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The left-tailed unit-root tests of the panel analysis of nonstationarity in idiosyncratic
and common components (PANIC) proposed by Bai and Ng (2004, Econometrica
72, 1127–1177) have standard local asymptotic power. We assess the size and power
properties of the right-tailed version of the PANIC tests when the common and/or the
idiosyncratic components are moderately explosive. We find that, when an idiosyn-
cratic component is moderately explosive, the tests for the common components may
have considerable size distortions, and those for an idiosyncratic component may
suffer from the nonmonotonic power problem. We provide an analytic explanation
under the moderately local to unity framework developed by Phillips and Magdalinos
(2007, Journal of Econometrics 136, 115–130). We then propose a new cross-
sectional (CS) approach to disentangle the common and idiosyncratic components
in a relatively short explosive window. Our Monte Carlo simulations show that the
CS approach is robust to the nonmonotonic power problem.

1. INTRODUCTION

Large dimensional common factor models are a driving force in recent empirical
analysis in various fields of economics. Bai (2003) and Bai and Ng (2006) provide
sufficient conditions under which the principal component estimator is consistent
for the common and idiosyncratic components when the series have no time
trends. When the series have stochastic trends of integration of the order one,
the standard practice is to induce stationarity by transforming the original data by
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first differencing before identifying and estimating the common and idiosyncratic
components.1 If one is interested in identifying whether the stochastic trends lie
in the common or idiosyncratic components, Bai and Ng (2004) suggest applying
augmented Dickey–Fuller (ADF) tests (Dickey and Fuller, 1979) for these compo-
nents estimated by first-differenced data. This method is called the panel analysis
of nonstationarity in idiosyncratic and common components (PANIC). One main
advantage of this method is that the common and idiosyncratic components are
separately identified under the null hypothesis of a random walk. In addition, the
ADF test has nontrivial power when testing against the alternative hypothesis of
stationarity (hereafter, the left-tailed test) because, under such a hypothesis, the
first-differenced series may be over-differenced, but has no time trends; hence,
the common and idiosyncratic components are correctly identified. Bai and Ng
(2004) show that the test for common components has good size and power despite
stationary or random walk idiosyncratic components. The same can be said of the
test for idiosyncratic components. Therefore, the PANIC approach successfully
disentangles the common and idiosyncratic components.

In this study, we investigate whether this convenient property of the PANIC
approach is available even when the right-tailed version of the ADF test (hereafter,
the right-tailed test) is used. The right-tailed unit-root tests are used in various
applications. For example, testing for speculative bubbles in asset prices is a
long-standing problem for which numerous econometric techniques have been
developed. The most recent studies include the seminal work of Phillips, Wu, and
Yu (2011), in which they pay attention to the link between speculative bubbles
and the explosive behaviors of asset price data. Their strategy is to fit a univariate
autoregressive (AR) model and test whether the root is greater than unity. The
present study considers situations where speculative bubbles may be present in
large dimensional panel data of financial assets. It is important to investigate
whether these bubbles are an economy-wide phenomenon or market-specific
events. This study takes a step toward answering such a question.

Consistent with Becheri and van den Akker (2015) and Westerlund (2015),
we first show that both left-tailed and right-tailed PANIC tests for common and
idiosyncratic explosive behaviors exhibit the standard local asymptotic power
when the AR coefficient shrinks to one at a fast rate of T−1, where T is the time
dimension of the panel dataset (see Appendix I of the Supplementary Material).
A potential problem of such a local to unity (LTU) asymptotic framework is
that it only considers small deviations from the unit root. The recent literature
establishes that the asymptotic results under such local asymptotic frameworks
may not adequately approximate the finite sample behaviors of the test statistics
(see, e.g., Deng and Perron, 2008 ). With this caveat in mind, we take an approach
that considers the AR root that shrinks to one at a slower rate than T−1. In particular,

1Bai (2004) proposes estimating common stochastic trends by using the principal components of level data when
none of the idiosyncratic errors have stochastic trends, but the common factors do. See also the seminal work of
Stock and Watson (2002, 2005) for empirical examples.
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we use the moderately local to unity (MLTU) framework developed by Phillips and
Magdalinos (2007). Under this framework, we find that the explosive idiosyncratic
components may be identified as the common component. As a result, the tests for
the common and idiosyncratic components have size distortions and power loss.

Our Monte Carlo simulations illustrate the analytic findings. We first confirm
Bai and Ng’s (2004) results—that is, as far as the left-tailed tests are concerned,
the PANIC approach provides good size and power. However, the right-tailed tests
behave very differently from the left-tailed tests. First, the test for common com-
ponents shows significant size distortions when some idiosyncratic components
are explosive because the explosive idiosyncratic components are misidentified
as the common factor. Second, the test for idiosyncratic components suffers from
size distortions when the common components are explosive for the same reason.
Finally, and most importantly, the test for the idiosyncratic components shows
an upward power function when the AR coefficient is slightly larger than one.
However, the power function starts to decline toward zero as the AR coefficient
further increases. This phenomenon is the well-known nonmonotonic power
problem widely documented in the context of structural change tests (Perron, 1991;
Vogelsang, 1999). What is new in this study is that the source of nonmonotonic
power is the identification failure between the common factors and explosive
idiosyncratic components under the alternative hypothesis.

This study provides a new method of testing for explosive behavior in the
common and idiosyncratic components. In many empirical situations, explosive
behaviors appear only in a certain subperiod, and the series are not explosive in
the remaining sample period—we take advantage of this fact. Therefore, we can
set a training sample during which no, or only weak, explosive behavior exists. We
then use cross-sectional (CS) regressions to estimate the common components in
the explosive window as the coefficients attached to the factor loadings, whereas
the factor loadings are estimated in the training sample. We call this the CS
method. It is shown that the tests for the common components and the tests for the
idiosyncratic components achieve the correct asymptotic size and are consistent
under the MLTU framework. A Monte Carlo simulation shows that the CS test
for common components considerably reduces size distortions. More importantly,
the CS test for idiosyncratic components is robust to the nonmonotonic power
problem.

The structure of the remaining paper is as follows. Section 2 introduces the
model, assumptions, and existing PANIC tests. Section 3 presents the finite sample
size and power of the right-tailed PANIC tests and investigates their theoretical
properties under the MLTU framework. Section 4 proposes a new CS method and
investigates its theoretical and finite sample properties. Section 5 concludes the
paper. The details of technical derivations and additional results are provided in
the Supplementary Material, including further details on the Results under the LTU
Framework (Appendix I), Proof of Theorem SA-1 and Theorem 1 (Appendix II),
Proof of Factor Estimation Errors in Theorem 1(i) (Appendix III), Finite Sample
Properties of the CS Tests when the Training Sample is Selected by a Statistical
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Method (Appendix IV), and Proof of Theorem SA-2 and Theorem 2 (Appendix
V). Throughout the paper, the following notations are used. The euclidean norm
of vector x is denoted by ‖x‖. For the matrices, the vector-induced norm is used.
The symbols O(·) and o(·) denote the standard asymptotic orders of sequences. The

symbol
p→ represents convergence in probability under the probability measure P

and the symbol ⇒ denotes convergence in distribution. Op(·) and op(·) are the
orders of convergence in probability under P as N,T → ∞ (or N,T,h → ∞). We
use the symbol “x ≈ y” when ‖x− y‖ = op(1), for two vectors of random variables
x and y.

2. MODEL AND TEST STATISTICS

We consider the common factor model:

Xi,t = μi +λ′
iFt +Ui,t, for i = 1, . . . ,N and t = 1, . . . ,T, (1)

where Xi,t is a scalar of the observed random variable, μi is an intercept, Ft and λi

are the r ×1 vectors of the common factors and factor loadings, respectively, and
Ui,t is a scalar idiosyncratic component. We focus on the essence of the problem
by assuming the number of factors is one with no loss of substance and is known
by the econometrician, so the estimation of r is not needed.2,3 The common factor
follows (1−αL)Ft = C(L)et, where C(L) = ∑∞

j=0 CjLj with C0 = 1 and et is a white
noise disturbance. The idiosyncratic components follow (1−ρiL)Ui,t = Di(L)zi,t,
where ρi is the AR coefficient of the ith cross section, Di(L) = ∑∞

j=0 DijLj, Di0 = 1,
and zi,t is a white noise disturbance.

We consider the following assumptions in this model. Let M < ∞ be a generic
constant.

Assumption 1. For every t = 0,1, . . . ,T , et ∼ i.i.d.(0,σ 2), E |et|4 ≤ M, and∑∞
j=0 j

∣∣Cj

∣∣ < M. Furthermore, E|F0| ≤ M.

Assumption 2.

(a) λi is a nonrandom quantity satisfying |λi| ≤ M or a random quantity satisfying
E |λi|2 ≤ M.

(b) N−1 ∑N
i=1 λ2

i
p→ σ 2

λ , where σλ is a positive constant.

2When r > 1, one can implement the right-tailed test series by series with the individual factors to investigate whether
the common factor space is explosive. This is adequate because at least one rejection implies that the whole space
is explosive. This is in contrast to the left-tailed tests. As Bai and Ng (2004) contemplate, rejections of individual
factors do not necessarily imply a rejection for the common factor space if they have a cointegration relationship.
Note that since the estimated factors are uncorrelated with each other, the size of the testing for series by series is
controlled.
3The cross-section-specific intercepts, μi, are eliminated in the first-differenced data such that they do not affect
inference on α and ρi. When (1) includes linear time trends, one can work with the demeaned first-differenced data
and the equivalent principal components are obtained.
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Assumption 3. For every t,s = 0,1, . . . ,T and i = 1, . . . ,N, the following hold.

(a) zi,t ∼ i.i.d.(0,σ 2
i ), E

∣∣zi,t

∣∣8 ≤ M, and
∑∞

j=0 j
∣∣Dij

∣∣ < M.

(b) Let φi,j =E(zi,tzj,t). Then,
∑N

i=1

∣∣φi,j

∣∣ ≤ M for all j and N−1 ∑N
i=1

∑N
j=1

∣∣φi,j

∣∣ ≤
M.

(c) Let ζs,t = E

∣∣∣N−1/2 ∑N
i=1[zi,szi,t −E(zi,szi,t)]

∣∣∣4
. Then, ζs,t ≤ M.

(d) E
∣∣Ui,0

∣∣ ≤ M for every i = 1, . . . ,N.

Assumption 4. zi,s, et, and λj are mutually independent for every (i,j,s,t).

The model and assumptions follow those of Bai and Ng (2004). In particular,
Assumption 3(a) permits weak serial correlations in the idiosyncratic errors
(1−ρiL)Ui,t, whereas Assumption 3(b,c) allows weak cross-sectional correlations.
Bai and Ng (2004) consider the unit-root test against the alternative hypothesis of
stationarity for the common and idiosyncratic components. In this study, we are
interested in the test against the alternative hypothesis of an explosive process. For
the common component, H0 : α = 1 versus H1 : α > 1, and for the ith idiosyncratic
component, H0 : ρi = 1 versus H1 : ρi > 1. Under the restriction of α = 1, the model
is the same as Bai and Ng’s (2004) PANIC. They propose a method of separately
identifying the common factors and idiosyncratic errors under the null hypothesis
that the common factors follow random walks. This is based on first-differenced
data; therefore, xi,t = λift + ui,t, where xi,t = Xi,t − Xi,t−1, ft = Ft − Ft−1, and
ui,t = Ui,t − Ui,t−1. In the following, we assume that there are T + 1 observations
t = 0,1, . . . ,T for Xi,t (so that Ft and Ui,t) for notational simplicity. The common
factors and factor loadings can be estimated by using xi,t following the principal
component method such that

( f̂t,λ̂i) = arg min
{λi}N

i=1,{ ft}T
t=1

∑N

i=1

∑T

t=1
(xi,t −λi ft)

2, (2)

with normalization T−1 ∑T
t=1 f̂ 2

t = 1. This minimization problem provides a com-
mon factor estimate f̂ = [ f̂1, . . . , f̂T ]′ as the

√
T-times eigenvectors of xx′ corre-

sponding to the largest eigenvalue, where x is a T × N matrix with the (t,i)th
element being xi,t. The factor loadings are estimated by λ̂i = 1

T

∑T
t=1 f̂txi,t, the level

common factor is estimated by F̂t = ∑t
s=1 f̂s, and the level idiosyncratic errors are

estimated by Ûi,t = ∑t
s=1 ûi,s, where ûi,s = xi,s − λ̂i f̂s.

The unit-root test for the common component (hereafter, the common test) can
be implemented by using a t-test for H0 : δ = 0 in the regression f̂t = δF̂t−1 +error
such that tF̂ = δ̂/se(δ̂), where δ̂ is an ordinary least-squares estimator for δ and
se(δ̂) represents its standard errors. The regression may include an intercept and
a time trend with appropriate adjustment to the critical values to take account of
the time trend. When an intercept is included, we denote the t-test by t̄F̂. When the
errors are suspected of being serially correlated, we can include the lags of f̂t in the
regression. However, a model with no lags is relevant for asset price data in which
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no serial correlations are present in their first differences.4 If necessary, we can
extend the framework to the model with p lags. The lag order selection follows
the conventional method, such as the information criteria based on estimated
components. As shown in Said and Dickey (1984), the asymptotic distributions of
the t-tests are not affected by including p lags if p3/T → ∞. Here, this condition
must consider that factor estimation errors vanish if N,T → ∞; hence, we require
p3/min{N,T} → 0. When r > 1, we propose testing the estimated common factors
series by series to determine whether any of the common factors are explosive. This
is a sufficient treatment for the present study because we are only interested in the
space spanned by the common factors.5 The unit-root test for the ith idiosyncratic
component (hereafter, the idiosyncratic test) is implemented by using a t-test for
H0 : δi = 0 in the regression ûi,t = δiÛi,t−1 + error so that tÛ(i) = δ̂i/se(δ̂i) where
the same note as tF̂ applies. When an intercept is included, we denote the t-test by
t̄Û(i).

As Bai and Ng (2004) note, this approach is convenient because the common and
idiosyncratic components are separately identified by using the first-differenced
data. This way, both common and idiosyncratic tests have the standard Dickey and
Fuller (1979) distribution under the null hypothesis. If the alternative hypothesis of
stationarity is true, the series become over-differenced, but they remain stationary;
hence, the tests have nontrivial power. Furthermore, their simulation study shows
that the common test demonstrates good size and power despite stationary or
random walk idiosyncratic components. The same can be said of the idiosyncratic
test. Therefore, the PANIC approach successfully disentangles the common and
idiosyncratic components.

Remark 1 (Bai and Ng, 2004). Let Assumptions 1–4 hold. (i) Under α =
1 and |ρi| ≤ 1, for all i, tF̂ ⇒ [

∫ 1
0 W(r)dW(r)]/[

∫ 1
0 W(r)2dr]1/2 and t̄F̂ ⇒

[
∫ 1

0 W̄(r)dW(r)]/[
∫ 1

0 W̄(r)2dr]1/2 as N,T → ∞, where W(r) is the standard Wiener

process defined on r ∈ [0,1] and W̄(r) = W(r) − ∫ 1
0 W(r)dr. (ii) Under ρi = 1,

α = 1, and
∣∣ρj

∣∣ ≤ 1, for all j �= i, tÛ(i) ⇒ (
∫ 1

0 Wi(r)dWi(r))/[
∫ 1

0 Wi(r)2dr]1/2

and t̄Û(i) ⇒ [
∫ 1

0 W̄i(r)dWi(r)]/[
∫ 1

0 W̄i(r)2dr]1/2 as N,T → ∞, where Wi(r) are

standard Wiener processes defined on r ∈ [0,1] and W̄i(r) = Wi(r)− ∫ 1
0 Wi(r)dr.

These null distributions are applicable to both left-tailed and right-tailed tests, as
long as the common and idiosyncratic components are consistently estimated. This
is warranted in Bai and Ng’s (2004) framework, where all components are I(1) or
I(0) such that their first differences are stationary. However, this is not necessarily
the case if explosive processes are present. When some idiosyncratic components
are moderately explosive, the common components may not be consistently

4Phillips and Yu (2011) also consider only the model with p = 0.
5Bai and Ng (2004) consider the method proposed by Stock and Watson (1988) to determine the number of common
trends in the factor space in the setting of I(0) and I(1). However, the number of explosive common trends is not our
direct interest. Hence, their method is not used in this study.
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estimated, and a consistent estimate for the idiosyncratic components is not
warranted either. Hence, size distortions in the common and idiosyncratic tests are
concerned. We discuss the properties of PANIC tests in explosive environments in
the next section.

3. PROPERTIES OF THE PANIC TESTS

3.1. Finite Sample Properties

We begin our analysis by investigating the finite sample properties of the PANIC
tests via Monte Carlo simulations. Although we focus on the empirical size and
power of the right-tailed tests, those of the left-tailed tests are also presented
for reference. Although the latter experiment overlaps with Bai and Ng’s (2004)
results, it is instructive to illustrate how differently the left-tailed and right-
tailed tests behave. The data are generated from (1) with Ft = αFt−1 + et and
Ui,t = ρiUi,t−1 + zi,t with r = 1, where λi, et, zit, F0, and U0,i are independently
drawn from the standard normal quasi-random variables in each replication.6 To
evaluate size and power, we vary the values of α and ρi from 1.0 to 1.1 for
the right-tailed test and from 1.0 to 0.0 for the left-tailed test. Results using
the regression models that include (A) no deterministic components, (B) an
intercept but no time trend, and (C) an intercept and a linear time trend are
produced. Since they are almost identical, we only report case (B). We use the
first idiosyncratic component to evaluate the idiosyncratic tests; however, this
choice is trivial because the Monte Carlo design is symmetric for any i. We
use (N,T) = (100,100),(100,150),(150,100),(150,150) to investigate size and
(N,T) = (100,100) to investigate power. The number of replications is 5,000, and
the nominal level 5% is used.

We first consider size. We set α = 1.0 to evaluate the size of the common test
and ρi = 1.0 to evaluate that of the idiosyncratic test. The upper panel of Table 1
reports the size of the common test as a function of ρi, and the lower panel shows
the size of the idiosyncratic test as a function of α. The left-tailed tests exhibit
good size properties—along the same lines as in Bai and Ng (2004)—confirming
that the PANIC approach successfully disentangles the common and idiosyncratic
components. However, the results of the right-tailed tests are markedly different.
The size of the common test is close to the nominal level when ρi is approximately
smaller than 1.02; however, it quickly reaches one as ρi increases. Furthermore,
the size of the idiosyncratic test is also distorted toward zero as α increases. These
size distortions suggest that the convenient property of Bai and Ng (2004), that
is, the common and idiosyncratic components are separately identified, no longer
applies to the right-tailed tests. Regarding the effect of sample size, the size of the
left-tailed test is good regardless of N and T, whereas the size of the right-tailed
test deteriorates as T increases.

6We also computed the size and power of the right-tailed PANIC test using models with p = 4[ min{N,T}
100 ]1/4. The

results are qualitatively the same and are, thus, not reported.
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Table 1. Size of the PANIC tests.

Common tests

Left-tailed tests Right-tailed tests

N 100 150 100 150 N 100 150 100 150

T 100 100 150 150 T 100 100 150 150

ρi=1.0 0.049 0.050 0.048 0.054 ρi =1.00 0.049 0.050 0.048 0.045

0.8 0.043 0.046 0.049 0.046 1.02 0.069 0.063 0.243 0.206

0.6 0.051 0.046 0.043 0.051 1.04 1.000 1.000 1.000 1.000

0.4 0.047 0.050 0.050 0.049 1.06 1.000 1.000 1.000 1.000

0.2 0.053 0.048 0.049 0.052 1.08 1.000 1.000 1.000 1.000

0.0 0.051 0.044 0.049 0.045 1.10 1.000 1.000 1.000 1.000

Idiosyncratic tests

Left-tailed tests Right-tailed tests

N 100 150 100 150 N 100 150 100 150

T 100 100 150 150 T 100 100 150 150

α=1.0 0.047 0.049 0.052 0.050 α=1.00 0.048 0.049 0.045 0.051

0.8 0.050 0.054 0.052 0.051 1.02 0.035 0.039 0.025 0.025

0.6 0.050 0.050 0.052 0.050 1.04 0.011 0.010 0.002 0.002

0.4 0.050 0.045 0.053 0.052 1.06 0.001 0.001 0.002 0.001

0.2 0.049 0.049 0.053 0.044 1.08 0.001 0.001 0.005 0.006

0.0 0.051 0.056 0.051 0.050 1.10 0.002 0.002 0.010 0.008

Next, we consider power. The upper panels of Figure 1 report the power
functions of the common test under ρi = 1 for all i and show that the common
test has a standard power function.7 Our interest is the power functions of the
idiosyncratic test presented in the lower panels. The left-tailed test again has the
standard power function; however, the right-tailed test shows a clear nonmonotonic
pattern. When the explosive coefficient ρi is slightly larger than one, the power
increases as ρi increases; however, the power function starts to decline toward
zero as ρi further increases. This means the PANIC approach fails to detect
explosive behaviors in an individual idiosyncratic component unless they are quite
small.8 Regarding the effect of sample size, the power increases as T increases

7Setting at ρi > 1 does not show any unique power features of the common tests, except for the size distortions
already reported in Table 1. That is, the power functions of the right-tailed test in the case of ρi > 1 start at a point
above the nominal level, but draw an upward curve.
8Bai and Ng (2004) also propose a pooled test for the idiosyncratic components and investigate the properties of
the left-tailed tests under the assumption that idiosyncratic components are cross-sectionally independent. This is
not our direct interest. However, our unreported Monte Carlo results show that the pooled version of the right-tailed
PANIC tests have qualitatively similar finite sample properties to those of the individual idiosyncratic tests reported
in Figures 1 and 4.

https://doi.org/10.1017/S0266466622000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000044


A CROSS-SECTIONAL METHOD FOR RIGHT-TAILED PANIC TESTS 397

common tests

left-tailed test right-tailed test

0.0

0.2

0.4

0.6

0.8

1.0

1.0 0.8 0.6 0.4 0.2 0.0

T=100,N=100

T=100,N=150

T=150,N=100

T=150,N=150

a

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.02 1.04 1.06 1.08 1.1

a

idiosyncratic tests

left-tailed test right-tailed test

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.02 1.04 1.06 1.08 1.1
0.0

0.2

0.4

0.6

0.8

1.0

1.0 0.8 0.6 0.4 0.2 0.0

rr

Figure 1. Power of the PANIC tests.

when the function is monotonic, but remains the same as N increases. When it
is nonmonotonic, the peak of the power shifts leftward as T increases, but again,
remains the same as N increases. We also present simulation results in which only
one of the idiosyncratic components is explosive, that is, ρN ≥ 1.0 and ρi = 1.0,
for all i �= N. Table 2 shows the size of the common and the idiosyncratic right-
tailed tests, whereas Figure 2 presents the power of the idiosyncratic test for i = N.
The results are consistent with the previous case in which all the idiosyncratic
components are explosive, i.e., the common test has considerable size distortions
and the idiosyncratic test shows nonmonotonic power. These findings motivate us
to theoretically investigate the PANIC methods under explosive environments in
the following subsections.

3.2. Analytic Investigation

Becheri and van den Akker (2015) and Westerlund (2015) derive the standard local
asymptotic power of the pooled panel unit-root tests in which common factors are
extracted by the PANIC method. In doing so, the first-order AR coefficients are
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Table 2. Size of the PANIC right-tailed tests when one idiosyncratic component
is explosive.

Common tests Idyosyncratic tests

N 100 150 100 150 N 100 150 100 150

T 100 100 150 150 T 100 100 150 150

ρN=1.00 0.047 0.050 0.048 0.048 α =1.00 0.050 0.047 0.047 0.046

1.02 0.050 0.054 0.045 0.047 1.02 0.043 0.039 0.025 0.026

1.04 0.059 0.056 0.471 0.389 1.04 0.011 0.012 0.003 0.003

1.06 0.529 0.445 0.966 0.962 1.06 0.002 0.002 0.001 0.003

1.08 0.920 0.900 0.997 0.998 1.08 0.001 0.001 0.006 0.004

1.10 0.986 0.983 1.000 1.000 1.10 0.004 0.003 0.010 0.011

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.02 1.04 1.06 1.08 1.10

T=100,N=100
T=100,N=150

T=150,N=100
T=150,N=150

r

Figure 2. Power of the PANIC idiosyncratic test when one idiosyncratic component is explosive.

assumed to shrink to one at a fast rate of T−1.9 We also investigate the power
properties of the common and individual idiosyncratic right-tailed tests by using
two complementary asymptotic frameworks. The first approach follows the same
lines and assumes that the AR coefficients shrink to one at a fast order αT = 1+ c

T
and ρi,T = 1+ ci

T , where c and ci are constants. This LTU asymptotic framework is
expected to capture the finite sample properties of the tests when explosiveness is
weak. Appendix I of the Supplementary Material shows that the common and the
idiosyncratic tests have the standard local asymptotic power for both the left-tailed
and right-tailed versions.

It is well known that the results under the LTU framework may not adequately
approximate the finite sample behaviors of the test statistics. In the context of
structural change tests, a certain type of test statistic may have good power when
the magnitude of change is assumed to shrink to zero at a fast rate of T−1/2, but

9The rate also depends on N because they consider the pooled tests.
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it loses power when the magnitude is fixed. This class of tests typically draws a
concave-shaped power function, called the nonmonotonic power problem.10 One
reason for this phenomenon is that, under the alternative hypothesis, a change in
the conditional mean and a change in the persistence parameter are not separately
identified. Yamamoto and Tanaka (2015) further investigate this problem in the
factor model, pointing out that the factor loading structural change and appearance
of extra factors may not be separately identified under the alternative hypothesis
when the structural changes occur at common dates. In such a case, the standard
tests of Breitung and Eickmeier (2011) suffer from the nonmonotonic power
problem.

We provide an analytic explanation for why the PANIC tests may have size
distortions and nonmonotonic power. We claim that an identification problem
between the common and explosive idiosyncratic components occurs under the
alternative hypothesis. To this end, we take an approach that assumes the explosive
root shrinking to one at a slower rate. In particular, we use the MLTU framework
developed by Phillips and Magdalinos (2007).

Assumption M. (a) The AR coefficients satisfy αT = 1+ c
kT

and ρi,T = 1+ ci
kT

,
where c ≥ 0, ci ≥ 0, and kT is a deterministic sequence such that kT → ∞ and
kT = o(T). (b) C(L) = 1 and Di(L) = 1, for all i.

The quantities c and ci (i = 1, . . . ,N) are localizing coefficients and take
nonnegative values to focus on the explosive case. The scaling factor kT is an
arbitrary deterministic function of T that satisfies kT → ∞ strictly slower than
T to consider stronger explosiveness than that in the local assumption. A typical
formulation is kT = Tκ , where 0 < κ < 1.

In this setting, the principal component estimate cannot only consistently
estimate the common factors, but also misidentify the common components. We
illustrate this fact in the following theorem by considering two cases. The first
case assumes that c > 0 but ci = 0, for all i, such that only the common factor is
explosive. The second case is ci > 0 for some or all i but c = 0. Hence, only the
idiosyncratic components are explosive.

THEOREM 1. Let Assumptions 1–4 and M hold. If kT grows sufficiently slowly
such that αT

T T−1/2 and ρT
i,TT−1/2 go to infinity as T → ∞, then the following

equation holds for the factor estimate:

f̂t = Aft +N−1
∑N

i=1
aiui,t, (3)

where A ≡ V−1N−1T−1 f̂ ′f 
′
 + V−1N−1T−1 f̂ ′u
 and ai ≡ V−1T−1 f̂ ′f λ′
i +

V−1T−1 f̂ ′ui with V being the largest eigenvalue of N−1T−1xx′. Then, the following
hold:

10As far as the authors know, Perron (1991) was the first study to point out this problem in structural change tests.
See Vogelsang (1999), Perron and Yamamoto (2016), and the references therein.
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(i) If c > 0 and ci = 0, for all i, then V = Op(α
T
T T−1/2). Furthermore, if the

stochastic order of V is αT
T T−1/2, A = Op(1) and ai = Op(1).

(ii) If c = 0 and ci > 0, for all i, then V = Op(ρ
T
i,TT−1/2). Furthermore, if the

stochastic order of V is ρT
i,TT−1/2, A = Op(1) and ai = Op(1).

A proof is provided in Appendix II of the Supplementary Material. From
part (i), we can deduce that the common test behaves well under the alternative
hypothesis. This is because, when the true common component is explosive, the
estimation errors of the factor space consist of the second term of (3). Since
the explosive common component dominates the factor estimation errors,11 the
common component estimate continues to be explosive and the power remains.12

Part (ii) yields a more interesting case. When the idiosyncratic components are
explosive, the second term dominates the first term, because ui,t are explosive,
whereas ft is not. Hence, f̂t is dominated by the explosive idiosyncratic components
ui,t. Therefore, even when the true common component is not explosive, its
estimate may be so when some idiosyncratic components are explosive. More
intuitively, because the principal component estimator is based on the eigenvectors
associated with the largest eigenvalues of the covariance matrix of the panel
data, when the idiosyncratic components are explosive, one of the eigenvalues
diverges. This causes the idiosyncratic time series to be misidentified as a common
component.

To provide intuition of the condition that αT
T T−1/2 (and ρT

i,TT−1/2) tends to
infinity, let us consider the case of kT = Tκ . In this case, αT

T is approximated by
exp(cT1−κ) and the condition requires it grows faster than T1/2. Apparently, the
LTU (κ = 1) does not satisfy this condition, because exp(cT1−κ) = exp(c) is a
flat function of T. On the contrary, if κ = 0, then αT

T = exp(cT), and this always
diverges faster than T1/2; hence, αT

T T−1/2 diverges to infinity.13 Therefore, this
condition is more relevant, as κ is smaller (or αT is larger). In our unreported
numerical exercise, αT

T T−1/2 increases as T when κ is 0.80 or smaller when c = 1.0.
The value of αT that corresponds to κ = 0.80 when T = 100 is αT = 1.03. This gives
us a rough guide for when the condition αT

T T−1/2 → ∞ holds.14

We can derive clear implications of part (ii): when ui,t are explosive, the size
of the common test is distorted because f̂t is dominated by ui,t that are explosive.
More interestingly, because f̂t is dominated by the explosive ui,t, the idiosyncratic
component estimate ûi,t becomes nonexplosive for the reason in the following
remark. This explains the nonmonotonic power of the idiosyncratic test.

11In Appendix III of the Supplementary Material, we show that, in case (i), the factor estimation errors in the
differenced factor are op(1), but those in the level factor are Op(T1/2N−1/2).
12Things are different for the idiosyncratic tests, because the true idiosyncratic components are not explosive and do
not dominate the factor estimation errors. Therefore, the idiosyncratic test could suffer from size distortions.
13Here, how long it takes for the divergence to be evident depends on c. We appreciate this advice from Professor
Peter C.B. Phillips.
14As shown in the Monte Carlo simulation, the finite sample power of the idiosyncratic test starts to decrease when
T = 100 and ρi = 1.03.
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Remark 2. We illustrate the power loss of the idiosyncratic test by taking the
special case of (ii), where only the first cross-sectional unit has an explosive
idiosyncratic component. We have f̂t ≈ a1u1,t. By plugging this into the factor

loading estimate λ̂1 =
(∑T

t=1 f̂ 2
t

)−1 (∑T
t=1 f̂tx1,t

)
,

we obtain

λ̂1 =
(∑T

t=1
f̂ 2
t

)−1 (∑T

t=1
f̂tx1,t

)
≈

(
a2

1

∑T

t=1
u2

1,t

)−1 (
a1

∑T

t=1
u1,tx1,t

)
,

=
(

a2
1T−1

∑T

t=1
u2

1,t

)−1 (
a1λ1T−1

∑T

t=1
u1,tft +a1T−1

∑T

t=1
u2

1,t

)
≈ a−1

1 ,

(4)

because the numerator of the second line is dominated by the second term. By
plugging f̂t ≈ a1u1,t and (4) into the idiosyncratic component estimate û1,t = x1,t −
λ̂1 f̂t, we obtain

û1,t = x1,t − λ̂1 f̂t,

≈ u1,t +λ1ft − (a−1
1 )(a1u1,t),

= u1,t +λ1ft −u1,t = λ1ft. (5)

Therefore, equations f̂t ≈ a1u1,t and (4) imply λ̂1 f̂t ≈ u1,t, and equation (5)
implies û1,t ≈ λ1ft. These mean that the common and idiosyncratic components
are reversely identified by their estimates. Hence, the idiosyncratic test loses
power.

We validate this identification problem by investigating the correlation coef-
ficient between f̂t and ft and the correlation coefficient between f̂t and u1,t. If
the misidentification occurs, the former decreases, but the latter increases as
u1,t becomes more explosive. To this end, we generate the same data as in
Section 3.1 and compute the average of the absolute correlation coefficients

between the estimated and true common components
∣∣∣Corr( f̂t,ft)

∣∣∣ over 5,000

replications. We also compute the average of the absolute correlation coefficients
between the estimated common component and the true idiosyncratic component∣∣∣Corr( f̂t,u1,t)

∣∣∣. The left panel of Figure 3 shows that, as u1,t becomes more

explosive, f̂t becomes less correlated with ft, but more correlated with u1,t. This
finding is consistent with Theorem 1(ii). Next, as equation (5) suggests, we
compute the average of the absolute correlation coefficients between the estimated
and true idiosyncratic components

∣∣Corr(û1,t,u1,t)
∣∣ and the average of the absolute

correlation coefficients between the estimated idiosyncratic component and the
true common component

∣∣Corr(û1,t,ft)
∣∣. The right panel of Figure 3 shows that,

as u1,t becomes more explosive, û1,t becomes less correlated with u1,t, but more
correlated with ft, because û1,t inherits the time-series properties of ft.

Remark 3. To make Theorem 1 more comprehensive, we may consider the case
of c > 0 and ci > 0, for some i. Then, we have V = Op(max{αT

T T−1/2,ρT
i,TT−1/2}),
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Figure 3. Absolute values of the correlation coefficients of the estimated components (with the true
common and idiosyncratic errors).

A = Op(1), and ai = Op(1). The explosive idiosyncratic components become
dominating components in the estimated factors if they are more strongly explosive
than the common components. This case yields the same implication as part (ii),
because what matters is the explosive behavior in the idiosyncratic components.
In addition, we may also consider the case of c < 0 and/or ci < 0, for some i.
Then, Ft and/or Ui,t are I(0) for some i, and they would not contaminate the factor
estimation as shown in Bai and Ng (2004). Therefore, this case merely gives the
same implication as when c = 0 and/or ci = 0.

4. CROSS-SECTIONAL APPROACH

This section provides a new method of testing explosive behavior in the common
and idiosyncratic components. It is based on the following two key ingredients.
First, it takes advantage of the fact that explosive behaviors appear only in a certain
subperiod and the series are not explosive in the rest of the sample period. If
this is the case, we can timewise localize the explosive behaviors by considering
model (1) with Ft = αFt−1 + et and Ui,t = ρiUi,t−1 + zi,t, where α = ρi = 1 for
t = 1, . . . ,T and α, ρi ≥ 1 for t = T +1, . . . ,T +h, for any i, with h being the length
of the window, such that the data are assumed to have a certain period t ∈ [1,T]
in which no explosive behaviors exist in either the common or the idiosyncratic
components. We call this the training sample.15 On the contrary, the period of
interest t ∈ [T +1,T +h] is called the explosive window.

4.1. Algorithm

The second key element is using cross-sectional regressions to estimate the
common factors in the explosive window instead of using the principal component

15We can easily show that weak (local) explosive processes with AR coefficients 1 + c
T and 1 + ci

T can exist in the
training sample.
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estimation of the first-differenced series. This is because the first-differenced
series of the explosive process remains explosive and, thus, violates Assumption
3. Hence, the common factors are not consistently estimated. To address this
problem, we estimate the factor loadings in the training sample in a nonexplo-
sive environment. We then use these loadings as the regressors of the cross-
sectional regressions in the explosive window to estimate the common factors
as the coefficients attached to the factor loadings. In this way, we can avoid
the identification problem between the common and idiosyncratic components
investigated in Section 3.2. An important model assumption is that the factor
loadings are constant for the training sample and explosive window. We also keep
the assumption that the number of factors remains the same. We call this approach
the CS method, and it involves the following steps:

Algorithm:
Step 1. Use the first-differenced data xi,t, for t = 1, . . . ,T , to estimate the

factor loadings λi by using the principal component method (2). Denote the factor
loadings estimated in the training sample by λ̂∗

i .
Step 2. At t = T + 1, estimate the level of the common factors by the CS

regression of
{
Xi,t

}N

i=1 on
{
λ̂∗

i

}N

i=1
so that F̃t =

(∑N
i=1 λ̂∗

i λ̂
∗′
i

)−1 (∑N
i=1 λ̂∗

i Xi,t

)
and the idiosyncratic components by Ũi,t = Xi,t − λ̂∗′

i F̃t. Then, repeat this for
t = T +2, . . . ,T +h.

Step 3. Construct the common test t∗̃
F

by using F̃t and f̃t = F̃t − F̃t−1 in the
regression f̃t = δF̃t−1 +error and the idiosyncratic test t∗̃

U
(i) by using Ũi,t and ũi,t =

Ũi,t −Ũi,t−1 in the regression ũi,t = δiŨi,t−1 +error for t = T +1, . . . ,T +h. In both
regressions, lags of the dependent variable can be included if serial correlations in
the errors are concerned. We denote the tests using the regression with an intercept
by t̄∗̃

F
and t̄∗̃

U
(i).

Remark 4. Although we set t ∈ [1,T] and t ∈ [T + 1,T + h] as the training
sample and the explosive window, respectively, this does not mean that the
origination dates of explosive behaviors have to be known in practice for the
following reasons. First, the explosive behaviors can start later than T + 1. If so,
we are merely implementing the right-tailed unit-root tests for the sample that
includes a nonexplosive subsample. Second, explosive behaviors can start before
T as long as they are as weak as the LTU. This is because, even in the presence of
the explosive behavior, the common and idiosyncratic components are identified
as we see in Theorem SA-1 of Appendix I of the Supplementary Material and
so are the factor loadings. Third, the origination dates of explosive behaviors in
the common components and in any idiosyncratic components are allowed to be
heterogeneous because we implement the tests series by series. One method of
selecting the training sample is to use an existing time-stamping method, such as
in Phillips et al. (2011), to the cross-sectionally averaged series X̄t = N−1 ∑N

i=1 Xi,t.
In Appendix IV of the Supplementary Material, we show that the size and power
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of the CS tests are rarely distorted even when the training sample is selected using
this method.

4.2. Theoretical Results

We next provide an asymptotic justification of the CS method. Note that the time
dimension of the testing period is now h instead of T; hence, we consider the
following Assumption 5 in place of Assumption M.

Assumption 5. (a) The AR coefficients satisfy αh = 1 + c
kh

and ρi,h = 1 + ci
kh

,
where c ≥ 0, ci ≥ 0, and kh is a deterministic sequence such that kh → ∞ and
kh = o(h). (b) C(L) = 1 and Di(L) = 1, for all i.

We obtain the following results. For brevity, again, we provide a proof under
i.i.d. assumptions, setting C(L) = 1 and Di(L) = 1 in Appendix V of the Supple-
mentary Material. The case with an intercept is shown, whereas the case with no
intercept can be similarly given.

THEOREM 2. Let Assumptions 1–5 hold. With c ≥ 0 and cj ≥ 0, for any
j = 1, . . . ,N, the following hold as N,T,h → ∞.

(a: common tests) If c = 0,

t̄∗̃F ⇒
(∫ 1

0
W̄(r)dW(r)

)/[∫ 1

0
W̄(r)2dr

]1/2

,

if
ρh

j,hhk−1
h

min{N1/2,T1/2} → 0, for any j. If c > 0, with π ∈ (0,∞) and � ≡ N(0,σ 2/2c),

α−h
h t̄∗̃F ≈

⎧⎨⎩
√

c
2σ 2 |�|, if T/kh → 0,√

c
2σ 2

∣∣∣ FT√
T

√
π +�

∣∣∣, if T/kh → π,

α−h
h k1/2

h T−1/2 t̄∗̃F ≈
√

c

2σ 2

∣∣∣∣ FT√
T

∣∣∣∣ if T/kh → ∞,

if
αh

hhk−1
h

min{N1/2,T1/2} → 0 and
ρh

j,hhk−1
h

min{N1/2,T1/2} → 0, for any j.

(b: idiosyncratic tests) If ci = 0,

t̄∗̃U(i) ⇒
(∫ 1

0
W̄i(r)dWi(r)

)/[∫ 1

0
W̄i(r)

2dr

]1/2

.

if
αh

hhk−1
h

min{N,T1/2} → 0 and
ρh

j,hhk−1
h

min{N1/2,T1/2} → 0, for any j. If ci > 0, with π ∈ (0,∞) and

�i ≡ N(0,σ 2
i /2ci),
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ρ−h
i,h t̄∗̃U(i) ≈

⎧⎨⎩
√

ci
2σ 2

i
|�i|, if T/kh → 0,√

ci
2σ 2

i

∣∣∣Ui,T√
T

√
π +�i

∣∣∣, if T/kh → π,

ρ−h
i,h k1/2

h T−1/2 t̄∗̃U(i) ≈
√

ci

2σ 2
i

∣∣∣∣Ui,T√
T

∣∣∣∣ if T/kh → ∞,

if
αh

hhk−1
h

min{N1/2,T1/2} → 0 and
ρh

j,hhk−1
h

min{N1/2,T1/2} → 0, for any j.

Theorem 2 shows that the CS method provides the test statistics that have the
correct asymptotic size under the MLTU framework if the stated conditions on the
relative rate among N, T, and h hold. Under the alternative hypothesis, the tests
are consistent and behave as follows. If kh is faster than T so that T/kh → 0, then
we obtain the limit involving the explosive sample thus |�| and the test diverges
to positive infinity at a rate of αh

h with probability one. If kh is slower than T so
that T/kh → ∞, then the test statistic scaled by α−h

h k1/2
h T−1/2 is asymptotically

dominated by the absolute value of the initial value term. The test diverges to
positive infinity at a rate of αh

hk−1/2
h T1/2 with probability one. If T and kh grow at

the same rate (T/kh → π ), then both effects are dominant and the test diverges
to positive infinity at a rate of αh

h with probability one. More importantly, the
divergence becomes faster as the localizing coefficient c increases, which ensures
the monotonic power property of the CS test.

The added condition
αh

hhk−1
h

min{N1/2,T1/2} → 0 (and
ρh

j,hhk−1
h

min{N1/2,T1/2} → 0) requires h not

to grow very fast to eliminate the effects of factor estimation error. To obtain an
intuition behind the condition, we give a parametric example of kh = hκ where
κ lies on (0,1) and we let N = T for simplicity. Then, the condition reduces to
αh

hh1−κ

T1/2 → 0. Taking its logarithm and using log(αh) = ch−κ +o(1) yield

ch1−κ + (1−κ) log(h)− 1

2
log(T) → −∞.

Suppose c = 0.5. Then, we can show that this is satisfied when h grows at a rate of
log(T). As another example, we set kh = h/ log(h). Then, the condition becomes

c log(h)+ log(log(h))− 1

2
log(T) → −∞. (6)

With c = 0.5, h is required to grow slower than T only slightly. Because the

condition
αh

hhk−1
h

min{N1/2,T1/2} → 0 (and
ρh

j,hhk−1
h

min{N1/2,T1/2} → 0) requires h not to grow very

fast, only the case of T/kh → ∞ applies in most examples. However, T/kh → π

and T/kh → 0 are also relevant when h is relatively fast. To see this in the second
example, we let T = h1−ε/ log(h) with ε ≥ 0. Then, T/kh → 1 when ε = 0 and
T/kh → 0 when ε > 0. In either case, (6) holds when c is sufficiently smaller than
1
2 . In the next subsection, we consider the finite sample performance of the test via
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Monte Carlo simulation using realistic values for the parameters and the sample
size.

Remark 5. The key element of the CS method is estimation errors in the levels
and the first differences of the common factors as shown in Lemma B1 (or Lemma
B6 for the demeaned version) in Appendix V:

F̃t −HFt = Op

(
αh

hk1/2
h

min{N,T1/2}

)
+Op

(
ρh

h k1/2
h

min{N1/2,T1/2}

)
,

f̃t −Hft = Op

(
αh

hk−1/2
h

min{N,T1/2}

)
+Op

(
ρh

h k−1/2
h

min{N1/2,T1/2}

)
,

where ρh = maxi ρi,h. Hence, we extensively use them to prove Theorem 2.

4.3. Finite Sample Properties

This subsection investigates the finite sample property of the CS method via Monte
Carlo simulations. The data are generated by the same model as in Section 3.1.
To investigate the validity of our theoretical results more directly, we set the AR
coefficients to be α = 1 + c

hκ and ρi = 1 + ci
hκ , where c = ci = 0 for t = 1, . . . ,T

and c, ci ≥ 0 for t = T + 1, . . . ,T + h, for any i. We use the sample size N = 100
and T = 50 and two lengths of the explosive window h = 50 and 100. All λi, ui,t,
zi,t, F0, and U0,i are independently drawn from the standard normal quasi-random
variables in each replication. The size and power of the CS and PANIC tests in the
explosive window are computed at the 5% nominal level using 5,000 replications.

Table 3 presents the size of the common and idiosyncratic tests in the upper
and lower panels, respectively. The left and right panels correspond to the h = 50
and 100 cases, respectively. Consistent with our findings in Section 3.1, the PANIC
common test shows serious size distortions when the idiosyncratic components are
explosive and the PANIC idiosyncratic test becomes undersized when the common
component is explosive when κ = 0.8 and c is large. Although the CS common
test also shows size distortions, these are considerably smaller than those in the
PANIC common tests. As for the CS idiosyncratic test, we now see over-rejections,
especially when κ = 0.8 and c is large. This is consistent with the conditions
provided in Theorem 2. In our unreported results, we observe that the size of
the CS test slightly improves as both N and T increase, although the effect is not
discernible. Figure 4 reports the power of both tests. Most importantly, the bottom
panels of Figure 4 suggest that the CS idiosyncratic test is free of the nonmonotonic
power problem. The power functions of the CS and PANIC common tests are
similar because the tests are asymptotically equivalent. In summary, the CS tests
display size distortions when the explosiveness is strong, but it performs well in
general with a moderately explosive process with κ being 0.85 or lower. The CS
tests outweigh the PANIC tests with respect to the power of idiosyncratic tests.
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Table 3. Size of the CS and PANIC tests.

Common tests

h 50 50 50 50 100 100 100 100

κ 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95

CS

ci=0.0 0.053 0.048 0.047 0.050 0.055 0.056 0.044 0.057

0.2 0.053 0.052 0.053 0.057 0.052 0.066 0.046 0.044

0.4 0.059 0.057 0.053 0.058 0.054 0.053 0.046 0.063

0.6 0.075 0.066 0.060 0.054 0.067 0.043 0.048 0.049

0.8 0.087 0.070 0.072 0.057 0.094 0.079 0.055 0.056

1.0 0.142 0.095 0.075 0.058 0.190 0.089 0.063 0.059

PANIC

ci=0.0 0.048 0.047 0.050 0.056 0.054 0.052 0.043 0.055

0.2 0.056 0.054 0.053 0.056 0.054 0.073 0.044 0.043

0.4 0.063 0.059 0.050 0.059 0.061 0.060 0.045 0.063

0.6 0.097 0.069 0.067 0.053 0.095 0.050 0.050 0.053

0.8 0.238 0.114 0.092 0.064 0.209 0.108 0.067 0.054

1.0 0.872 0.280 0.125 0.085 0.814 0.192 0.086 0.068

Idiosyncratic tests

h 50 50 50 50 100 100 100 100

κ 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95

CS

c=0.0 0.067 0.063 0.056 0.043 0.050 0.055 0.054 0.048

0.2 0.068 0.046 0.057 0.043 0.051 0.062 0.041 0.054

0.4 0.049 0.048 0.049 0.052 0.057 0.053 0.055 0.045

0.6 0.079 0.069 0.074 0.063 0.055 0.060 0.052 0.062

0.8 0.108 0.066 0.076 0.064 0.116 0.090 0.065 0.058

1.0 0.206 0.122 0.069 0.064 0.219 0.103 0.078 0.065

PANIC

c=0.0 0.068 0.062 0.058 0.037 0.049 0.057 0.054 0.042

0.2 0.064 0.047 0.050 0.042 0.048 0.064 0.044 0.043

0.4 0.044 0.044 0.055 0.057 0.048 0.043 0.055 0.047

0.6 0.059 0.059 0.052 0.054 0.046 0.053 0.041 0.058

0.8 0.038 0.040 0.052 0.046 0.027 0.046 0.051 0.051

1.0 0.031 0.039 0.042 0.044 0.025 0.037 0.052 0.048

Finally, the CS method relies on the fundamental model assumptions that the
factor loadings and the number of factors are constant even when the explosive
regime starts. We investigate the consequences of instabilities pertaining to them.
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Figure 4. Power of the CS and PANIC tests.
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Figure 5. Power of the CS and PANIC tests when the factor loadings have structural changes.

First, the factor loadings have structural changes such that Xi,t = λiFt + Ui,t, for
t = 1, . . . ,T , and Xi,t = (λi +�i)Ft +Ui,t, for t = T +1, . . . ,T +h, where the change
�i ∼ i.i.d.U[0,1]. Second, we generate Ft and Ui,t via the same processes, but with
an additional common factor Gt = 0 for t ∈ [1,T] and Gt = αGt−1 +vt for t ∈ [T +
1,T +h], where vt follows i.i.d.N(0,1). Then, Xi,t = λiFt +Ui,t, for t = 1, . . . ,T , and
Xi,t = λiFt + γiGt + Ui,t, for t = T + 1, . . . ,T + h, where the new factor loadings
are generated by γi ∼ i.i.d.N(0,1). In both cases, we implement the PANIC and
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Figure 6. Power of the CS and PANIC tests when a new factor appears.

CS tests in the same manner as the previous case without accounting for such
instabilities. Since the structural changes in the factor loadings and the presence
of the additional factor are most likely to occur simultaneously when Ft switches
to the explosive regime, we focus on the power of the tests. Figure 5 reports the
power of the common and idiosyncratic tests in the case of structural changes, and
Figure 6 presents them in the case of the new factor for N = 100, T = 50, h = 100,
and κ = 0.85. They show that the nonmonotonic power of the idiosyncratic tests
is still found in the PANIC tests, but it is resolved in the CS tests. The power of the
common tests is rarely affected by the structural changes, although we see some
power loss in the PANIC tests in Figure 5 and in the CS tests in Figure 6.

5. CONCLUSIONS

In this study, we showed that, when the PANIC tests are applied to the explosive
alternative hypothesis, both the common and the idiosyncratic tests may exhibit
serious size distortions. More importantly, the idiosyncratic tests suffer from the
nonmonotonic power problem. We then provide a new CS method to disentangle
the common and idiosyncratic components to obtain standard monotonic power
function. The proposed tests achieve the correct asymptotic size and are consistent
under the MLTU framework. A Monte Carlo simulation shows that the CS test
for common components considerably reduces size distortions and the CS test for
idiosyncratic components is robust to the nonmonotonic power problem.

Our study has several implications. First, the nonmonotonic power problem
can occur not only in certain structural change tests, as shown in Perron and
Yamamoto (2016), but also in more general circumstances in which important
model parameters are not correctly identified under the alternative hypothesis.
Earlier studies such as Müller and Elliott (2003) argued that Elliott, Rothenberg,
and Stock’s (1996) efficient unit-root tests may have power that drops to zero when
the initial value is moderately large. Our study uncovers another possibility of the
nonmonotonic power problem in unit-root testing when unobserved common and
idiosyncratic components are misidentified. Second, asymptotic frameworks that
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allow general deviations from the null hypothesis, such as the MLTU of Phillips
and Magdalinos (2007), are extremely useful in approximating such phenomena.
Third, the proposed method can potentially extend the right-tailed PANIC tests to
various empirical analyses, including testing financial bubbles (see Phillips et al.,
2011) in large panel data and factor-augmented regressions (see Stock and Watson,
2016). A caveat is that the proposed method is not free from size distortions when
the other nuisance components are strongly explosive. In addition, the relevance
of the constant factor loading assumption must be assessed in particular empirical
settings. These issues should be carefully incorporated in future studies.

SUPPLEMENTARY MATERIAL

To view the supplementary material for this article, please visit: https://doi.org/
10.1017/S0266466622000044
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