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We study the cross-stream inertial migration of a torque-free neutrally buoyant spheroid,
of an arbitrary aspect ratio κ , in wall-bounded plane Poiseuille flow for small particle
Reynolds numbers (Rep � 1) and confinement ratios (λ� 1), with the channel Reynolds
number, Rec = Rep/λ

2, assumed to be arbitrary; here λ = L/H, where L is the semi-major
axis of the spheroid and H denotes the separation between the channel walls. In the
Stokes limit (Rep = 0), and for λ� 1, a spheroid rotates along any of an infinite
number of Jeffery orbits parameterized by an orbit constant C, while translating with a
time-dependent speed along a given ambient streamline. Weak inertial effects stabilize
either the spinning (C = 0) or tumbling orbit (C = ∞), or both, depending on κ .
The asymptotic separation of the Jeffery rotation and orbital drift time scales, from
that associated with cross-stream migration, implies that migration occurs due to a
Jeffery-averaged lift velocity. Although the magnitude of this averaged lift velocity
depends on κ and C, the shape of the lift profiles are identical to those for a sphere,
regardless of Rec. In particular, the equilibrium positions for a spheroid remain identical
to the classical Segre–Silberberg ones for a sphere, starting off at a distance of about
0.6(H/2) from the channel centreline for small Rec, and migrating wallward with
increasing Rec. For spheroids with κ ∼ O(1), the Jeffery-averaged analysis is valid
for Rep � 1; for extreme aspect ratio spheroids, the regime of validity becomes more
restrictive being given by Repκ/ ln κ � 1 and Rep/κ � 1 for κ → ∞ (slender fibres) and
κ → 0 (flat disks), respectively.

Key words: suspensions, Stokesian dynamics, microfluidics

1. Introduction

In an experimental study of pressure-driven pipe flow of a suspension of neutrally
buoyant spheres, Segre & Silberberg (1962a,b) reported the migration of particles to an
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intermediate annular location. This was termed the tubular pinch effect to indicate that
the initially uniform distribution of particles over the pipe cross-section is ‘pinched’ to a
narrow annulus with increasing downstream distance. The authors performed experiments
for 0.03 ≤ dp/D ≤ 0.15 and for Re upto 700, where dp and D are the particle and
pipe diameters, respectively, and Re is the Reynolds number based on D and the mean
velocity. The aforementioned pinch occurred at 0.6×pipe radius for the smaller Re’s,
and shifted towards the walls with increasing Re. In any unidirectional shearing flow,
including pressure-driven flow in the pipe and channel geometries, reversibility of the
Stokes equations prohibits cross-stream migration of a neutrally buoyant sphere, and the
pinch effect above is a consequence of migration driven by inertial lift forces.

Since the original experiments of Segre and Silberberg, inertial migration in varying
flow configurations has been investigated in a number of theoretical (Saffman 1965; Cox
& Brenner 1968; Ho & Leal 1974; Vasseur & Cox 1976; Cox & Hsu 1977; Schonberg &
Hinch 1989; Asmolov 1999; Matas, Morris & Guazzelli 2009), numerical (Chun & Ladd
2006; Shao, Yu & Sun 2008; Morita, Itano & Sugihara-Seki 2017; Nakayama et al. 2019;
Pan, Li & Glowinski 2021) and experimental (Repetti & Leonard 1964; Jeffrey & Pearson
1965; Karnis, Goldsmith & Mason 1966; Tachibana 1973; Aoki, Kurosak & Anzai 1979;
Matas, Morris & Guazzelli 2004; Masaeli et al. 2012; Nakayama et al. 2019) studies.
From the rheological perspective, the pinch effect in the original pipe-flow experiments
is undesirable, since it manifests as an apparent non-Newtonian behaviour for a dilute
suspension of spheres. For instance, in a capillary viscometer, depending on the suspension
flow rate, the residence time of the particles may or may not be sufficient for inertial
migration to be complete; incomplete migration leads to a nonlinear dependence of the
inferred viscosity on the shear rate (Segre & Silberberg 1963). On the other hand, inertial
migration has recently been used as a tool in microfluidics to separate particles based on
size (Di Carlo et al. 2007). Due to the robust fault-tolerant physical effects employed,
and high rates of operation (this being a natural consequence of being in the inertial
regime), inertial microfluidic systems are expected to have a broad range of applications
in continuous bioparticle separation, cell and particle manipulation, and filtration systems
(Di Carlo 2009).

A first theoretical explanation of the phenomenon was given by Ho & Leal (1974) who
determined the lift force on a sphere in plane Poiseuille flow for Rep, Rec � 1, where Rep
and Rec are the particle and channel Reynolds numbers, respectively. A more accurate
calculation was performed in Vasseur & Cox (1976) using the framework developed
earlier in Cox & Brenner (1968), wherein the lift velocity was expressed in terms of a
volume integral involving the Green’s function for creeping flow in the presence of a
pair of plane boundaries (the channel walls). The resulting lift force profile had a pair of
zero crossings, symmetrically located on either side of the channel centreline, and that
corresponded to stable equilibrium locations. These were interpreted as the analog of the
intermediate annular ring observed in the experiments, implicitly pointing to the similarity
of the physics governing inertial migration in the channel and pipe geometries. Later,
Schonberg & Hinch (1989) calculated the lift velocity of a sphere in plane Poiseuille flow
for Rep � 1 and for Rec upto 150, finding the equilibrium locations to move towards the
respective walls with increasing Rec, consistent with the original observations. Asmolov
(1999) confirmed these findings, and further extended the calculation to Rec = 3000. (This
upper bound was regarded as reasonable based on the threshold (Rec ∼ 11 544) for the
Tolmein–Schlichting instability. It is now known, however, that the actual transition of
plane Poiseuille flow to turbulence has a subcritical character, occurring at much lower
Rec’s of O(2000).)
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Inertial migration of a spheroid in plane Poiseuille flow

There are numerous instances in microfluidic and other settings where the particles
of interest are anisotropic, for example, cancer cells (Suresh 2007), blood cells (Toner
& Irimia 2005) or polymeric microstructures (Chung et al. 2008). For anisotropic
particles, the inertial lift force, and any equilibria that arise as a result of this force
vanishing at specific locations, are expected to depend on particle shape. Motivated
by this, and following an earlier study (Hur et al. 2011) on a variety of non-spherical
particle geometries, Masaeli et al. (2012) conducted experiments on spheroids of aspect
ratio 1 ≤ κ ≤ 5, suspended in pressure-driven flow through a rectangular duct, for
Rec upto 80 (Rec defined based on the smaller cross-sectional dimension). The study
confirmed the existence of shape-sensitive equilibria, with large aspect ratio spheroids
migrating to locations near the channel centreline and those with order unity aspect
ratios migrating towards the duct walls, over a range of cross-sectional aspect ratios.
The authors also performed numerical simulations of rotating rods in the channel, and
the equilibria obtained agreed with the experiments. Recently, Huang, Marson & Larson
(2019) performed dissipative particle dynamics simulations to examine inertial migration
of relatively large (compared with the channel width) prolate and oblate spheroids in
plane Poiseuille flow; for moderate Rep, the equilibrium positions of tumbling prolate
and spinning oblate spheroids moved closer to the centreline as the spheroid aspect
ratio departed further away from unity. In a later effort, Nizkaya et al. (2020) examined
smaller spinning oblate spheroids with aspect ratios in the interval 0.25 ≤ κ ≤ 1 in plane
Poiseuille flow, using lattice Boltzmann simulations, and in contrast to the earlier efforts
above, found the lift force equilibria to be relatively insensitive to aspect ratio.

Motivated in particular by the experiments of Masaeli et al. (2012), we take a first step
towards analysing the inertial migration of a freely rotating neutrally buoyant spheroid
in plane Poiseuille flow. Specifically, we calculate the leading-order time-averaged lift
velocity for Rep � 1 within the framework of a point-particle approximation; Rec, while
much larger than Rep, is otherwise arbitrary. Section 2 below presents the governing
equations and boundary conditions in the context of the problem formulation. Next, in
§ 3 we examine the small-Rec limit where the time-averaged lift velocity is determined
semi-analytically using a generalized reciprocal theorem formulation originally used by
Ho & Leal (1974), and that is derived in § 3.1. Scaling arguments given in § 3.2 show
that the dominant contribution to the lift velocity in this limit comes from scales of the
order of the channel width H that is much smaller than the inertial screening length of
O(HRe−1/2

c ). Inertia therefore has a regular character, with the lift velocity being O(Rep),
and its calculation requiring knowledge of only the Stokesian disturbance fields in the
confined domain. These Stokesian fields are calculated in § 3.3, and are then used to obtain
the time-averaged lift velocity for spheroids in § 3.4. This is followed by a presentation
of the results in § 3.5. In § 4 the time-averaged lift velocity is calculated numerically
for Rec � O(1), with inertia now acting as a singular perturbation. Following Schonberg
& Hinch (1989), this calculation involves a partial Fourier transform of the linearized
Navier–Stokes equations, leading to coupled ordinary differential equations (ODEs) – in
the transverse coordinate – for the transformed pressure and normal velocity fields, and
their numerical solution using a shooting method. A brief outline of the aforementioned
calculation procedure is given in § 4.1, with the results obtained discussed in § 4.2. In both
§§ 3 and 4, a time averaging is necessary on account of the separation between spheroid
rotation and inertial migration time scales, and at leading order in Rep, is based on the
Jeffery angular velocity. This, together with the fact that the dominant contributions to
the lift velocity come from scales much larger than the particle size for all Rec, lead to
the equilibrium locations being independent of the spheroid aspect ratio, and identical
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Figure 1. (a) A neutrally buoyant spheroid with symmetry axis p in plane Poiseuille flow. The position of the
spheroid relative to the lab frame (x1, x2, x3) is denoted by y; (r1, r2, r3) represents the Cartesian frame with
origin at the spheroid centre, and translating with it. Schematic (b) shows the body-fixed coordinate system
aligned with p, along with the polar (θj) and azimuthal (φj) angles that define the spheroid orientation. The
dot-dashed line is the projection of the rb1 axis on the flow-gradient plane.

to those for spheres; the magnitude of the lift force does depend on aspect ratio. In § 5
we summarize the main results, and briefly discuss their implications for shape-sorting in
microfluidic settings.

2. Problem formulation

Figure 1(a) shows a neutrally buoyant spheroid of aspect ratio κ = L/b (L and b are the
semi-major and minor axes) freely suspended in a wall-bounded plane Poiseuille flow at a
distance d from the lower wall; κ < 1 and >1 for oblate and prolate spheroids, respectively.
The non-dimensional equations governing the velocity field u and pressure field p are
given by

∇2u − ∇p = Rep

(
∂u
∂t

+ u · ∇u
)

, (2.1a)

∇ · u = 0, (2.1b)

where u satisfies the following boundary conditions:

u = Ωp ∧ r for r ∈ Sp, (2.2a)

u → u∞ for r1, r3 → ∞ (r2 fixed), (2.2b)

u = −Up at r2 = −sλ−1, (1 − s)λ−1. (2.2c)

In (2.1a)–(2.2c) all variables are non-dimensionalized using L and the velocity scale Vc =
VmaxL/H, this being the order of the velocity change across the ends of the spheroid. The
particle Reynolds number Rep = VcL/ν = VmaxL2/Hν, ν being the kinematic viscosity of
the fluid. In (2.2a), Ωp is the angular velocity of the spheroid whose surface is denoted
by Sp. The coordinate system chosen in writing the above equations translates with the
spheroid velocity Up, with its origin at the spheroid centre. Thus, u∞ in (2.2b), the ambient
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Inertial migration of a spheroid in plane Poiseuille flow

plane Poiseuille flow in this frame, is given by

u∞ = (α + βr2 + γ r2
2)11 − Up, (2.3)

where α11 − Up, with α = 4λ−1s(1 − s), is the ambient slip velocity at the spheroid
centre, β = 4(1 − 2s) is the local shear rate that varies linearly across the channel and
γ = −4λ is the constant curvature of the plane Poiseuille profile; s = d/H here being
the (non-dimensional) spheroid location. Here λ = L/H is the confinement ratio assumed
small, so the channel Reynolds number Rec = Rep/λ

2 
 Rep. As will be argued below, at
leading order in Rep and λ, Up is along the flow direction.

We now define the disturbance fields u′ = u − u∞, p′ = p − p∞ that satisfy the
governing equations

∇ · σ ′ = ∇2u′ − ∇p′ = Rep

(
∂u′

∂t
+ u′ · ∇u′ + u′ · ∇u∞ + u∞ · ∇u′

)
, (2.4a)

∇ · u′ = 0, (2.4b)

where u′ satisfies

u′ = Up + Ωp ∧ r − (α + βr2 + γ r2
2)11 for r ∈ Sp, (2.5a)

u′ → 0 for r1, r3 → ∞ (r2 fixed), (2.5b)

u′ = 0 at r2 = −sλ−1, (1 − s)λ−1. (2.5c)

Unlike a sphere, one needs to include the unsteady terms in the inertial acceleration on
account of spheroid rotation even in the Stokes limit (Rep = 0). We analyse the inertial
migration problem defined above in the limit λ, Rep � 1 with Rec = Rep/λ

2 arbitrary. It
is also assumed that s, (1 − s) 
 λ, implying that the analysis is restricted to the spheroid
being at distances from either wall that are much larger than O(L).

Before embarking on a detailed analysis for weak inertia, it is worth summarizing
the nature of spheroid motion in plane Poiseuille flow in the Stokes limit. Since the
local linear flow approximation for the plane Poiseuille profile is simple shear flow,
the neutrally buoyant spheroid must rotate along Jeffery orbits (Jeffery 1922), this
rotation being characterized by the polar (θj) and azimuthal (φj) angles of the spheroid
symmetry axis (see figure 1b) being functions of time; these equations are given later
in § 3 (see (3.19a,b)). Jeffery rotation is best described in (C, τ ) coordinates, where
C ∈ [0, ∞) is the orbit constant and τ is the orbit phase that changes at a constant
albeit κ-dependent rate from 0 to 2π over a single period (Leal & Hinch 1971; Dabade,
Marath & Subramanian 2016); the two limiting orbits correspond to the spinning (C = 0)
and tumbling (C = ∞) modes. The Jeffery period is independent of C, being given by
Tjeff = 2π(βVmax/H)−1(κ + κ−1), where β accounts for the linearly varying shear rate.
The curvature of the plane Poiseuille profile only affects the spheroid translation velocity
that is now a function of its orientation, and thence, of time. A neutrally buoyant spheroid
in an unbounded plane Poiseuille flow continues to move along a given ambient streamline,
with a speed that ranges from a maximum, corresponding to the flow-aligned orientation
(φj = 0, π and π/2, 3π/2 for κ > 1 and <1, respectively), to a minimum when the
spheroid is aligned orthogonal to the flow direction (φj = π/2, 3π/2 and 0, π for κ > 1
and <1, respectively) (Chwang 1975). For very large (small) κ , the spheroid spends an
increasing fraction of a Jeffery period in the flow-aligned orientation, and the translational
motion thereby acquires an increasingly jerky character owing to the spheroid abruptly
slowing down during the brief periods of misalignment.
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In presence of walls, the leading-order correction to the motion above arises from
interaction of the spheroid with time-dependent image stresslets induced by each wall,
resulting in an O(λ2) lateral velocity component even in the Stokes limit, with an
additional O(λ3) correction to the Jeffery angular velocity. Note that this image-stresslet
interaction does not lead to transverse motion for a sphere, as may be seen from the
stresslet orientation (along the local extensional axis) and the associated purely radial
velocity field; as already mentioned in § 1, this must be so, independent of λ, due to
reversibility constraints. Thus, for λ� 1, the centre of mass of a neutrally buoyant
spheroid in wall-bounded plane Poiseuille flow exhibits a small-amplitude oscillatory
motion about an ambient streamline, the amplitude being O(λ2). In other words, unlike
a sphere, Stokesian reversibility does not preclude an instantaneous lift force for an
anisotropic particle. Evidence for such oscillating-cum-tumbling spheroid trajectories, for
finite λ, is available from earlier computations, with there being a transition from tumbling
(rotation) to angular oscillations beyond a threshold λ close to unity, corresponding
to sufficiently narrow channels (Sugihara-Seki 1993, 1996; Staben, Zinchenko & Davis
2003, 2006). However, Stokesian reversibility still forbids a net migration of the spheroid
in the transverse direction, and to allow for such a motion, one needs inertia. It is this net
cross-stream migration, for small Rep and λ, that is analysed in the following sections.
We obtain the time-averaged motion of a spheroid in this limit, and since the wall and
inertia-induced modification of the primary translational and rotational motion are weak
in the aforementioned limit, the time average corresponds to an average over a Jeffery
period.

It is well known that the Stokes equations do not provide a uniformly valid leading-order
approximation for small but finite Rep, and that in general one requires a matched
asymptotic expansion approach (Proudman & Pearson 1957) involving an inner expansion
in the neighbourhood of the particle, and an outer expansion at distances of the order
of an inertial screening length, to calculate inertial corrections. The screening length for
the present problem is LRe−1/2

p (Saffman 1965), or equivalently, HRe−1/2
c . For small Rec,

the screening length is larger than H, so the channel walls lie in the inner Stokesian region
where fluid inertia may be treated as a regular perturbation. The inertial migration problem
for a sphere in this limit was investigated by Ho & Leal (1974), and in a series of papers by
Brenner, Cox and collaborators (Cox & Brenner 1968; Vasseur & Cox 1976; Cox & Hsu
1977). We examine the analogous problem for a spheroid in this limit in § 3 below. When
Rec � O(1), the inertial screening length is of O(H) or smaller, and the solution procedure
involves the outer expansion, the leading-order term of which satisfies the linearized
Navier–Stokes equations. This limit was first examined for a sphere in Schonberg & Hinch
(1989), and we examine the same for a spheroid in § 4.

3. The inertial lift velocity for Rec � 1

Although inertial effects are a regular perturbation for small Rec, following Ho & Leal
(1974), we do not calculate this perturbation explicitly, and instead use the generalized
reciprocal theorem that relates the velocity and stress fields of the problem of interest with
those of a simpler test problem whose solution is known. The problem of interest (u′, σ ′)
corresponds to the motion of a torque-free neutrally buoyant spheroid in a wall-bounded
plane Poiseuille flow, taking into account the inertial acceleration of the suspending fluid.
Since the quantity of interest is the inertial lift velocity, the test problem (ut, σ t) is taken
to be a torque-free spheroid, in a quiescent ambient between parallel walls, acted on by
an arbitrarily oriented unit force; the test spheroid has the same instantaneous orientation

974 A39-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

81
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.817


Inertial migration of a spheroid in plane Poiseuille flow

as the one in the actual problem. The governing equations and boundary conditions for
the actual problem have already been given in (2.4a,b) and (2.5a–c). Those for the test
problem are

∇ · σ t = ∇2ut − ∇pt = 0, (3.1a)

∇ · ut = 0, (3.1b)

with the boundary conditions
ut = U t

p + Ω t
p ∧ r for r ∈ Sp, (3.2a)

ut → 0 for r1, r3 → ∞ (r2 fixed), (3.2b)

ut = 0 at r2 = −sλ−1, (1 − s)λ−1, (3.2c)

where U t
p and Ω t

p are the spheroid translational and angular velocities.

3.1. The generalized reciprocal theorem
To derive the generalized reciprocal theorem identity, we contract (2.4a) with ut and (3.1a)
with u′, and subtract the resulting expressions (Ho & Leal 1974) to obtain

(∇ · σ ′) · ut − (∇ · σ t) · u′ = Rep ut · f , (3.3)

where f = (∂u′/∂t + u′ · ∇u′ + u′ · ∇u∞ + u∞ · ∇u′). Integrating (3.3) over the fluid
volume (VF) between the channel walls gives∫

VF
∇ · (σ ′ · ut − σ t · u′) dV +

∫
VF

(σ t · ∇u′ − σ ′ · ∇ut) dV = Rep

∫
VF

ut · f dV.

(3.4)

Using (2.4b) and (3.1b), along with the definitions of σ ′ and σ t, the second integral on
the left-hand side of (3.4) can be shown to be identically zero. Applying the divergence
theorem to the first integral yields

−
∫

Sp+Sw+S∞
(σ ′ · ut − σ t · u′) · n dS = Rep

∫
VF

ut · f dV, (3.5)

where n is the unit normal to all bounding surfaces pointing into the fluid domain.
The set of bounding surfaces include the particle surface (Sp), the channel walls (Sw)
and the surface at infinity (S∞); the latter can be thought of as the curved surface of
a cylinder of radius R, with its axis along the gradient direction, in the limit R → ∞.
For R 
 H, the disturbance fields in the actual and test problems are exponentially small
(see (A25) and (3.32)), and therefore, the integral over S∞ in (3.5) is vanishingly small.
The integral

∫
Sw

(σ ′ · ut − σ t · u′) · n dS can be shown to be identically zero on using the
no-slip conditions (2.5c) and (3.2c) on the channel walls. Thus, (3.5) reduces to

−
∫

Sp

(σ ′ · ut − σ t · u′) · n dS = Rep

∫
VF

ut · f dV. (3.6)

Applying the no-slip conditions (2.5a) and (3.2a) to (3.6),

− U t
p ·
∫

Sp

σ ′ · n dS − Ω t
p ·
∫

Sp

r ∧ (σ ′ · n) dS + Ωp ·
∫

Sp

r ∧ (σ t · n) dS

+ Up ·
∫

Sp

σ t · n dS −
∫

Sp

(σ t · n) · (α + βr2 + γ r2
2)11 dS = Rep

∫
VF

ut · f dV.

(3.7)
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The hydrodynamic force and torque experienced by the particle may be written as
∫

Sp
σ ′ ·

n dS = Rep dUp/dt and
∫

Sp
r ∧ (σ ′ · n) dS = Rep d(Ip · Ωp)/dt, Ip being the spheroid

moment of inertia tensor. Next, to O(Rep), one may replace u′ by us in the volume integral
in (3.7), us being the corresponding Stokesian approximation. The validity of such a
replacement requires the resulting volume integral to be convergent, this being related
to inertia acting as a regular perturbation. Detailed arguments in this regard are given in
the next subsection. Furthermore, noting that

∫
Sp

r ∧ (σ t · n) dS = 0 owing to the spheroid
being torque free in the test problem, one obtains

− Rep U t
p · dUp

dt
− Rep Ω t

p · d(Ip · Ωp)

dt
+ Up ·

∫
Sp

σ t · n dS

−
∫

Sp

(σ t · n) · (α + βr2 + γ r2
2)11 dS = Rep

∫
VF

ut · f s dV, (3.8)

where f s denotes the approximation of f based on replacing u′ by us, being given by

f s = ∂us

∂t
+ us · ∇us + us · ∇u∞ + u∞ · ∇us. (3.9)

While us above is the Stokesian disturbance field induced by an arbitrarily oriented
neutrally buoyant spheroid in a bounded plane Poiseuille flow, as will be seen in § 3.2, at
leading order in λ, the spheroid may be replaced by the corresponding stresslet singularity,
with the quadrupolar component of the disturbance field (that arises in response to the
quadratic part of the ambient flow) being neglected.

One may now use the small-Rep expansions, Up = Up0 + RepUp1 + O(Re2
p) and Ωp =

Ωp0 + RepΩp1 + O(Re2
p), for the spheroid translational and angular velocities, in (3.8),

and obtain the following relations at successive orders in Rep.

(i) O(1):

Up0 ·
∫

Sp

σ t · n dS =
∫

Sp

(σ t · n) · (α + βr2 + γ r2
2)11 dS; (3.10)

(ii) O(Rep):

− U t
p · dUp0

dt
− Ω t

p · d(Ip · Ωp0)

dt
+ Up1 ·

∫
Sp

σ t · n dS =
∫

VF
ut · f s dV. (3.11)

3.1.1. The O(1) problem
For the O(1) problem defined by (3.10), we choose

∫
Sp

σ t · n dS = 11, corresponding to the
test spheroid translating due to a unit flow-aligned force. In the absence of boundaries, the
induced velocity field is known in terms of vector spheroidal harmonics (Dabade, Marath
& Subramanian 2015), and the surface force density to be used on the right-hand side is
given by (Kushch & Sangani 2003)

σ t · n = −Pt1ξ + 2
(

(ξ2 − 1)1/2

ξ0(ξ2 − η2)1/2
∂ut

∂ξ
+ 1

2
1ξ ∧ ∇ ∧ ut

)
, (3.12)

where ξ ≥ ξ0 > 1 is the coordinate characterizing a family of confocal spheroids with
ξ0 representing the spheroid surface and 1ξ is the unit normal to the spheroid surface;
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Inertial migration of a spheroid in plane Poiseuille flow

note that κ = ξ0/(ξ
2
0 − 1)1/2 and κ = (ξ2

0 − 1)1/2/ξ0 for prolate and oblate spheroids,
respectively. Evaluating the surface integral in (3.10), using (3.12), one obtains

Up0 =
[
α + γ

3κ2 [cos2 φj + (cos2 θj + κ2 sin2 θj) sin2 φj]
]

11, (3.13)

which is Faxen’s law for the translation of a force-free spheroid truncated to second order,
the term proportional to γ arising from the curvature of the ambient flow; higher-order
terms in the expansion are zero for an ambient quadratic flow (Happel & Brenner 2012).
(3.13) pertains to a spheroid of given orientation, and a time trajectory requires knowing
θj and φj as functions of time. For this purpose, one may use Faxen’s law relating the
torque and angular velocity of a spheroid. This is again an infinite expansion in the general
case, but with only the leading-order term, proportional to the ambient velocity gradient,
surviving for a quadratic flow. Thus, spheroid rotation remains identical to that in an
ambient linear flow, and application of the torque-free constraint yields

Ωp0 = −β(κ2 − 1)

4(κ2 + 1)
cos φj sin 2θj11 + β(κ2 − 1)

4(κ2 + 1)
sin φj sin 2θj12

+ β

2

[
−1 + (κ2 − 1)

(κ2 + 1)
cos 2φj sin2 θj

]
13. (3.14)

The equations governing Jeffery orbits arise as components of (3.14) in the body-aligned
coordinate system, and are given below in (3.18a,b). With θj and φj defined in this manner,
Up0 as defined in (3.13) exhibits the time dependence described earlier in § 2. Substituting
Up0 in (2.3), the ambient flow in the reference frame chosen for the reciprocal theorem is
given by

u∞ =
[
(βr2 + γ r2

2) − γ

3κ2 [cos2 φj + (cos2 θj + κ2 sin2 θj) sin2 φj]
]

11. (3.15)

Note that the O(λ2) centre-of-mass oscillations mentioned in § 2 can only arise from Up0
having a component along the gradient direction, and this requires an expression for σ t · n
that includes the influence of the plane boundaries.

3.1.2. The O(Rep) problem
At O(Rep), one chooses the test force as

∫
Sp

σ t · n dS = −12, which leads to

Vp = Rep Up1 · 12 = −Rep

∫
VF

ut2 ·
(

∂us

∂t
+ us · ∇us + us · ∇u∞ + u∞ · ∇us

)
dV

− Rep U t2
p · dUp0

dt
− Rep Ω t2

p · d(Ip · Ωp0)

dt
(3.16)

for the instantaneous lift velocity of a neutrally buoyant spheroid in plane Poiseuille flow,
where the volume integral is a function of the changing spheroid orientation via ut2 and
us. The additional superscript ‘2’ for the test problem quantities indicate the choice of the
test force orientation above.

As already mentioned, for small confinement ratios, a spheroid in wall-bounded
plane Poiseuille flow rotates along Jeffery orbits (Jeffery 1922) in the Stokes limit. For
small but finite Rep, there is an additional O(Rep) drift across orbits that stabilizes the
tumbling mode (C = ∞) for prolate spheroids, the spinning mode (C = 0) for oblate
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P. Anand and G. Subramanian

spheroids with 0.14 < κ < 1 and, depending on the initial orientation, either the spinning
or tumbling mode for oblate spheroids with κ < 0.14 (Einarsson et al. 2015; Dabade
et al. 2016). The time scale for rotation along a Jeffery orbit is Tjeff ∼ O(H/Vmax) for
κ ∼ O(1). The inertia-driven orbital drift above occurs on longer time scales tdrift ∼
O(Re−1

p H/Vmax). Scaling arguments in § 3.2 below show that the volume integral in (3.16)
is the dominant contribution to the cross-stream migration, being O(1) for λ� 1, so the
time scale for inertial migration is tlift ∼ O(Re−1

p λ
−1H/Vmax). Since tlift/tdrift ∼ λ−1 
 1,

for purposes of the migration calculation, one may assume that the spheroid has settled
into its stable Jeffery orbit. Moreover, since tlift/Tjeff ∼ Re−1

p λ
−1 
 1, the leading-order

migration is the result of an orientation-averaged lift velocity, the average being over
the orientations sampled in the stabilized Jeffery orbit. As indicated below, this average
may be approximated based on the Jeffery angular velocity for small Rep. Superposed
on this orientation-averaged migration trajectory would be small-amplitude oscillations of
O(Repλ), corresponding to the fluctuations in the instantaneous lift velocity arising from
the rapidly changing spheroid orientation, as may be established formally using the method
of multiple scales.

Owing to the aforementioned time scale separation in the limit λ, Rep � 1, it is of
interest to determine the Jeffery-averaged rather than the instantaneous lift velocity.
Averaging both sides of (3.16) over a Jeffery period, one obtains

〈Vp〉 = −Rep

∫
VF

〈
ut2 ·

(
∂us

∂t
+ us · ∇us + us · ∇u∞ + u∞ · ∇us

)〉
dV, (3.17)

where the averaging operation is defined as 〈.〉 = (1/Tjeff )
∫ Tjeff

0 (.) dt, and pertains to
the inertially stabilized Jeffery orbit (that is, C is either 0 or ∞) for times longer than
O(Re−1

p H/Vmax).
In writing down (3.17), we have neglected the terms on the right-hand side of (3.16)

involving the translational and angular accelerations in the actual problem in the Stokesian
limit. These depend on λ at leading order, and are therefore asymptotically smaller than
the Jeffery-averaged volume integral that, as mentioned above (see the paragraph following
(3.16)), is independent of λ for λ� 1. For a spinning spheroid, both acceleration terms are
trivially zero because, independent of λ, a spinning spheroid (like a sphere) translates with
a constant speed along an ambient streamline, while rotating at a uniform rate about the
ambient vorticity direction. For a spheroid rotating in any other Jeffery orbit, both terms
do lead to non-zero Jeffery-averaged contributions. The first of these terms is non-zero
because of a correlation between the time-periodic variations of dUp0/dt along the flow
direction, and the analogous variation of the flow-directed component of U t2

p , the latter
arising due to the periodically varying test spheroid orientation for a fixed force (along
−12). The acceleration in the actual problem is only O(λ2), however, as may be seen from
the Faxen’s translation law given earlier. The smallness of the second term is because
Ω t2

p , at leading order, is driven by the velocity gradient associated with the equal and
oppositely directed image Stokeslet, and is again O(λ2); the angular acceleration in the
actual problem, d(Ip · Ωp0)/dt, is O(1). Thus, both acceleration terms in (3.16) are O(λ2)
smaller than the volume integral.

The averaging operation in (3.17) corresponds to a fixed C, and is naturally
evaluated in (C, τ ) coordinates (Leal & Hinch 1971; Dabade et al. 2016). Here, C =
tan θj(κ

2 sin2 φj + cos2 φj)
1/2/κ and τ = tan−1[1/κ tan φj], where θj and φj are the polar

and azimuthal angles characterizing the spheroid orientation. The latter is denoted
by the unit vector p in figure 1(b) with p = sin θj cos φj11 + sin θj sin φj12 + cos θj13.
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Inertial migration of a spheroid in plane Poiseuille flow

The equations

dφj

dt
= β

(
−1

2
+ κ2 − 1

2(κ2 + 1)
cos 2φj

)
, (3.18a)

dθj

dt
= β

(κ2 − 1)

4(κ2 + 1)
sin 2θj sin 2φj (3.18b)

describe rotation along Jeffery orbits, and are obtained as the individual Cartesian
components of the Faxen angular velocity relation, (3.14), given above (Ωp0 · 1rb2

=
dθj/dt, Ωp0 · 1rb1

= − sin θj(dφj/dt)). In terms of C and τ , (3.18a) and (3.18b) take the
form dC/dt = 0 and dτ/dt = β/κ + κ−1. The former must be the case by definition, while
the latter may be used to transform the time-averaged integral in (3.17) into a τ -averaged
one. Inverting the definitions above, one may write θj and φj as

φj = sin−1
[

cos τ

(κ2 − (κ2 − 1) cos2 τ)1/2

]
, (3.19a)

θj = cos−1
[

1
(1 + C2κ2 − C2(κ2 − 1) cos2 τ)1/2

]
, (3.19b)

which are used below in evaluating 〈Vp〉.
For Rep fixed, the Jeffery-averaged description of inertial migration, given by (3.17),

breaks down for sufficiently small or large κ . This is because the leading-order Jeffery
angular velocity becomes small in these limits, being O(κ−2) for fibres (κ 
 1) close
to flow alignment, and O(κ2) for flat disks (κ � 1) close to alignment with the
gradient–vorticity plane. As a result, the O(Rep) inertial correction becomes comparable
in magnitude to the Jeffery contribution, leading to a slow down and eventual arrest of
rotation (Marath & Subramanian 2017), first shown by Subramanian & Koch (2005) for
the case of a slender fibre. Herein, we confine ourselves to analysing the Jeffery-averaged
approximation, only noting that it remains valid provided Rep κ/ ln κ � 1 (Rep/κ � 1) for
κ 
 1(κ � 1), an increasingly restrictive assumption for extreme aspect ratio particles
(Subramanian & Koch 2005; Marath & Subramanian 2017). The consequence of an
inertia-induced slow down at leading order, for the said particles, will be analysed in a
later communication.

A final point worth mentioning is that, for thin oblate spheroids with κ < 0.14, the
aforementioned inertial drift time scale of O(Re−1

p H/Vmax) only applies in the absence
of stochastic orientation fluctuations. In the presence of such fluctuations, either of a
thermal origin or otherwise (for instance, due to pair-hydrodynamic interactions or weak
turbulence; see Subramanian & Marath 2022), there is a barrier-hopping time associated
with the eventual equilibration between the numbers of spinning and tumbling spheroids
in a manner independent of the initial orientation distribution (Dabade et al. 2016; Marath,
Dwivedi & Subramanian 2017; Marath & Subramanian 2018). This time scale increases
exponentially with decreasing amplitude of the fluctuations, becoming much longer than
the nominal drift time scale, and likely comparable to the time scale for inertial migration.
Under these conditions, the migration dynamics will have a probabilistic rather than
deterministic character, being described by a kinetic equation for the probability density
that is a function of both C and the transverse channel coordinate (s) – we briefly revisit
this issue when calculating the lift velocity for arbitrary C later in this section.
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3.2. Scaling analysis and the point-particle formulation
The dominant contribution to the volume integral in (3.17), for λ� 1, can arise from
either scales of O(L) or those of O(H), the inertial screening length being irrelevant in
the small-Rec limit. In order to assess the relative importance of these contributions, we
consider the intermediate asymptotic interval 1 � r � λ−1 (r is measured in units of L),
in which case ut2 ∼ 1/r, us ∼ β/r2 + γ /r3, corresponding to the Stokeslet scaling for the
test velocity field, and the stresslet-cum-force-quadrupole scaling for the velocity field in
the actual problem. Using these r scalings along with u∞ ∼ βr + γ r2 for the ambient
flow, and separating the estimates for the linear and nonlinear parts of the integrand in
(3.17), one obtains

(i) ut2 · (∂us/∂t + us · ∇u∞ + u∞ · ∇us) ∼ β2/r3 + βγ /r2 + γβ/r4 + γ 2/r3 (linear
in us),

(ii) ut2 · (us · ∇us) ∼ β2/r6 + βγ /r7 + γ 2/r8 (nonlinear in us).

Note that, over the range of scales under consideration, wall effects only contribute at a
smaller order in λ, and hence, use of the unbounded domain estimates above. Next, using
dV ∼ O(r2 dr), one obtains the following estimates for the contributions of the different
terms to the lift velocity integral:

Vlinear
p ∼ Rep

(
β2 ln r + βγ r + γβ

r
+ γ 2 ln r

)
, (3.20a)

Vnonlinear
p ∼ Rep

(
β2

r3 + βγ

r4 + γ 2

r5

)
. (3.20b)

The algebraically growing contribution in (3.20a) will be dominated by scales of O(H)

(r ∼ λ−1, the outer region), while contributions in (3.20a,b) that decay with r will be
dominated by length scales of O(L) (r ∼ O(1), the inner region). The algebraic growth
with r will be cutoff for r � λ−1 from the more rapid decay of the disturbance velocity
fields due to wall-induced screening (recall that this more rapid decay was used in
neglecting the integral over S∞ in (3.5)). Likewise, the apparent divergence for r → 0,
for the algebraically decaying terms, will be cutoff at r ∼ O(1) by the finite size of the
spheroid. The terms proportional to ln r in (3.20a) imply the dominance of the matching
interval 1 � r � λ−1, resulting in a leading-order contribution proportional to ln λ−1,
with logarithmically smaller contributions arising from the inner and outer regions. Use
of these cutoffs leads to the estimates

Vlinear
p ∼ Rep

[
β2(O(1) + ln λ−1) + βγ λ−1 + γβ + γ 2(O(1) + ln λ−1)

]
, (3.21a)

Vnonlinear
p ∼ Rep(β

2 + βγ + γ 2), (3.21b)

for the contributions from terms linear and nonlinear in us. Using the definitions of β

and γ given below (2.3), and reverting to the dimensional form, imply a leading-order lift
velocity of the form V2

maxL3/(νH2)[ln(H/L) + O(1)]. Here, the contribution to the O(1)

term within brackets arises from the βγ λ−1 term in (3.21a) pertaining to the outer region,
and from the β2 terms in both (3.21a) and (3.21b) pertaining, respectively, to the outer and
inner regions; the logarithmically larger lift contribution arises from the β2 ln λ−1 term
in (3.21a) that pertains to the matching region. However, the matching-region β2 ln λ−1

contribution and the inner-region β2 contribution must both vanish by symmetry because
they cannot involve boundaries, and therefore, relate to the time-averaged lift on a neutrally
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Inertial migration of a spheroid in plane Poiseuille flow

buoyant spheroid in an unbounded simple shear flow. Since such a spheroid cannot exhibit
a net lateral drift, only the outer-region β2 contribution survives. This and the outer-region
βγ contribution both yield a dimensional lift velocity of V2

maxL3/(νH2); in dimensionless
terms, the Jeffery-averaged volume integral in (3.17) is O(1), with the scaled lift velocity
being O(Rep). More detailed arguments along these lines given in Anand & Subramanian
(2023) show that the next order contribution to the volume integral for a neutrally buoyant
sphere arises from the inner region, involves an additional factor of λ, but leads to a
qualitative alteration of the lift velocity profiles for large Rec. Owing to the acceleration
terms in (3.16) only being O(λ2), the aforementioned inner-region contribution will also
be relevant to a neutrally buoyant spheroid.

Owing to the dominant contribution arising from length scales of O(H) implied by the
above arguments, the spheroids in the actual and test problems can be replaced by the
corresponding point singularities. Thus, us and ut2 may be approximated as being induced
by a time-dependent stresslet (ustr) and a Stokeslet due to a point force directed along the
negative gradient direction (uSt), respectively. The Jeffery-averaged lift velocity given by
(3.17), at leading order in λ, may therefore be written as

〈Vp〉 = −Rep

∫
VF+VP

〈
uSt ·

(
∂ustr

∂t
+ ustr · ∇u∞ + u∞ · ∇ustr

)〉
dr, (3.22)

where, on account of the subdominant nature of the length scales of O(L), the domain of
integration has now been extended to include the particle volume VP. Thus, (3.22) is the
leading-order point-particle approximation for the lift velocity for Rec � 1.

In (3.22), uSt is time independent since the unit force in the test problem points in a fixed
direction, despite the changing orientation of the test spheroid. Furthermore, 〈∂ustr/∂t〉 =
0 for rotation along Jeffery orbits. Also noting that the ambient flow is steady in the chosen
non-rotating reference frame, (3.22) reduces to

〈Vp〉 = −Rep

∫
VF+VP

uSt · (〈ustr〉 · ∇u∞ + u∞ · ∇〈ustr〉) dr. (3.23)

Using r2 ∼ O(λ−1) in (3.15) on account of the outer-region dominance, the Faxen’s
correction to spheroid translation turns out to be O(λ2) smaller than the terms linear
and quadratic in r2, and one may therefore approximate the ambient flow in (3.23) as
u∞ ≈ (βr2 + γ r2

2)11.
With the spheroid volume neglected, the volume integral in (3.23) is most easily

evaluated by Fourier transforming the flow (r1) and vorticity (r3) coordinates, the partial
Fourier transform being defined as

f̂ (k1, r2, k3) =
∫ ∞

−∞

∫ ∞

−∞
dr1 dr3 exp(ι(k1r1 + k3r3))f (r1, r2, r3). (3.24)

Applying the convolution theorem along these coordinates (Arfken, Weber & Harris 2011),
and substituting the above approximate form of u∞ in (3.23), one obtains

〈Vp〉 = − Rep

4π2

∫ (1−s)λ−1

−sλ−1
dr2

∫
dk⊥ ûSt(−k⊥, r2; y2) · [〈ûstr〉(k⊥, r2; y2) · 12(β + 2γ r2)11

−ιk1(βr2 + γ r2
2)〈ûstr〉(k⊥, r2; y2)

]
, (3.25)

in terms of the partial Fourier transforms of the Stokeslet and stresslet velocity fields; here,
k⊥ ≡ (k1, k3) and y2 = sλ−1 is the transverse distance of the stresslet from the lower wall.
The expression for ûSt is derived in Appendix A, while that for 〈ûstr〉 is developed in the
next subsection.
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3.3. Solution for (〈ustr〉, 〈 pstr〉)
The Jeffery-averaged disturbance fields (〈ustr〉, 〈 pstr〉), that appear in the point-particle
approximation of the inertial lift velocity given by (3.23), satisfy

∇2〈ustr〉 − ∇〈 pstr〉 = β〈S(p)〉 · ∇δ(r), (3.26a)

∇ · 〈ustr〉 = 0, (3.26b)

with the boundary conditions

〈ustr〉 = 0 at r2 = −sλ−1, (1 − s)λ−1, (3.27a)

〈ustr〉 → 0 for r1, r3 → ∞(r2 fixed), (3.27b)

where the stresslet singularity on the right-hand side of (3.26a) approximates the
torque-free neutrally buoyant spheroid, in an unbounded simple shear flow, on scales much
larger than O(L). The stresslet coefficient S is a function of the spheroid orientation p,
being given by (Marath & Subramanian 2017)

S(p) = A1
3
2
(E : pp)

(
pp − I

3

)
+ A2((I − pp) · E · pp + pp · E · (I − pp))

+ A3

(
(I − pp) · E · (I − pp) + (I − pp)

E : pp
2

)
, (3.28)

where Eij = β/2(δi1δj2 + δi2δj1) is the rate of strain tensor associated with the local simple
shear. The simple shear flow may be resolved into an axisymmetric extension aligned with
p, longitudinal planar extensions in a pair of orthogonal planes containing p, and a pair
of transverse planar extensions in the plane perpendicular to p (Subramanian & Koch
2006; Dabade et al. 2016). The Ai’s in (3.28) are the κ-dependent stresslet amplitudes
corresponding to the aforesaid component flows, there being only three of these (in
contrast to the five component flows) owing to the axisymmetry of the spheroidal geometry
(Kim & Karrila 1991; Marath & Subramanian 2017). For κ > 1, these amplitudes are given
by

A1 = − 16π(κ2 − 1)5/2

9κ3[−3(κ2 − 1)1/2κ + 2κ2 cosh−1(κ) + cosh−1(κ)]
, (3.29)

A2 = − 16π(κ2 − 1)3

3κ2(κ2 + 1)(κ4 + κ2 − 3(κ2 − 1)1/2κ cosh−1(κ) − 2)
, (3.30)

A3 = − 32π(κ2 − 1)3

3κ3(2κ5 − 7κ3 + 3(κ2 − 1)1/2 cosh−1(κ) + 5κ)
. (3.31)

The corresponding expressions for an oblate spheroid (κ < 1) may be obtained by first
substituting κ = ξ0/(ξ

2
0 − 1)1/2 in terms of the coordinate ξ0 (>1) labelling the surface

of the spheroid, and then using the transformation d → −ιd, ξ0 → ι(ξ2
0 − 1)1/2 in the

dimensional form of the stresslet obtained from multiplying S above by μL3Vmax/H with
L = dξ0 (Marath & Subramanian 2017). Note that p, and thence S, is a function of time
owing to rotation along Jeffery orbits. In the limit of a sphere, A1 = A2 = A3 = −20π/3,
and S reduces to −20πE/3, independent of time, corresponding to the stresslet induced by
a freely rotating sphere that leads to the well-known Einstein coefficient in the suspension
viscosity.
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Inertial migration of a spheroid in plane Poiseuille flow

While one may, in principle, solve for (〈ustr〉, 〈 pstr〉) in a manner similar to that for the
bounded domain Stokeslet fields (see Appendix A) by defining the disturbance fields as
the sum of an unbounded domain contribution, and a contribution that accounts for the
confinement induced by channel walls, one may also obtain them directly as a gradient of
the bounded domain Stokeslet fields, derived in Appendix A; the gradient is with respect
to the location y of the Stokeslet (Swan & Brady 2010). Therefore,

〈ustr〉 = β〈S〉 :
∂J
∂y

, (3.32)

where the bounded domain Stokeslet field corresponding to a point force F is given
by J · F ; the Fourier transform (Ĵ ) of the tensor J is defined in Appendix A (see text
below (A25)). Since it is 〈ûstr〉 that appears in the final expression for the point-particle
approximation of the lift velocity, (3.25), we Fourier transform (3.32) to obtain

〈ûstr,i〉 = β〈Sjm〉N̂ijm, (3.33)

where the third-order tensor N̂ijm is defined as

N̂ijm = ιĴim(k1δj1 + k3δj3) + ∂ Ĵim

∂y2
δj2. (3.34)

In (3.33), 〈S〉 = (1/2π)
∫ 2π

0 S dτ denotes the time-averaged stresslet corresponding to a
neutrally buoyant spheroid rotating along a given Jeffery orbit in an unbounded simple
shear flow (with unit velocity gradient). The expression for 〈S〉 is given below in the next
subsection.

3.4. The time-averaged lift velocity 〈Vp〉
Using (3.33) for the stresslet velocity field in (3.25), the Jeffery-averaged lift velocity takes
the form

〈Vp〉 = − Rep

4π2

∫ (1−s)λ−1

−sλ−1
dr2

∫
dk⊥ ûSt(−k⊥, r2; y2)

·
[
β12 · N̂ : 〈S〉(k⊥, r2; y2)(β + 2γ r2)11

−ιk1(βr2 + γ r2
2)βN̂ : 〈S〉(k⊥, r2; y2)

]
. (3.35)

Note that the averaging operation (〈.〉) in (3.35) is independent of the shear rate since
it involves the scaled Jeffery angular velocity that is only a function of κ and φj for
the inertially stabilized orbits; the shear-rate dependence only comes in at O(Re3/2

p )
(Marath & Subramanian 2017). Thus, 〈S〉 must be linear in E, with a prefactor that is
a function of C and κ . For simple shear flow, this implies that 〈S12〉 = 〈S21〉 are the only
non-zero components of the Jeffery-averaged stresslet. The following expressions for these
components may be obtained by starting from (3.28), with p expressed in terms of C and
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τ using (3.19a,b), followed by an integration over τ :

〈S12〉 = 1
4(κ2 − 1)2[(C2 + 1)(C2κ2 + 1)]1/2

{
3A1κ

2
(

2 + C2(κ2 + 1)

−2[(C2 + 1)(C2κ2 + 1)]1/2
)

+ 2A2(κ
2 + 1)

(
κ2
(

[(C2 + 1)(C2κ2 + 1)]1/2 − 2C2 − 1
)

+[(C2 + 1)(C2κ2 + 1)]1/2 − 1
)

+ A3

(
κ4(C2 + 2) + κ2(−2[(C2 + 1)(C2κ2 + 1)]1/2

+C2 − 2) + 2
)}

(3.36)

for prolate spheroids and

〈S12〉 = 1
4(κ2 − 1)2(C2 + 1)(C2κ2 + 1)

{
3A1κ

2
(
−2C4κ2 + C2(κ2 + 1) (−2

+[(C2 + 1)(C2κ2 + 1)]1/2) + 2(−1 + [(C2 + 1)(C2κ2 + 1)]1/2)
)

+ 2A2(κ
2 + 1)

(
C4(κ2 + κ4) − (1 + κ2)(−1 + [(C2 + 1)(C2κ2 + 1)]1/2)

+C2(1 + κ2(2 + κ2 − 2[(C2 + 1)(C2κ2 + 1)]1/2))
)

+ A3

(
2[(C2 + 1)(C2κ2 + 1)]1/2 + κ2(−2 − 2C4κ2

+ 2(κ2 − 1)[(C2 + 1)(C2κ2 + 1)]1/2)

+C2(1 + κ2)(−2 + [(C2 + 1)(C2κ2 + 1)]1/2)
)}

(3.37)

for oblate spheroids. For both (3.36) and (3.37), limκ→1〈S12〉 = −10π/3 independent of
C, which yields the Einstein coefficient (5/2) in the O(φ) contribution to the suspension
viscosity, φ being the sphere volume fraction; the C independence arises owing to the
sphere orientation being a degenerate degree of freedom. At the other extreme, one has
limκ→∞〈S12〉|C=∞ = −2π/(3κ ln κ) in (3.36). Here, the factor 1/ ln κ arises from viscous
slender body theory (Subramanian & Koch 2005), while the additional κ−1 factor reflects
the probability of the occurrence of non-aligned orientations that contribute dominantly to
the viscosity of a dilute non-interacting suspension of slender fibres (Leal & Hinch 1971;
Dabade et al. 2016).

For times much longer than O(Re−1
p H/Vmax), only the inertially stabilized orbits are

relevant to cross-stream migration. As mentioned earlier, for prolate spheroids, this is the
tumbling orbit (C = ∞), in which case, 〈S12〉 in (3.36) reduces to

〈S12〉|C=∞ = (3A1 + A3)κ + 2A2(κ
2 + 1)

4(κ + 1)2 . (3.38)
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Inertial migration of a spheroid in plane Poiseuille flow

For oblate spheroids, one can have either the spinning (C = 0) or tumbling (C = ∞) orbits
depending on κ , and accordingly, 〈S12〉 in (3.37) reduces to

〈S12〉|C=∞ = (3A1 + A3)κ + 2A2(κ
2 + 1)

4(κ + 1)2 , (3.39)

〈S12〉|C=0 = A3

2
. (3.40)

Equations (3.38)–(3.40) will be used to determine 〈Vp〉 below. In light of the above, one
may write (3.33) in the form

〈ûstr,i〉 = β〈S12〉 (N̂i12 + N̂i21), (3.41)

with the Jeffery-averaged lift velocity given by

〈Vp〉 = −Rep〈S12〉
4π2

∫ (1−s)λ−1

−sλ−1
dr2

∫
dk⊥ ûSt,i(−k⊥, r2; y2)

× [β(β + 2γ r2)(N̂212 + N̂221)(k⊥, r2; y2)δi1

− ιβk1(βr2 + γ r2
2)(N̂i12 + N̂i21)(k⊥, r2; y2)

]
. (3.42)

Since the dominant contributions to the integral in (3.42) come from scales of O(H)

(or, equivalently, k⊥ ∼ O(H−1)), it is natural to transform to rescaled variables k⊥ =
k′′

⊥λ, r2 = r′′
2/λ. The original disturbance fields may be written in terms of the rescaled

ones as ûSt = û′′
St/λ, N̂ = N̂ ′′, and furthermore, noting that y′′

2 = s and dk⊥ dr2 ≡
λ dk′′

⊥ dr′′
2 , one obtains

〈Vp〉 = −Rep〈S12〉
4π2

∫ 1−s

−s
dr′′

2

∫
dk′′

⊥ û′′
St,i(−k′′

⊥, r′′
2; s)

× [β(β + 2γ ′′r′′
2)(N̂′′

212 + N̂′′
221)(k

′′
⊥, r′′

2; s)δi1

− ιβk′′
1(βr′′

2 + γ ′′r′′2
2 )(N̂′′

i12 + N̂′′
i21)(k

′′
⊥, r′′

2; s)
]
, (3.43)

where γ ′′ = γ λ−1 = −4, and 〈S12〉 is given by (3.38), (3.39) or (3.40) depending on κ .
The essential consequence of the rescaling above is to show that the volume integral in
(3.43) is independent of λ. In fact, the integral is only a function of s (the particle location
in the channel; see figure 1), with the additional dependence on κ entirely contained in
〈S12〉. Accounting for the scaling Vmaxλ used for Vp, (3.43) shows that the point-particle
framework leads to a lift velocity of O(VmaxλRep), which was used earlier in § 3.1 to
estimate the inertial migration time scale (tlift).

A consequence of the integral in (3.43) being independent of κ is that, within
the Jeffery-averaged framework used, the inertial lift velocity of a sphere, and the
time-averaged lift velocity of a spheroid, only differ by a multiplicative function of C
and κ in general, and only by a function of κ if one assumes the spheroid to have settled
onto the inertially stabilized Jeffery orbit – this multiplicative function is the ratio of the
Jeffery-averaged spheroid stresslet to the sphere stresslet, being equal to −3〈S12〉/10π. An
immediate outcome of this proportionality relation is that the shapes of the lift velocity
profiles for the two cases must be identical, with the zero crossings in particular (that
correspond to the Segre–Silberberg equilibria for a sphere) being identical. In other words,
a change in κ only affects the magnitude of the inertial lift, the equilibrium positions being
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unaffected. In light of the obvious importance of the above conclusion for shape-sorting
applications, it is worth documenting the reasons that lead to the simple proportionality
relation.

(i) The dominant contribution from the linearized inertial terms on scales of O(H).
This outer-region dominance led to the point-particle approximation, and thence, to
the time independence of the test velocity field in the reciprocal theorem volume
integral.

(ii) The asymptotic smallness, for small confinement ratios, of the additional
contributions arising from the translational and angular accelerations associated
with the motion of the neutrally buoyant spheroid in the Stokes limit,

(iii) The approximation of the time averaging based on the Rep−independent Jeffery
angular velocity, which leads to the time-averaged spheroid stresslet being
proportional to E (just as the sphere stresslet).

The Jeffery-averaged lift velocity in (3.43) may be written in the compact form

〈Vp〉 = Rep〈S12〉(κ)(β2F(s) + βγ ′′G(s)), (3.44)

where the functions F(s) and G(s) are given by

F(s) = − 1
4π2

∫ 1−s

−s
dr′′

2

∫
dk′′

⊥ û′′
St,i(−k′′

⊥, r′′
2; s)

× [(N̂′′
212 + N̂′′

221)(k
′′
⊥, r′′

2; s)δi1 − ιk′′
1r′′

2(N̂′′
i12 + N̂′′

i21)(k
′′
⊥, r′′

2; s)
]
, (3.45)

G(s) = − 1
4π2

∫ 1−s

−s
dr′′

2

∫
dk′′

⊥ û′′
St,i(−k′′

⊥, r′′
2; s)

× [2r′′
2(N̂′′

212 + N̂′′
221)(k

′′
⊥, r′′

2; s)δi1 − ιk′′
1r′′2

2 (N̂′′
i12 + N̂′′

i21)(k
′′
⊥, r′′

2; s)
]
, (3.46)

and satisfy F(s) = −F(1 − s) and G(s) = G(1 − s), consistent with the antisymmetry of
the lift velocity profile about the channel centreline.

In (3.44) the β2 contribution characterizes the effect of the asymmetrically located walls
on the disturbance stresslet, and leads to migration away from the walls. In contrast, the
βγ ′′ contribution, which characterizes the interaction of the stresslet with the ambient
profile curvature, causes migration away from the channel centreline; note that this
contribution is still influenced by the walls, given that the dominant scales are O(H).
The Segre–Silberberg equilibria emerge from a balance between these two opposing
effects. Substituting β = 4(1 − 2s) and γ ′′ = −4 in (3.44), the final expression for the
time-averaged lift velocity of a neutrally buoyant spheroid of an arbitrary aspect ratio κ ,
for Rec � 1, is given by

〈Vp〉 = Rep〈S12〉(κ)
[
16(1 − 2s)2F(s) − 16(1 − 2s)G(s)

]
. (3.47)

The Fourier integrals in (3.45) and (3.46) can be calculated using plane polar
coordinates, k′′

1 = k′′
⊥ cos φ, k′′

3 = k′′
⊥ sin φ, with dk′′

⊥ ≡ k′′
⊥ dk′′

⊥ dφ; here k′′
⊥ ∈ [0, ∞) and

φ ∈ [0, 2π]. The integrals over the transverse coordinate r′′
2 and the azimuthal angle φ may
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Inertial migration of a spheroid in plane Poiseuille flow

be done analytically, reducing (3.45) and (3.46) to the one-dimensional integrals

F(s) =
∫ ∞

0
dk′′

⊥
k′′
⊥e−k′′

⊥(27s+16)I(k′′
⊥, s)

48π
(
e2k′′

⊥ − 1
) [−2e2k′′

⊥
(
2k′′2

⊥ + 1
)+ e4k′′

⊥ + 1
]2 , (3.48)

G(s) =
∫ ∞

0
dk′′

⊥
e−k′′

⊥(27s+16)J(k′′
⊥, s)

192πk′′2
⊥
(
e2k′′

⊥ − 1
) [−2e2k′′

⊥
(
2k′′2

⊥ + 1
)+ e4k′′

⊥ + 1
]2 , (3.49)

with I(k′′
⊥, s) and J(k′′

⊥, s) defined in Appendix B. The k′′
⊥ integrals above are evaluated

numerically for various s, using Gauss–Legendre quadrature, after replacing the infinite
interval with a finite one – (0, Kmax). Numerical convergence, especially near the
channel walls, depends sensitively on Kmax. As the spheroid approaches either wall, the
contribution to the k′′

⊥ integrals comes from progressively smaller scales (compared with
H) or, equivalently, from larger and larger k′′

⊥. In fact, the relevant scale changes from H
(k′′

⊥ ∼ O(1)) to the distance from the wall – either s (lower wall) or 1 − s (upper wall).
As a result, the choice of any finite Kmax, however large, will only lead to converged lift
velocities down to a certain non-zero s.

To analyse the lift close to the lower wall, for example, one defines a rescaled
wavenumber k′′

⊥ = kw/s. Next, expanding the integrands in (3.48) and (3.49) for s → 0
with kw fixed, the near-wall lift velocity takes the form

lim
s→0

〈Vp〉 = 〈Vp〉wall = −Rep〈S12〉(κ)

3π

∫ ∞

0
dkw e−2kwkw(3k2

w − 2kw + 3). (3.50)

The limiting value near the upper wall is equal in magnitude, but of an opposite sign, as
must be the case by symmetry. The integral in (3.50) can be evaluated analytically, and
yields

〈Vp〉wall = ±11Rep〈S12〉(κ)

24π
, (3.51)

with the upper and lower signs pertaining to the corresponding channel wall. For a sphere,
(3.51) reduces to 55Rep/36, a value originally given by Vasseur & Cox (1976), albeit
without an accompanying explanation. In the results shown in the next subsection, we have
chosen Kmax = 104 for the numerical evaluation of (3.48) and (3.49), to ensure accuracy
down to s = 0.001 without the aid of a large-k′′

⊥ asymptote. This choice also enables a
close approach to the near-wall limiting value above, and the sufficiency of 200 quadrature
points in obtaining converged results for arbitrary κ .

The sign of the limiting value in (3.51) points to a wall-induced repulsion. Furthermore,
(3.51) arises entirely from the β2 contribution, with the βγ ′′ contribution being
asymptotically small, implying that the leading-order repulsion may be determined
independently by considering a sphere or spheroid moving parallel to a single plane wall
subject to a linear shearing flow. The near-wall estimates of the said contributions may
be obtained by considering a spheroid, regarded as the relevant point singularity, close to
either wall. For the lower wall, this would mean s � 1, with an inner region characterized
by distances of the order of the spheroid size (λ < r′′ � s), and an outer region
characterized by distances of the order of the spheroid-wall separation (r′′ � s); recall that
r′′ was measured in units of H. In accordance with (3.20), the lift velocity integral grows on
scales pertaining to the matching interval, λ� r′′ � s, with the dominant contributions
being of the form O(β2)[ln r′′ + O(1)] and O(βγ ′′r′′). The logarithmic term is again zero
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Figure 2. Comparison of the small-Rec lift profile for a sphere obtained from (3.46) with profiles extracted
from Ho & Leal (1974) and Vasseur & Cox (1976). The vertical lines mark the Segre–Silberberg equilibria
(s ≈ 0.182 and 0.818) on either side of the centreline; the horizontal dotted lines denote the near-wall limiting
values given by (3.51). The inset shows the profiles of the component β2 and βγ ′′ contributions.

due to symmetry, and the linear growth is cutoff for distances larger than O(s) owing to the
more rapid decay arising from wall-induced cancellation of the leading-order singularity.
For s � r′′ � 1, the actual velocity field exhibits an O(1/r′′3) quadrupolar decay owing to
wall-induced stresslet cancellation; the test velocity field is also O(1/r′′3) over this range
of distances owing to the wall-induced cancellation of both the point force and force dipole
for a Stokeslet of a perpendicular orientation. This more rapid decay ensures convergence
of the volume integral, and using r′′ ∼ s in the growing terms above yields the limiting
forms of O(β2) and O(βγ ′′s) close to the lower wall.

A final important point concerns the approach of the near-wall lift velocity to a finite
value, rather than zero, as one approaches the channel walls. The latter must be the
case on account of the eventual diverging lubrication resistance associated with the thin
intervening fluid layer between the particle and the wall, and the discrepancy is on account
of the regime of validity of the present calculation. As stated in the problem definition in
§ 2, the near-wall limit above pertains to spheroid-wall separations that, although much
smaller than O(H), are nevertheless much larger than L. We comment further on the nature
of the lift profile for small separations in § 4.

3.5. Results and discussion
In figure 2 we compare the lift velocity profile for a sphere, obtained by taking 〈S12〉 =
−10π/3 in (3.47), with profiles plotted using the data from table 4 of Ho & Leal (1974)
and digitizing figure 8 of Vasseur & Cox (1976). There is a clear mismatch between our
profile and the Ho–Leal one, an aspect that we comment on in the conclusion. The result of
Vasseur & Cox (1976) shows good agreement with the present calculation throughout the
channel. The Segre–Silberberg equilibria, corresponding to the zeros of 〈Vp〉, are located
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Inertial migration of a spheroid in plane Poiseuille flow
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Figure 3. (a) The small-Rec lift profiles for tumbling prolate spheroids of various aspect ratios. (b) Lift profiles
in (a) rescaled using the infinite κ 〈S12〉 scaling. The thick black curve denotes the limiting κ-independent
profile for κ � 1000.
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Figure 4. The small-Rec lift profiles for (a) spinning oblate spheroids of 0.14 ≤ κ < 1, and (b) spinning/
tumbling oblate spheroids of κ < 0.14, for Rec � 1. The inset in (b) shows the collapsed profiles on rescaling
with the κ → 0 limit of 〈S12〉.

at s ≈ 0.182 and 0.818; these are at a (dimensional) distance of 0.636 × H/2 from the
centreline, which agrees well with the intermediate annulus at ∼ 0.6×pipe radius in the
original experiments (Segre & Silberberg 1962a). Note that the lift velocity profiles in
both our and the Vasseur & Cox (1976) analysis asymptote to the wall values ±55/36
(the horizontal dashed magenta lines in figure 2) given in the previous subsection. As
already argued therein, H is no longer the relevant scale (at leading order) close to the
wall. This implies that Rec should also not be relevant, and the near-wall lift values
should therefore be independent of Rec. This is validated in the next section where the lift
velocity profiles are seen to approach (3.51) for s → 0, 1 even for Rec � O(1), although
this approach occurs in a shrinking neighbourhood of the wall with increasing Rec. The
inset in figure 2 plots the β2 and βγ ′′ contributions to the inertial lift, confirming that the
latter curvature-induced contribution becomes vanishingly small at the walls, consistent
with the scaling arguments given at the end of § 3.4.

As mentioned after (3.43), while the magnitude of the Jeffery-averaged lift velocity is
sensitive to κ , the equilibrium locations remain the same as those for a sphere. This aspect
ratio insensitivity of the equilibria, for spinning oblate spheroids, has been observed in
Nizkaya et al. (2020). The lack of a κ dependence is seen from figures 3 and 4, which show
that the inertial lift profiles for both tumbling prolate spheroids and spinning/tumbling
oblate spheroids of different κ have the same zero crossings. In figure 3(a) the inertial lift
for a tumbling prolate spheroid at a fixed s is seen to decrease with increasing κ , consistent
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with the decreasing magnitude of the disturbance velocity field. To better examine the
large-κ limit, in figure 3(b) we plot the lift profiles normalized by the large-κ scaling
of 〈S12〉 found earlier. The scaled profiles approach a κ−independent limiting form for
κ → ∞, although the approach is non-monotonic – the scaled profile with the maximum
amplitude corresponds to κ = 5 – reflecting the non-monotonic approach of the scaled
stresslet, κ ln κ〈S12〉, to its infinite-κ limit of −2π/3.

In figure 4(a) the inertial lift velocity of a spinning oblate spheroid is seen to decrease in
magnitude as κ decreases from 1 to 0.14, again consistent with the expected decrease
in the magnitude of the disturbance velocity field. At the latter κ , a reversal of the
inertia-induced orbital drift leads to both tumbling and spinning modes being stabilized,
with the respective basins of attraction being demarcated by a pair of unstable limit
cycles on the unit sphere (Einarsson et al. 2015; Dabade et al. 2016). In figure 4(b) we
therefore plot the inertial lift profiles of both spinning and tumbling oblate spheroids for
0 < κ < 0.14. The lift profiles for spinning spheroids approach a finite limiting form for
κ → 0, while those for tumbling spheroids are much smaller in magnitude. The inertial
lift in the latter case, in fact, goes to zero on account of 〈S12〉 being O(κ) for κ → 0;
the inset in figure 4(b) shows the tumbling oblate spheroid lift profiles, when scaled
by κ , approaching a finite limiting form in this limit. The O(κ) scaling above reflects
both the small O(κ) probability of occurrence of thin oblate spheroids with symmetry
axes not closely aligned with the gradient–vorticity plane, with O(1) stresslet coefficients,
and the O(κ) stresslet coefficient of such spheroids oriented in the neighbourhood of the
gradient–vorticity plane. Unlike the prolate case, both the aligned and non-aligned phases
of a tumbling thin oblate spheroid make comparable O(κ) contributions to 〈S12〉.

The invariance of the equilibrium locations associated with the lift profiles in figures 3
and 4, with changing κ , implies that inertia-induced shape sorting of spheroidal particles
is precluded in sufficiently long channels. All spheroids regardless of κ will end up
migrating to the same pair of Segre–Silberberg locations in such channels. However, one
may achieve separation in channels short enough for the residence time of O(Lc/Vmax) to
be comparable or smaller than tlift; this requires Lc � HRe−1

p λ
−1, Lc being the channel

length. Shape sorting of spheroids would occur in these channels owing to differential
rates of migration: for instance, with L (and, therefore, Rep) remaining the same, prolate
spheroids with κ ∼ O(1) will migrate to the equilibrium locations relatively rapidly,
while those with larger κ remain close to their initial positions due to weaker lift forces.
A similar scenario would prevail for oblate spheroids provided κ � 0.14. For κ � 0.14, the
disparity in magnitudes of the lift velocities for spinning and tumbling oblate spheroids
would lead instead to sorting of spheroids with the same κ , but in different (tumbling
vis-a-vis spinning) orientation modes.

For even shorter channels with Lc � O(HRe−1
p ), the residence time is no longer

enough for a spheroid to be able to migrate to its stable Jeffery orbit. For residence
times of O(Lc/Vmax) � O(H/VmaxRe−1

p ) 
 H/Vmax, the cross-stream migration is still
determined, at leading order, by a Jeffery-averaged lift velocity, but one pertaining to
orbits other than the tumbling or spinning mode. Thus, 〈Vp〉 is now also a function of
C, being given by (3.44) with 〈S12〉 given by its full form involving both C and κ; see
(3.36) and (3.37). The C-dependent lift velocity profiles for κ = 2 and κ = 0.5 are shown
in figures 5(a) and 5(b), respectively. Since, for a fixed κ , the amplitude of the disturbance
field is the largest for a tumbling prolate spheroid and a spinning oblate spheroid, the
largest amplitude profiles in figures 5(a) and 5(b) correspond to C = ∞ and C = 0,
respectively. Determining single-spheroid trajectories now requires solving the following
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Inertial migration of a spheroid in plane Poiseuille flow
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Figure 5. Lift velocity profiles for prolate and oblate spheroids, of the indicated aspect ratios, rotating in
different Jeffery orbits; C = 0 and ∞ correspond to the spinning and tumbling modes. Results are shown for
(a) κ = 2 and (b) κ = 0.5.

system of coupled ODEs in s and C:

ds
dts

= λ〈S12〉(C, κ)
[
16(1 − 2s)2F(s) − 16(1 − 2s)G(s)

]
, (3.52)

dC
dts

= βC
2π

( 6∑
n=1

In(C, κ)F f
n (κ) +

4∑
n=1

Jn(C, κ)G f
n (κ)

)
. (3.53)

Here ts = Rept is a slow time variable, and the functions F f
n , G f

n , In and Jn have been
defined in Dabade et al. (2016) and Marath & Subramanian (2018). Note that the λ
prefactor in (3.52) indicates that spheroids only migrate by a distance of the order of their
own size in such short channels.

At higher volume fractions, the trajectory of a given inertial spheroid will acquire
a stochastic character on account of occasional pair interactions that may be modelled
via a scattering kernel involving pre- and post-interaction orbit constants (Marath et al.
2017). Such interactions are particularly important for oblate spheroids with κ � 0.14
where fluctuations in C, and thence, changes in 〈Vp〉(C, κ), occur on time scales that
can be much longer than the nominal drift time scale of O(Re−1H/Vmax), and that
characterize barrier-hopping events equilibrating the tumbling and spinning orientations.
In the presence of such interactions, the transient evolution of an initial distribution of
spheroids, on time scales long compared with Tjeff , is formally described by a probability
density P(s, C, ts) that satisfies a kinetic equation of the form

∂P
∂ts

+ ∂

∂s
(ṡP) + ∂

∂C
(ĊP)

= nL3
∫

dC′
∫

dr⊥(s − s′)
∫

dĈ dĈ′[P̂P̂′K(Ĉ, Ĉ′|C, C′; s) − PP′], (3.54)

where P′ ≡ P(s, C′), P̂ ≡ P(s, Ĉ), P̂′ ≡ P(s, Ĉ′); ṡ and Ċ being given by (3.52) and (3.53),
respectively. The right-hand side of (3.54) denotes a Boltzmann-type kernel involving the
pre-([Ĉ, Ĉ′]) and post-([C, C′]) interaction orbit constant pairs.

At the end of § 3.4, we highlighted the finite value of the inertial lift velocity attained
even as the particle approaches either wall. This runs counter to one’s expectation of the
lift velocity vanishing in this limit due to the diverging resistance associated with the
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thin lubricating layer of fluid between the particle and the wall. As mentioned therein,
the discrepancy arises due to the present analysis only being valid for s, 1 − s 
 λ, a
restriction that comes from treating the spheroid as a point (stresslet) singularity. Our
analysis has to be supplemented by one that accounts for the finite size of the spheroid
and is therefore valid for s, 1 − s ∼ O(λ), which in turn would connect to the lubrication
regime corresponding to s − λ, (1 − s) + λ� λ. Such a connection is possible for the
case of a sphere based on results available in the literature. The inertial lift on a sphere,
in the presence of a single plane boundary subject to a linear shearing flow, has been
evaluated numerically for s ∼ O(λ) by Cherukat & Mclaughlin (1994), with the aid of
an integral expression obtained using bispherical coordinates. The authors found the lift
force to always have a repulsive character (that is, to be directed away from the wall).
The numerical value asymptoted to the near-wall limit (≈55πRep/6) of the two-wall
(channel) problem mentioned above for s 
 λ, while asymptoting to a different finite
value (9.22Rep) when the sphere touches the wall (s = λ). The latter value was shown
to agree with the inertial lift force acting on a stationary non-rotating sphere, in contact
with a plane boundary, evaluated by Leighton & Acrivos (1985). These authors examined
a non-rotating sphere in light of results obtained earlier (Goldman, Cox & Brenner
1967) that showed that the angular velocity of a torque-free sphere must decrease to
zero logarithmically in the limit of a vanishing sphere-wall separation on account of the
lubrication resistance associated with the relative tangential motion in the narrow gap; the
finiteness of the force implies that the dominant contributions to the lift arise from the fluid
domain outside the thin gap. When combined with the known O(s − λ)−1 divergence of
the translational resistance for normal approach towards the wall, one concludes that the
inertial lift velocity for a sphere must start from 55Rep/36 for λ� s � 1, and eventually
approach zero linearly in the limit s − λ� λ. In the reciprocal theorem formulation used
here, the approach to zero would appear via the divergence of the test problem resistance
coefficient. To our knowledge, analogous results for an arbitrary aspect ratio spheroid
when s, 1 − s ∼ O(λ) are not available, and will involve more effort. On one hand, there
is no spheroidal analog of the bispherical coordinate system (Cherukat & Mclaughlin
1994) that would enable the derivation of a formal expression for the inertial lift for
arbitrary spheroid-wall separations. On the other hand, the additional orientation degrees
of freedom make the spheroid problem substantially more complicated even in the Stokes
limit. Apart from an increased period, the nature of the orientation dynamics itself changes
from Jeffery rotation to eventually pole vaulting (Mody & King 2005; Stover & Cohen
1990) for a sufficiently close approach towards either wall, with the changes in orientation
intimately coupling to corresponding changes in position (Pozrikidis 2005).

4. The inertial lift velocity for Rec � O(1)

Herein, we calculate the inertial lift profiles for Rec � O(1) using a numerical shooting
method employed originally by Schonberg & Hinch (1989), and later for higher Rec’s by
Asmolov (1999), both for the case of a sphere. For Rec � O(1), the inertial screening
length (HRe−1/2

c ) is of the order of the channel width or smaller, and one must solve
the governing equations (2.4a,b) with the boundary conditions (2.5a–c) using a matched
asymptotic expansions approach. The inner region is characterized by scales of O(L), and
the outer region by scales of O(HRe−1/2

c ), with the channel width H also entering via
the wall boundary conditions. Although we use a shooting method below to evaluate the
lift velocity, it is worth noting that the reciprocal theorem formulation in § 3.1 remains
valid for any Rec, provided one uses the finite-Rec disturbance velocity field (u′) in the
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Inertial migration of a spheroid in plane Poiseuille flow

volume integral. Thus, the scaling arguments in § 3.2 may be extended to finite Rec, and
in doing so, one finds that the dominant contribution to the inertial lift continues to come
from scales asymptotically larger than O(L). For Rec � 1 in the previous section, this
outer-region dominance meant solving the Stokes equations in a domain confined by plane
channel walls with the spheroid approximated as a stresslet singularity. In the present
section this means solving the linearized Navier–Stokes equations at leading order, driven
by the same stresslet singularity (since Rep is assumed small). Note that Rec, interpreted
as the square of the ratio of the two outer-region length scales (H and HRe−1/2

c ), appears
as a parameter in the governing equations below, and the inertial lift velocity is therefore
now a function of Rec.

4.1. The finite-Rec formulation
The Stokesian disturbance field due to a freely suspended particle in an ambient linear
flow only decays algebraically, as 1/r2, at large distances, a fact already used in the scaling
arguments in § 3.2. The algebraic decay implies that distinct outer-region expansions for
both the velocity and pressure fields become necessary on scales of O(HRe−1/2

c ), with
the leading terms satisfying the linearized Navier–Stokes and continuity equations. To
write down these equations, one transforms to outer coordinates using r = Re−1/2

p R, which
corresponds to using HRe−1/2

c (rather than L as in § 2) as the relevant length scale. The
Stokesian rates of decay in the inner region suggest the scalings u′ = RepU and p′ =
Re3/2

p P for the leading-order terms in the outer expansions, where U and P satisfy

∂2Ui

∂R2
m

− ∂P
∂Ri

− ∂Ui

∂t
− U2(β + 2γ ′′R2Re−1/2

c )δi1 − (βR2 + γ ′′R2
2Re−1/2

c )
∂Ui

∂R1

= βSim
∂δ(R)

∂Rm
, (4.1a)

∇ · U = 0. (4.1b)

The Faxen correction contributes at a higher order in λ and, therefore, u∞
i ≈

Re−1/2
p (βR2 + γ ′′ Re−1/2

c R2
2)δi1 has been used in (4.1a). Equations (4.1a,b) must be

supplemented by the conditions

Ui ∼ 3βRiRjSjmRm

4πR5 for R → 0, (4.2a)

U = 0 at R2 = −s Re1/2
c , (1 − s) Re1/2

c , (4.2b)

where (4.2b) denotes the no-slip conditions on the channel walls, while (4.2a) is the
requirement of matching to the stresslet velocity field that arises as the far-field form of
the inner-region Stokesian field. In (4.1a) and (4.2a), S is the tensorial amplitude defined
in (3.28).

As explained in § 3.2, the separation between the migration and drift time scales implies
one needs only solve for the Jeffery-averaged lift velocity, and towards this end, we average
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(4.1a,b) and (4.2a,b) over a single period of the stable Jeffery orbit. One obtains

∂2〈Ui〉
∂R2

m
− ∂〈P〉

∂Ri
− 〈U2〉(β + 2γ ′′R2Re−1/2

c )δi1 − (βR2 + γ ′′R2
2Re−1/2

c )
∂〈Ui〉
∂R1

= β〈S12〉
[
δi1

∂δ(R)

∂R2
+ δi2

∂δ(R)

∂R1

]
, (4.3a)

∇ · 〈U〉 = 0, (4.3b)

where 〈U〉 satisfies

〈Ui〉 ∼ 3β〈S12〉R1R2Ri

4πR5 for R → 0, (4.4a)

〈U〉 = 0 at R2 = −s Re1/2
c , (1 − s) Re1/2

c . (4.4b)

Here, 〈S12〉(κ) corresponds to the stresslet averaged over the relevant stable Jeffery orbit,
and has been given in (3.38)–(3.40). Due to the linearity of (4.3a,b) and (4.4a,b), and
the fact that the Jeffery-averaged spheroid stresslet tensor differs from that for a sphere
only by a scalar multiplicative factor, 〈U〉 and 〈P〉 differ from their spherical analogs
only by −3〈S12〉(κ)/10π, corresponding to the ratio of the aforementioned stresslets. This
proportionality relation must hold for any linear functional of the disturbance fields, and
in particular, for the lift velocity that is a linear functional of 〈U2〉; see (4.8) below.
Thus, similar to the case of Rec � 1, the Jeffery-averaged lift profiles at a given finite
Rec, for an arbitrary aspect ratio spheroid, have the same shape as those for a sphere
at the same Rec. It follows that the associated pair of equilibria are identical to those
for a sphere regardless of Rec, and as for a sphere (Schonberg & Hinch 1989), must
migrate wallward with increasing Rec. It is worth reiterating that the requirement for
a Jeffery-averaged analysis to remain valid becomes restrictive for extreme aspect ratio
spheroids. The regime of validity, originally stated after (3.19) and expressed in terms of
Rec, is given by Recλ

2κ/ ln κ � 1 and Recλ
2/κ � 1 for κ 
 1 and κ � 1, respectively;

these point to the restriction becoming more severe with increasing Rec. The implications
of the finite-Rec Jeffery-averaged analysis above, for shape sorting, remain the same as
those discussed in § 3.5.

For purposes of completeness, we now follow along the lines of Schonberg & Hinch
(1989), and briefly present the manner in which inertial lift is determined for Rec � O(1).
After implementing the partial Fourier transform defined in (3.24), followed by some
algebraic manipulation, one obtains the coupled ODEs for 〈̂P〉 and 〈̂U2〉,

d2〈̂P〉
dR2

2
− k2

⊥〈̂P〉 = 2ιk1〈̂U2〉(β + 2γ ′′R2Re−1/2
c ), (4.5a)

d2〈̂U2〉
dR2

2
− k2

⊥〈̂U2〉 = d〈̂P〉
dR2

− ιk1〈̂U2〉(βR2 + γ ′′R2
2Re−1/2

c ), (4.5b)

with the conditions,

〈̂U2〉 ∼ ιβ〈S12〉k1|R2| e−k⊥|R2|

2
for k1, k3 → ∞ and R2 → 0, (4.6a)

〈̂U2〉 = d〈̂U2〉
dR2

= 0 at R2 = −s Re1/2
c , R2 = (1 − s) Re1/2

c , (4.6b)
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Inertial migration of a spheroid in plane Poiseuille flow

where k2
⊥ = k2

1 + k2
3 as before. The delta-function forcing in (4.3a) leads to the following

jump conditions across the particle location (R2 = 0):

〈̂P〉+(k1, 0+, k3) − 〈̂P〉−(k1, 0−, k3) = 2ιk1β〈S12〉, (4.7a)

d〈̂P〉+
dR2

(k1, 0+, k3) − d〈̂P〉−
dR2

(k1, 0−, k3) = 0, (4.7b)

〈̂U2〉+(k1, 0+, k3) − 〈̂U2〉−(k1, 0−, k3) = 0, (4.7c)

d〈̂U2〉+
dR2

(k1, 0+, k3) − d〈̂U2〉−
dR2

(k1, 0−, k3) = ιk1β〈S12〉. (4.7d)

Here the superscripts ‘+’ and ‘−’ denote the limiting values attained on approaching
R2 = 0 from the regions 0 < R2 ≤ (1 − s) Re1/2

c and −s Re1/2
c ≤ R2 < 0, respectively;

these conditions are derived in Appendix C. The limiting form of 〈U〉 in the matching
region (R � 1) is the sum of the singular stresslet contribution given in (4.4a), and a
uniform flow along the gradient (cross-stream) direction that is a consequence of fluid
inertia. The neutrally buoyant spheroid being force free is convected by this uniform flow
that therefore equals the inertial lift velocity, and may be determined from the limit of the
inverse transform for R → 0,

〈Vp〉 = Rep

4π2 Re
{∫ ∞

−∞

∫ ∞

−∞
〈̂U2〉±(k1, 0±, k3) dk1 dk3

}
. (4.8)

Here, Re{.} denotes taking the real part that eliminates the purely imaginary stresslet
contribution. As indicated, one may use either 〈̂U2〉− or 〈̂U2〉+ on account of continuity;
see (4.7c). The governing ODEs (4.5a,b), the boundary conditions (4.6a,b) and the jump
conditions (4.7a–d) can be solved using the shooting technique described in Appendix A
of Schmid, Henningson & Jankowski (2002), a brief description of which is given in
Appendix D.

The integral in (4.8) is evaluated numerically using a two-dimensional Gauss-Legendre
quadrature over a circle of a sufficiently large radius Km in the k1–k3 plane. An analytical
large-k⊥ asymptote was calculated using the steps outlined in Hogg (1994), and added
to the numerical integral, to improve convergence. The analysis involves expanding 〈̂U2〉
and 〈̂P〉 in inverse powers of k⊥, an ansatz valid only in an O(k−1

⊥ ) neighbourhood of
R2 = 0. As a result, satisfaction of (4.6a,b) is replaced by a far-field decay requirement
for R2k⊥ 
 1. Including only the exponentially decaying solutions on either side of
R2 = 0, satisfying the jump conditions (4.7a–d), and then performing the inverse Fourier
transform, one obtains

〈Vp〉far field ≈ −9βγ ′′〈S21〉Rep

64πKmRe1/2
c

, (4.9)

at leading order. As in § 3, the choice of Km is dictated by the distance of the particle
from the walls. The relevant scale sufficiently close to either wall is still the spheroid-wall
separation (s or 1 − s) – the near-wall lift remains the same as that for Rec � 1, being the
far-field lift experienced by a particle in the presence of a single plane boundary. While
one needs to keep increasing Km with approach to either wall (that is, for sufficiently small
s or 1 − s), to obtain a converged result, this increase is only necessary once s or (1 − s)
becomes less than O(Re−1/2

c ). Thus, to capture the wall-induced repulsion for finite Rec,
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Figure 6. Comparison of finite-Rec lift velocity profiles for a sphere with the semi-analytical small-Rec profile,
and the data from Schonberg & Hinch (1989). The inset shows the approach of the finite-Rec profiles towards
the wall asymptote given by (3.51).

one needs to ensure KmRe1/2
c smin, KmRe1/2

c (1 − s)min 
 1. In our calculations we chose
Km = 200 for 0.1 ≤ Rec ≤ 10 to ensure accurate lift velocities down to s, 1 − s ≈ 0.03.
For Rec > 10, accurate lift profiles were obtained down to s, 1 − s ≈ 0.05 for Km = 40.

4.2. Results and discussion
We begin with figure 6 that shows the inertial lift profiles for a sphere for 0.5 ≤ Rec ≤ 75,
along with the limiting small-Rec profile given by (3.47); only profiles in the half-channel
have been plotted owing to their antisymmetry about the centreline. The profiles for Rec =
1 and 75 exhibit good agreement with the data extracted from Schonberg & Hinch (1989).
Interestingly, the profiles for Rec = 0.5, 1 and 10 compare closely with the small-Rec
limiting form. The inset shows the approach of the finite-Rec profiles to the near-wall
value given by (3.51). Figure 7 shows that the sphere lift profiles for higher Rec agree
well with those extracted from Asmolov (1999) all the way upto Rec = 3000; note that
our profiles have been continued to smaller s to emphasize the approach to the common
near-wall limiting value mentioned above. The profiles highlight the rapid decrease in
the lift magnitude for Rec � O(10), reflective of weakening particle-wall interactions.
Inertia-induced faster decay of the velocity field, on scales larger than O(HRe−1/2

c ), is
responsible for the reduced influence of the walls with increasing Rec. For Rec � 300, the
lift profiles begin to exhibit an intermediate region of oppositely signed curvature. It has
recently been shown that by including finite-size effects this intermediate region is pushed
towards the zero-lift line, eventually leading to the emergence of new equilibria closer to
the centreline for sufficiently large Rec (Anand & Subramanian 2023). The inset in figure 7
shows the collapsed lift profiles on a log-log scale, with the rescaled abscissa highlighting
the O(Re−1/2

c ) neighbourhood of the wall where the lift profiles begin to rise towards to
near-wall limit.
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Inertial migration of a spheroid in plane Poiseuille flow
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Figure 7. Comparison of lift velocity profiles for a sphere at higher Rec with Asmolov (1999) (dashed curves).
The inset shows the collapse and eventual approach of the lift profiles, for large Rec’s, towards the wall
asymptote (horizontal dotted line) near the wall (zero crossings appear as dips to negative infinity).
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Figure 8. Sphere lift velocity (magnitude), as a function of Rec, for different s. In all cases, |Vp|/Rep exhibits
a plateau (dashed lines) until Rec ≈ 10, transitioning to an algebraic decrease for sufficiently large Rec. For
s < seq (= 0.182), the transition is preceded by a zero crossing that appears as a sharp dip to negative infinity.
The dotted lines are empirical fits to the large-Rec behaviour, and highlight the s-dependent decay exponent.

Figure 8 shows the magnitude of the sphere lift velocity, as a function of Rec, at different
locations on either side of the Segre–Silberberg equilibrium (seq = 0.182). In accordance
with the above discussion, for all s values considered, the lift velocity starts off on a
small-Rec plateau that extends until Rec ≈ 10. Thus, the small-Rec approximation remains
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Figure 9. (a) Lift velocity profiles for tumbling prolate spheroids of various aspect ratios for Rec = 300.
(b) Lift profiles in (a) rescaled using the κ → ∞ limit of 〈S12〉. The thick black curve denotes the limiting
κ−independent profile for κ � 1000.
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Figure 10. (a) Lift velocity profiles for spinning oblate spheroids in the interval 0.14 ≤ κ < 1 for Rec = 300.
(b) Lift profiles for spinning (solid lines) and tumbling (dashed lines) spheroids in the interval 0 < κ < 0.14.
The inset shows the profiles rescaled using the κ → 0 limit of 〈S12〉.

a good approximation well beyond Rec’s of order unity. In fact, recent results of Hood, Lee
& Roper (2015) show that, for a square duct, the small-Rec analysis appears to remain valid
until a duct Reynolds number of O(80). For s = 0.3 and 0.4, with increasing Rec, the lift
velocity in figure 8 directly transitions from the plateau to an eventual algebraic decrease,
this being typical for all s > seq. On the other hand, the lift velocity magnitude for s = 0.1
(and for all s < seq) exhibits a non-monotonic variation with an intermediate zero crossing
that, for s = 0.1, is at Rec ≈ 300. This is due to the Segre–Silberberg equilibrium crossing
the given s in course of its wallward movement (with increasing Rec). The lift velocity
increases again at larger Rec, but to a value smaller than the small-Rec plateau, finally
transitioning to a steeper algebraic decrease.

As mentioned earlier, the Jeffery-averaged lift profiles for a spheroid of an arbitrary
aspect ratio may simply be obtained by multiplying the sphere lift profile at the same
Rec by the ratio of the stresslets. Consequently, features pertaining to the Rec dependence
mentioned above, including the range of validity of the small-Rec approximation, remain
true for spheroids. Figures 9(a) and 9(b) show the inertial lift profiles for tumbling prolate
spheroids over a range of κ , for Rec = 300, with and without the large-κ stresslet scaling.
Figures 10(a) and 10(b) shows the inertial lift profiles for both spinning (0.14 ≤ κ < 1)
and spinning/tumbling (0 < κ < 0.14) oblate spheroids, again for Rec = 300, with and
without the small-κ stresslet scaling. Note that the latter scaling is only used for tumbling
oblate spheroids in the inset of figure 10(b), since 〈S12〉 remains of order unity for spinning
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Inertial migration of a spheroid in plane Poiseuille flow

spheroids even as κ → 0. As in § 3, the scaled lift profiles in figure 9(b), and in the
inset of 10(b), approach κ-independent limiting forms for κ → ∞ and 0, respectively.
The magnitudes of the lift velocity profiles reflect that of the disturbance field (via the
Jeffery-averaged stresslet), and therefore, decrease with increasing (decreasing) κ for
tumbling prolate (oblate) spheroids. Although not shown, the finite-Rec lift profiles may
be evaluated for arbitrary C, and the C dependence again correlates to the magnitude of
the disturbance velocity field, being the largest for tumbling prolate and spinning oblate
spheroids.

5. Conclusions

The primary result of this manuscript is to show that the inertial lift velocity profiles for
neutrally buoyant spheroids in plane Poiseuille flow, for sufficiently small Rep, can be
calculated within a Jeffery-averaged approximation. Within this framework, spheroid lift
profiles differ from those for a sphere only by a multiplicative factor, regardless of Rec,
which leads to the original Segre–Silberberg equilibria being dependent on Rec but not on
the aspect ratio κ; this κ independence is broadly consistent with the findings of Nizkaya
et al. (2020). The multiplicative factor above is the ratio of the Jeffery-averaged spheroid
stresslet to the sphere stresslet, and is a function of C and κ in the general case; for times
relevant to cross-stream migration, and that are much longer than those characterizing the
inertia-induced orientation drift, it is only a function of κ since C now corresponds to the
inertially stabilized orbit. While the exact κ dependence of this stresslet ratio is evidently
non-trivial, for the moderate aspect ratio spinning oblate spheroids considered in Nizkaya
et al. (2020), this dependence is approximately linear, consistent with the simpler O(L3b)

lift force scaling proposed therein. The Jeffery-averaged approximation only requires
Rep � 1 for spheroids with κ ∼ O(1); the inertial correction to the rotation period occurs
at O(Re3/2

p ) for these cases (Marath & Subramanian 2017). However, this approximation
becomes increasingly restrictive for spheroids with asymptotically large and small κ , and
with increasing Rec. Deviations from this approximation owing to inertia-induced slow
down of rotation and eventual arrest, that lead to κ-dependent equilibria for extreme
aspect ratio spheroids, will be reported in a future investigation. Herein, we only note
that accounting for the rotational slow down leads to the equilibria migrating back towards
the centreline beyond a certain κ-dependent Rec threshold, this being consistent with both
experiments (Masaeli et al. 2012) and computations (Chen, Pan & Chang 2012).

En-route to deriving the Jeffery-averaged lift on a spheroid, we presented, in some
detail, the inertial lift profiles for a sphere in plane Poiseuille flow. While most of these
results are known from earlier literature, and are spread across multiple efforts (Ho &
Leal 1974; Vasseur & Cox 1976; Schonberg & Hinch 1989; Asmolov 1999), each of these
only pertains to specific ranges of Rec. Moreover, there are important features of the lift
profile not reported in any of these efforts. We have expressed the small-Rec sphere lift
velocity, obtained within the framework of a point-particle approximation, in terms of
a one-dimensional Fourier integral, with detailed expressions for the integrands given in
Appendix B. These expressions allow one to analytically determine the near-wall lift value.
The arguments leading to this limiting value also show that it must be independent of Rec,
numerical evidence for which is provided by the finite-Rec lift profiles obtained using a
shooting technique. Furthermore, the near-wall limiting lift was also identified with the
far-field limit of the lift acting on a finite-sized sphere moving parallel to a single plane
wall subject to a linear shearing flow. This connection allows one, in principle, to construct
a uniformly valid lift profile across the entire channel. We also established the surprisingly

974 A39-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

81
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.817


P. Anand and G. Subramanian

large range of validity (up to Rec ≈ 10) of the small-Rec approximation derived first by Ho
& Leal (1974) and Vasseur & Cox (1976).

The scaling arguments in § 3.2 are a crucial element of the overall analysis, and clearly
show that the dominant scales contributing to the inertial lift remain much greater than the
particle size, regardless of Rec. This leads to use of a point-particle framework to obtain the
leading-order approximation for the inertial lift, with scaling arguments identifying both
competing contributions due to profile curvature and wall-shear-induced repulsion. The
first lift force calculation for a sphere, by Ho & Leal (1974) for Rec � 1, used the same
reciprocal theorem formulation as that given here. Although in a less transparent form,
the said authors, via scaling arguments, did recognize the dominant contribution of the
linearized inertial terms, on scales of O(H), to the reciprocal theorem volume integral. The
effect of confining plane boundaries was modelled differently, and in a manner not readily
generalizable to a spheroid. Rather than directly consider the relevant point singularity
(Stokeslet or stresslet) between plane parallel walls, the authors used a partial Fourier
representation of the full form of the unbounded domain velocity field, including both
the finite-size terms and the quadrupolar disturbance induced by the quadratic component
of the ambient flow, in order to derive the wall-induced contribution (the first reflection).
For evaluation of the final volume integral, the physical space integration appears to have
been done analytically, with the partial Fourier integral done numerically. Although more
circuitous, carrying out the physical space integration should have led to a residual Fourier
integral identical to the one obtained directly here from use of the convolution theorem.
While the inaccuracy of the resulting profile, and the errors in the equilibrium locations,
have been pointed out in the context of figure 2, the detailed calculational procedure in
Ho & Leal (1974) is correct, and the origin of the errors remains uncertain. In contrast
to the intuitive scaling arguments here, the later small-Rec lift calculation of Vasseur &
Cox (1976) made use of a velocity field that emerged from a formal matched asymptotics
expansions approach, developed in earlier papers by Cox & Brenner (1967, 1968).

The scaling arguments in § 3.2 can be generalized in several directions. First, the
arguments apply virtually unchanged to pipe Poiseuille flow. Thus, for small pipe Reynolds
numbers (Re), the dominant contributions to the inertial lift must arise from scales of
the order of the pipe radius, and a calculation of this lift would involve approximating
the particle as a stresslet within a cylindrical domain. The required Stokesian velocity
fields should either be obtainable from that known for a Stokeslet in this domain(Liron
& Shahar 1978), or be derivable in a manner similar to that in Appendix A (adapted to
cylindrical coordinates). Such an analysis would yield the radius of the Segre–Silberberg
annulus for Re → 0. Although finite-Re lift force profiles for pipe Poiseuille flow have
been computed earlier (Matas et al. 2009), the profiles differ significantly for the two
lowest Re’s examined (1 and 30), preventing one from inferring the range of validity
of a small-Re approximation. The small-Re analysis in § 3 can also be generalized to
ducts of non-circular cross-sections, provided one has the confined Stokeslet field for the
relevant cross-sectional geometry. The latter may be derivable for rectangular or elliptical
cross-sections, using the procedure in Appendix A, using the Greens function of the
(two-dimensional) Laplacian. The broken symmetry for the duct case should then allow
for the prediction of discrete inertial equilibria in the transverse plane, and their variation
with cross-sectional aspect ratio.

Importantly, the scaling arguments in § 3.2 allow for the systematic incorporation of
finite-size effects that modify the leading-order point-particle estimate of the inertial lift
velocity for both spheres and anisotropic particles in plane Poiseuille flow. As mentioned
in § 3.2, and discussed in more detail in Anand & Subramanian (2023), the finite-size
contributions involve an additional factor of λ, and pertain to the inner region (scales of
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the order of the particle size), implying that they arise independently of the outer-region
point-particle contribution. It is shown in Anand & Subramanian (2023) that, for spheres,
these contributions invariably become important for sufficiently large Rec, leading to the
emergence of a pair of new equilibria closer to the channel centreline, consistent with
the results of recent experiments. In contrast to the point-particle analysis presented here,
calculation of the finite-size contributions involves consideration of the nonlinear terms,
and also requires knowing the disturbance velocity field induced by a sphere in an ambient
quadratic flow. The analogous calculation for a spheroid will proceed along similar lines.
Although more complicated, the disturbance velocity field in an ambient quadratic flow,
for a spheroid of an arbitrary aspect ratio and orientation, may be constructed using a
superposition of the appropriate vector spheroidal harmonics (Dabade et al. 2015, 2016).
Crucially, the nonlinear inertial terms as well as the time dependence of the test velocity
field, that arise in the inner region, imply that there is no longer a simple proportionality
relationship between the finite-size contribution for a sphere and the Jeffery-averaged
version of the same for a spheroid. As a result, one expects the incorporation of finite-size
contributions to lead to κ-dependent equilibria, for neutrally buoyant spheroids, even
within a Jeffery-averaged framework.

The above role of finite-size effects will be examined in a separate communication.
Herein, we only mention a recent calculation of shape-selective lift forces for spheroids
in an unbounded ambient quadratic flow by Bagge et al. (2021). The lift force in this case
arises due to particle inertia alone, that is, for a finite Stokes number (St) and Re = 0;
the force is directed towards increasing shear rate. For small St, the resulting lift velocity
is of O(St γ L2), as also expected from dimensional considerations, with St = ρpγ L3/μ
in terms of the ambient profile curvature. Using ρp = ρf for neutrally buoyant particles,
and γ = Vmax/H2, one finds the lift velocity to be O(RepVmaxλ

3), or O(λ2) smaller than
the point-particle contribution calculated here, and also O(λ) smaller than the finite-size
inner-region contribution described above. The contribution in question stems from the
term in (3.16) that couples the spheroid velocity in the test problem to the translational
acceleration of the spheroid in the actual problem. For this contribution to therefore
be relevant, one requires sufficiently massive spheroids with St ∼ O(Rep/λ

2) 
 Rep;
although, even in this limit, one needs to account for the angular acceleration contribution
in (3.16) that explicitly invokes the presence of boundaries.
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Appendix A

Herein, we solve for the disturbance field due to a Stokeslet (point force) confined between
plane parallel boundaries. Recall that the partially Fourier transformed Stokeslet, ûSt,
appears in the final expression for the lift velocity integral viz. (3.25). In physical space the
disturbance field uSt satisfies the equations

∇2uSt − ∇pSt = −12δ(r), (A1a)

∇ · uSt = 0, (A1b)
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with the boundary conditions

uSt = 0 at r2 = −sλ−1, (1 − s)λ−1, (A2a)

uSt → 0 for r1, r3 → ∞. (A2b)

The problem of a Stokeslet in the vicinity of a single plane wall was solved for by Blake
(1971), using the method of images. Liron & Mochon (1976) calculated the disturbance
field due to a Stokeslet between two parallel walls, by taking repeated reflections of
Blake’s single wall solution and superposing these as an infinite but convergent series.
This approach, however, turns out to be quite tedious, and one can instead derive uSt using
another method described originally by Vasseur & Cox (1976), and later used by Swan &
Brady (2010). In this procedure, instead of taking repeated reflections of the single wall
solution, one can satisfy the no-slip condition on both channel walls at one go. One writes
the velocity field as

uSt = u∞
St + uw

St, (A3)

with an analogous decomposition for the pressure field. Here, u∞
St is the Stokeslet velocity

field in an unbounded domain, given by

u∞
St = J∞ · 12, (A4)

where J∞ = 1/8π(I/r + rr/r3) is the Oseen–Burger’s tensor; here r = x − y defines the
position of any point x in the domain relative to the Stokeslet location y. The second
contribution in (A3) is the one that accounts for the no-slip conditions at the channel
walls, and satisfies

∇2uw
St − ∇pw

St = 0, (A5a)

∇ · uw
St = 0, (A5b)

with no-slip boundary conditions written as

uw
St = −u∞

St at r2 = −y2, 1 − y2, (A6)

where y2 = sλ−1. The solution to (A5a,b) is easily obtained by Fourier transforming the
flow and vorticity coordinates, with the partial Fourier transform being defined as

f̂ =
∫ ∫

dr1 dr3 exp(ι(k1r1 + k3r3))f . (A7)

Fourier transforming (A5a,b) in accordance with (A7), one obtains

d2ûw
St,i

dr2
2

− k2
⊥ûw

St,i + ι(k1δi1 + k3δi3) p̂w
St − δi2

dp̂w
St

dr2
= 0, (A8a)

dûw
St,2

dr2
− ι(k1 ûw

St,1 + k3 ûw
St,3) = 0, (A8b)

where i = 1, 2, 3 and k2
⊥ = k2

1 + k2
3. The partial Fourier transform, ûw

St, satisfies the same
boundary conditions as the physical space velocity field above except that one uses
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û∞
St instead of u∞

St on the right-hand side. Here, û∞
St = Ĵ∞ · 12 with the partial Fourier

transform of the Oseen–Burger’s tensor given by

Ĵ∞ = 1
8π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2e−k⊥|r2|π(k2
3 + k2

⊥ + k⊥(k2
3 − k2

⊥) |r2|)
k3
⊥

2ιe−k⊥|r2|k1πr2

k⊥

2ιe−k⊥|r2|k1πr2

k⊥
2e−k⊥|r2|π(k⊥ |r2| + 1)

k⊥

−2e−k⊥|r2|k1k3π(k⊥ |r2| + 1)

k3
⊥

2ιe−k⊥|r2|k3πr2

k⊥

−2e−k⊥|r2|k1k3π(k⊥ |r2| + 1)

k3
⊥

2ιe−k⊥|r2|k3πr2

k⊥

−2e−k⊥|r2|π(k⊥ |r2| k2
3 + k2

3 − 2k2
⊥)

k3
⊥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A9)

It is worth mentioning that, in contrast to the velocity field due to a Stokeslet in an
unbounded domain (A4) that only depends on y via the position vector r = x − y, the
bounded domain contribution, apart from its dependence on r, also depends explicitly on
the location of the singularity via the wall boundary conditions (A6). Thus, uw

St ≡ uw
St(r; y).

To begin with, one derives the equation governing the pressure field by taking the
divergence of both sides in (A8a) and using the incompressibility condition (A8b), leading
to

d2

dr2
2

p̂w
St − k2

⊥ p̂w
St = 0. (A10)

This ODE can be solved to give p̂w
St = [Am(k⊥; y2)e−k⊥r2 + Bm(k⊥; y2)e−k⊥r2]δm2, where

Am and Bm are unknown vectors. After substituting this solution in (A8a), one may use the
variation of parameters (Arfken et al. 2011) to solve the resulting inhomogeneous ODE to
obtain

ûw
St = Ĵ w · 12, (A11)

where Ĵ w, the Fourier transform of the second-order tensor J w (uw
St = J w · 1s), is defined

as

Ĵw
im = Cim(k⊥; y2)ek⊥r2 + Dim(k⊥; y2)e−k⊥r2 + 1

4k2
⊥

[
Am(k⊥; y2)die−k⊥r2(2k⊥r2 + 1)

+Bm(k⊥; y2)d̄iek⊥r2(2k⊥r2 − 1)
]
. (A12)

Here, di = k⊥δi2 + ι(k1δi1 + k3δi3) and d̄i = k⊥δi2 − ι(k1δi1 + k3δi3). We now determine
the unknown second-order tensors Cim and Dim and the vectors Am and Bm, using the
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no-slip conditions on the walls, which can be written as

ûw
St = −Ĵ∞|L · 12 at r2 = −y2, (A13)

ûw
St = −Ĵ∞|U · 12 at r2 = 1 − y2, (A14)

where the superscripts ‘L’ and ‘U’ denote the value of the Fourier-transformed
Oseen–Burger’s tensor calculated on the lower wall and upper wall, respectively. Using
the incompressibility condition (A8b),

Am = 2Dim di, (A15)

Bm = −2Cim d̄i. (A16)

The wall boundary conditions (A13) and (A14) along with the relations (A15) and (A16)
can be solved simultaneously to obtain

Am = Ym sinh(k⊥λ−1) + Zmk⊥λ−1ek⊥(λ−1−2y2)

sinh2(k⊥λ−1) − (k⊥λ−1)2
, (A17)

Bm = Ymk⊥λ−1e−k⊥(λ−1−2y2) + Zm sinh(k⊥λ−1)

sinh2(k⊥λ−1) − (k⊥λ−1)2
, (A18)

Ym = −dj(Ĵ∞
jm |Lek⊥(λ−1−y2) − Ĵ∞

jm |Ue−k⊥y2), (A19)

Zm = −d̄j(Ĵ∞
jm |Le−k⊥(λ−1−y2) − Ĵ∞

jm |Uek⊥y2), (A20)

Cim = Fime−k⊥(λ−1−y2) − Gimek⊥y2

e−k⊥λ−1 − ek⊥λ−1 , (A21)

Dim = Gime−k⊥y2 − Fimek⊥(λ−1−y2)

e−k⊥λ−1 − ek⊥λ−1 , (A22)

Fim = −Ĵ∞
im |L − 1

4k2
⊥

[Amdiek⊥y2(1 − 2k⊥y2) − Bmd̄ie−k⊥y2(1 + 2k⊥y2)], (A23)

Gim = −Ĵ∞
im |U − 1

4k2
⊥

[Amdie−k⊥(λ−1−y2)(1 + 2k⊥(λ−1 − y2)),

+Bmd̄iek⊥(λ−1−y2)(2k⊥(λ−1 − y2) − 1)]. (A24)

Finally, the partial Fourier transform of the velocity field due to the Stokeslet confined
between plane parallel walls is written as

ûSt = Ĵ · 12, (A25)
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where Ĵ (k1, r2, k3; y2) = Ĵ∞(k1, r2, k3) + Ĵ w(k1, r2, k3; y2), with Ĵ∞ and Ĵ w being
defined in (A9) and (A12), respectively.

Appendix B

The functions I(k′′
⊥, s) and J(k′′

⊥, s) that appear in the integrands, in the expressions for
F(s) and G(s) given by (3.48) and (3.49) in the main paper, are defined as

I(k′′
⊥, s) = −ek′′

⊥(25s+18)(s − 1)2
[
3k′′2

⊥ (s − 1)2 − 2k′′
⊥(s − 1) + 3

]
+ ek′′

⊥(29s+24)(s − 1)2[3k′′2
⊥ (s − 1)2 + 2k′′

⊥(s − 1) + 3
]

− 2(2s − 1)e3k′′
⊥(9s+8)

[
6k′′3

⊥ (s − 1)s

− 4k′′2
⊥ (s − 1)s − 3

]− 2(2s − 1)e9k′′
⊥(3s+2)

[
6k′′3

⊥ (s − 1)s + 4k′′2
⊥ (s − 1)s + 3

]
− s2ek′′

⊥(25s+26)(3k′′2
⊥ s2 − 2k′′

⊥s + 3) + s2ek′′
⊥(29s+16)(3k′′2

⊥ s2 + 2k′′
⊥s + 3)

− 2ek′′
⊥(27s+20)

[
8k′′4

⊥ s(2s2 − 3s + 1) − 6k′′3
⊥ s(2s2 − 3s + 1)

−12k′′2
⊥ (2s3 − 3s2 + 3s − 1) − 18s + 9

]
+ 2ek′′

⊥(27s+22)
[
8k′′4

⊥ s(2s2 − 3s + 1)

+6k′′3
⊥ s(2s2 − 3s + 1) − 12k′′2

⊥ (2s3 − 3s2 + 3s − 1) − 18s + 9
]

+ e5k′′
⊥(5s+4)

[
12k′′4

⊥ (s − 1)2s2 + 4k′′3
⊥ (s − 1)2(4s − 1) + 3k′′2

⊥ (4s4 − 12s3 + 14s2

−12s + 5) − 2k′′
⊥(4s3 − 9s2 + 9s − 3) + 3(4s2 − 6s + 3)

]
− ek′′

⊥(29s+22)
[
12k′′4

⊥ (s − 1)2s2 − 4k′′3
⊥ (s − 1)2(4s − 1) + 3k′′2

⊥ (4s4 − 12s3 + 14s2

−12s + 5) + 2k′′
⊥(4s3 − 9s2 + 9s − 3) + 3(4s2 − 6s + 3)

]
+ ek′′

⊥(25s+24)
[
12k′′4

⊥ (s − 1)2s2 + 4k′′3
⊥ s2(4s − 3)

+3k′′2
⊥ (4s4 − 4s3 + 2s2 + 4s − 1)

+k′′
⊥(−8s3 + 6s2 − 6s + 2) + 12s2 − 6s + 3

]
− ek′′

⊥(29s+18)
[
12k′′4

⊥ (s − 1)2s2

− 4k′′3
⊥ s2(4s − 3) + 3k′′2

⊥ (4s4 − 4s3 + 2s2 + 4s − 1)

+k′′
⊥(8s3 − 6s2 + 6s − 2) + 12s2 − 6s + 3

]
− ek′′

⊥(25s+22)
[
24k′′4

⊥ (s − 1)2s2 + 4k′′3
⊥ (2s − 1)3

+3k′′2
⊥ (6s4 − 12s3 + 10s2 − 4s + 3)

−6k′′
⊥(2s3 − 3s2 + 3s − 1) + 9(2s2 − 2s + 1)

]
+ ek′′

⊥(29s+20)
[
24k′′4

⊥ (s − 1)2s2 − 4k′′3
⊥ (2s − 1)3

+3k′′2
⊥ (6s4 − 12s3 + 10s2 − 4s + 3)

+6k′′
⊥(2s3 − 3s2 + 3s − 1) + 9(2s2 − 2s + 1)

]
, (B1)
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J(k′′
⊥, s) = ek′′

⊥(25s+18)
[
8k′′5

⊥ (s − 1)5 − 6k′′4
⊥ (s − 1)4 + 60k′′3

⊥ (s − 1)3

+24k′′2
⊥ (s − 1)2 + 54k′′

⊥(s − 1) + 27
]

− 27ek′′
⊥(27s+16) − 27ek′′

⊥(27s+26)

+ ek′′
⊥(29s+24)

[− 8k′′5
⊥ (s − 1)5 − 6k′′4

⊥ (s − 1)4 − 60k′′3
⊥ (s − 1)3

+ 24k′′2
⊥ (s − 1)2 − 54k′′

⊥(s − 1) + 27
]

− ek′′
⊥(29s+16)

[
8k′′5

⊥ s5 + 6k′′4
⊥ s4 + 60k′′3

⊥ s3 − 24k′′2
⊥ s2 + 54k′′

⊥s − 27
]

+ ek′′
⊥(25s+26)

[
8k′′5

⊥ s5 − 6k′′4
⊥ s4 + 60k′′3

⊥ s3 + 24k′′2
⊥ s2 + 54k′′

⊥s + 27
]

+ e9k′′
⊥(3s+2)

[
32s(3s3 − 6s2 + 4s − 1)k′′6

⊥ + 8s(7s3 − 14s2 + 10s − 3)k′′5
⊥

+ 240(s − 1)sk′′4
⊥ + 24(s − 1)sk′′3

⊥ + 108k′′2
⊥ + 108k′′

⊥ + 81
]

+ e3k′′
⊥(9s+8)

[
32s(3s3 − 6s2 + 4s − 1)k′′6

⊥ − 8s(7s3 − 14s2 + 10s − 3)k′′5
⊥

+ 240(s − 1)sk′′4
⊥ − 24(s − 1)sk′′3

⊥ + 108k′′2
⊥ − 108k′′

⊥ + 81
]

− 2ek′′
⊥(27s+22)

[
16s(5s3 − 10s2 + 6s − 1)k′′7

⊥ + 16s(3s3 − 6s2 + 4s − 1)k′′6
⊥

− 12s(7s3 − 14s2 − 26s + 33)k′′5
⊥ + 120(s − 1)sk′′4

⊥ − 36(s2 − s + 6)k′′3
⊥

+ 54k′′2
⊥ − 162k′′

⊥ + 27
]+ 2ek′′

⊥(27s+20)
[
16s(5s3 − 10s2 + 6s − 1)k′′7

⊥
− 16s(3s3 − 6s2 + 4s − 1)k′′6

⊥ − 12s(7s3 − 14s2 − 26s + 33)k′′5
⊥

− 120(s − 1)sk′′4
⊥ − 36(s2 − s + 6)k′′3

⊥ − 54k′′2
⊥ − 162k′′

⊥ − 27
]

+ 2ek′′
⊥(29s+18)

[
16(s − 1)3s2k′′7

⊥ − 4(2 − 3s)2s2k′′6
⊥ + 4(4s5 − 5s4 + 28s3

− 22s2 − 5s + 1)k′′5
⊥ + 3(4s4 − 4s3 − 50s2 − 4s + 1)k′′4

⊥
+ 6(20s3 − 15s2 + 13s + 5)k′′3

⊥ − 6(8s2 − 4s + 11)k′′2
⊥ + 27(4s − 1)k′′

⊥ − 54
]

− 2ek′′
⊥(25s+24)

[
16(s − 1)3s2k′′7

⊥
+ 4s2(2 − 3s)2k′′6

⊥ + 4(4s5 − 5s4 + 28s3 − 22s2 − 5s + 1)k′′5
⊥

− 3(4s4 − 4s3 − 50s2 − 4s + 1)k′′4
⊥ + 6(20s3 − 15s2 + 13s + 5)k′′3

⊥
+ 6(8s2 − 4s + 11)k′′2

⊥ + 27(4s − 1)k′′
⊥ + 54

]
+ 2ek′′

⊥(29s+22)
[
16(s − 1)2s3k′′7

⊥ − 4(3s2 − 4s + 1)2k′′6
⊥ + 4(4s5 − 15s4

+ 48s3 − 72s2 + 35s − 1)k′′5
⊥ + 3(4s4 − 12s3 − 38s2 + 100s − 53)k′′4

⊥
+ 6(20s3 − 45s2 + 43s − 23)k′′3

⊥ − 6(8s2 − 12s + 15)k′′2
⊥

+ 27(4s − 3)k′′
⊥ − 54

]− 2e5k′′
⊥(5s+4)

[
16(s − 1)2s3k′′7

⊥ + 4(3s2 − 4s + 1)2k′′6
⊥

+ 4(4s5 − 15s4 + 48s3 − 72s2 + 35s − 1)k′′5
⊥

− 3(4s4 − 12s3 − 38s2 + 100s − 53)k′′4
⊥

+ 6(20s3 − 45s2 + 43s − 23)k′′3
⊥ + 6(8s2 − 12s + 15)k′′2

⊥ + 27(4s − 3)k′′
⊥ + 54

]
+ 2ek′′

⊥(25s+22)
[
16(s − 1)2s2(2s − 1)k′′7

⊥
+ 4(18s4 − 36s3 + 26s2 − 8s + 1)k′′6

⊥
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+ 4(6s5 − 15s4 + 66s3 − 84s2 + 25s + 1)k′′5
⊥

− 3(6s4 − 12s3 − 94s2 + 100s − 53)k′′4
⊥ + 6(30s3 − 45s2 + 41s − 13)k′′3

⊥
+ 72(s2 − s + 2)k′′2

⊥ + 81(2s − 1)k′′
⊥ + 81

]
− 2ek′′

⊥(29s+20)
[
16(s − 1)2s2(2s − 1)k′′7

⊥
− 4(18s4 − 36s3 + 26s2 − 8s + 1)k′′6

⊥
+ 4(6s5 − 15s4 + 66s3 − 84s2 + 25s + 1)k′′5

⊥
+ 3(6s4 − 12s3 − 94s2 + 100s − 53)k′′4

⊥ + 6(30s3 − 45s2 + 41s − 13)k′′3
⊥

− 72(s2 − s + 2)k′′2
⊥ + 81(2s − 1)k′′

⊥ − 81
]
. (B2)

Appendix C

Herein, we derive the jump conditions (4.7a–d). Starting off with the governing
equations (4.5a,b),

d2〈̂P〉
dR2

2
− k2

⊥〈̂P〉 = 2ιk1〈̂U2〉(β + 2γ ′′R2Re−1/2
c ) + 2β〈S21〉ιk1δ

′(R2), (C1a)

d2〈̂U2〉
dR2

2
− k2

⊥〈̂U2〉 = d〈̂P〉
dR2

− ιk1〈̂U2〉(βR2 + γ ′′R2
2Re−1/2

c ) − β〈S21〉ιk1δ(R2), (C1b)

where the prime (′) denotes differentiation with respect to R2. Since the singular forcings
on the right-hand side arise from the highest-order derivative, one can postulate the
following forms:

〈̂P〉 = 〈̂P〉−(R2) + [〈̂P〉+(R2) − 〈̂P〉−(R2)]H(R2), (C2)

〈̂U2〉′ = 〈̂U2〉−
′
(R2) + [〈̂U2〉+

′
(R2) − 〈̂U2〉−

′
(R2)]H(R2). (C3)

Here the superscripts ‘+’ and ‘−’ denote the function definitions for R2 > 0 and R2 < 0,
respectively, and H(R2) is the Heaviside function. Differentiating (C2) twice gives

〈̂P〉′ = 〈̂P〉−′
(R2) + [〈̂P〉+′

(R2) − 〈̂P〉−′
(R2)]H(R2) + [〈̂P〉+(R2) − 〈̂P〉−(R2)]δ(R2),

(C4)

〈̂P〉′′ = 〈̂P〉−′′
(R2) + [〈̂P〉+′′

(R2) − 〈̂P〉−′′
(R2)]H(R2) + 2[〈̂P〉+′

(R2) − 〈̂P〉−′
(R2)]δ(R2)

+ [〈̂P〉+(R2) − 〈̂P〉−(R2)]δ′(R2). (C5)

Differentiating (C3) once gives

〈̂U2〉′′ = 〈̂U2〉−
′′
(R2) + [〈̂U2〉+

′′
(R2) − 〈̂U2〉−

′′
(R2)]H(R2)

+ [〈̂U2〉+
′
(R2) − 〈̂U2〉−

′
(R2)]δ(R2). (C6)

Integrating (C3) gives

〈̂U2〉 = 〈̂U2〉−(R2) + [〈̂U2〉+(R2) − 〈̂U2〉−(R2)]H(R2) − [〈̂U2〉+(0+) − 〈̂U2〉−(0−)].
(C7)

974 A39-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

81
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.817


P. Anand and G. Subramanian

To obtain the jump in the aforementioned fields across R2 = 0, one can multiply (C1a)
and (C1b) with Rn

2, where n = 0 and 1. The resulting expressions can then be integrated
with the help of the expressions (C2)–(C7). Multiplying (C1a) with R2 and integrating the
resulting expression from R2 = 0− to 0+ gives

〈̂P〉+(0+) − 〈̂P〉−(0−) = 2ιβk1〈S12〉. (C8)

Next, (C1a) can be integrated across R2 = 0 to yield

〈̂P〉+′
(0+) = 〈̂P〉−′

(0−). (C9)

Equation (C1b) can be integrated across R2 = 0 to yield

〈̂U2〉+
′
(0+) − 〈̂U2〉−

′
(0−) = ιβk1〈S12〉. (C10)

Finally, one can multiply (C1b) with R2 and integrate from R2 = 0− to 0+ to obtain

〈̂U2〉+(0+) = 〈̂U2〉−(0−). (C11)

This concludes the derivation of all the jump conditions.

Appendix D

Equations (4.5a,b), written as a set of four first-order ODEs, take the form

Φ ′ = B · Φ, (D1)

where

Φ ′ =

⎡⎢⎢⎢⎢⎣
d〈̂U2〉/dR2

d〈̂U2〉′/dR2

d〈̂P〉/dR2

d〈̂P〉′/dR2

⎤⎥⎥⎥⎥⎦ , Φ =

⎡⎢⎢⎢⎢⎣
〈̂U2〉
〈̂U2〉′
〈̂P〉
〈̂P〉′

⎤⎥⎥⎥⎥⎦ , (D2a)

B =

⎡⎢⎢⎣
0 1 0 0

k2
⊥ − ιk1(βR2 + γ ′′R2

2Re−1/2
c ) 0 0 1

0 0 0 1
2ιk1(β + 2γ ′′R2Re−1/2

c ) 0 k2
⊥ 0

⎤⎥⎥⎦ . (D2b)

The general solution to (D1) can be written as

Φ−(R2) = c−
1 Φ−

1 + c−
2 Φ−

2 + c−
3 Φ−

3 + c−
4 Φ−

4 for − sRe1/2
c ≤ R2 < 0, (D3)

Φ+(R2) = c+
1 Φ+

1 + c+
2 Φ+

2 + c+
3 Φ+

3 + c+
4 Φ+

4 for 0 < R2 ≤ (1 − s)Re1/2
c , (D4)

where each of the Φ−
i ’s and Φ+

i ’s constitute a set of four linearly independent solution
vectors, with the c−

i ’s and c+
i ’s being the corresponding integration constants. We choose
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Inertial migration of a spheroid in plane Poiseuille flow

the following Φ−
i ’s and Φ+

i ’s on the walls:

[
Φ−

1 (−s Re1/2
c ), Φ−

2 (−s Re1/2
c ), Φ−

3 (−s Re1/2
c ), Φ−

4 (−s Re1/2
c )
]

=

⎡⎢⎣0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎦ ,

(D5)[
Φ+

1 ((1 − s) Re1/2
c ), Φ+

2 ((1 − s) Re1/2
c ), Φ+

3 ((1 − s) Re1/2
c ), Φ+

4 ((1 − s) Re1/2
c )
]

=

⎡⎢⎣0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎦ . (D6)

Using the boundary condition at the lower wall (D5) in (D3), and the boundary condition
on the upper wall (D6) in (D4), one obtains c−

3 = c−
4 = c+

3 = c+
4 = 0. Therefore,

Φ−(R2) = c−
1 Φ−

1 + c−
2 Φ−

2 , (D7)

Φ+(R2) = c+
1 Φ+

1 + c+
2 Φ+

2 . (D8)

The NDSolve subroutine in the symbolic computation software Mathematica may be
employed to solve for the solutions that appear in (D7) and (D8). To accomplish
this, the entire integration interval in R2 can be divided into subintervals bounded by
‘orthonormalization’ points yi. One may then use NDSolve to integrate the relevant
solution from yi to yi+1, starting from either the upper or lower boundary. At yi+1, one
may use Gram–Schmidt orthogonalization to orthonormalize the solution vectors Φ−

1 and
Φ−

2 , and Φ+
1 and Φ+

2 . The orthonormalization at regular intervals is necessary since the
initially linearly independent vectors Φ−

1 and Φ−
2 (for R2 < 0), and Φ+

1 and Φ+
2 (for

R2 > 0), become increasingly collinear as the numerical integration progresses, leading
to a loss of accuracy.

Following the above procedure, one shoots all the way upto the particle location, R2 = 0,
to obtain

Φ−(0−) = c−
1 Φ−

1 (0−) + c−
2 Φ−

2 (0−), (D9)

Φ+(0+) = c+
1 Φ+

1 (0+) + c+
2 Φ+

2 (0+). (D10)

One may now use the jump conditions (4.7a–d), which yields

Φ+(0+) − Φ−(0−) = C ·

⎡⎢⎢⎢⎣
c+

1

c+
2

c−
1

c−
2

⎤⎥⎥⎥⎦ =

⎡⎢⎣ 0
ιk1β〈S12〉
2ιk1β〈S12〉

0

⎤⎥⎦ , (D11)

where

C =

⎡⎢⎢⎢⎢⎣
Φ+

11(0
+) Φ+

21(0
+) −Φ−

11(0
−) −Φ−

21(0
−)

Φ+
12(0

+) Φ+
22(0

+) −Φ−
12(0

−) −Φ−
22(0

−)

Φ+
13(0

+) Φ+
23(0

+) −Φ−
13(0

−) −Φ−
23(0

−)

Φ+
14(0

+) Φ+
24(0

+) −Φ−
14(0

−) −Φ−
24(0

−)

⎤⎥⎥⎥⎥⎦ . (D12)
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The matrix C can be inverted to obtain the constants c+
1 , c+

2 , c−
1 and c−

2 , which can then
be used to write

〈̂U2〉−(k1, 0−, k3) = c−
1 Φ−

11(0
−) + c−

2 Φ−
21(0

−), (D13)

〈̂U2〉+(k1, 0+, k3) = c+
1 Φ+

11(0
+) + c+

2 Φ+
21(0

+). (D14)

Either 〈̂U2〉+(k1, 0+, k3) or 〈̂U2〉−(k1, 0−, k3) can be used in (4.8) to obtain the spheroid
migration velocity.
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