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Abstract

Let S denote the class of univalent functions in the open unit disc D := {z ∈ C : |z| < 1} with the form
f (z) = z +

∑∞
n=2 anzn. The logarithmic coefficients γn of f ∈ S are defined by F f (z) := log( f (z)/z) =

2
∑∞

n=1 γnzn. The second Hankel determinant for logarithmic coefficients is defined by

H2,2(F f /2) =

∣∣∣∣∣∣
γ2 γ3

γ3 γ4

∣∣∣∣∣∣ = γ2γ4 − γ2
3.

We obtain sharp upper bounds of the second Hankel determinant of logarithmic coefficients for starlike
and convex functions.
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1. Introduction

Let H denote the class of analytic functions in the unit disk D := {z ∈ C : |z| < 1}.
Here, H is a locally convex topological vector space endowed with the topology of
uniform convergence over compact subsets of D. Let A denote the class of functions
f ∈ H such that f (0) = 0 and f ′(0) = 1. Let S denote the subclass ofA consisting of
functions which are univalent (that is, one-to-one) in D. If f ∈ S, then it has the series
representation

f (z) = z +
∞∑

n=2

anzn, z ∈ D. (1.1)

The logarithmic coefficients γn of f ∈ S are defined by

F f (z) := log
f (z)
z
= 2

∞∑
n=1

γnzn, z ∈ D. (1.2)
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The logarithmic coefficients γn play a central role in the theory of univalent functions.
A very few exact upper bounds for γn seem to have been established. Milin [17]
highlighted the importance of the logarithmic coefficients within the framework of
the Bieberbach conjecture. For f ∈ S and n ≥ 2, Milin conjectured that

n∑
m=1

m∑
k=1

(
k|γk |2 −

1
k

)
≤ 0.

De Branges [9] proved the Bieberbach conjecture by proving Milin’s conjecture. The
logarithmic coefficients for the Koebe function k(z) = z/(1 − z)2 are γn = 1/n. For
many extremal problems in the class S, the Koebe function k(z) serves as the extremal
function; thus, |γn| ≤ 1/n was predicted to hold for functions in S. However, this is
not always the case, not even in order of magnitude. Indeed, there exists a bounded
function f in the classSwith logarithmic coefficients γn � O(n−0.83) (see [10, Theorem
8.4]). By differentiating (1.2) and then equating coefficients,

γ1 =
1
2 a2,

γ2 =
1
2 (a3 − 1

2 a2
2),

γ3 =
1
2 (a4 − a2a3 +

1
3 a3

2),

γ4 =
1
4 (a5 − a2a4 + a2

2a3 − 1
2 a2

3 − 1
4 a2

2).

(1.3)

If f ∈ S, it is easy to see that |γ1| ≤ 1, because |a2| ≤ 2. Using the Fekete–Szegö
inequality [10, Theorem 3.8] for functions in S in (1.3), we obtain the sharp estimate

|γ2| ≤ 1
2 (1 + 2e−2) = 0.635 . . . .

For n ≥ 3, the problem seems much harder, and no significant bounds for |γn| when
f ∈ S appear to be known. In 2017, Ali and Allu [1] obtained bounds for the initial
logarithmic coefficients for close-to-convex functions. The problem of computing
bounds for the logarithmic coefficients is considered in [2, 8, 20, 21] for several
subclasses of close-to-convex functions.

Given q, n ∈ N, the Hankel determinant Hq,n( f ) of the Taylor coefficients of a
function f ∈ A of the form (1.1) is defined by

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

. . .
...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Hankel determinants of various order have been studied recently by several authors
(see [5, 18, 19]). One can easily observe that the Fekete–Szegö functional is the second
Hankel determinant H2,1( f ). Fekete and Szegö generalised the estimate to |a3 − μa2

2|
with μ real for f given by (1.1) (see [10, Theorem 3.8]).
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Kowalczyk and Lecko [13] studied the Hankel determinant whose entries are
logarithmic coefficients of f ∈ S,

Hq,n(F f /2) =

∣∣∣∣∣∣∣∣∣∣∣∣

γn γn+1 · · · γn+q−1
γn+1 γn+2 · · · γn+q

...
...

. . .
...

γn+q−1 γn+q · · · γn+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
.

They obtained sharp bounds for |H2,1(F f /2)| for the classes of convex and starlike
functions. In [14], they gave sharp bounds for |H2,1(F f /2)| for the classes of starlike
and convex functions of order α (0 ≤ α < 1) and, in [15], they gave sharp bounds for
|H2,1(F f /2)| for the classes of strongly starlike and strongly convex functions. Allu and
Arora [3] obtained sharp bounds for |H2,1(F f /2)| for various subclasses of univalent
functions. Allu et al. [4] obtained sharp bounds for |H2,1(F f /2)| for the classes of
starlike and convex functions with respect to symmetric points. Recently, Allu and
Shaji [6] obtained the sharp bound for the second Hankel determinant for inverse
logarithmic coefficients for the classes of convex and starlike functions. Also, Eker
et al. [12] obtained sharp bounds for |H2,1(F f /2)| for the classes of strongly Ozaki
close-to-convex functions and their inverse functions.

In this paper, we consider the second Hankel determinant for logarithmic coeffi-
cients of order 2, that is,

H2,2(F f /2) =

∣∣∣∣∣∣
γ2 γ3
γ3 γ4

∣∣∣∣∣∣ = γ2γ4 − γ2
3.

From (1.3),

H2,2(F f /2) = 1
288 (a6

2 − 6a4
2a3 + 18a2

2a2
3 − 36a3

3 − 12a3
2a4 + 72a2a3a4

− 72a2
4 − 36a2

2a5 + 72a3a5). (1.4)

It is now appropriate to remark that |H2,2(F f −1/2)| is invariant under rotation, since for
fθ(z) := e−iθ f (eiθz), θ ∈ R and f ∈ S,

H2,2(F fθ /2) =
ei6θ

288
(a6

2 − 6a4
2a3 + 18a2

2a2
3 − 36a3

3 − 12a3
2a4 + 72a2a3a4

− 72a2
4 − 36a2

2a5 + 72a3a5) = ei6θH2,2(F f /2).

The main aim of this paper is to a find sharp upper bound for |H2,2(F f /2)| when f
belongs to the class of starlike and convex functions. A domain Ω ⊆ C is said to be
starlike with respect to a point z0 ∈ Ω if the line segment joining z0 to any point in Ω
lies entirely in Ω. If z0 is the origin, then we say that Ω is a starlike domain. A function
f ∈ A is said to be starlike if f (D) is a starlike domain. We denote by S∗ the class of
starlike functions f in S. It is well known that a function f ∈ A is in S∗ if and only if

Re
(z f ′(z)

f (z)

)
> 0 for z ∈ D. (1.5)
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Further, a domain Ω ⊆ C is called convex if the line segment joining any two points of
Ω lies entirely in Ω. A function f ∈ A is called convex if f (D) is a convex domain. We
denote by C the class of convex functions in S. A function f ∈ A is in C if and only if

Re
(
1 +

z f ′′(z)
f ′(z)

)
> 0 for z ∈ D. (1.6)

2. Preliminary results

In this section, we present the key lemmas which will be used to prove the main
results of this paper. Let P denote the class of all analytic functions p having positive
real part in D, with the form

p(z) = 1 + p1z + p2z2 + p3z3 + · · · . (2.1)

Members of P are called Carathéodory functions. To prove our Theorem 3.1, we need
the following lemmas.

LEMMA 2.1 [10]. For a function p ∈ P of the form (2.1), the sharp inequality |pn| ≤ 2
holds for each n ≥ 1. Equality holds for the function p(z) = (1 + z)/(1 − z).

LEMMA 2.2 [16]. For a function p ∈ P of the form (2.1), the sharp inequality
|pn − pk pn−k | ≤ 2 holds for n ≥ 2 and k ≥ 1.

In view of Lemma 2.2, it is easy to see that |pn+1 pn−1 − p2
n| ≤ 4 for a function p ∈ P

of the form (2.1) and n ≥ 2. In particular, if n = 3,

|p2 p4 − p2
3| ≤ 4. (2.2)

Let B0 denote the class of analytic functions w : D→ D such that w(0) = 0.
Functions inB0 are known as the Schwarz functions. A function w ∈ B0 can be written
as a power series

w(z) =
∞∑

n=1

cnzn. (2.3)

It is clear that if

p(z) =
1 + ω(z)
1 − ω(z)

,

then p ∈ P if and only if ω ∈ B0.
Due to the evident connection between Carathéodory functions and Schwarz

functions, the results applicable to the coefficients of Schwarz functions are useful in
solving coefficient problems associated with starlike and convex functions. To prove
Theorem 3.3, we need the following lemmas for the Schwarz functions.

LEMMA 2.3 [7]. Let w(z) = c1z + c2z2 + · · · be a Schwarz function. Then,

|c1| ≤ 1, |c2| ≤ 1 − |c1|2 and |c3| ≤ 1 − |c1|2 −
|c2|2

1 + |c1|
.
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LEMMA 2.4 [11]. If ω ∈ B0 of the form (2.3) and λ ∈ C, then

|c4 + 2c1c3 + λc2
2 + (1 + 2λ)c2

1c2 + λc4
1| ≤ max{1, |λ|}.

LEMMA 2.5 [22]. If ω ∈ B0 of the form (2.3), then

|c2c4 − c2
3 + c2

1c4 − 2c1c2c3 + c3
2| ≤ 1 − |c1|2.

3. Main results

THEOREM 3.1. If f ∈ S∗, then

|H2,2(F f /2)| ≤ 1
8 .

The bound is sharp.

PROOF. Let f ∈ S∗ be of the form (1.1). By (1.5),

z f ′(z)
f (z)

= p(z) (3.1)

for some p ∈ P of the form (2.1). By comparing the coefficients on both sides of (3.1),

a2 = p1,

a3 =
1
2 (p2

1 + p2),

a4 =
1
6 (p3

1 + 3p1 p2 + 2p3),

a5 =
1

24 (p4
1 + 6p2

1 p2 + 3p2
2 + 8p1 p3 + 6p4).

(3.2)

Hence, by (1.4),

H2,2(F f /2) = 1
288 (9p2 p4 − 8p2

3).

By taking the modulus on both sides and applying the triangle inequality,

|H2,2(F f /2)| ≤ 1
288 (8|p2 p4 − p2

3|) + |p2||p4| ≤ 36
288 =

1
8 .

Equality holds for the function f ∈ A given by (3.1), where

p(z) =
1 + z2

1 − z2 .

Then, c1 = c3 = 0 and c2 = c4 = 2. So by (3.2), a2 = 0, a3 = 1, a4 = 0 and a5 = 1.
Therefore, by (1.4),

|γ2γ4 − γ2
3 | = 1

8 ,

which completes the proof of the theorem. �

EXAMPLE 3.2. The Koebe function,

k(z) =
z

(1 − z)2 = z + 2z2 + 3z3 + 4z4 + 5z5 + · · · ,

has logarithmic coefficients γn = 1/n and |γ2γ4 − γ2
3 | = 1/72.
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THEOREM 3.3. If f ∈ C, then

|H2,2(F f /2)| ≤ 13
1080 . (3.3)

The bound is sharp.

PROOF. Let f ∈ C be of the form (1.1). By (1.6),

1 +
z f ′′(z)
f ′(z)

=
1 + ω(z)
1 − ω(z)

(3.4)

for some ω ∈ B0 of the form (2.3). By comparing the coefficients of powers of z on
both sides of (3.4),

a2 = c1,

a3 =
1
3 (3c2

1 + c2),

a4 =
1
6 (6c3

1 + 5c1c2 + c3),

a5 =
1

30 (30c4
1 + 43c2

1c2 + 6c2
2 + 14c1c3 + 3c4).

(3.5)

Hence, by (1.4),

H2,2(F f /2) = 1
4320 (15c6

1 + 54c4
1c2 + 24c2

1c2
2 + 52c3

2 + 42c3
1c3

− 72c1c2c3 − 30c2
3 + 54c2

1c4 + 36c2c4). (3.6)

By rearranging the terms in (3.6), we can write the right-hand side as

1
4320 (36(c2c4 − c2

3 + c2
1c4 − 2c1c2c3 + c3

2) + 16c2
1(c4 + 2c1c3 + c2

2 + 3c2
1c2 + c4

1)

+ 3c2
1(c4 + 2c1c3 + c2

1c2) + c2
1(6c2

1c2 + 9c2
2 + 6c1c3) + 16c2

2 + 6c2
3).

By applying the triangle inequality and using Lemmas 2.3, 2.4 and 2.5,

|H2,2(F f /2)| ≤ 1
4320 g(|c1|, |c2|),

where

g(x, y) = 18x2 + 36(1 − x2) + 6x4y + 16y3 + 9x2y2

+ 6x3
(
1 − x2 − y2

1 + x

)
+ 6
(
1 − x2 − y2

1 + x

)2
.

Since the class C and the functional |H2,2(F f /2)| are rotationally invariant, we can
assume that c ∈ [0, 1]. Further, in view of Lemma 2.1, the region of variability of the
pair (x, y) coincides with the set

Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x2}.

Since y varies between 0 and 1, it is clear that

g(x, y) ≤ G(x, y),

https://doi.org/10.1017/S0004972724000947 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000947


[7] Second Hankel determinant of logarithmic coefficients 7

where

G(x, y) = 18x2 + 36(1 − x2) + 6x4y + 16y2 + 9x2y2

+ 6x3
(
1 − x2 − y2

1 + x

)
+ 6
(
1 − x2 − y2

1 + x

)2
.

Therefore,

|H2,2(F f /2)| ≤ 1
4320 G(x, y). (3.7)

We need to find the maximum value of G(x, y) over the regionΩ. The critical points
of G satisfy the conditions

∂G
∂x
=

6
(1 + x)2 (10x + 27x2 + 17x3 − 6x4 + 11x6 + 5x7 − 4x3y − 12x4y

− 12x5y − 4x6y − 2y2 − 9xy2 − 12x2y2 − 6x3y2 − x4y2 + 2y4) = 0

∂G
∂y
=

12x5 + 6x6 + 40xy + 74x2y + 48x3y + 6x4(1 + y) + 8(y + 3y3)
(1 + x)2 = 0.

It is clear that, in the interior of Ω, ∂G/∂y > 0. So the function G(x, y) has no critical
point in the interior of Ω and cannot have a maximum in the interior of Ω. Since G
is continuous in the compact set Ω, it attains its maximum on the boundary of Ω.
Considering the boundary of Ω leads to the following three cases.

Case (i): if x = 0 and 0 ≤ y ≤ 1, then G(0, y) = 42 + 4y2 + 6y4 ≤ 52.

Case (ii): if y = 0 and 0 ≤ x ≤ 1, then

G(x, 0) = 42 − 30x2 + 6x3 + 6x4 − 6x5 = h1(x).

Since h′1(x) = −60x + 18x2 + 24x3 − 30x4 < 0 for 0 < x ≤ 1, the function h1 is decreas-
ing. So G(x, 0) ≤ h1(0) = 42.

Case (iii): if y = 1 − x2 and 0 ≤ x ≤ 1, then

G(x, 1 − x2) = 52 − 35x2 − 2x4 + 3x6 = h2(x).

Clearly, h′2(x) = −70x − 8x3 + 18x5 < 0 for 0 < x < 1. Hence, the function h2 is
decreasing and G(x, 1 − x2) ≤ h2(0) = 52.

Thus, combining the three cases,

max
(x,y)∈Ω

G(x, y) = 52

and by (3.7),

|H2,2(F f /2)| ≤ 13
1080 . (3.8)
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To prove the equality in (3.8), we consider the function

f (z) =
1
2

log
(1 + z
1 − z

)
= z +

z3

3
+

z5

5
+ · · · .

A simple computation shows that f belongs to the class C and |H2,2(F f /2)| = 13/1080.
This completes the proof. �

EXAMPLE 3.4. For an example illustrating Theorem 3.3, consider the function

f (z) =
z

1 − z
= z + z2 + z3 + · · ·

It is easy to see that the function f belongs to the class C and γn( f ) = 1/2n. Hence,

|H2,2(F f /2)| = |γ2γ4 − γ2
3 | = 1

288 ≤
13

1080 .
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