as to ensure finitely many double cosets (and
non-normality), then the conjecture holds.

Corollary 6.12. Let G be a finitely presented simple group. Suppose there exists
a finitely generated proper subgroup H with finitely many double cosets. Then G
admits an action of type (A), and hence satisfies the permutational Boone–Higman
conjecture.

https://doi.org/10.1017/prm.2024.131 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.131


Finite presentability of twisted Brin–Thompson groups 21

Proof. Since H is proper and G is simple, the intersection of all conjugates of H in
G is trivial, so the result is immediate from proposition 6.8. �

As a concluding remark, this last result applies to many existing families of
finitely presented simple groups; for example, it is an easy exercise to find finitely
generated proper subgroups with finitely many double cosets inside Thompson’s
groups T and V, and various groups related to these. It is an interesting problem,
however, to try to find finitely generated proper subgroups with finitely many dou-
ble cosets inside finitely presented simple groups coming from outside the extended
family of Thompson-like groups. We leave this as a question, phrased more generally
as follows:

Question 6.13.

(1) Does every finitely presented simple group admit an action of type (A)?
(2) Does every finitely presented simple group embed in a group admitting an

action of type (A)? (And hence satisfy the permutational Boone–Higman
conjecture?)

We should mention that for Burger–Mozes groups, which are outside the
Thompson group family, this second question was proved to be true in [14], and so
Burger–Mozes groups satisfy the permutational Boone–Higman conjecture. Thus,
essentially the only known finitely presented simple groups outside the Thompson
family for which the permutational Boone–Higman conjecture is open are the
non-affine Kac–Moody groups used by Caprace and Rémy in [15, 16].

To be clear, if the answer to question 6.13(ii) is always ‘yes’, then the permuta-
tional and regular Boone–Higman conjectures are equivalent, and finitely presented
twisted Brin–Thompson groups are in some sense universal among finitely presented
simple groups.
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