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Abstract

We investigate which weighted convolution algebras `1
ω(S ), where S is a semilattice, are AMNM in the

sense of Johnson [‘Approximately multiplicative functionals’, J. Lond. Math. Soc. (2) 34(3) (1986),
489–510]. We give an explicit example where this is not the case. We show that the unweighted
examples are all AMNM, as are all `1

ω(S ) where S has either finite width or finite height. Some of
these finite-width examples are isomorphic to function algebras studied by Feinstein [‘Strong Ditkin
algebras without bounded relative units’, Int. J. Math. Math. Sci. 22(2) (1999), 437–443]. We also
investigate when (`1

ω(S ),M2) is an AMNM pair in the sense of Johnson [‘Approximately multiplicative
maps between Banach algebras’, J. Lond. Math. Soc. (2) 37(2) (1988), 294–316], whereM2 denotes the
algebra of 2 × 2 complex matrices. In particular, we obtain the following two contrasting results: (i) for
many nontrivial weights on the totally ordered semilattice Nmin, the pair (`1

ω(Nmin),M2) is not AMNM;
(ii) for any semilattice S , the pair (`1(S ),M2) is AMNM. The latter result requires a detailed analysis of
approximately commuting, approximately idempotent 2 × 2 matrices.

2010 Mathematics subject classification: primary 39B72; secondary 46J10.

Keywords and phrases: AMNM, approximate homomorphism, Feinstein algebra, semilattice, weighted
convolution algebra.

1. Introduction

1.1. Setting the scene. Given a constant δ > 0, we say that a functional ψ on a
Banach algebra A is δ-multiplicative if the bilinear map (a, b) 7→ ψ(a)ψ(b) − ψ(ab)
has norm at most δ. It is convenient, thinking of δ as small, to call such functionals
approximately multiplicative or almost multiplicative (we shall use the former phrase).
Approximately multiplicative functionals have been studied by several authors: an
obvious way to obtain examples is to take a multiplicative functional and add a
functional of small norm, thought of as a perturbation. The question naturally arises
as to whether all approximately multiplicative functionals occur in this way.

In [10], Johnson undertook a systematic study of this phenomenon, and coined the
acronym AMNM (for ‘approximately multiplicative implies near multiplicative’). The
precise definition will be deferred to a later section. Many examples of commutative
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Banach algebras with the AMNM property are given in [10], as are some basic
hereditary properties. See also [9, 14] for results on uniform algebras, and [7] for
results on certain nonuniform function algebras, including Ck[0, 1]m. Johnson [11]
widens the scope of the problem by considering not just functionals, but approximately
multiplicative linear maps between given Banach algebras. This leads to the notion
of an AMNM pair; again, the precise definition will be given below. We note that,
as a special case of [11, Theorem 3.1], every amenable Banach algebra has the
AMNM property; however, several of the examples in [7, 9, 10] possess nonzero point
derivations, so that amenability is far from necessary for AMNM.

In this paper, we investigate these AMNM problems for the weighted `1-
convolution algebras of semilattices. Such algebras have provided provide useful
test cases for various conjectures and techniques concerning commutative Banach
algebras. Moreover, any weighted semilattice algebra contains a dense subalgebra
spanned by commuting idempotents. Thus, some of our work can be viewed as
continuing an old strand of Banach algebra theory, which considers lifting and
perturbation questions for families of idempotents. The main difference here is that we
are not limiting ourselves to families of pairwise orthogonal idempotents, but allowing
more complicated order structure.

The original motivation for the present work arises from studying the cases where
the underlying semilattice is Nmin, the set of natural numbers equipped with pairwise
minimum as a semigroup product. The weighted `1-algebras of Nmin turn out to be
isomorphic to function algebras that were studied by Feinstein in [3]; they have also
been studied in the context of certain generalized notions of amenability; see, for
instance, [2, Section 3.10]. Moreover, some of these algebras satisfy such versions of
amenability while having nontrivial second-degree simplicial cohomology (the present
author, unpublished calculations).

1.2. Overview of the paper. We have tried to make this paper self-contained, save
for some basic knowledge of Banach algebras. Thus, in Section 2 we give the relevant
definitions of the AMNM property for algebras and for pairs of algebras, as promised
earlier; and we record some basic observations on convolution algebras and their
characters. We then observe that `1(S ) is AMNM for any semilattice S (Theorem 3.1).
On the other hand, we give an explicit example of a semilattice T and a weight on T
such that the weighted convolution algebra `1

ω(T ) is not AMNM (Theorem 3.4). In
Section 3.3, as a special case of a general technical result, we prove that if S has either
finite width or finite height, then `1

ω(S ) is AMNM for every weight ω. This applies in
particular when S = Nmin, the original case of interest.

The picture is far less complete if we consider approximately multiplicative maps
into algebras other than C. Let T2 be the (commutative, nonsemisimple) algebra of
dual numbers overC, and letM2 be the (noncommutative, semisimple) algebra of 2 × 2
matrices with entries in C. In Theorem 4.2 we show that whenever ω is a nontrivial
weight on Nmin, then (`1

ω(Nmin), T2) is not an AMNM pair. In Theorem 4.7 we show
that for many nontrivial weights on Nmin, the pair (`1

ω(Nmin),M2) fails to be AMNM.
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These examples suggest that, if we want positive AMNM results for range algebras
other than C, we should focus attention on the unweighted case. Indeed, we prove
that for an arbitrary semilattice S , the pairs (`1(S ), T2) and (`1(S ),M2) are ‘uniformly
AMNM’ (the terminology is explained below in Definition 2.4). The proof of this for
M2 takes up all of Section 5: although the techniques used are elementary, a complete
proof seems to require substantially more work than is needed for T2. Finally, we close
the paper by briefly discussing some possible avenues for future work.

R 1.1. Some of our calculations would work for certain weighted algebras on
abelian Clifford semigroups, specifically those where the weight is trivial on each
group component. We have decided to consider only the semilattice case for now:
an adequate treatment of weighted abelian Clifford semigroups would require a more
detailed look at AMNM problems for Beurling algebras than the present paper can
accommodate. The same remarks apply for inverse semigroups: we did not see how
to go beyond superficial generalizations of the results here.

R 1.2. After completing the work presented in this paper, we learned of the
paper [12], which considers a related but different notion of AMNM (briefly, the order
of quantifiers is different). Although the stability result that is proved in [12, Theorems
2 and 5] is different from ours, it may be possible to use those arguments to streamline
the approach taken in Section 5, and perhaps even to extend the results of Section 5
fromM2 toMn.

2. Preliminaries

We assume familiarity with the basics of Banach spaces and Banach algebras.
Throughout ⊗̂ denotes the projective tensor product of Banach spaces. If A is a Banach
algebra then πA : A ⊗̂ A→ A denotes the unique bounded bilinear map satisfying
πA(a1 ⊗ a2) = a1a2.

2.1. Defining AMNM. Our notation is different from that of Johnson’s papers
[10, 11], and so we repeat some of the basic definitions for the sake of clarity.

D 2.1 (Multiplicative defect). Let A and B be Banach algebras, and let T :
A→ B be a bounded linear map. We define the multiplicative defect of T to be

def(T ) = ‖T ◦ πA − πB ◦ (T ⊗ T ) : A ⊗̂ A→ B‖

= sup{‖T (xy) − T (x)T (y)‖ : x, y ∈ A, ‖x‖ ≤ 1, ‖y‖ ≤ 1}.

T is said to be δ-multiplicative, in the sense of [11], when def(T ) ≤ δ. Note that
Johnson uses the notation T∨ instead of def(T ). Of course, a 0-multiplicative map is
just one that is multiplicative in the usual sense, that is, a continuous linear algebra
homomorphism (which need not be unital, even if A and B are unital algebras). We
denote by Mult(A, B) the set of multiplicative, bounded linear maps A→ B; a nonzero
element of Mult(A, C) is called a character of A.

Given a subset K in a metric space (X, d) and y ∈ X, define distX(y, K) to be
infx∈X d(x, y).
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D 2.2 (AMNM algebras, [10]). A Banach algebra A is said to be AMNM, or
have the AMNM property, or have stable characters, if for each ε > 0 there exists δ > 0
such that

ψ ∈ A∗, def(ψ) ≤ δ =⇒ distA∗(ψ, Mult(A, C)) ≤ ε.

While Definition 2.2 does not require A to be commutative, it seems most natural to
study the AMNM property for commutative Banach algebras, since those are the ones
for which characters are most informative (via Gelfand theory). For noncommutative
algebras A, the following definition seems more natural.

D 2.3 (AMNM pairs of Banach algebras, [11]). Let A and B be Banach
algebras. We say that the pair (A, B) is an AMNM pair if, for every K > 0 and ε > 0,
there exists δ > 0 such that

T ∈ L(A, B), ‖T‖ ≤ K, def(T ) ≤ δ =⇒ distL(A,B)(T, Mult(A, B)) ≤ ε.

The presence of the a priori upper bound K may seem curious at first sight.
One reason for imposing such a bound is that we can find T such that distL(A,B)(T, Mult
(A, B)) is arbitrarily small while def(T ) ≥ 1. See [11, page 295] for an example with
A = C and B the algebraM2 of 2 × 2 matrices.

Nevertheless, in the present paper, we shall obtain examples of pairs of algebras
which are not just AMNM, but which satisfy a stronger property, defined as follows.

D 2.4. Let A and B be Banach algebras. We say that (A, B) is a uniformly
AMNM pair if, for every ε > 0, there exists δ > 0 such that

T ∈ L(A, B), def(T ) ≤ δ =⇒ distL(A,B)(T, Mult(A, B)) ≤ ε.

With this terminology, a Banach algebra A is AMNM if and only if the pair (A, C) is
uniformly AMNM. In some cases, AMNM pairs are automatically uniformly AMNM:
for instance, this is the case when B = C(X), since a δ-multiplicative linear map
A→C(X) has norm at most 1 + δ [8, Proposition 5.5]. Note that Johnson [11, Example
1.5] has given an example of a commutative, semisimple Banach algebra B for which
the pair (C, B) is AMNM but not uniformly AMNM.

2.2. Some notation and terminology. A weight on a set S is a function ω : S →
(0,∞). Given such a weight ω, we write `1

ω(S ) for the corresponding weighted `1-
space. Throughout this paper, whenever we refer to a weight on a semigroup, we
always mean a submultiplicative weight. By a weighted semigroup we mean a pair
(S , ω) where S is a semigroup and ω is a weight on S . A routine calculation shows that
if (S , ω) is a weighted semigroup, then `1

ω(S ), equipped with the natural convolution
product, is a Banach algebra, called the weighted semigroup algebra or convolution
algebra of (S , ω).

A bounded function f from a set S to a Banach space B has a unique
continuous extension to a bounded linear map `1(S )→ B, whose norm is precisely
supt∈S ‖ f (t)‖. Moreover, if S is a semigroup and B is a Banach algebra, this
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extension will be multiplicative if and only if the original function f is multiplicative.
Thus, the characters of `1(S ) are in natural bijection with the nonzero semigroup
homomorphisms S → (C, ×), sometimes called the semi-characters of S .

The corresponding version for weighted semigroup algebras is equally
straightforward: bounded linear maps `1

ω(S )→ B correspond to functions f : S → B
such that

sup
s∈S

ω(s)−1‖ f (s)‖ <∞, (2.1)

and so forth. Such a function will be called an ω-bounded map from S to B. In the
case where B = C and f : S → C, the quantity in (2.1) will be denoted by ‖ f ‖∞,ω−1 .

Since we can naturally and isometrically identify `1
ω(S ) ⊗̂ `1

ω(S ) with `1
ω×ω(S × S ),

it is easy to check that for a given function f : S → B, the multiplicative defect of the
corresponding linear map `1

ω(S )→ B is

defω( f ) := sup
x,y∈S

‖ f (x) f (y) − f (xy)‖
ω(x)ω(y)

. (2.2)

In this way, all AMNM questions where the domain algebra A is a weighted semigroup
algebra can be rephrased in terms of ω-bounded maps from the given semigroup and
(ω × ω)-bounded maps from its Cartesian square. This is sometimes convenient if we
need to define a map via case-by-case checking.

2.3. Weighted semilattice algebras and their characters. A semilattice is a
commutative semigroup in which each element is idempotent. Even quite simple
semilattices can give rise to interesting Banach algebras, once we allow for weights.
The following examples provided the initial motivation for this paper, and will be
revisited in Theorems 4.2 and 4.7.

E 2.5 (‘Feinstein algebras’). Let Nmin denote the semilattice obtained by
equipping the set of natural numbers with the binary operation (m, n) 7→min(m, n).
The weights on this semilattice are precisely the functions ω : N→ [1,∞). The
convolution algebra `1

ω(Nmin) is semisimple and its character space can be naturally
identified with N. (This is alluded to, without details, in [5, 11.1.5]; see also
Lemma 2.8 below.) In fact, the Gelfand transform maps `1

ω(Nmin) onto a dense
subalgebra Bω ⊂ c0(N), defined by

Bω =

{
f ∈ c0(N) : | f1|ω(1) +

∑
j≥2

| f j+1 − f j|ω( j) <∞
}

equipped with the obvious norm. The unitizations of the algebras Bω are isomorphic
to examples studied in [3]. Note that in the cases where ω is bounded, `1

ω(Nmin) is
isomorphic as a Banach algebra to `1(Nmin), and Bω will consist of those c0-sequences
which have bounded variation. For more details, see [2, Section 3].

R 2.6. In the literature, terminology and notation for these examples has varied.
Strictly speaking, Feinstein’s construction in [3] is more general: he defines, for any
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given sequence α = (αn)n≥1 of strictly positive real numbers, a commutative unital
Banach algebra Aα ⊂C(N ∪ {∞}), and in his notation our Bα coincides with Aα ∩ c0.
Note, however, that in some later papers the algebra Aα is defined to be what we have
denoted by Bα.

For general semilattices, a systematic approach to the character space is via the
language of filters. First we introduce some notation that will be used later in
Section 3.3. Given a semilattice S and a subset E ⊆ S , we define the following sets:

〈E〉n = {x1 · · · xn : x1, . . . , xn ∈ E} (n ≥ 1), (2.3)

and 〈E〉 =
⋃

n≥1〈E〉n. Note that 〈E〉 is the subsemilattice of S generated by E.

D 2.7. Let S be a semilattice and let F ⊆ S . We say that F is a filter in S if it
satisfies the following three properties: it is nonempty; it is closed under multiplication
(that is, xy ∈ F whenever x, y ∈ F); and it is upwards closed in S (that is, whenever
x ∈ S and y ∈ F with xy ∈ F, then x ∈ F).

Given a nonempty subset E in a semilattice S , there exists a smallest filter in S
which contains E. This can be described concretely: it is the set

F =
⋃

y∈〈E〉

{x ∈ S : x � y}.

The following lemma assembles some basic results, which are well known, at
least implicitly, for multiplicative linear functions on semilattice algebras. (See, for
example, [5, 11.1.1].) Since the proofs are no harder for the weighted versions, we
leave them to the reader.

L 2.8. Let S be a semilattice and F ⊂ S . The following are equivalent:

(i) F is a filter in S ;
(ii) the indicator function of F is a character on `1

ω(S ), for every submultiplicative
weight ω;

(iii) there exists a submultiplicative weight ω such that the indicator function of F is
a character on `1

ω(S ).

Moreover, if φ : S → C is multiplicative and nonzero, and φ = 1 on some subset E ⊆ S ,
then φ = 1 on the filter generated by E.

3. The AMNM property for weighted semilattice algebras

3.1. The unweighted case, as a guide

T 3.1. Let S be a semilattice. Then `1(S ) is AMNM.

This result, or equivalent reformulations, may have been implicitly known to
previous authors. We shall give a complete proof, since it allows us to introduce some
basic results and techniques which will be instructive for later arguments.
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Define f : [0, 1/4]→ [0, 1/2] by

f (t) = 1
2 (1 −

√
1 − 4t). (3.1)

and define ρ(t) = t−1 f (t) for 0 < t ≤ 1/4. The following properties are straightforward
to verify:
• f is convex and monotone increasing, and f (0) = 0;
• ρ is monotone increasing on (0, 1/4], and limt↘0 ρ(t) = 1.

N. Given r ≥ 0 and w ∈ C, denote the closed disc of radius r and centre w
by Dw(r). If r > 0, denote the open disc of radius r and centre w by Dw(r).

L 3.2. Let z ∈ C and ε ∈ [0, 1/4). If z2 − z ∈ D0(ε), then distC(z, {0, 1}) ≤ ρ(ε)ε.

P. Put w = z − z2. Then (z − 1
2 )2 = 1

4 (1 − 4w), and so z − 1
2 = ± 1

2

√
1 − 4w (taking

the branch of the square root function for which
√

1 − 4w→ 1 as w→ 0). It follows
that

distC(z, {0, 1}) ≤ | 12 −
1
2

√
1 − 4w|.

The Taylor expansion (about 0) of the function w 7→ 1 −
√

1 − 4w has nonnegative
coefficients. Hence distC(z, {0, 1}) ≤ f (|w|), and the rest follows from our earlier
observations. �

Theorem 3.1 follows immediately from the following technical result.

P 3.3. Let S be a semilattice, and let ψ : S → C satisfy def(ψ) < 1/5. Let

S 1 = ψ−1(D1(7/25)) = {e ∈ S : |ψ(e) − 1| < 7/25},

and let χ be the indicator function of S 1. Then χ is a multiplicative function S → C,
satisfying

‖ψ − χ‖∞ ≤
7
5 def(ψ).

P. We first note that

ρ( 1
5 ) = 5

2 (1 −
√

1
5 ) = 1

2 (5 −
√

5) < 1
2 (5 − 2.2) = 7

5 . (3.2)

Hence, by Lemma 3.2,

sup
e∈S

min(|ψ(e) − 1|, |ψ(e)|) ≤ sup
e∈S

7
5 |ψ(e)2 − ψ(e)| = 7

5 def(ψ) < 7
25 .

Set S 0 = ψ−1(D0(7/25)). Then S = S 0 t S 1, so that the previous inequality
immediately yields ‖ψ − χ‖∞ ≤ (7/5)‖ψ2 − ψ‖∞ = (7/5)def(ψ) (see (2.2)).

To prove that χ is multiplicative, it suffices by Lemma 2.8 to show that S 1 is
either empty or a filter. Suppose that S 1 is nonempty. If e, f ∈ S 1, then |ψ(e)ψ( f )| >
(18/25)2 > 1/2. Hence

|ψ(e f )| > 1
2 − def(ψ) > 1

2 −
1
5 >

7
25 ,
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forcing e f ∈ S \ S 0 = S 1. If e � f ∈ S and f ∈ S 1, then since |ψ( f )|−1 < 25/18,

|ψ(e) − 1| ≤ 25
18 |ψ(e)ψ( f ) − ψ( f )| ≤ 25

18 def(ψ) < 5
18 <

7
25 ,

forcing e ∈ S 1. Thus S 1 is a filter, and the proof is complete. �

3.2. A weighted semilattice which is not AMNM.

T 3.4. There exists a locally finite semilattice T and a submultiplicative weight
ω on T such that `1

ω(T ) is not AMNM.

The counterexample T will be built out of copies of free semilattices. Given a set
S , let 2[S ]

∗ denote the free semilattice generated by S ; this can be identified with the
set of all nonempty finite subsets of S , with semigroup product given by union. For
our purposes it is more convenient to regard elements of 2[S ]

∗ as reduced words in
the generators. There is a natural length function γS : 2[S ]

∗ → N, where γS (x) is the
minimum number of elements in S needed to generate x. A little thought shows that
γS (xy) ≤min(|S |, γS (x) + γS (y)) for all x, y ∈ 2[S ]

∗ .
If S is a finite set, then 2[S ]

∗ has a zero (that is, minimum) element, namely the
product of all elements of S ; we denote this element by θS . Note that γS (θS ) = |S |.

P 3.5. Let S be a finite set of cardinality at least 2. Fix a constant C > 1,
and define ωS : 2[S ]

∗ → [1,∞) by

ωS (e) =

CγS (e) if e , θS ,

C if e = θS .

Then ωS is a submultiplicative weight on 2[S ]
∗ . Moreover, if we define ψ : 2[S ]

∗ →

{0, 1} by

ψ(e) =

1 if e , θS ,

0 if e = θS ,

then:

(i) as an element of `1
ωS

(2[S ]
∗ )∗, def(ψ) ≤C−|S |;

(ii) if φ : 2[S ]
∗ → {0, 1} is multiplicative, then

sup
e∈2[S ]

∗

ωS (e)−1|ψ(e) − φ(e)| ≥C−1.

P. Since γS is subadditive and ωS (e) ≤CγS (e) for all e ∈ 2[S ]
∗ , it is clear that ωS is

submultiplicative.
To prove (i), let e, f ∈ 2[S ]

∗ . If e f , θS then ψ(e)ψ( f ) = 1 = ψ(e f ). If e = θS or f = θS

then ψ(e)ψ( f ) = 0 = ψ(e f ). The only remaining cases are those where e, f , θS while
e f = θS . In such cases, we have γS (e) + γS ( f ) ≥ |S |, and so

|ψ(e)ψ( f ) − ψ(e f )| = 1 ≤ δC−|S |ω(e)ω( f ).

Thus in all cases, |ψ(e)ψ( f ) − ψ(e f )| ≤C−|S |ω(e)ω( f ).
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To prove (ii), let φ : 2[S ]
∗ → {0, 1} be multiplicative. If φ(θS ) = 1, then

ω(θS )−1|φ(θS ) − ψ(θS )| = C−1.

If not, then φ(θS ) = 0. Therefore, since φ is multiplicative and S generates 2[S ]
∗ , there

exists s0 ∈ S with φ(s0) = 0, and so

ω(s0)−1|φ(s0) − ψ(s0)| = C−1. �

If (Fi)i∈I is a family of semilattices, consider the set {θ} t
∐

i∈I Fi, where θ is a
formal symbol. This can be made into a semilattice if we define the product as follows:
θ is an absorbing zero element; the product of two elements in Fi is their usual product;
the product of elements in Fi and F j is θ whenever i , j. We call this semilattice the
orthogonal direct sum of the family (Fi)i∈I.

P  T 3.4. Let (Fn)n≥1 be a sequence of finite sets with |Fn| ↗ ∞. Define
T to be the orthogonal direct sum of the family (2[Fn]

∗ )n∈N, with θ being the zero element
of T . To ease notation, denote the zero element of 2[Fn]

∗ by θn, and denote the length
function of 2[Fn]

∗ by γn.
Fix a constant C > 1, and define ω : T → [1,∞) by

ω(θ) := 1, ω(θn) := C for each n ∈ N, ω(e) := Cγn(e) if e ∈ 2[Fn]
∗ \ {θn}.

Define ψn : T → {0, 1} by

ψn(e) =

1 if E ∈ S n \ {θn},

0 otherwise.

If φ : T → {0, 1} is multiplicative, then by part (ii) of Proposition 3.5,

‖ψn − φ‖ ≥ sup{ω(e)−1|ψn(e) − φ(e)| : e ∈ 2[Fn]
∗ } ≥C−1.

Hence,
dist`1

ω(T )∗(ψn, Mult(`1
ω(T ), C)) ≥C−1 for all n.

On the other hand, by Proposition 3.5(i),

defω(ψn) = sup
{
|ψn(e)ψn( f ) − ψn(e f )|

ω(e)ω( f )
: e, f ∈ 2[Fn]

∗

}
≤C−|Fn |→ 0.

Thus `1
ω(T ) is not AMNM. �

The example (T, ω) was found while trying to prove that all weighted semilattice
algebras are AMNM, and realizing that the attempted proof only worked when one
could verify a certain technical condition on a given weighted semilattice (S , ω). This
condition, and the proof that it suffices to ensure that `1

ω(S ) is AMNM, will be our next
topic.
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3.3. Weighted semilattices which are AMNM. The following lemma is a substitute
for Lemma 3.2. It is less informative in the case of `1(S ), but is more convenient in
weighted cases.

L 3.6. Let A be a Banach algebra, e an idempotent in A, and ψ ∈ A∗. Then

min(|ψ(e)|, |1 − ψ(e)|) ≤ def(ψ)1/2‖e‖. (3.3)

P. If e = 0 this is trivial. If e , 0, observe that

def(ψ) ≥
|ψ(e) − ψ(e)2|

‖e‖2
=
|ψ(e)|
‖e‖
|1 − ψ(e)|
‖e‖

≥

(min(|ψ(e)|, |1 − ψ(e)|)
‖e‖

)2

,

and (3.3) follows. �

By (3.3) and the definition of the norm on `1
ω(S ), we see that if ψ : S → C is

ω-bounded with defω(ψ) ≤ δ, then there exists an ω-bounded function φ : S → {0, 1}
such that ‖ψ − φ‖∞,ω−1 ≤ δ1/2. Since

|φ(s)φ(t) − φ(st)| ≤

|φ(s)||φ(t) − ψ(t)| + |φ(s) − ψ(s)||ψ(t)|

+ |ψ(s)ψ(t) − ψ(st)| + |ψ(st) − φ(st)|

≤ 1 · δ1/2ω(t) + δ1/2ω(s) · (1 + δ1/2ω(t)) + δω(s)ω(t) + δ1/2ω(st)

= δ1/2ω(t) + δ1/2ω(s) + 2δω(s)ω(t) + δ1/2ω(st),

we have defω(φ) ≤ 3δ1/2 + 2δ. From this, routine arguments (which we omit) yield the
following necessary and sufficient condition for `1

ω(S ) to be AMNM.

C 3.7. Let (S , ω) be a weighted semilattice. The following are equivalent:

(i) `1
ω(S ) is AMNM;

(ii) for any ε > 0, there exists δ > 0, such that whenever φ : S → {0, 1} satisfies

sup
e, f∈S

|φ(e f ) − φ(e)φ( f )|
ω(e)ω( f )

≤ δ,

then there exists a subset F ⊆ S , either empty or a filter, such that

sup
e∈S

|χF(e) − φ(e)|
ω(e)

≤ ε.

It turns out that a certain natural, structural condition on a semilattice S will
imply that `1

ω(S ) is AMNM for any choice of weight function ω. This condition
was rediscovered by the author in the course of the present investigations; it was
subsequently pointed out (personal communication; see [13]) that it was already
known by a standard name in the lattice-theoretic literature.
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D 3.8 (The breadth of a semilattice). Let E be a subset of a semilattice S . We
define

bloc(E) = inf{n ∈ N : 〈E〉n = 〈E〉},

with the usual convention that the infimum of the empty set is +∞. The breadth of S
is defined to be supE⊆S bloc(E), and is denoted by b(S ).

Here, the sets 〈E〉n and 〈E〉 are as defined in (2.3). Note that having finite breadth
is not the same as being finitely generated as a semigroup. Indeed, finitely generated
semilattices are finite.

The following examples of semilattices with finite breadth are presumably well
known to specialists, but since we were unable to find explicit references in the
literature, details of the proofs are included. (For some discussion, see, for example,
[1, Section IV.10].)

E 3.9. Let S be the free semilattice on n generators. Then b(S ) = n.

P. Since S has height n, it will follow from Example 3.11 below that b(S ) ≤ n.
On the other hand, if F denotes the set of generators of S , then 〈F〉n = S while 〈F〉n−1

does not contain the minimal element of S , implying that b(S ) ≥ bloc(F) > n − 1. �

E 3.10. If S has width ≤ n as a partially ordered set (that is, there exist n chains
in S whose union is all of S ) then b(S ) ≤ n.

P. Fix chains C1, . . . ,Cn in S such that S =
⋃n

i=1 Ci. Let E ⊆ S and x ∈ 〈E〉. For
some integer k there exists y1, . . . , yk ∈ E such that x = y1 · · · yk. Partition {1, . . . , k}
into disjoint, nonempty subsets J(1), . . . , J(m), where m ≤ n, such that yr ∈Ci for all
r ∈ J(i). For each i, the set {yr : r ∈ J(i)} is totally ordered (as a subset of S ) and so has
a least element, say ys(i). Then

∏
r∈J(i) yr = ys(i), so

x = ys(1) . . . ys(m) ∈ 〈E〉m ⊆ 〈E〉n

and thus bloc(E) ≤ n.) �

E 3.11. Let n ≥ 2. If S has height at most n (that is, each chain in S has
cardinality at most n) then b(S ) ≤ n.

P. Let E ⊆ S and x ∈ 〈E〉. For some integer k there exists y1, . . . , yk ∈ E such that
x = y1 · · · yk. Clearly y1 � y1y2 � · · · � y1y2 · · · yk. Let

J = {r ∈ {2, . . . , k} : y1 · · · yr−1 , y1 · · · yr},

and enumerate its elements in increasing order as j1 < · · · < jm. Since chains in S have
cardinality at most n, we have m ≤ n + 1, and thus bloc(E) ≤ n.) �

We need one more technical definition. The following concept is a slight
improvement, suggested by the referee, of the author’s original condition. However,
the author takes the blame for the nonstandard terminology.
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D 3.12. Let (S , ω) be a weighted semilattice. For each K > 0, let

WK = {x ∈ S : ω(x) ≤ K}.

We say that (S , ω) is flighty if, for each K > 0,

sup{ω(y) : y ∈ 〈WK〉} <∞.

This condition is somewhat artificial, and is set up to make the proof of
Theorem 3.14 work. Let us first consider some examples.

E 3.13. (i) If supx∈S ω(x) <∞, then (S , ω) is flighty.
(ii) If S has finite breadth n, then (S , ω) is flighty for any weight ω; for given K > 0,

we have ω(y) ≤ Kn for all y ∈ 〈WK〉.
(iii) Let (T, ω) be the weighted semilattice constructed in the proof of Theorem 3.4.

This example is not flighty: since (if C is the constant used to define the weight in
that example) we can for each n find x1, . . . , xn ∈WC such thatω(x1 · · · xn) = Cn.

We can now state the main result of this section. The proof we give incorporates
a small simplification suggested by the referee, in line with his or her suggested
modification of Definition 3.12.

T 3.14. Let (S , ω) be a weighted semilattice. If (S , ω) is flighty, then `1
ω(S ) is

AMNM.

P. We will use Corollary 3.7. Fix ε > 0, and let

S fix := W2/ε ≡ {x ∈ S : ω(x) ≤ 2/ε},

which we think of as the set where ω is relatively small.
By our assumption on (S , ω), there exists some constant C(ε) > 0 such that ω(y) ≤

C(ε) for all y ∈ 〈S fix〉. Choose δ > 0 such that 2δC(ε)/ε < 1.
Now suppose that ψ : S → {0, 1} satisfies defω(ψ) ≤ δ. Let

E := {y ∈ S fix : ψ(y) = 1}

and let
F :=

⋃
y∈〈E〉

{x ∈ S : x � y} .

Recall that if E is empty then so is F; otherwise F is the filter generated by E in S .
To motivate the next step, suppose that φ : S → C is multiplicative and is close in

norm to ψ. Then (provided δ is sufficiently small) we must have φ = 1 on E; and so, as
remarked in Lemma 2.8, φ must be 1 on F. Therefore, ψ must also be 1 on F ∩ S fix,
that is, we must have E = F ∩ S fix.

So our next step is to verify that E = F ∩ S fix. It suffices to show that F ∩ S fix ⊆ E,
and the proof of this goes via the following claim.

Claim. Let k ∈ N. Then ψ(y) = 1 for all y ∈ 〈E〉k.
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P  . The proof is by induction on k. If k = 1 there is nothing to prove.
Suppose that the claim holds for k = m − 1 where 2 ≤ m, and let x1, . . . , xm ∈ E. Put
y′ = x1 · · · xm−1; then by the inductive hypothesis, the definition of the constant C(ε),
and our choice of δ,

|ψ(y′xm) − 1| = |ψ(y′xm) − ψ(y′)ψ(xm)|

≤ δω(y′)ω(xm)

≤ δC(ε)ω(xm)

≤ δC(ε)2/ε < 1.

Since ψ is 0–1-valued, this forces ψ(y′xm) = 1, so that the claim holds for k = m.
Now let z ∈ F ∩ S fix. Since z ∈ F, there exists y ∈ 〈E〉 such that zy = y. By our claim,

ψ(y) = 1. Since z ∈ S fix and E ⊆ S fix, this implies that

|ψ(z) − 1| = |ψ(y)ψ(z) − ψ(yz)|

≤ δω(y)ω(z)

≤ δC(ε)ω(z)

≤ δC(ε)2/ε < 1.

As before, this forces ψ(z) = 1, so that z ∈ E.
Thus F ∩ S fix = E, as required. We therefore have S = E ∪ (S fix \ F) ∪ (S \ S fix).

Now observe that:
• when x ∈ E, we have |χF(x) − ψ(x)| = 0;
• when x ∈ S fix \ F ⊆ S fix \ E, we have χF(x) = 0 = ψ(x), so that |χF(x) − ψ(x)| =

0;
• when x ∈ S \ S fix, we have ω(x) ≥ 2/ε, so that |χF(x) − ψ(x)| ≤ 2 ≤ εω(x).
Putting these cases together, we see that χF is multiplicative and satisfies

sup
x∈S

ω(x)−1|χF(x) − ψ(x)| ≤ ε.

In view of Corollary 3.7, this shows that `1
ω(S ) is AMNM. �

As a special case of Theorem 3.14, we get another proof that `1(S ) is AMNM for
every semilattice S (see Example 3.13(i)). More interestingly, we can deduce that
if S is a semilattice with either finite width or finite height, then `1

ω(S ) is AMNM
for every submultiplicative weight ω (see Example 3.13(ii)). In particular, for any
weight function ω : N→ [1,∞), the algebra Bω from Example 2.5 is AMNM, as it is
isomorphic to `1

ω(Nmin).

4. More general range algebras

For which Banach algebras B and weighted semilattices (S , ω) is (`1
ω(S ), B)) an

AMNM pair? Since we do not have a complete answer in the case B = C, we can
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expect only partial results in the more general case. A natural place to start is with
those semilattices covered by Theorem 3.14, in particular with Nmin. Recall that by
this theorem, `1

ω(Nmin) is AMNM for any weight ω. In contrast, we will see shortly
that for most choices of nontrivial weight ω on Nmin, the pairs (`1

ω(Nmin), T2) and
(`1
ω(Nmin),M2) fail to be AMNM. Here, M2 is the algebra of 2 × 2 complex matrices,

and T2 is the subalgebra {(
a b
0 a

)
: a, b ∈ C

}
� C[x]/(x2).

R 4.1. These are not arbitrary test cases: M2 is the smallest semisimple algebra
that is noncommutative, while T2 is the smallest commutative, unital algebra that
is not semisimple. (In the context of commutative algebra and deformation theory,
it is also known as the algebra of dual numbers over C, since it formalizes the
notion of an infinitesimal element vanishing to second order.) Additional motivation
comes from results of Howey, who showed that Ck[0, 1] is AMNM (k ≥ 1) [7], while
observing – in slightly different notation – that the pair (Ck[0, 1], T2) is not AMNM
([6, Corollary 4.2.5]; see also Remark 4.3 below).

It does not matter which norm we put on T2 or M2. To be definite, we give M2 its
natural norm (the C∗-algebra norm), but equip T2 with the norm∥∥∥∥∥(a b

0 a

)∥∥∥∥∥
T2

= |a| + |b|.

We now consider AMNM pair problems for `1
ω(Nmin) when the range is T2 or M2. If

the weight function is bounded then `1
ω(Nmin) is isomorphic as a Banach algebra to

`1(Nmin), and so we may restrict attention to the cases where the weight is either trivial
(that is, identically 1) or unbounded.

T 4.2. Let ω be an unbounded weight function on Nmin. Then (`1
ω(Nmin), T2) is

not an AMNM pair.

P. Throughout this proof, let A denote the algebra `1
ω(Nmin). For each m ∈ N let

χm be the character

χm(k) =

1 if k ≥ m,

0 if k < m,

and let δm be the Dirac point mass at m. Set

θm =

(
χm ω(m)δm

0 χm

)
: N→ T2,

noting that the range of θm consists of commuting elements.

https://doi.org/10.1017/S1446788713000189 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000189


50 Y. Choi [15]

For 1 ≤ j ≤ k,

θm( j)θm(k) − θm( j) =

(
0 χm( j)ω(m)δm(k) + ω(m)δm( j)(χm(k) − 1)
0 0

)
=

(
0 χm( j)ω(m)δm(k)
0 0

)
.

Hence by symmetry, for general j, k ∈ Nmin,

θm( j)θm(k) − θm( j ∧ k) =

(
0 χm( j ∧ k)ω(m)δm( j ∨ k)
0 0

)
which vanishes unless j = k = m, in which case

θm(m)θm(m) − θm(m) =

(
0 ω(m)
0 0

)
.

Thus

def(θm) = sup
j,k∈N

‖θ( j)θ(k) − θ( j ∧ k)‖
ω( j)ω(k)

=
ω(m)

ω(m)ω(m)
= ω(m)−1.

Suppose that Φ : Nmin→ T2 is multiplicative. Since T2 has no nontrivial
idempotents, this forces φ(n)12 = 0 for all n. Hence

‖Φ(m) − θm(m)‖ ≥ |Φ(m)12 − θm(m)12| ≥ ω(m),

so that

distL(A,T2)(θm, Mult(A, T2)) ≥ sup
x∈N

‖Φ(x) − θm(x)‖
ω(x)

≥ 1 for all m.

Since lim infn ω(n)−1 = 0, it follows that (A, T2) is not an AMNM pair. �

R 4.3. A (bounded) multiplicative function Ψ from a Banach algebra A to T2 is
easily seen to be of the form

Ψ(a) =

(
ϕ(a) D(a)

0 ϕ(a)

)
,

where ϕ ∈Mult(A, C) and D : A→ C is a (bounded) derivation with respect to the
bimodule action of A on C via φ. In the case where A has a dense subspace
consisting of commuting idempotents, the only such bounded derivation is 0; and
the failure of (`1

ω(Nmin), T2) to be AMNM can be interpreted as saying that there
are ‘approximate point derivations’ of large norm on `1

ω(Nmin). This perspective
(motivated by cohomological questions about the ‘Feinstein algebras’) was the original
approach used to construct the counterexample seen in proving Theorem 4.2. With
hindsight, a similar idea can be seen behind Howey’s result that (Ck[0, 1], T2) is not
an AMNM pair.
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In general, approximately multiplicative maps into an algebra B can be far from
multiplicative maps into B, yet be close to multiplicative maps into C for some
containing algebra C ⊃ B. This is illustrated by the following example, provided by
the referee.

E 4.4 (Referee’s example). Let χm and θm be as in the proof of Theorem 4.2.
We saw in that proof that def(θm) = ω(m)−1 and

distL(A,T2)(θm, Mult(A, T2)) ≥ 1.

Now define φm : Nmin→M2 by

φm =

(
χm ω(m)δm

0 χm+1

)
.

A case-by-case analysis confirms that φm is multiplicative, the key point being that
φm(k) = 0 for k < m and φm(k) = I for k > m. Moreover,

θm − χm =

(
0 0
0 δm

)
,

so that ‖θm − χm‖ = ω(m)−1 = def(θm).

One reason why things are trickier when the range algebra is M2 is that the
lattice of idempotents is bigger. Nevertheless, we will be able to use the following
modest observation: if V is a finite-dimensional vector space, and P, Q are commuting
idempotents in L(V) with the same rank, then P = Q. While this observation is easily
proved by geometric considerations, we outline an alternative approach: since P and Q
are commuting idempotents, P − Q is idempotent; and since the rank of an idempotent
equals its trace, it follows that

rank(P − Q) = Tr(P − Q) = Tr(P) − Tr(Q) = rank(P) − rank(Q) = 0

so that P − Q = 0, as required.

R 4.5. We mention this approach since an ‘approximate version’ will be used
in Section 5 when dealing with 2 × 2 matrices that are ‘approximately idempotent’:
while the rank of a matrix behaves badly under small-norm perturbations, its trace
behaves much better.

L 4.6. (i) Let a, b ≥ 1 and let A =
(1 −a

0 0
)
, B =

( 1 b
0 0

)
. If P, Q are commuting

idempotents inM2, then either ‖P − A‖ ≥ a/2 or ‖Q − B‖ ≥ b/2.
(ii) Let d ≥ 1 and let C =

( 1 d
0 0

)
. If P, Q are commuting idempotents inM2, then either

‖P − 2C‖ ≥ d/2 or ‖Q −C‖ ≥ d/4.

P. We prove both (i) and (ii) by contradiction. Suppose that P and Q are
commuting idempotents that satisfy ‖P − A‖ < a/2 and ‖Q − B‖ < b/2. Since ‖A‖ ≥ a
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and ‖A − I‖ ≥ a, P < {0, I}; similarly, Q < {0, I}. Hence P and Q both have rank one.
This forces P = Q (see the observation made before Remark 4.5), and so

0 < a + b = ‖A − B‖ ≤ ‖A − P‖ + ‖Q − B‖ < (a + b)/2

which is a contradiction. Thus (i) is proved.
Similarly, suppose that P and Q are commuting idempotents that satisfy ‖P − 2C‖ <

d/2 and ‖Q −C‖ < d/4. Since ‖C‖ ≥ d and ‖C − I‖ ≥ d, Q < {0, I}; similarly, P < {0, I}.
Thus P and Q both have rank one, which as before forces P = Q. But then

0 < d = ‖C‖ ≤ ‖2C − P‖ + ‖Q −C‖ <
d
2

+
d
4

which is a contradiction. Thus (ii) is proved. �

We can now present our main result for `1
ω(Nmin) and M2, which shows that for

many unbounded weights we do not get an AMNM pair. The author is grateful to
the referee for spotting errors in an earlier version, which mistakenly claimed that the
AMNM property failed for all unbounded weights; see also the discussion following
Remark 4.8.

T 4.7. Let ω be a weight function on Nmin that satisfies

sup
n

min(ω(n), ω(n + 1)) = +∞.

Then (`1
ω(Nmin),M2) is not an AMNM pair.

P. Let δ > 0. We will construct an ω-bounded function θ : Nmin→M2 which has
norm at most 2 (with respect to the `1

ω-norm) and satisfies defω(θ) ≤ δ, yet also satisfies
‖θ − φ‖∞,ω−1 ≥ 1/2 for every multiplicative function φ : Nmin→M2.

By our assumption on the weight, there exists n ∈ N such that min(ω(n), ω(n + 1)) ≥
2/δ. We define

θ( j) = 0 for all j ≤ n − 1,

θ(n) =

(
1 −ω(n)
0 0

)
,

θ(n + 1) =

(
1 ω(n + 1)
0 0

)
,

θ(k) = I for all k ≥ n + 2.

Clearly ‖θ‖∞.ω−1 ≤ 2. We claim that θ is δ-multiplicative. Clearly θ( j)θ(k) = θ( j) =

θ(k)θ( j) whenever j ≤ n − 1 or k ≥ n + 2. We also have θ(n)2 = θ(n), θ(n + 1)2 =

θ(n + 1), θ(n + 1)θ(n) = θ(n), and

θ(n)θ(n + 1) − θ(n) = θ(n + 1) − θ(n) =

(
0 ω(n + 1) + ω(n)
0 0

)
.
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Therefore

defω(θ) =
‖θ(n)θ(n + 1) − θ(n)‖

ω(n)ω(n + 1)
=
ω(n + 1) + ω(n)
ω(n)ω(n + 1)

=
1

ω(n)
+

1
ω(n + 1)

≤ δ,

as claimed.
Finally, let φ : Nmin→M2 be multiplicative. Then φ(n) and φ(n + 1) are commuting

idempotents, so by Lemma 4.6(i),

either ‖θ(n) − φ(n)‖ ≥ ω(n)/2 or ‖θ(n + 1) − φ(n + 1)‖ ≥ ω(n + 1)/2.

Therefore ‖θ − φ‖∞,ω−1 ≥ 1/2. �

R 4.8. If ω is any weight on Nmin with lim infn ω(n) <∞, then `1
ω(Nmin) is

known to be approximately amenable (in fact, it is boundedly approximately con-
tractible, by combining the discussion in Example 2.5 with [4, Corollary 4.5]). Thus,
Theorems 4.2 and 4.7 show we can have approximately amenable Banach algebras A
and finite-dimensional Banach algebras B such that (A, B) is not an AMNM pair, in
contrast with what happens when A is amenable [11, Theorem 3.1].

Theorem 4.7 implies a necessary condition on the weight ω for the pair
(`1
ω(Nmin),M2) to be AMNM, and one naturally wonders if this necessary condition

is sufficient. Put more explicitly: if ω : Nmin→ [1,∞) is a weight function satisfying
supn min(ω(n), ω(n + 1)) <∞, is (`1

ω(Nmin),M2) always an AMNM pair?
It turns out that the answer to this question is positive. This was discovered after

the main work of the present paper, and the current proof is relatively long and
unenlightening, while relying on Theorem 5.1. Details will therefore be given in
forthcoming work, which treats AMNM problems for more general range algebras.
The main idea is similar to that in the proof of Theorem 3.14: given δ > 0, one
partitions Nmin into a set where the weight is ‘large’ and one where it is ‘small’; then
given a δ-multiplicative function θ : `1

ω(Nmin)→M2, one applies an AMNM result for
the unweighted case to constrain the values of θ on the set where the weight is small,
and then adjusts θ on the set where the weight is large.

For the sake of completeness, we include the following result, which should be
contrasted with Theorem 5.1.

T 4.9. Let ω be an unbounded weight on Nmin. Then (`1
ω(Nmin),M2) is not a

uniformly AMNM pair.

P. Since uniformly AMNM pairs are a fortiori AMNM, it suffices by Theorem 4.7
to consider the case where ω is unbounded and supn min(ω(n), ω(n + 1)) <∞.

Our argument is very similar to the proof of Theorem 4.7. Let C = supn min(ω(n),
ω(n + 1)), and let δ > 0. We will construct an ω-bounded function θ : Nmin→M2

which satisfies defω(θ) ≤ δ, yet also satisfies ‖θ − φ‖∞,ω−1 ≥ 1/2 for every
multiplicative function φ : Nmin→M2.
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The hypotheses on ω ensure that there exists some n ∈ N such that ω(n) ≥
max(6δ−1, 2C) and ω(n + 1) ≤C. Define θ : Nmin→M2 by setting θ( j) = 0 for all
1 ≤ j ≤ n − 1, θ(k) = I for all k ≥ n + 2, and

θ(n + 1) :=
(
1 ω(n)
0 0

)
, θ(n) = 2θ(n + 1) =

(
2 2ω(n)
0 0

)
.

Then θ is an ω-bounded map Nmin→M2, with

‖θ‖∞,ω−1 = max
(
‖θ(n)‖
ω(n)

,
‖θ(n + 1)‖
ω(n + 1)

)
≤ max

(2 + 2ω(n)
ω(n)

,
1 + ω(n)
ω(n + 1)

)
≤

2ω(n)
ω(n + 1)

.

Clearly θ( j)θ(k) = θ( j) = θ(k)θ( j) whenever 1 ≤ j ≤ n − 1 or n + 2 ≤ k. Furthermore,
θ(n + 1)2 = θ(n + 1) and θ(n)θ(n + 1) = θ(n) = θ(n)θ(n + 1), while θ(n)2 − θ(n) =

3θ(n + 1). Therefore

defω(θ) =
‖θ(n)2 − θ(n)‖

ω(n)2
=

3‖θ(n + 1)‖
ω(n)2

≤
6

ω(n)
≤ δ.

Now let φ : Nmin→M2 be a multiplicative function. Then φ(n) and φ(n + 1) are
commuting idempotents, so by taking C = θ(n + 1) in Lemma 4.6(ii),

either ‖θ(n) − φ(n)‖ ≥ ω(n)/2 or ‖θ(n + 1) − φ(n + 1)‖ ≥ ω(n)/4 ≥ ω(n + 1)/2.

Therefore ‖θ − φ‖∞,ω−1 ≥ 1/2. �

Theorems 4.2 and 4.7 suggest that if we seek positive results, we are better off

considering the unweighted convolution algebras of semilattices. This is corroborated
by the final result of this section.

T 4.10. Let S be a semilattice. Then (`1(S ), T2) is a uniformly AMNM pair.

P. Let θ : S → T2 be a function satisfying def(θ) < 1/5, and let a, b : S → C be the
functions defined by

θ(e) =

(
a(e) b(e)

0 a(e)

)
, e ∈ S .

Since (
a(e) b(e)

0 a(e)

) (
a( f ) b( f )

0 a( f )

)
=

(
a(e)a( f ) a(e)b( f ) + b(e)a( f )

0 a(e)a( f )

)
,

we see that def(a) ≤ def(θ) < 1/5. By Proposition 3.3, there exists a multiplicative
function χ : S → C such that

|a(e) − χ(e)| < 7
5 |a(e)2 − a(e)| < 7

5 def(θ) < 7/25, for all e ∈ S .
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Note that

def(θ) ≥ sup
e∈S
‖θ(e)2 − θ(e)‖

= sup
e∈S

∥∥∥∥∥(a(e)2 − a(e) (2a(e) − 1)b(e)
0 a(e)2 − a(e)

)∥∥∥∥∥
= sup

e∈S
|a(e)2 − a(e)| + |2a(e) − 1| |b(e)|.

Let e ∈ S . Since |a(e)2 − a(e)| ≤ def(a) ≤ def(θ) < 1/5, applying Lemma 3.2 and using
the estimate (3.2) yields

min(|a(e)|, |1 − a(e)|) < ρ( 1
5 )def(a) < 7

25 ;

therefore a(e) ∈ D0(7/25) ∪ D1(7/25), so that

| 12 − a(e)| ≥ 1
2 −

7
25 = 11

50 .

Hence

‖θ(e) − χ(e)I‖ = |a(e) − χ(e)| + |b(e)|

≤ 7
5 |a(e)2 − a(e)| + 25

11 |(2a(e) − 1)b(e)| ≤ 25
11 def(θ),

as required. �

It is now natural to ask if (`1(S ),M2) is an AMNM pair. The answer turns out to
be yes – in fact, it is always a uniformly AMNM pair – but the proof is considerably
harder, and occupies all of the next section.

5. (`1(S),M2) is AMNM for any semilattice S

For reasons of technical convenience, we shall work mostly with the Hilbert–
Schmidt norm onM2, defined by ‖A‖2HS = Tr(A∗A)1/2. It might be conceptually clearer
to use the operator norm throughout, but this seems to yield worse constants in later
inequalities, which are obtained by bootstrapping up the earlier ones.

N. If A ∈M2 and ε > 0 let

B
HS
A (ε) = {B ∈M2 : ‖A − B‖HS ≤ ε}

(the closed ball of radius ε centred on A, in the Hilbert–Schmidt norm).

T 5.1. Let δ < 0.03, and let θ : S →M2 be a function satisfying

sup
e· f∈S

‖θ(e)θ( f ) − θ(e f )‖HS ≤ δ. (5.1)

Then there exists a (bounded) multiplicative function φ : S →M2 such that

sup
x∈S
‖θ(x) − φ(x)‖HS ≤ 12δ.

In particular, (`1(S ),M2) is a uniformly AMNM pair.
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Note that we do not assume in (5.1) that supe∈S ‖θ(e)‖HS <∞, but this will emerge
during the proof (see Proposition 5.4).

5.1. Motivating the proof of Theorem 5.1. Let S be a semilattice. Our proof that
(`1(S ), C) is a uniformly AMNM pair can be broken down into three steps.

(1) Show that there is a constant c, such that whenever θ : S → C is δ-multiplicative,
θ(S ) ⊆ D0(cδ) ∪ D1(cδ). (In effect, this step ‘approximately discretizes’ the
problem.)

(2) Put S k := θ−1(Dk(cδ)) for k = 0, 1, so that S is partitioned as S 1 ∪ S 0. Show
that S 1 · S 1 ⊆ S 1, S 1 · S 0 ⊆ S 0, and S 0 · S 0 ⊆ S 0. (Although we did not do these
calculations explicitly, they are implicit in the process of checking that S 1 is a
filter in S .)

(3) Define φ : S → {0, 1} by φ = 1 on S 1 and φ = 0 on S 0. By the first step,
‖φ − θ‖∞ ≤ cδ, and by the second step, φ is multiplicative.

The strategy we shall adopt is to mimic each of these steps, but now allow our maps
to take values in M2 rather than C. As a first step, we need some characterization of
multiplicative functions φ : S →M2, which reduces down to the problem of describing
the possible semilattices inside the multiplicative semigroupM2. This is not too hard,
once we make the following observation: if P ∈M2 is a rank-one idempotent, then the
only idempotents which commute with P are I, P, I − P and 0. (We will see later that
there is an ‘approximate version’ of this.)

Secondly, observe that if θ is – as claimed – a perturbation of a multiplicative
function φ, then by the previous remarks θ(S ) should be contained in a small-ball
neighbourhood of φ(S ), which in turn is contained in a set of at most four commuting
idempotents. To prove Theorem 5.1, we reverse this line of reasoning, and identify
a commuting set L of idempotents in M2, a small-ball neighbourhood of which will
contain θ(S ). (See Proposition 5.4 for the details.) Then, since the elements of L are
well separated, there is only one realistic candidate for the map φ: namely, it should
send a given x ∈ S to the element of L nearest to θ(x). This map φ will clearly be close
in norm to θ, so all that will remain is to check that φ is multiplicative: this can be
done through a case-by-case analysis, although some work is needed since we do not
assume that supe∈S ‖θ(e)‖HS <∞.

To identify the set L, we make heavy use of a small but technical result, based on
the following idea: the trace of an approximately idempotent 2 × 2 matrix must be
close to an integer, which then equals the rank of any nearby idempotent. This will be
made precise in the next lemma.

5.2. A key technical lemma. The following lemma is our basic tool for working
with approximately idempotent elements of M2. It is here that the Hilbert–Schmidt
norm seems to be convenient.

L 5.2 (Key estimates). (a) Let ρ(0) = 1 and

ρ(t) =
1
2t

(1 −
√

1 − 4t), 0 < t ≤ 1/4,
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and let
κ(t) = (1 − ρ(t)t

√
2)−1, 0 ≤ t ≤ 1/4.

Then ρ and κ are increasing functions, with ρ(t) ≤ κ(t) for all t ∈ [0, 1/4].
Moreover,

ρ
( n
(n + 1)2

)
=

n + 1
n

(5.2)

and

κ
( n
(n + 1)2

)
=

(
1 −

√
2

n + 1

)−1

<
(
1 −

10
7(n + 1)

)−1

. (5.3)

(b) Let A ∈M2 satisfy ‖A − A2‖HS ≤ ε < 2/9. Then

‖2A − I‖HS ≥ (2 − 6‖A − A2‖HS)1/2 (5.4)

and
Tr(A) ∈

⋃
j∈{0,1,2}

D j(
√

2ρ(ε)ε) ⊆
⋃

j∈{0,1,2}

D j(10/21). (5.5)

Moreover:
– if |Tr(A) − 2| < 1/2, then ‖I − A‖HS ≤ κ(ε)ε;
– if |Tr(A)| < 1/2, then ‖A‖HS ≤ κ(ε)ε;
– if |Tr(A) − 1| < 1/2 then there exists a rank-one idempotent P ∈M2

satisfying ‖I − P‖HS ≤ ρ(ε)ε.

Proof of (a). The formulas (5.2) and (5.3) follow from the definitions of the functions
ρ and κ by direct calculation. Moreover, we have already seen (see the remarks after
the formula (3.1)) that ρ is increasing on [0, 1/4], and therefore κ is also increasing on
[0, 1/4].

It only remains to prove that ρ(t) ≤ κ(t) for all t ∈ [0, 1/4]. Since 1 = κ(0) = ρ(0) <
ρ(t) for all 0 < t ≤ 1/4, it suffices to show that κ(t)−1 < ρ(t)−1 for all such t. To do this,
observe that

κ(t)−1 +
√

2 − 1 =
√

2 −
√

2ρ(t)t

=
√

2(1 − 1
2 (1 −

√
1 − 4t))

=
√

2( 1
2 + 1

2

√
1 − 4t),

while

(1 +
√

1 − 4t)ρ(t) =
1
2t

(1 − (1 − 4t)) = 2;

combining these two identities yields

κ(t)−1 +
√

2 − 1 =
√

2ρ(t)−1,

so that
κ(t)−1 − ρ(t)−1 = (

√
2 − 1)ρ(t)−1 − (

√
2 − 1) < 0

as required. �
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Proof of (b). By conjugating with an appropriate unitary matrix, we may assume
without loss of generality that A is upper triangular, say A =

( a b
0 d

)
. Then

A − A2 =

(
a − a2 b(1 − a − d)

0 d − d2

)
so that

|a − a2|2 + |b(1 − a − d)|2 + |d − d2|2 ≤ ‖A − A2‖2HS ≤ ε
2. (5.6)

Therefore,

‖2A − I‖2HS ≥ |2a − 1|2 + |2d − 1|2

≥ 2 − 4|a − a2| − 4|d − d2|

≥ 2 − 4
√

2(|a − a2|2 + |d − d2|2)1/2

≥ 2 − 6(|a − a2|2 + |d − d2|2)1/2

≥ 2 − 6‖A − A2‖HS,

and we have proved (5.4).
It also follows from (5.6), by using Lemma 3.2, that

distC(a, {0, 1}) ≤ ρ(ε)|a − a2| ≤ ρ( 2
9 ) 2

9 = 1
3

and
distC(d, {0, 1}) ≤ ρ(ε)|d − d2| ≤ ρ( 2

9 ) 2
9 = 1

3 .

Define the function N : D0(1/3) ∪ D1(1/3)→ {0, 1} to take the value i on Di(1/3)
for i = 0, 1. By Cauchy–Schwarz,

|a − N(a)| + |d − N(d)| ≤ ρ(ε)(|a − a2| + |d − d2|)

≤ ρ(ε)
√

2(|a − a2|2 + |d − d2|2)1/2 ≤ ρ(ε)
√

2ε;

and since ρ is an increasing function,

ρ(ε)
√

2ε ≤ 10
7 ρ(ε)ε ≤ 10

7 ρ( 2
9 ) 2

9 = 10
21 .

Observe that if r ∈ Z satisfies |Tr(A) − r| ≤ 1/2, then

|r − N(a) − N(d)| < 1
2 + 10

21 < 1,

forcing r = N(a) + N(d). So r ∈ {0, 1, 2}, and we always have

|Tr(A) − r| = |a + d − N(a) − N(d)| < ρ(ε)
√

2ε ≤ 10
21 , (∗)

giving us the inclusions in (5.5).
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Finally, we show that A is always ‖·‖HS-close to an idempotent of the appropriate
rank. We first address the cases where exactly one of N(a) and N(d) is equal to 1, with
the other being equal to 0. In both of these cases we define

P =

(
N(a) b

0 N(d)

)
.

A short calculation shows that P = P2. By construction,

‖A − P‖HS = (|a − N(a)|2 + |d − N(d)|2)1/2

≤ ρ(ε)(|a − a2|2 + |d − d2|2)1/2 ≤ ρ(ε)‖A − A2‖HS.

Secondly, we address the cases where Tr(A) ∈ D0(1/2) ∪ D2(1/2). If |Tr(A) − 2| <
1/2 we must have N(a) = N(d) = 1 (so D = I) and then, using (∗),

|1 − a − d| ≥ 1 − |a + d − 2| = 1 − |a + d − N(a) − N(d)|.

On the other hand, if |Tr(A)| < 1/2, we must have N(a) = N(d) = 0 (so D = 0) and then

|1 − a − d| ≥ 1 − |a + d| = 1 − |a + d − N(a) − N(d)|.

Thus, in both of these cases, by using (∗) we obtain the inequality

(|1 − a − d|)−1 ≤ (1 − |a + d − N(a) − N(d)|)−1 ≤ (1 − ρ(ε)ε
√

2)−1 = κ(ε). (∗∗)

Put

D =

(
N(a) 0

0 N(d)

)
;

this matrix equals either I or 0, depending on whether Tr(A) is close to 0 or close to 2.
It follows from (∗∗) that

‖A − D‖2HS = |a − N(a)|2 + |d − N(d)|2 + |b|2

≤ ρ(ε)2|a − a2|2 + ρ(ε)2|d − d2|2 + κ(ε)2|b(1 − a − d)|2

≤ κ(ε)2(|a − a2|2 + |d − d2|2 + |b(1 − a − d)|2),

where we use the result from part (a) that ρ(ε) ≤ κ(ε). Taking square roots gives
‖A − D‖HS ≤ κ(ε)‖A − A2‖HS ≤ κ(ε)ε, and the proof of our lemma is complete. �

5.3. Proof of Theorem 5.1. Our argument is broken into smaller results. For the
reader’s convenience, the interdependencies are indicated in Figure 1. To save needless
repetition, we will assume for the rest of this section that 0 ≤ δ < 0.03. This implies
from the outset (by Lemma 5.2(a)) that

ρ(δ) ≤ κ(δ) < κ( 29
302 ) < (1 − 1

21 )−1 = 1.05.

Let θ : S →M2 satisfy condition (5.1). To simplify formulas, we shall use the
following abbreviations: ẽ stands for θ(e), f̃ for θ( f ), ẽ f for θ(e f ), and so forth.
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F 1. Dependencies between results in this section (P = Proposition; L = Lemma).

We start by taking e = f in condition (5.1) and using Lemma 5.2 with ε = δ. This
gives

Tr θ(S ) ⊆
⋃

j∈{0,1,2}

D j(ρ(δ)
√

2δ) ⊆
⋃

j∈{0,1,2}

D j(0.05), (5.7)

with the second inclusion following from the upper bound

ρ(δ)
√

2δ < 1.05 × 10
7 × 0.03 < 0.05.

For k = 0, 1, 2, define

S k := (Tr ◦ θ)−1(Dk(0.95)) = (Tr ◦ θ)−1(Dk(ρ(δ)
√

2δ)). (5.8)

Then, by Lemma 5.2(b), θ(S 2) ⊆ B
HS
I (κ(δ)δ) and θ(S 0) ⊆ B

HS
0 (κ(δ)δ).

Define φ : S 2 t S 0→M2 by φ(S 0) = {0} and φ(S 2) = {I}. By our initial remarks
concerning κ(δ),

sup
x∈S 2tS 0

‖x̃ − φ(x)‖HS ≤ κ(δ)δ ≤ 1.05δ. (5.9)

P 5.3 (Some easy properties). Let e, f ∈ S .

(i) If f ∈ S 2 then ‖ f̃ −1‖HS < 1.5. If e ∈ S 0 then ‖(I − ẽ)−1‖HS < 1.5.
(ii) If e, f ∈ S 2 then e f ∈ S 2.
(iii) If e ∈ S 0 and f ∈ S then e f ∈ S 0.

In particular, S 2 t S 0 is a subsemigroup of S , and φ : S 2 t S 0→M2 is multiplicative.
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P. Suppose that f ∈ S 2. As remarked above, ‖ f̃ − I‖HS ≤ κ(δ)δ ≤ 1.05δ < 0.04.
Therefore, using submultiplicativity of the Hilbert–Schmidt norm,

‖ f̃ −1‖HS =

∥∥∥∥∥ ∞∑
n=0

(I − f̃ )n
∥∥∥∥∥

HS

≤ ‖I‖HS +

∞∑
n=1

‖I − f̃ ‖nHS

≤
√

2 − 1 +
1

1 − ‖I − f̃ ‖HS

<
3
7

+
1

0.96
< 1.5.

A similar argument shows that when e ∈ S 0, we have ‖(I − ẽ)−1‖HS < 1.5. This proves
part (i).

Now, for any e, f ∈ S ,

‖( ẽ f − ẽ) f̃ ‖HS ≤ ‖ ẽ f f̃ − ẽ f ‖HS + ‖ ẽ f − ẽ f̃ ‖HS ≤ 2δ.

If e, f ∈ S 2, we may combine this upper bound with part (i) to obtain (via Cauchy–
Schwarz)

|Tr( ẽ f ) − 2| ≤ |Tr( ẽ) − 2| + |Tr( ẽ f − ẽ)|

≤ 0.05 + ‖( ẽ f − ẽ) f̃ ‖HS‖ f̃
−1‖HS ≤ 0.05 + 3δ� 0.95,

which implies that e f ∈ S 2, by the definition in (5.8). This proves (ii).
Observe that ‖ ẽ ẽ f − ẽ f ‖HS ≤ δ. If e ∈ S 0 then, by part (i), ‖( ẽ − I)−1‖HS < 1.5, and

so by Cauchy–Schwarz,

|Tr ẽ f | ≤ ‖( ẽ − I)−1‖HS ‖( ẽ − I)ẽ f ‖HS ≤ 1.5δ� 0.5.

Hence e f ∈ S 0, by (5.8), proving (iii). The final statement of the proposition now
follows easily from (ii) and (iii). �

Combining (5.9) and Proposition 5.3, we get a proof of Theorem 5.1 in the special
case where S 1 = ∅. We shall therefore assume, for the rest of this section, that S 1 is
nonempty.

P 5.4. There exists a rank one-idempotent P ∈M2 such that

θ(S 1) ⊆ B
HS
P (12δ) t B

HS
I−P(12δ).

Moreover, given e, f ∈ S 1:

– if ẽ, f̃ both lie in B
HS
P (12δ), then so does ẽ f ;

– if ẽ, f̃ both lie in B
HS
I−P(12δ), then so does ẽ f ;

– if ẽ ∈ B
HS
P (12δ) and f̃ ∈ B

HS
I−P(12δ), then e f ∈ S 0.
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The proof of Proposition 5.4 requires some work, which we break up into several
lemmas. The first of these is an ‘approximate version’ of the following observation: if
P and Q are rank-one idempotents inM2 with PQ = 0 = QP, then P + Q = I.

This is also the first place where it is really necessary to make δ no bigger than
about 0.03, as we need to apply Lemma 5.2 to something which is ‘approximately
idempotent to within roughly 7δ’.

L 5.5 (Separation lemma). Let e, f ∈ S 1 with e f ∈ S 0. Then

‖ ẽ + f̃ − I‖HS ≤ 10δ and ‖ ẽ − f̃ ‖HS ≥
4
3 − 10δ > 1.

P. Let B = ẽ + f̃ . We wish to prove that B is close to I; this will follow if we can
show that B is approximately idempotent and has trace close to 2.

Since e f ∈ S 0, applying Lemma 5.2(b) to the matrix ẽ f , with ε = δ, yields ‖ ẽ f ‖HS ≤

κ(δ)δ. Then, since

‖ ẽ f̃ + f̃ ẽ ‖HS ≤ ‖ ẽ f̃ − ẽ f ‖HS + ‖ f̃ ẽ − ẽ f ‖HS + 2‖ ẽ f ‖HS ≤ 2δ + 2κ(δ)δ,

we obtain

‖B2 − B‖HS ≤ ‖ ẽ2 − ẽ ‖HS + ‖ f̃ 2 − f̃ ‖HS + ‖ ẽ f̃ + f̃ ẽ ‖HS ≤ (4 + 2κ(δ))δ.

As (4 + 2κ(δ))δ ≤ 6.1δ < 0.183 < 2/9, we may apply Lemma 5.2(b) to the matrix B.
By our earlier observation (5.7),

|Tr(B) − 2| ≤ |Tr( ẽ) − 1| + |Tr( f̃ − 1)| < 0.05 + 0.05 < 1
2 ,

and so (by Lemma 5.2(b)),

‖B − I‖HS ≤ κ(6.1δ)6.1δ ≤ κ
( 3
42

)
6.1δ ≤

(
1 −

5
14

)−1

6.1δ ≤ 10δ. (∗ ∗ ∗)

For the second part, we apply the estimate (5.4) to obtain

‖2̃e − I‖HS ≥ (2 − 6δ)1/2 ≥
√

1.82 > 4
3 .

Combining this with (∗ ∗ ∗) yields

‖ ẽ − f̃ ‖HS = ‖(2̃e − I) − (B − I)‖HS ≥
4
3 − 10δ > 1,

as required. �

Intuitively, we should have S 1 · S 1 ⊆ (S 1 ∪ S 0) since elements of θ(S k) are close to
idempotents of rank k. Some care is needed to show this, because we have no a priori
upper bound on norms of elements in θ(S 1).

L 5.6. (i) If e ∈ S , f ∈ S 2 and e � f , then e ∈ S 2.
(ii) S 1 · S 1 ⊆ S 1 ∪ S 0.
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P. Let e, f ∈ S with e f = f . Then ‖ ẽ f̃ − f̃ ‖HS ≤ δ. If f ∈ S 2, then just as in the
proof of Proposition 5.3, we have ‖ f̃ −1‖HS < 1.5. Hence, by Cauchy–Schwarz,

|Tr( ẽ − I)| ≤ ‖ ẽ f̃ − f̃ ‖HS‖ f̃
−1‖HS ≤ 1.5δ� 1

2 ,

forcing e to lie in S 2. This proves (i).
Now if e, g ∈ S 1, put f = eg; by part (i), f < S 2, and (ii) is proved. �

To analyse S 1 in further detail, the following lemma is useful.

L 5.7 (Chains in S 1). Let e, f ∈ S 1 with e � f . Then ‖ ẽ − f̃ ‖HS ≤ 5δ.

P. Put A = ẽ − f̃ . We show that A is approximately idempotent and has small
trace, so must be close to 0 by Lemma 5.2(b). In detail: observe that

‖A2 − A‖HS = ‖ ẽ 2
− ẽ + f̃ 2 − f̃ − ẽ f̃ + f̃ − f̃ ẽ + f̃ ‖HS ≤ 4δ < 0.12,

and Tr(A) ≤ |1 − Tr ẽ| + |1 − Tr f̃ | ≤ 0.05 + 0.05� 0.5. Applying Lemma 5.2(b) to the
matrix A, we have ‖ ẽ − f̃ ‖HS ≤ κ(4δ)4δ ≤ κ(0.12)4δ.

Calculation shows that

1 − κ(0.12)−1 =
√

2ρ(0.12)0.12

= 1
√

2
(1 −
√

1 − 0.48)

= 1
√

2
−
√

0.26 < 0.2,

so that 4κ(0.12) < 4(1 − 0.2)−1 = 5. The rest follows. �

P  P 5.4. Recall that S 1 is, by assumption, nonempty. Consider the
relation on S 1 defined by {(e, f ) ∈ S 1 × S 1 : e f ∈ S 1}, and denote it by ∼. Clearly ∼ is
symmetric and reflexive. We will see shortly that it is also transitive, as a consequence
of the following two observations.

(i) If e ∼ f then ‖ ẽ − f̃ ‖HS ≤ 10δ. (For if e, f , e f ∈ S 1 then Lemma 5.7 implies that
‖ ẽ − ẽ f ‖HS ≤ 5δ and ‖ f̃ − ẽ f ‖HS ≤ 5δ.)

(ii) If e, f ∈ S 1 and ‖ ẽ − f̃ ‖HS ≤ 1, then e ∼ f . (This is immediate from the
contrapositive of the separation lemma (Lemma 5.5).)

Therefore, since 20δ < 1, we see that ∼ is indeed transitive, and so ∼ is an equivalence
relation on S 1.

Now let e, f , g ∈ S 1. Suppose that e / f and f / g. Then, since e f ∈ S 0 and
f g ∈ S 0, the separation lemma (Lemma 5.5) implies that ‖ ẽ + f̃ − I‖HS ≤ 10δ and
‖ f̃ + g̃ − I‖HS ≤ 10δ. Hence

‖ ẽ − g̃‖HS ≤ ‖ ẽ + f̃ − I‖HS + ‖ f̃ + g̃ − I‖HS ≤ 20δ ≤ 0.6;

so by (ii), e ∼ g. Thus there are at most two equivalence classes for this relation.
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Now, fix p0 ∈ S 1. By (i),

θ([p0]) ⊆ B
HS
p̃0

(10δ),

where [p0] denotes the equivalence class of p0 in S 1. Moreover, if e ∈ S 1 \ [p0]
then ep0 ∈ S 0 (by definition of ∼). Hence, by the separation lemma (Lemma 5.5),
‖ ẽ + p̃0 − I‖HS ≤ 10δ, so that

θ(S 1 \ [p0]) ⊆ B
HS
I−p̃0

(10δ).

By Lemma 5.2(b), there exists a rank-one idempotent P ∈M2 such that
‖P − p̃0‖HS ≤ 1.05δ. Then

θ([p0]) ⊆ B
HS
P (10δ + 1.05δ) ⊆ B

HS
P (12δ)

and
θ(S 1 \ [p0]) ⊆ B

HS
I−P(10δ + 1.05δ) ⊆ B

HS
I−P(12δ).

Note that since ‖2P − I‖HS ≥
√

2 (by Lemma 5.2(b)) and 24δ�
√

2, the sets θ([p0])
and θ(S 1 \ [p0]) are disjoint. Therefore,

S 1 ∩ θ
−1(B

HS
P (12δ)) = [p0] and S 1 ∩ θ

−1(B
HS
I−P(12δ)) = S 1 \ [p0].

Finally, let e, f ∈ S 1.

– If ẽ, f̃ ∈ B
HS
P (12δ) then e ∼ p0 ∼ f , so that e f ∼ p0 (as equivalence classes are

closed under multiplication) and therefore ẽ f ∈ B
HS
P (12δ).

– If ẽ, f̃ ∈ B
HS
I−P(12δ), then e / p0, f / p0; since there are at most two equivalence

classes, e ∼ f . Thus e ∼ e f ∼ f , so e f / p0, so ẽ f ∈ B
HS
I−P(12δ).

– If ẽ ∈ B
HS
P (12δ) and f̃ ∈ B

HS
I−P(12δ), then e ∼ p0 and p0 / f . Thus e / f , so

e f ∈ S 0.
This completes the proof of the proposition. �

We now fix an idempotent P ∈M2 that satisfies the conclusions of Proposition 5.4.
The sets

B
HS
I (2δ), B

HS
P (12δ), B

HS
I−P(12δ), B

HS
0 (2δ)

are pairwise disjoint, and their union contains θ(S ). Recall that we have already
defined φ : S 2 t S 0→M2 which is multiplicative; now define φ : S 1→M2 by setting
φ(x) to be whichever of P and I − P is closer to x̃. Explicitly, the map φ : S →M2

satisfies:

φ(x) =


I if x ∈ S 2,

P if x̃ ∈ B
HS
P (12δ),

I − P if x̃ ∈ B
HS
I−P(12δ),

0 if x ∈ S 0.

By construction, ‖x̃ − φ(x)‖HS ≤ 12δ for all x ∈ S .
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It remains to show that φ is multiplicative. Let

S p := θ−1(B
HS
P (12δ)) and S q := θ−1(B

HS
I−P(12δ)).

Then S 1 = S p t S q, and it suffices to verify the following claims:

(1) S 2 · S 2 ⊆ S 2;
(2) S · S 0 ⊆ S 0;
(3) S 2 · S p ⊆ S p and S 2 · S q ⊆ S q;
(4) S p · S p ⊆ S p and S q · S q ⊆ S q;
(5) S p · S q ⊆ S 0.

Assertions (1) and (2) follow from Proposition 5.3. Assertions (4) and (5) follow
from Proposition 5.4. Assertion (3) requires some more work, and is dealt with in our
final proposition.

P 5.8. Let e ∈ S 2. If f ∈ S p, then so is e f ; if f ∈ S q, then so is e f .

R 5.9. Although we know that ẽ is close to I for each e ∈ S 2, there might
still exist rank-one idempotents R ∈M2 such that ‖ ẽ · R − R‖ is large. So while the
conclusion of Proposition 5.8 is as one would expect, the proof is somewhat circuitous.

P  P 5.8. Let e ∈ S 2 and f ∈ S 1. By Lemma 5.6, e f < S 2. We claim
that e f < S 0. Assume that e f ∈ S 0; then by Lemma 5.2(b), ‖ ẽ f ‖HS ≤ κ(δ)δ ≤ 1.05δ.
Since e ∈ S 2, we have ‖( ẽ)−1‖HS < 1.5, by the same argument as in the proof of
Proposition 5.3. Therefore, by Cauchy–Schwarz,

|Tr f̃ | ≤ ‖( ẽ)−1‖HS‖ ẽ f̃ ‖HS ≤ 1.5(δ + ‖ ẽ f ‖HS)� 0.95.

But, by (5.8), this implies that f ∈ S 0, contradicting the assumption that f ∈ S 1.
The only remaining possibility is that e f ∈ S 1, and hence, by Lemma 5.7,

‖ f̃ − ẽ f ‖HS ≤ 5δ ≤ 0.15.

On the other hand, recalling that ‖2P − I‖HS ≥
√

2 (by Lemma 5.2(b)), we see that

the distance between B
HS
P (12δ) and B

HS
I−P(12δ) is bounded below by

√
2 − 24δ > 0.6.

Therefore, f̃ and ẽ f either both belong to θ(S p) or both belong to θ(S q). This
completes the proof. �

Since Proposition 5.8 implies assertion (3), the function φ : S →M2 is indeed
multiplicative, and this completes the proof of Theorem 5.1.

6. Concluding remarks and questions

It would be interesting to try and find an intrinsic condition on a semilattice which
is necessary and sufficient for the existence of some weight ω such that `1

ω(S ) is
not AMNM. We have seen (Example 3.13(ii) and Theorem 3.14) that b(S ) = +∞ is
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a necessary condition; it may also be a sufficient condition, although we have not
investigated further.

As remarked after the proof of Theorem 4.7, one can build on Theorem 5.1 to show
that (`1

ω(Nmin),M2) is an AMNM pair if the weight satisfies supn min(ω(n), ω(n + 1)) <
∞. Details will be given in forthcoming work, which also plans to address AMNM pair
problems for (`1(S ), B), with B an arbitrary Banach algebra. There is some evidence to
suggest that the method used for B =M2 can be extended to B =Mn, n ≥ 3, although a
more laborious case-by-case analysis would be required. (However, see Remark 1.2.)

We close with the following question: is (`1(S ), B(E)) AMNM for every Banach
space E? If not, what if we restrict to the cases E = `p for 1 < p <∞?
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