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Abstract

Corporate bonds’ book-to-market ratios predict returns computed from transaction prices.
Senior bonds (even investment grade) with the 20% highest ratios outperform the 20%
lowest by 3%–4% annually after non-parametrically controlling for numerous liquidity,
default, microstructure, and priced-risk attributes: yield-to-maturity, bid–ask spread, dura-
tion/maturity, credit spread/rating, past returns, coupon, size, age, industry, and structural
model equity hedges. Spreads for all-bond samples are larger. An efficient bond market
would not exhibit the observed decay in the ratio’s predictive efficacy with implementation
delays, small yield-to-maturity spreads, or similar-sized spreads across bonds with differing
risks. A methodological innovation avoids liquidity filters and censorship that bias returns.

I. Introduction

Three decades of research feature “book-to-market” as a predictor of equity
returns. Because equities lack accurate models of risk premia, assessing whether
risk or mispricing explains equity book-to-market’s return correlation is a heroic
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task. By contrast, with corporate bonds, which we show exhibit a similar book-to-
market correlation, assessment of the competing theories is far simpler. For one, fair
prices are easier to infer for bonds than for equities. Indeed, bond dealers typically
derive quotes and marks for bonds with “matrix pricing,” in which a bond’s fair
price is a time-varying function of many bond characteristics that influence other
bonds’ prices.

Matrix pricing of a bond’s fair value is only possible because the magnitude
and timing of future cash flows are more transparent for bonds than for equities. For
the senior bonds we focus on, only extreme and infrequent outcomes materially
affect the likelihood of meeting payment promises. Discount rate variation thus has
far more influence over these bonds’ monthly returns than changes in cash flow
projections, facilitating risk measurement compared to equities.

To this end, we define the “bond book-to-market ratio” (“BBM”) as the bond’s
book value divided by its market price, which positively predicts a bond’s return.
(Book value, an amortizing issue price, linearly converges to the bond’s face value
at maturity.) BBM’s 5% per year extreme-quintile return spread is almost as large as
equity’s historical spread and exhibits a greater Sharpe ratio (0.9). It is also larger
than the quintiles’ yield spread from bonds’ promised payments, even for
investment-grade (IG) bonds. Indeed, credit risk, whichwe control for, hardly alters
BBM signal efficacy.

Abundant controls and tests cast additional doubt on riskmismeasurement as the
source ofBBM’s significant raw and risk-adjusted spreads. For example, no risk story
explains why the equity-hedged bond returns implicit in corporate bond structural
models exhibit a BBM anomaly of the same magnitude as unhedged bond returns or
why inclusion of a bond version of equity’s book-to-market factor (BHML) leaves a
significant alpha when adjusting BBM return spreads for factor risk.

Tax and liquidity premia cannot explain the anomaly either: High BBM bonds
tend to be taxed less and traded more than low BBM bonds. Also, round-trip
institutional trading costs are about the same (5 basis points (bp) higher for the
highest BBM quintile), while regressions employing interactions between liquidity
and BBM show that bonds with high versus low bid–ask spreads, trading volume,
or number of trades exhibit similar degrees of BBM return predictability. However,
bonds with more negative serial covariances (“gamma”) at high return frequencies
have greater BBM spreads.

BBM is 1 when a bond is issued, then rises above or falls below 1 due to
changing economic forces or sentiment. If BBM broadly proxies for omitted
controls, BBM signals should predict returns when implemented with modest
delay. Because delays of a month or two torpedo BBM signal efficacy, BBM’s
anomaly cannot stem from BBM serving as an omitted control for most bonds
within BBM’s extreme quintiles. In this case, BBM evolves too slowly to render a
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delayed BBM signal so ineffective. Likewise, BBM cannot proxy for the omitted
risk/liquidity controls of the few bonds that exit BBM’s extreme quintiles each
month, thus altering their premia. In this case, their changing risk/liquidity premia
are far too large with no delay and change too rapidly to qualify as time-varying
bond risk/liquidity premia.

By contrast, if sentiment distorts a bond’s price, the effect is unlikely to persist,
as arbitrage and mean reversion in sentiment force convergence to fair value.
Hence, sentiment-driven low BBM ratios tend to rise, making risk-adjusted returns
abnormally low; sentiment-driven high BBM ratios tend to fall, making returns
abnormally high. Plausibly, sentiment’s price distortions apply to only a few of
BBM’s extreme-quintile bonds, requiring distortions to be large to account for
BBM’s quintile spreads. In this case, BBM likely influences quintile returns only
briefly because the vast majority of bonds caught up in the extreme quintiles’ wide
nets are priced fairly. Such bonds have no reason to share the quintile-exiting
convergence to fair value of their grossly mispriced siblings.

Corporate bonds’ thin trading has hindered research attempting to use trans-
action prices to measure monthly returns and strategy performance. We employ
transaction prices from the relatively comprehensive Trade Reporting and Com-
pliance Engine (TRACE) database. Prior studies employing TRACE focus mostly
on its more liquid bonds.1 Constructing monthly returns for bonds that trade nearly
every day is straightforward. However, studies of such bonds cannot draw unbiased
conclusions since liquidity could be correlated with bonds’ returns or control
variables.

To avoid liquidity filters, we impute monthly returns using the martingale
property of fair risk-adjusted asset prices.2 The property implies that the first and
last transaction price of each month can substitute as unbiased estimates of the
numerator (end-of-month price) and denominator (beginning-of-month price) of
each bond’s monthly return calculation. If a bond’s current yield (interest earned/
price) matched its expected return, TRACE’s “flat” price (i.e., bond price excluding
accrued due) is a martingale. In this case, bonds’ imputed, unbiased beginning- and
end-of-month flat prices generate noisy return estimates that have a small upward
bias due to Jensen’s inequality.

Current yields can differ from a bond’s expected return. For example, riskless
bonds issued at par can become discount bonds, generating higher BBMs when
interest rates increase. Yet, riskless discount bonds have flat prices that converge to
par at maturity. Such violations of the martingale property imply that our use of

1Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2017) use amix of dealer quotes and bonds in
TRACE that trade in the month’s last 5 trading days. Bao, Pan, and Wang (2011) require a bond to trade
on at least 75% of its relevant business days. Israel, Palhares, and Richardson (2018) select a monthly
representative bond for each issuer based on seniority, maturity, age, and size. Schaefer and Strebulaev
(2008) use prices contained in the most popular bond indices. Since bonds often do not trade for long
periods, indices are partly built around mid-spread marks of traders’ models that are divorced from
nearby transactions. Amore extensive literature review is in Appendix A of the SupplementaryMaterial.

2Note that the martingale property holds only under the null of market efficiency. Behavioral-based
return anomalies, the alternative hypothesis for which we present evidence, reject efficiency. However,
the alternative hypothesis is irrelevant for classical statistical tests and has no bearing on whether the
martingale assumption is appropriate here.
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intra-month transactions to impute monthly prices and returns tends to understate
high BBM bonds’ full-month returns and overstate low BBM bonds’ full-month
returns. The same insight applies when market-wide credit spreads change after
issuance. Hence, the BBM return spreads imputed with intra-month prices conser-
vatively estimate the true (full-month) return spreads. A BBM effect in month-end
trader quotes further supports our claim.

We adjust BBM trading profits for risk and liquidity with two approaches. The
first uses cross-sectional Fama and MacBeth (FM) (1973) regressions. These
control for the bond attributes listed in the article’s abstract, as well as other premia
attributes tied to liquidity and equity returns, such as equity beta, equity market
capitalization, equity book-to-market, accruals, earnings surprise, earnings yield,
gross profitability, past equity returns, and industry. The second adjusts for riskwith
time series factor models. The latter include Bai, Bali, and Wen’s (2019) factor
model, both with and without augmentation by a term structure factor, two versions
of a 1-factor capital asset pricing model (CAPM) employing a bond market index,
two versions of a 2-factor model that adds equity HML to the CAPM, and a
21-factor model subsuming Houweling and van Zundert’s (2017) and Bektić,
Wenzler, Wegener, Schiereck, and Spielmann’s (2019) factors. BBM strategy
profits remain significant with factor risk adjustments. Profits are also larger for
“small bonds.”

The monthly rebalancing strategy’s risk-adjusted profits net of trading costs
are insignificant. Such costs may deter arbitrageurs from exploiting BBM.Yet, buy-
and-hold versions of the strategy survive the transaction costs incurred by larger
trades, enhancing overall net performance if such trades avoid additional short sales
constraints and costs.3 Modest tilts of long-only portfolios toward high BBM and
away from low BBM bonds can avoid short sales and enhance performance.

The adjusted profits are not contaminated by market microstructure biases or
off-market pricing—offered to favored customers or from central dealers. They are
also not due to long-term return reversals (Bali, Subrahmanyam, and Wen (2019)).
Lastly, for the 20% of bonds that are closest to default, BBM has about the same
efficacy as it does for the sample’s complementary bonds. The irrelevance of default
risk for BBM efficacy, as well as its similar efficacy for IG and non-IG bonds, casts
doubt on omitted risk controls as the source of the BBM anomaly.

BBM does not predict U.S. Treasury returns. Our controls adequately capture
term structure effects.Wealso show that imputingmonthly returns forTreasuries, from
their intra-month prices at the transaction dates of our sample’s more thinly traded
corporate bonds, leads to the same “non-result.”Robustness tests show that BBM is a
better predictor of the risk-adjusted returns of a universe of all corporate bonds—
including the junior, secured, and puttable bonds that academic studies typically avoid
—compared to bonds that are senior, unsecured, and lacking exotic options.

II. Data and Methodology

Prices for signals and bond returns employ TRACE’s enhanced (pre-Apr.
2020) and standard databases. TRACE’s daily data are from Jan. 2003 to Aug.

3Asquith, Au, Covert, and Pathak (2013) show that the cost of shorting corporate bonds is compa-
rable to that of stocks.
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2020 for trading signals and from Feb. 2003 to Sept. 2020 for returns, with July to
Dec. 2002 used for the initial momentum control. We mostly focus on senior,
unsecured, fixed-coupon bonds with no options other than (typically, make-whole)
call provisions (e.g., Bai et al. (2019), Chung, Wang, and Wu (2019)). With filters,
outlined below, this bond type covers an unbalanced panel of 8,925 different bonds
(often existing for a portion of the sample period), 838 firms, and 458,139 bond-
month observations.4 One table studies all TRACE fixed-coupon bonds, covering
565,093 observations.

Both the senior unsecured and all-bond samples exclude trades reported to
occur before the bond is issued or after it matures, as well as trades reported as
canceled, attached to non-U.S. firms, denominated in non-U.S. currency, or issued
by financial firms (SIC codes 60–69). We modify prices or other terms to their
corrected values when TRACE indicates retroactive corrections. Like Bai et al.
(2019), we remove transactions with prices below 1/20 or above 10 times their face
amount, bonds with remaining maturity of less than 1 year, and bonds in default at
the time of trade initiation.

Our samples are about 30% larger than similarly filtered samples from the
Wharton Research Data Services (WRDS)Monthly Corporate Bond File. AWRDS
return in month t + 1 requires two bond trades, each in the last five days of months t
and t + 1. Our return requirement is less restrictive, so every (similarly filtered)
WRDS return observation has a corresponding return in our sample. Robustness
tests analyze returns from Merrill Lynch month-end trader marks, with the same
start month as TRACE, but ending Dec. 2016, covering 140,808 observations.

We analyze month t + 1 profits from trading signals known by month t’s end.
Imputed prices from month t + 1 trades help estimate full-month t + 1 returns.
Unlike prior studies, we require a minimum 7-day gap between the transaction date
of the bond price used for the signal and the return month’s first day. The latter is the
earliest transaction date we might use to impute month t + 1’s return. As discussed
later, this lengthy separation, an enhancement of measures used in equity studies
(e.g., Bartram and Grinblatt (2018), (2021)) to avoid bid–ask bounce, prevents
microstructure biases from distorting our findings. Note that the signal is known
and assumed to be implemented at month t’s end. It is merely the price inputs for the
signal and estimated monthly return that require separate and distant transactions.

A. Return Construction

Unlike equities, bonds trade infrequently and often at large bid–ask spreads.
To address these issues, we apply themartingale property. This property says that an
unbiased estimate of an asset’s price on some date is its transaction price at some
other date adjusted for risk, the time value of money, and any payouts between the
dates. These adjustments are small as trades are typically about 2–3 days from the
prior or current month’s end and largely approximated by interest earned.

4Few bonds exist throughout the full sample period, and cross-sectional regressions require non-
missing values for all regressors. This requirement is uniformly imposed across all regression specifi-
cations to facilitate comparisons, generating an average of 1,149 bonds per month. Factor model
regressions do not impose this requirement.
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TRACE reports bond transactions’ flat prices. Unless a bond is in default, a
bond buyer pays the “full price,” consisting of the flat price plus interest accrued.
The full price change plus any coupon paid per dollar invested is an unbiased
estimate of the bond’s expected return. Thus, if earned interest per dollar invested
(i.e., current yield)—the month’s difference in accrued owed to sellers of the bond
plus any paid coupon—completely captures the expected return, the flat price must
be amartingale.Whilemonthly changes in accrued interest plus distributions do not
perfectly match the compensation for the time value of money and risk, they are
close approximations, particularly for short periods. Portfolio diversificationmakes
the approximation more innocuous. Finally, any failing of the martingale hypoth-
esis implies our results are conservative, as this article’s introduction explained.
These insights validate substitution of flat bond prices from transactions at nearby
dates for themonth-end flat prices that would be observed if the data were available.
Specifically, a bond’smonth t+ 1 return is its flat price change per dollar invested, as
measured from month t + 1’s first and last transactions, plus the current yield from
holding the bond over the entire month. Details are provided below.

End-of-Month Flat Bond Prices. The martingale property implies that the
imputed end-of-month flat bond prices, PE, are the mid-market end-of-month flat
prices at which the bonds would trade, plus noise. The noise depends on bond price
volatility between the trade date used for imputation and the month’s end, as well as
the spread charged by the party providing liquidity. For bond j’s end-of-month t + 1
flat price, we use the flat price of its last month t + 1 trade. For example, the Apr.
30, 2013 flat price might use the flat price of an Apr. 26, 2013 trade. If there is no
month t + 1 transaction for bond j, we treat the bond’s month t + 1 return as missing.

Beginning-of-Month Flat Bond Prices. A bond’s beginning-of-month flat
price estimate, PB, is the flat price from its first trade that month. Thus, a Mar.
2013 beginning-of-month price comes from a Mar. 2013 trade. If there is only
one transaction in a month, the flat price of that transaction serves both as its
beginning and ending flat price, tying its return only to the full month’s interest.

Monthly Returns. Using the end-of-month and beginning-of-month flat bond
price estimates described previously, we construct each bond’s month t + 1 return
as:

Rt + 1 =
PE
t + 1 +AIt + 1 +Ct + 1

PB
t + 1 +AI t

�1,(1)

where PB
t + 1 and PE

t + 1 are the beginning- and end-of-month t + 1 imputed flat
prices, AIt is accrued interest owed at the end of month t, and Ct + 1 is the coupon
(if any) awarded for holding the bond inmonth t + 1.We treat returns in consecutive
months as missing if their product is less than �0.04 as it likely reflects error in
recording the common price used in consecutive returns. Cumulated 6-month
returns, a control, are computed analogously to equation (1), using a single begin-
ning and single ending price over the 6-month horizon. As in equation (1), the
6-month return is adjusted for beginning and ending accrued interest, as well as
coupons paid during the interval.

Bonds in Default. TRACE reports prices whenever bonds in default trade. We
use these prices when assessing signal profitability. Our data also pinpoint the day
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each default occurs. To facilitate risk adjustment, we exclude bonds in default at the
time a trading signal is implemented (end of month t) but include bonds that
commence default while our strategies are invested in them (month t + 1). The
month t exclusion limits the fraction of defaulted bonds in our sample yet avoids all
bias from sample selection because the only default filter is from a feasible trading
strategy choice.

Defaulted bonds trade “flat,” obviating the need for equation (1)’s accrued
interest adjustments to convert flat prices into prices paid. Moreover, the coupons
promised by defaulted bonds are never paid in month t + 1. Unlike the flat prices of
bonds that trade with accrued interest due, the flat prices of defaulted bonds cannot
be martingales—motivating adjustment of their beginning- and end-of-month t + 1
price estimates. The adjustment we apply deliberately underestimates defaulted
bonds’ returns.5 This makes our return spread estimates conservative because we
understate the returns of long positions in defaulted bonds and there are no defaulted
bonds in our strategies’ short positions. The conservatism is “overkill.” Bonds
commencing default in month t + 1 are rare, even for the strategies’ long positions.
Defaulted bonds represent only 0.04% of BBM’s long position investment.

B. Signal Construction

Price measurement error shared by the month-end signal and subsequent
return generates correlation between the two. Constructing end-of-month t signals
from transaction prices at least eight calendar days before the first day ofmonth t + 1
avoids this pitfall. The multiday gap addresses trade splitting and workouts. Con-
sider a 120 million U.S. dollar customer bond sale to one or more dealers, executed
as three 40million U.S. dollar sales on three consecutive days: Apr. 29, Apr. 30, and
May 1. Such trades yield three daily price estimates at bid prices, assuming the bond
lacks other trades. Bid prices artificially inflate anyBBMsignal employing them, as
well as May’s return if Apr. 30’s (e.g., WRDS computation of the bond’s return) or
May 1’s transaction provides the return’s beginning price. Trade splitting at the ask
or favorable pricing by dealers to trades straddling a month’s end induce similar
correlation. Scenarios that artificially induce correlation between BBM signals and
subsequent returns become less likely the larger the gap between the prices used for
signals and returns. Our 7-day gap ensures that correlations between estimated
BBM and estimated returns stem from signals that truly predict returns rather than
any microstructure bias.

Bond Book-to-Market Signal. Book value per $100 face amount is a bond’s
amortized issue price. Panel A of Table 1 reports issue price distributions, sourced
from Mergent (Fixed Income Securities Database (FISD)). For most bonds, the
FISD issue price is near $100. If the bond is issued at a discount or premium, we
apply the accounting rule that linearly amortizes the premium or discount to
maturity on month-end dates to arrive at the bond’s (end-of) month t book value.

5Specifically, if the imputed beginning-of-month price is quoted flat due to default, equation (1)
substitutes the flat price of the first transaction preceding the transaction used for the signal (hence, pre-
default) as PB, uses the end-of-month (hence, post-default) price for PE, and omits accrued interest and
coupons in the numerator, but not the denominator.
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For the 30% of cases where FISD lacks the issue price, we omit the bond as a
potential trade.

Month t’s BBM signal is Book value/PS. The signal’s flat price per $100 of
face amount,PS, is taken from the bond’smost recent trade (excludingmonth t’s last
seven days). Even when signals employ stale trades, the signal represents informa-
tion available at the end of month t and can direct trades at that instant in time.
Moreover, signals based on stale prices are likely to be less effective and thus are
conservative. Panel B of Table 1 reports the distribution of time between the trade
dates used forPS in the BBMsignal and the beginning pricePB inmonth t+ 1’s bond
return estimate. For the senior unsecured bonds that researchers traditionally study
(“traditional bonds”) and that we focus on in all but Table 8, the median difference
between the signal date and that latter price is 11 days; the average is 16 days (Panel
B’s first row). About 10% of the differences exceed 25 days.

Figure 1’s dots denote consecutive transactions in a bond. PS is the transaction
price used for month t’s signal. PB and PE are intra-month flat transaction prices
used as beginning and ending flat prices for month t + 1’s return. The pair serves as
the imputed flat prices at their nearest hashmarks, which separate months. Figure 1
shows PS as originating in month t, but it could come from a prior month if the bond
lacks a month t transaction.

C. Alpha Tests for Signal Efficacy and Control Variables

We sort bonds into quintiles at month t’s end. Quintile 5 has the most value-
oriented (highest BBM) bonds. We primarily analyze month t + 1’s bond returns
within these quintile portfolios, employing FM cross-sectional regressions as well
as structural and factor models.

TABLE 1

Summary Statistics

Table 1 reports statistics on the offering price of corporate bonds (Panel A) and the time difference in calendar days between the
transaction dates of the bond prices PS used to construct the bond book-to-market signal in month t and bond prices used as
beginning-of-month pricesPB to construct bond returns inmonth t+1 (Panel B). Panel A reports the distribution of offering prices per
$100 of face value, separately for the sample of senior, unsecured bonds (“Traditional bonds”) and all bonds including junior bonds
or bondswith embeddedoptions (“All bonds”). Statistics are computed usingbond-level panel data, separately for traditional bonds
as well as all bonds. The return sample period is Feb. 2003 to Sept. 2020.

Panel A. Offering Price Statistics

Percentiles

No. of Obs. Mean Minimum 1 5 10 25 50 75 90 95 99 Maximum

Traditional bonds 8,925 99.6 40.8 97.3 98.7 99.1 99.5 99.8 99.9 100.0 100.0 100.0 106.9
All bonds 12,643 99.6 25.0 97.6 98.9 99.2 99.6 99.9 100.0 100.0 100.0 100.0 112.6

Panel B. Time Difference Between Trading Signals and Bond Return

Percentiles

No. of Obs. Mean 1 5 10 25 50 75 90 95 99

Traditional bonds 458,139 15.9 8.0 8.0 8.0 9.0 11.0 14.0 26.0 37.0 88.0
All bonds 565,093 19.3 8.0 8.0 8.0 9.0 11.0 18.0 34.0 51.0 133.0
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FM Regression Coefficients on BBM. Here, the monthly regression’s unit of
analysis is the bond. We cross-sectionally regress month t + 1’s bond returns
(computed with Section II.A’s procedures) on BBM quintile dummies or normal
scores and quintile dummies for numerous controls. The coefficients on each
regressor are then averaged across months. The controls consist of bond attributes
and issuing firms’ equity characteristics measured (in contrast to the signal’s 7-day
gap) as close to the end of month t as possible. These controls include each bond’s
yield-to-maturity (YTM),6 credit spread, credit rating, value outstanding, time to
maturity, duration, age, past 7-month return excluding the prior month (“bond
momentum”), past 1-month return (“bond reversal”), bid–ask spread, and nearness
to default. Equity characteristics include equity market beta, equity market capi-
talization, equity book-to-market, past 1-month stock return (“short-term
reversal”), past 5-year stock return excluding the prior year (“long-term reversal”),
past 12-month stock return excluding the prior month (“momentum”), accruals,
earnings surprise (“SUE”), gross profitability, and earnings yield. These controls,
detailed in Appendix B of the Supplementary Material, are rooted in past literature
and textbooks.7 Many controls are highly correlated, complicating inferences from
their coefficients. Most FM regressions also include market microstructure/liquid-
ity controls measured in the return month, t + 1, as well as industry dummies.

We employ four main specifications of non-parametric regression controls.
The first has industry controls; the second adds market microstructure controls; the
third adds controls for bond characteristics; the fourth adds the bond issuer’s equity
characteristics. The many controls in category-oriented FM regressions represent a
high dimensional classification of each bond, akin to the matrix pricing commonly

FIGURE 1

Transaction Timing of Prices Used for Signal and Returns

Figure 1 shows a hypothetical example of howbond transactions are used to construct the signal andmonthly bond returns. In
particular, thebondpricePS inmonth t used to construct the signal is at least 1week prior to the endofmonth t. To construct the
bond return in month t + 1, we use the first price of the bond in month t + 1 as the beginning price PB and the last bond price in
month t + 1 as the end price PE.

t + 1t

PS: Price to construct
signal in month t

PB: Beginning price for
the return in month t + 1 

PE: End price for the
return in month t + 1

Minimum of one week gap
between PS and beginning of month t + 1

6BBM tends to rise and fall with YTM. Neither BBM nor YTMdirectly map into an expected return.
However, YTM, deployed as a function of dummy variables for YTM ranks, better captures expected
returns than the cruder BBM.

7Robustness tests explore parametric controls. In addition to papers cited earlier, Grinblatt and
Titman ((2002), Chaps. 2, 23) discuss YTM, maturity, duration, and credit rating; Nozawa (2017)
studies credit spread; Blume and Stambaugh (1983) study bid–ask spread; Jostova, Nikolova, Philipov,
and Stahel (2013) focus on past returns; Warga (1992) relates bond age to returns; and Schaefer and
Strebulaev (2008) analyze nearness to default. Bartram and Grinblatt’s ((2018), (2021)) equity controls
are the same as ours. Other research is cited in the introduction and Appendix C of the Supplementary
Material.
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used byWall Street to mark YTMs and the prices of thinly traded bonds. Here, they
represent attributes that likely predict bond returns. A robustness check with a
necessarily shortened sample period and smaller cross section includes the bond’s
past long-term return.

Because equation (1)’s dependent variable Rj is bond j’s true (but unobserva-
ble) full month return rj less noise, ej, regressing the imputed return Rj on an
observable attribute Xj

rj – ej = c0 + c1X j + uj

has a plim for c1 equal to the slope coefficient that the unobserved true return would
have, since

cov rj – ej,X j

� �
=var X j

� �
= cov rj,X j

� �
=var X j

� �
:

This illustrates that the c1 estimate from intra-month flat prices is a consistent
estimate of the unobservable true full month return’s c1. If Xj is a categorical
dummy, c1 is the return difference of 2 equal-weighted portfolios. Its noise com-
ponent is diversified away in FM time series averaging.

Structural Models. Structural models view corporate bonds and equity as
contingent claims on the firm’s assets. One typically uses structural models to
calculate bond prices, yields, or credit spreads, but past research has shown that
they explain these poorly.8 Suchmodels also have implications for returns, showing
that, over very short time periods, corporate bond returns should be close to
perfectly correlated with a portfolio of riskless bonds and same-firm equity. Hedg-
ing out the equity component on the left-hand side of the FM regression adjusts for
most of the risk premium linked to credit risk.We identify hedge ratios from a panel
regression of bond returns on own-equity returns interacted with the control
dummies used for the FM regression. This generates equity hedge ratios for each
bond month from the panel’s coefficients and bond attributes.

Factor Model Intercepts. Regressing the time series of excess returns (above
1-month LIBOR) of BBM quintile portfolios on factor portfolio returns is an
alternative to FM regressions. Regression intercepts or spreads between intercepts
represent alpha and should be zero in an informationally efficient bond market. We
begin with Bai et al.’s (2019) 5 factors: the bond market, credit, value-at-risk,
liquidity, and reversal factors. Factor construction in our article, using bond data
from TRACE, follows Bai et al.’s (2019) procedures. We first calculate each bond’s
daily price as its volume-weighted average daily price, for all bonds in TRACE and
Mergent FISDmeeting Bai et al.’s (2019) filters. When TRACE shows trades in the
last five business days of months t and t + 1, we compute the bond’s return from
consecutive month-end daily prices (adjusting for accrued interest and coupons
paid). If month t lacks a qualifyingmonth-end daily price, we computemonth t+ 1’s

8Eom, Helwege, and Huang (2004) fit the credit spreads of 182 bonds to structural models, finding
poor matches with observed spreads. Huang and Huang (2012) conclude these models are deficient at
pricing bonds, even at the ratings level. Huang, Shi, and Zhou (2020) document failures to fit credit
default swaps data. Collin-Dufresne, Goldstein, and Martin (2001)’s bond-level regressions of credit
spreads on stock returns and other control variables highlight structural models’ poor fits.
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return using the earliest daily price in the first five business days of month t + 1. If
neither approach is possible due to a lack of qualifying prices, we treat month t + 1’s
return as missing. Factors face-value weight these returns for specific subsets of
bonds, as in BBW. Since we compute the factors ourselves based on BBW’s
descriptions, our analysis is not adversely affected by the computational issues that
rendered their factors unreliable.

Data from Merrill Lynch are required for value-at-risk in the sample’s first
three years when the factor requires data that precede TRACE’s initiation. In
addition, we use an augmented BBW 6-factor model that adds a term structure
factor to BBW’s 5 factors, two versions of a 1-factor CAPMwith a bond index as a
factor, two versions of a 2-factor model, which adds equity HML to the CAPM
factor, and a customized 21-factor model.

D. Summary Statistics for the Overall Sample

Panel A of Table 2 lists summary statistics for BBM and other attributes of the
senior unsecured bonds and their issuing firms. Each row shows time series aver-
ages of the cross-sectional means of each variable using all traditional bonds
(column 1) and all traditional bonds within each BBM quintile (columns 3–7).
Q1 represents the 20% of bonds each month with the smallest BBM, averaging a
BBM of 0.85; Q5 represents the highest BBM quintile, averaging a BBM of 1.09.
Column 2 also reports the time series average of the cross-sectional correlations of
the characteristic with BBM.

HighBBMbonds tend to have poorer credit ratings (AAA=1,…, D = 22, with
10 or less indicating investment grade) and are closer to default.9 Such bonds also
have higher bond betas, volatility, and value-at-risk (a downside risk measure).
They also have higher YTMs, lower market value, higher bid–ask spreads, greater
trading volume, larger numbers of trades, and been issued more recently and by
firms with more bonds, higher equity betas, poorer past-year equity returns, larger
equity book-to-market, and lower earnings/stock price ratios. By contrast, the
lowest quintile of BBM bonds has the highest returns over the past 6 months
(bond momentum) and the least negative serial covariance (bond gamma)10 and
comes from larger firms with the highest stock returns over the past year (equity
momentum).11 Bond maturity and duration, while concentrated in the 2 extreme
BBMquintiles, are greatest within the 20% lowest BBMbonds. Combined with the

9Default risk is low. The highest BBM quintile averages an investment grade (“IG”) rating. IG and
non-IG bonds show a similar-sized BBM anomaly.We also control for nearness to default (Schaefer and
Strebulaev’s (2008) distance to default times minus 1), which is the z-value of the default probability
from a Black–Scholes model adaptation. Nearness to and distance from default thus generate identical
default probability quintiles. The firm is in default when nearness to default is positive infinity; default
probability is below one-half with negative nearness to default.

10Bao et al.’s (2011) and Bai et al.’s (2019) bond gamma, based on Roll (1984), captures temporary
price movements and illiquidity. Table 2 shows that gamma shares a similar correlation with BBMas our
direct measure of a bond’s effective bid–ask spread. Using gamma as a control in place of our direct
measure of bid–ask spreads has little effect on our findings, as Appendix C of the Supplementary
Material notes. However, its interaction effects with BBM are stronger, as the paper later documents.

11Chordia et al. (2017) and Nozawa (2017) show corporate bond issuers are mostly large (above
NYSE median size).
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TABLE 2

Portfolio Sorts by Bond Book-to-Market

Table 2 reports summary statistics of bond and firm characteristics by bond book-to-market (BBM) quintiles (Panel A); averages and selected test statistics of monthly portfolio returns from intra-month prices (Panel B);
averages ofmonthly portfolio returns and current yields from inter-month prices by the number ofmonth t+1 trades (Panel C); and statistics onbeginning and endprices for returns (Panel D). Panel A’s numbers are time
series averages of equal weightings of eachmonth’s characteristics across all observations (“All”), observations for each BBMquintile (Q1,…, Q5) that month, and eachmonth’s cross-sectional correlation of BBMwith
the characteristic (“Correlation”). Thepanel also reports the time series average of themonthly differencebetween the average characteristics of the fifth and first BBMquintile aswell as the associated t-statistic. Panel B
reports time series averages of each month’s equal- and value-weighted returns, the return spread between the BBM Q5 and Q1 portfolios, and the fraction of positive BBM Q5 – Q1 return spreads. It reports results
separately for all bonds, as well as bonds below (“Small bonds”) and above (“Large bonds”) the monthly median bond value from sequential sorts on BBM and then bond value. Panel C’s first 3 rows report equal-
weighted average monthly returns, separately for all observations, as well as for bonds that trade never or only once in month t + 1. Returns are based on Panel B’s formula, found in the text, except that the price
transacted just prior to the tradedate ofmonth t’s signal’sprice ismonth t+1 return’sbeginning-of-month price, theprice first transacted aftermonth t+1 is the return’s endingprice, and theprice change is scaledby the
number of months (including fractional months) between the price pair. Panel C’s bottom row reports the current yield (per month) of 1-trade bonds. Panel D reports the fraction of beginning and end prices for returns at
bids, asks, and from dealer-to-dealer transactions by BBM quintiles. The fractions are scaled so that they sum to 100% for each quintile. The sample consists of nonfinancial firms with U.S. dollar-denominated, senior
unsecured corporate bonds without embedded options other than call options.

Panel A. Bond and Firm Characteristics

Bond Book-to-Market (BBM) Quintiles Q5–Q1 (High-Low BBM)

All Correlation Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Average t-Statistic

Bond book-to-market 0.963 1.00 0.845 0.923 0.961 0.994 1.094 0.250 [35.9]
Bond mispricing �0.001 0.29 �0.011 �0.005 �0.001 0.003 0.011 0.022 [34.3]
Bond coupon rate 5.513 �0.30 6.818 5.866 5.321 4.744 4.816 �2.002 [�30.5]
Bond yield 4.779 0.42 4.682 4.218 4.341 4.469 6.191 1.509 [9.9]
Bond credit spread 1.579 0.35 1.466 1.300 1.325 1.230 2.571 1.105 [8.3]
Bond value 532.2 �0.10 610.7 564.3 522.3 508.4 455.2 �155.5 [�14.5]
Bond face value 501.7 �0.03 508.0 517.5 500.2 503.2 479.8 �28.20 [�2.5]
Bond age 4.870 �0.16 7.268 5.083 4.373 3.702 3.926 �3.342 [�16.4]
Bond maturity 11.18 �0.10 16.41 10.184 8.832 8.445 12.02 �4.385 [�11.0]
Bond duration 6.984 �0.14 9.388 6.666 5.924 5.688 7.248 �2.140 [�10.2]
Bond rating 8.159 0.24 7.462 7.901 8.144 8.173 9.126 1.663 [17.2]
Bond reversal 0.685 �0.05 0.814 0.706 0.665 0.639 0.662 �0.152 [�1.2]
Bond momentum 3.421 �0.22 4.548 3.752 3.354 2.935 2.871 �1.677 [�3.2]
Bond volume 49.23 0.10 33.08 40.35 47.66 56.20 68.86 35.78 [13.5]
Bond volume institutions 47.93 0.09 32.45 39.10 46.18 54.68 67.25 34.80 [13.3]
Number of trades 103.1 0.14 56.94 93.42 111.1 118.9 135.1 78.17 [14.7]
Number of trade institutions 30.66 0.13 18.93 26.15 30.97 35.31 41.93 23.00 [14.6]

(continued on next page)
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TABLE 2 (continued)

Portfolio Sorts by Bond Book-to-Market

Panel A. Bond and Firm Characteristics (continued)

Bond Book-to-Market (BBM) Quintiles Q5–Q1 (High-Low BBM)

All Correlation Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Average t-Statistic

Bond bid–ask spread 0.495 0.19 0.470 0.436 0.447 0.469 0.682 0.212 [10.8]
Bond bid–ask spread institutions 0.198 0.14 0.205 0.181 0.179 0.181 0.258 0.054 [8.4]
Bond gamma 0.003 0.17 0.003 0.002 0.003 0.003 0.007 0.003 [6.4]
Number of bonds outstanding 37.90 0.00 37.83 30.81 32.75 39.84 48.30 10.47 [3.2]
Number of days from beginning of month 2.907 �0.08 3.899 2.843 2.602 2.587 2.741 �1.158 [�9.9]
Number of days from end of month 2.743 �0.08 3.727 2.714 2.478 2.413 2.508 �1.219 [�10.6]
Bond volatility 0.006 0.02 0.006 0.005 0.004 0.006 0.009 0.003 [6.2]
Bond market beta 0.880 0.05 1.006 0.825 0.738 0.731 1.129 0.123 [5.1]
Bond value-at-risk 0.033 0.27 0.035 0.028 0.026 0.029 0.054 0.020 [11.0]
Bond institutional ownership 51.91 �0.20 58.37 54.99 51.25 47.57 46.29 �12.08 [�28.3]
Distance to default 9.488 �0.17 10.10 9.771 9.479 9.490 8.605 �1.492 [�15.9]
Nearness to default �9.488 0.17 �10.10 �9.771 �9.479 �9.490 �8.605 1.492 [15.9]
Investment grade 0.863 �0.24 0.954 0.910 0.869 0.854 0.726 �0.227 [�19.3]
Non-investment grade 0.137 0.24 0.046 0.090 0.131 0.146 0.274 0.227 [19.3]
Bond offering price 99.49 0.05 99.23 99.49 99.55 99.61 99.56 0.331 [21.0]
Equity mispricing 0.080 0.00 0.049 0.074 0.088 0.080 0.129 0.080 [3.9]
Equity market capitalization 42,720 �0.06 48,318 39,548 40,351 45,811 39,560 �8,758 [�7.4]
Equity book-to-market 0.652 0.20 0.591 0.601 0.604 0.640 0.825 0.234 [8.3]
Equity beta 0.979 0.16 0.891 0.925 0.963 0.987 1.127 0.236 [16.3]
Standardized unexpected earnings surprise �0.003 �0.10 0.001 0.001 0.000 0.000 �0.016 �0.017 [�4.3]
Gross profitability 0.226 �0.04 0.230 0.232 0.231 0.228 0.212 �0.018 [�5.2]
Earnings yield 0.012 �0.28 0.056 0.053 0.047 0.038 �0.134 �0.190 [�11.0]
Equity short-term reversal 1.028 �0.03 1.067 1.061 1.051 1.053 0.910 �0.156 [�0.5]
Equity momentum 10.59 �0.14 13.27 12.22 11.73 10.46 5.269 �8.002 [�10.6]
Equity long-term reversal 54.19 �0.10 58.54 58.03 56.28 54.01 44.13 �14.42 [�11.4]
Accruals 0.098 �0.03 0.093 0.105 0.112 0.107 0.077 �0.015 [�2.5]

(continued on next page)
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TABLE 2 (continued)

Portfolio Sorts by Bond Book-to-Market

Panel B. Portfolio Returns

Bond Book-to-Market (BBM) Quintiles Q5–Q1 (High BBM to Low BBM)

All Correlation Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Fraction > 0 p-Value Average t-Statistic

All bonds Equal-weighted bond return (t + 1) 0.660 0.04 0.566 0.544 0.576 0.655 1.011 0.63 [0.00] 0.444 [3.86]
Value-weighted bond return (t + 1) 0.572 0.04 0.526 0.500 0.530 0.584 0.934 0.59 [0.01] 0.408 [3.58]

Small bonds Equal-weighted bond return (t + 1) 0.798 0.04 0.660 0.621 0.675 0.776 1.170 0.61 [0.00] 0.511 [3.42]
Large bonds Equal-weighted bond return (t + 1) 0.557 0.04 0.494 0.483 0.502 0.568 0.905 0.60 [0.00] 0.411 [3.67]

Panel C. Scaled Monthly Portfolio Returns from Inter-month Transactions and 1-Trade Bond Current Yield

No. of Trades
in Month t + 1

Bond Book-to-Market (BBM) Quintiles Q5–Q1 (High BBM to Low BBM)

All Correlation
No. of
Obs.

Q1 (Low
BBM) Q2 Q3 Q4

Q5 (High
BBM)

Fraction
> 0 p-Value Average t-Statistic

Any Equal-weighted bond return (t + 1) 0.576 0.06 517,353 0.510 0.495 0.481 0.505 0.889 0.58 [0.65] 0.379 [3.09]

Zero Equal-weighted bond return (t + 1) 0.450 0.09 64,705 0.363 0.385 0.296 0.267 0.902 0.54 [10.8] 0.539 [2.51]

One Equal-weighted bond return (t + 1) 0.511 0.04 5,512 0.340 0.377 0.703 0.694 0.611 0.57 [3.68] 0.268 [2.35]
Equal-weighted current yield (t + 1) 0.450 �0.24 5,512 0.469 0.454 0.428 0.418 0.441 0.24 [99.9] �0.040 [�2.05]

Panel D. Fraction of Beginning and End Prices for Returns at Bid and Ask

Beginning Price of Bond Return in t + 1 End Price of Bond Return in t + 1

Bond Book-to-Market (BBM) Quintiles [%]

Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM)

Ask Ask 9.4 9.4 10.2 11.1 12.0
Ask Bid 10.7 9.4 9.0 9.1 9.3
Ask Dealer 5.9 6.4 6.8 7.3 7.6

Bid Ask 12.8 13.0 13.4 13.5 12.5
Bid Bid 16.1 15.0 13.8 12.9 12.3
Bid Dealer 10.2 11.0 10.9 10.6 9.6

Dealer Ask 9.4 10.1 10.8 11.5 12.2
Dealer Bid 13.9 12.8 11.8 11.1 11.2
Dealer Dealer 11.6 12.9 13.2 12.9 13.2
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fact that lower credit risk tends to extend the effective maturity of actual bond
payments and holding coupon rates the same (which has opposing duration and tax
effects on expected returns), shifts in the risk-free term structure impose greatest
risk on the 20% lowest BBM bonds.

The flat prices of BBM Q5 bonds (which typically trade at discounts) tend to
appreciate, while Q1 bonds depreciate. Thus, Q5 bond purchasers tend to earn
capital gains, while Q1 purchasers earn capital losses, even if both bond types earn
identical returns. (The other return component, current yield, likely offsets expected
shrinkage of flat price discounts and premiums.) When realized, the gains and
losses will generally be taxed at lower rates and in the more distant future than
accrued interest or amortization. Thus, tax considerations argue for negative Q5–
Q1 (pre-tax) risk-adjusted return spreads. We now analyze raw return spreads
before turning to adjustments for risk or illiquidity.

Panel B of Table 2 reports the average month t + 1 returns of 5 BBM-sorted
portfolios in the columns labeled Q1 to Q5. The panel’s first 2 rows correspond to
equal-weighted (EW) and value-weighted (VW) quintile portfolio returns, respec-
tively. Both rows exhibit nearly monotonic increases across BBM quintiles. For
example, the lowest BBM EW quintile portfolio earns 57 bp per month, while the
highest earns 101 bp per month. Panel B also shows the average monthly return for
the full sample (66 bp EWand 57 bp VW, a more than 1% annualized difference),
the average monthly cross-sectional correlation between returns and BBM (0.04),
the average monthly spread between the returns of the largest and smallest BBM
quintiles (44 bp EW and 41 bp VW, both significant), and the fraction of months
with a positive Q5–Q1 return spread (63% EWand 59%VW, both significant). The
spread’s t-statistics correspond to annualized Sharpe ratios of 0.92 (EW) and 0.85
(VW). Both exceed the 0.40 Sharpe ratio for equity HML (over a longer sample
period) reported by Ehsani and Linnainmaa (2022).12 Table 2 Panel B’s last 2 rows
stratify the top row (EW) by bond size. Small bonds have larger returns within each
quintile and a larger BBM effect than large bonds. (The 2 sequentially sorted rows
do not average to the top row because some bonds lack face value outstanding data.)
The small bond BBM effect comes from Q5, for which the small minus large bond
return is 27 bp per month—nearly twice the small minus large spread for Q1 and the
largest size spread for any quintile.

Table 2 Panel B’s return spreads are not temporary price changes that subse-
quently reverse. Percentage changes in flat prices from the return’s ending price to
the next price (from month t + 2’s first trade or later) are �0.001 for EW Q5
and �0.090 for EW Q1 (table omitted for brevity.) Thus, returns formed from
the prices of month t + 1 and t + 2’s initial transactions, rather thanmonth t + 1’s first
and last trades, would increase BBM’s extreme quintile spread by about 8 bp.

Panel B of Table 2 omits bonds lacking a month t + 1 trade and assigns a flat
price change of 0 to bonds trading just once in month t + 1. Such choices inflate

12Correlation between the bond and equity HML factors, as well as correlations between themonthly
return spreads of BBMand equity book-to-market sorted VWand EWquintile portfolios, range between
27% and 44% (Table IA.1 in the Supplementary Material), in line with the findings of Collin-Dufresne
et al. (2001) and Choi and Kim (2018). BBM shows somewhat lower persistence compared to the equity
book-to-market ratio (Table IA.2 in the Supplementary Material).
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Panel B’s spreads, albeit negligibly, if the unobserved full-month spreads of
no-trade bonds are small or spreads in 1-trade bonds’ flat price changes are nega-
tive. The opposite is true. Panel C of Table 2 reports each quintile’s monthly return,
measured from the trade just prior to the signal price’s trade date to the first trade
after month t + 1. To address martingale violations, the returns shrink inter-month
flat price changes by the number of months (a fraction exceeding 1) between the
beginning and ending transactions generating each price pair, while each return’s
current yield component is over the full month t + 1. Panel C shows a larger return
spread for no-trade bonds than the full sample’s spread and a positive spread in the
flat price change for 1-trade bonds—the latter reflected by the difference in Panel
C’s two bottom rows.

Panel D of Table 2 reports each BBM quintile’s joint distribution of beginning
and ending price bid–ask pairs formonth t+ 1’s returns. It lists the fraction of returns
that come from the 9 pairings of bids (customer sale to a dealer), asks (customer buy
from a dealer), and mids (dealer-to-dealer transaction) attached to beginning and
ending prices. A bid beginning price tends to have a higher return, while a bid
ending price tends to have a lower return, with the reverse for asks. Applying the
bid–ask spread from each quintile (Panel A) to the joint distribution in Panel D
implies that both Q1’s and Q5’s returns are upwardly biased by 1 bp and 3 bp,
respectively. Their difference, 2 bp, is negligible. Hence, Table 2 Panel B’s returns
are not driven by their reliance on bid and ask prices for inputs.

III. Bond Book-to-Market and the Cross Section of Expected
Bond Returns

Many return-influencing attributes correlate with BBM. We now analyze
BBM’s marginal effect, controlling for these attributes. Both cross-sectional FM
regressions and time series factor model regressions show that BBMdoes not proxy
for return-predicting attributes or factor betas.

A. Fama–MacBeth Cross-Sectional Regressions

The FM approach regresses next month’s cross section of bond returns (in
percent per month) on BBM and other bond and equity characteristics known at the
time of trade initiation:

Rj,t + 1 = at + γtBBMj,t +
XS

s= 1

cs,tX j,s,t + ej,t + 1:(2)

In equation (2), BBMj,t is the month t BBM signal for bond j, and Xj,s,t is the
end-of-month t value of characteristic s of bond j (or its issuer) including industry
fixed effects. The FM procedure averages the monthly coefficients over time and
tests whether the average significantly differs from 0.

FM Specification. Table 3 Panel A’s 4 odd-numbered specifications regress
bond returns on BBM and controls, each expressed as dummy variables corre-
sponding to Q2 through Q5, with Q1 omitted for the intercept. For brevity, Panel A
of Table 3 only reports the coefficients for the Q5 dummy variables, which is Q5–
Q1’s return spread holding other regressors fixed. Specifications 2, 4, 6, and
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8, which study parametric signals, replace the BBM quintile dummies with the
BBM normal score, which is the BBM ratio transformed into a standardized
normally distributed regressor.

Specifications 1 and 2 regress bond returns on BBM and industry dummies.
Specifications 3 and 4 add (non-categorical) market microstructure/liquidity con-
trols to specifications 1 and 2 that roughly proxy for the precision with which the
martingale approach estimates month t + 1 returns. They include the number of
bonds from the issuing firm in month t + 1, the percentage of the market value of the
issuing firm’s bonds with month t signals that trade in month t + 1, and a pair of
controls for the (absolute value of the) number of calendar days between the first
(last) day of the month and the transaction date used for beginning-of- (end-of-)
month t + 1 prices. Specifications 5 and 6 add bond attribute controls to specifica-
tions 3 and 4. Finally, “kitchen sink” specifications 7 and 8 add equity and firm
characteristics to specifications 5 and 6.

Specification 1 shows that BBMQ5 bonds outperform Q1 bonds by 44 bp per
month (t = 3.62), controlling for industry fixed effects. The 0.14 coefficient on the
parametric BBM signal is also significant (t = 3.13) as specification 2 shows.
Specifications 3 and 4 illustrate that microstructure controls barely affect results:
BBM’s average coefficient is similar, whether comparing specification 3 with 1 or
4 with 2. Omitted for brevity, the relatively small effect of market microstructure
also applies to the remaining two specifications. Thus, identifying returns with the
martingale procedure does not distort inferences. Adding bond-specific controls
(specifications 5 and 6) reduces BBM’s influence on a bond’s month t + 1 return by
about 40%, but the BBM effect remains highly significant. Specifications 7 and 8’s
controls related to equity returns increase BBM Q5’s coefficients compared to
specifications 5 and 6 by about 20% and increase significance as well. Moreover,
specifications 7 and 8 establish that equity book-to-market does not predict bond
returns once BBM is controlled for.

Outliers. Results are also not driven by outliers. Eliminating observations that
rely on the top 100 or bottom 100 bond prices negligibly alters our findings.

Callable Bonds. BBM Q5 does not outperform Q1 because bonds tend to be
called when their fair value (in the absence of a call) exceeds the call price. Filtering
out bond returns in months approaching call dates or adding controls for call dates
has little effect on BBM’s alpha spread.

Parametric Controls. Our use of quintile dummy control variables in Panel A
of Table 3 to better proxy for a nonlinear relationship does not explain our findings.
Column 1 in Panel B of Table 3 parrots Panel A specification 7’s use of all FM
controls but shows similar results with parametric versions of the control variables.
This leftmost column reports a BBM quintile spread of 29 bp (t = 4.52).

Prices from Month-End Trader Marks. The martingale assumption is also
innocuous. End-of-month trader marks in the Merrill Lynch database instead of
bond returns from transactions offer alternative returns for a smaller set of more
liquid bonds. With Merrill data, BBM’s (unreported) Q5–Q1 raw return spread is
44 bp (t = 2.65) for equal-weighted portfolios and 44 bp (t = 2.85) when value
weighted. The associated alpha spread (column 2 in Panel B of Table 3) is 20 bp per
month (t = 2.52). Using Merrill’s marks for the prices of the BBM signal as well
(column 3) generates a larger, more significant alpha spread of 50 bp per month
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TABLE 3

Fama–MacBeth Cross-Sectional Regressions

Table 3 shows results from Fama and MacBeth (1973) regressions of monthly bond returns on bond and stock characteristics and control variables. Across different specifications, returns are regressed against prior month values for bond
book-to-market, bondcoupon rate, bond yield tomaturity, bond credit spread, bond value, bondage, bondmaturity, bondduration, bondbid–ask spreads, laggedbond returns, bondmomentum, bond credit rating, nearness to default, equity
market beta, equity market capitalization, equity book-to-market, equity short-term reversal, equity momentum, equity long-term reversal, accruals, standardized unexpected earnings (SUE) surprise, gross profitability, and earnings yield.
Panel A employs quintile dummies for the characteristics as regressors except for bond book-to-market in even-numbered specifications, which employ the normal score of bond book-to-market. Each month’s quintiles are determined from
sorts of bondswith non-missing values for all characteristics.Market capitalization quintiles are basedonNYSEbreak points. The regressions includedummyvariables for quintiles 2, 3, 4, and5of eachcharacteristic, but the table displays only
the coefficients of the quintile dummywith the largest amount of the characteristic (Q5) for brevity. Additional controls are the number of outstanding bonds of a firm, the percentage of bondmarket capitalization of a firm that trades in amonth,
and the number of days from thebeginning andend of themonth of bondprice data used to calculate the bond return. All regressions include industry dummyvariables based on the 38 Famaand French industry classifications. Panel B shows
results for various robustness tests. Panel B specification 1 uses parametric versions of the control variables, while specifications 2–6 use non-parametric controls as in Panel A. Panel B specification 2 uses themonthly bond return from trader
marks provided byMerrill Lynch as a dependent variable, while specification 3 uses Merrill Lynch data to construct both themonthly bond return and bond book-to-market. In Panel B specification 4 the regressand is an unbiased estimate of
each bond’s equity hedged return using the equity of the bond issuer. We estimate hedge ratios as the predictions of hedonic panel regressions of each bond’s return on interactions between the monthly equity return of the bond issuer in
excess of LIBORand131dummies representing thebond’s 61 (non-collinear) characteristics, including38 industry dummies. Thebond return component from flat prices is rescaled to alleviate biases from thin trading. Thedependent variable
in Panel B specification 5 is the equity return of the bond’s issuing firm. Panel B specification 6 uses the same regressionmodel as Panel A specification 7 but restricts the sample to bonds that are investment grade (“Investment GradeBonds”).
The table shows average coefficients and test statistics as well as the average number of observations and average adjusted R2. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A. Baseline Model

1 2 3 4 5 6 7 8

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Bond book-to-market Q5 0.441 [3.62]*** 0.445 [3.64]*** 0.265 [3.21]*** 0.320 [4.05]***
Bond book-to-market (normal score) 0.139 [3.13]*** 0.140 [3.15]*** 0.096 [2.25]** 0.117 [3.13]***

Bond Characteristic Controls
Bond coupon rate Q5 0.011 [0.16] 0.055 [0.67] 0.046 [0.74] 0.095 [1.25]
Bond yield Q5 0.416 [5.78]*** 0.427 [5.96]*** 0.433 [6.11]*** 0.446 [6.27]***
Bond credit spread Q5 0.042 [0.64] 0.016 [0.26] 0.046 [0.69] 0.028 [0.44]
Bond value Q5 �0.049 [�0.89] �0.036 [�0.66] �0.070 [�1.43] �0.056 [�1.16]
Bond age Q5 0.035 [0.87] 0.031 [0.75] 0.006 [0.14] 0.003 [0.07]
Bond maturity Q5 0.122 [0.64] 0.107 [0.59] 0.110 [0.61] 0.094 [0.54]
Bond duration Q5 0.129 [0.73] 0.157 [0.94] 0.108 [0.64] 0.139 [0.87]
Bond bid–ask spread Q5 0.076 [1.90]* 0.070 [1.86]* 0.070 [1.83]* 0.066 [1.78]*
Bond reversal Q5 �0.010 [�0.26] �0.012 [�0.30] �0.029 [�0.78] �0.028 [�0.76]
Bond momentum Q5 0.005 [0.11] 0.002 [0.04] �0.026 [�0.58] �0.027 [�0.63]
Bond rating Q5 �0.242 [�3.35]*** �0.259 [�3.77]*** �0.219 [�2.61]*** �0.242 [�2.97]***
Nearness to default Q5 �0.010 [�0.19] �0.017 [�0.33] 0.041 [0.54] 0.040 [0.54]

Stock Characteristic Controls
Beta Q5 0.028 [0.37] 0.012 [0.16]
Market capitalization Q5 0.038 [0.54] 0.037 [0.52]
Book-to-market Q5 �0.003 [�0.04] 0.000 [0.00]
Short-term reversal Q5 0.281 [4.42]*** 0.280 [4.47]***
Momentum Q5 �0.004 [�0.06] 0.003 [0.05]
Long-term reversal Q5 �0.011 [�0.19] 0.000 [0.00]
Accruals Q5 �0.068 [�1.20] �0.077 [�1.40]

(continued on next page)
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TABLE 3 (continued)

Fama–MacBeth Cross-Sectional Regressions

Panel A. Baseline Model (continued)

1 2 3 4 5 6 7 8

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Standardized unexpected earnings surprise Q5 0.126 [2.40]** 0.131 [2.54]**
Gross profitability Q5 0.186 [2.39]** 0.186 [2.42]**
Earnings yield Q5 0.045 [0.67] 0.050 [0.77]

Microstructure Controls
Number of bonds in t + 1 0.000 [�0.45] 0.000 [0.07] 0.000 [�0.63] 0.000 [�0.79] 0.000 [�1.12] 0.000 [�0.97]
Percent of bond market cap traded in t + 1 �0.182 [�1.66]* �0.137 [�1.18] �0.169 [�2.02]** �0.164 [�2.04]** �0.186 [�1.83]* �0.178 [�1.81]*
Number of days from beginning of month t + 1 0.005 [1.74]* 0.007 [2.13]** 0.002 [0.74] 0.002 [0.79] 0.001 [0.31] 0.001 [0.43]
Number of days from end of month t + 1 0.015 [4.24]*** 0.016 [4.68]*** 0.012 [3.47]*** 0.012 [3.65]*** 0.010 [3.03]*** 0.011 [3.17]***
Intercept 0.524 [3.35]*** 0.620 [3.86]*** 0.643 [3.41]*** 0.695 [3.60]*** 0.481 [3.04]*** 0.540 [3.55]*** �0.239 [�0.55] �0.208 [�0.46]
No. of obs. 1,149 1,149 1,149 1,149 1,149 1,149 1,149 1,149
Adj. R2 0.11 0.10 0.12 0.11 0.25 0.25 0.28 0.29
Industry control Yes Yes Yes Yes Yes Yes Yes Yes

Panel B. Robustness

Non-parametric Controls

1 2 3 4 5 6

Regressions with
Parametric Controls

Bond Return (Merrill
Lynch)

BBM and Bond Return
(Merrill Lynch)

Bond Return –Hedge Ratio
× (Stock Return – LIBOR) Stock Return Investment Grade Bonds

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Bond book-to-market Q5 0.292 [4.52]*** 0.202 [2.52]** 0.495 [5.03]*** 0.316 [4.82]*** �0.082 [�0.71] 0.307 [5.97]***

Bond Characteristic Controls
Bond coupon rate 0.028 [1.68]* �0.018 [�0.27] 0.093 [1.31] 0.058 [1.10] �0.203 [�1.71]* 0.141 [2.94]***
Bond yield 0.102 [2.48]** 0.333 [4.46]*** 0.206 [2.88]*** 0.448 [6.32]*** �0.252 [�1.54] 0.324 [4.88]***
Bond credit spread �0.034 [�1.09] 0.075 [1.00] 0.137 [1.78]* 0.031 [0.46] �0.054 [�0.41] 0.045 [0.69]
Bond value 0.000 [0.21] 0.006 [0.09] 0.060 [1.48] �0.060 [�1.27] �0.037 [�0.50] �0.078 [�1.52]
Bond age 0.005 [1.19] �0.050 [�1.07] 0.015 [0.33] 0.001 [0.03] 0.154 [1.95]* 0.078 [1.68]*
Bond maturity 0.006 [0.85] 0.226 [0.97] 0.025 [0.11] 0.061 [0.32] 0.482 [1.25] 0.047 [0.30]
Bond duration �0.009 [�0.42] �0.072 [�0.36] 0.174 [0.79] 0.099 [0.57] �0.207 [�0.51] 0.174 [1.24]
Bond bid–ask spread 0.059 [2.42]** 0.038 [1.10] 0.002 [0.06] 0.065 [1.72]* �0.147 [�2.47]** 0.033 [1.14]
Bond reversal �0.010 [�1.50] 0.059 [1.55] 0.028 [0.71] �0.020 [�0.54] 0.068 [0.97] �0.092 [�2.24]**

(continued on next page)
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TABLE 3 (continued)

Fama–MacBeth Cross-Sectional Regressions

Panel B. Robustness (continued)

Non-parametric Controls

1 2 3 4 5 6

Regressions with
Parametric Controls

Bond Return (Merrill
Lynch)

BBM and Bond Return
(Merrill Lynch)

Bond Return –Hedge Ratio
× (Stock Return – LIBOR) Stock Return Investment Grade Bonds

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Bond momentum �0.004 [�0.76] �0.072 [�1.39] �0.050 [�1.10] �0.014 [�0.35] 0.144 [1.24] �0.068 [�1.78]*
Bond rating �0.034 [�3.56]*** �0.011 [�0.10] �0.073 [�0.67] �0.189 [�2.48]** �0.334 [�1.26] �0.128 [�1.69]*
Nearness to default 0.011 [1.68]* �0.084 [�1.05] �0.093 [�1.08] 0.029 [0.36] 0.458 [1.58] 0.004 [0.06]

Stock Characteristic Controls
Beta �0.011 [�0.29] 0.105 [1.33] 0.093 [1.27] 0.056 [0.78] �0.145 [�0.45] �0.064 [�0.89]
Market capitalization 0.002 [0.14] 0.109 [1.31] 0.082 [1.05] 0.029 [0.47] 0.054 [0.21] 0.000 [0.00]
Book-to-market �0.041 [�1.79]* �0.026 [�0.30] �0.084 [�1.03] �0.003 [�0.04] �0.016 [�0.06] �0.059 [�0.88]
Short-term reversal 0.012 [6.15]*** 0.260 [3.45]*** 0.269 [3.50]*** 0.347 [5.14]*** �0.498 [�2.08]** 0.123 [2.31]**
Momentum 0.001 [2.26]** 0.108 [1.33] 0.113 [1.37] 0.092 [1.63] �0.511 [�1.61] �0.079 [�1.29]
Long-term reversal 0.000 [�0.97] �0.179 [�2.48]** �0.081 [�1.27] 0.045 [0.80] �0.097 [�0.39] �0.057 [�0.97]
Accruals 0.027 [0.75] �0.026 [�0.39] �0.006 [�0.08] �0.042 [�0.75] �0.195 [�1.04] 0.000 [0.00]
Standardized unexpected earnings surprise 0.250 [0.62] �0.020 [�0.38] �0.016 [�0.29] 0.128 [2.14]** �0.129 [�0.64] 0.024 [0.45]
Gross profitability �0.138 [�1.73]* 0.167 [1.48] 0.157 [1.60] 0.145 [1.90]* 0.224 [0.71] 0.187 [2.20]**
Earnings yield 0.246 [1.35] 0.048 [0.71] �0.010 [�0.18] 0.083 [1.25] �0.203 [�0.96] 0.056 [0.92]

Market Microstructure ontrols
Number of bonds in t + 1 0.000 [�2.10]** 0.000 [�0.68] 0.000 [�0.27] 0.000 [�0.60] 0.000 [�0.40] 0.000 [�0.06]
Percent of bond market cap traded in t + 1 �0.151 [�1.80]* �0.124 [�0.87] �0.199 [�1.39] �0.145 [�1.48] �0.286 [�0.83] �0.009 [�0.09]
Number of days from beginning of month t + 1 0.004 [1.35] �0.003 [�1.05] �0.001 [�0.32] 0.001 [0.20] �0.003 [�0.62] 0.002 [0.54]
Number of days from end of month t + 1 0.012 [3.35]*** �0.003 [�0.86] 0.000 [0.05] 0.011 [3.20]*** 0.000 [0.02] 0.015 [4.35]***
Intercept 0.269 [1.10] 0.083 [0.19] �1.290 [�0.88] �0.560 [�1.25] 2.417 [2.22]** 0.846 [1.27]
No. of obs. 1,139 664 838 1,149 1,169 1,007
Adj. R2 0.31 0.53 0.53 0.26 0.58 0.28
Industry control Yes Yes Yes Yes Yes Yes
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(t = 5.03) but has bias from error in the price mark shared by both BBM and the
return’s beginning price.

Structural Models. Panel B of Table 3 also rebuts arguments that Table 3 Panel
A’s significant alpha spreads stem from failure to properly control for the implica-
tion that distressed bonds resemble equity. First, BBM Q5 bonds are not distressed
because they exhibit negligible default rates, while Q1 bonds experienced no
defaults. We also noted the extensive controls for credit spreads, bond rating, and
default in Table 3’s FM regressions. Punctuating our claim is column 4 in Panel B of
Table 3, which reruns Panel A’s specification 7 (all controls) with equity-hedged
bond returns as the dependent variable. Bond j’smonth t + 1 hedged return subtracts
the product of its end-of-month t hedge ratio (described earlier) and the issuing
firm’s month t + 1 equity return in excess of LIBOR from the bond’s month t + 1
return. The hedge eliminates the bond’s asset risk premium component. Column 4’s
results here resemble Panel A of Table 3. BBMQ5’s same-firm equity-hedged bond
returns outperform Q1’s by 32 bp per month (t = 4.82). The similar equity hedged
and unhedgedBBMquintile coefficients indicate that structural models are unlikely
to play a successful role as supplements or replacements for Table 3’s categorical
regressors.

Finally, if BBM Q5 merely proxied for poor default controls, BBM should
predict the firm’s equity return. However, column 5 in Panel B of Table 3 shows that
when the firm’s equity return is the dependent variable, the BBM Q5 coefficient is
�0.082 and insignificant (t = �0.71). In sum, BBM predicts bond returns and
equity-hedged bond returns, but not same-firm equity returns. Later study of
interaction effects supports this finding. Moreover, the equity premium associated
with default reflects outcomes where equity is nearly wiped out. In unreported
results, using a dummy for whether the equity return from month t + 1 is below
�75% as the dependent variable yields a BBM Q5 coefficient of 0.079 (t = 1.50).

Investment Grade Bonds.Table 3 Panel B’s rightmost column studies the IG
subsample of traditional bonds. After sorting IG bonds into BBM quintiles, the
rightmost column reports specification 7 of Panel A of Table 3. The IG subsample’s
BBMQ5 coefficient, 0.307 (t = 5.97), is similar to Table 3 Panel A’s coefficient, but
more significant. With BBM dummies from an independent sort of IG and BBM,
the (unreported) BBM Q5 coefficient is 0.321 (t = 5.01).

Long-Term Bond Return Reversals. Daniel and Titman (2006) and Gerakos
and Linnainmaa (2017) link book-to-market’s equity return predictability to the
ratio’s correlation with long-term past returns and, accordingly, changes in firm
size. Bali et al. (2019) show that a bond’s 3-year past return, measured frommonths
t – 48 to t – 13, predicts return reversal. We omitted this past return control because
its lengthy horizon halves the average number of bonds each month and cuts
42 months from the sample. Yet, in horse races between the 3-year past return
and BBM, using Table 3 Panel A’s key specifications (plus the 3-year past return),
the 3-year past return’s coefficient is never significant and always economically
small. For example, in specifications analogous to Table 3 Panel A’s specifications
5 and 7, BBM Q5’s coefficients are 0.250 (t = 2.55) and 0.303 (t = 3.29), while the
3-year past return Q5 coefficients are 0.006 (t = 0.08) and �0.016 (t = �0.20),
respectively. Thus, as a corporate bond return predictor, BBM subsumes the pre-
diction power of the 3-year past return.
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Further Robustness Tests.Additional Table 3 robustness tests are in Appendix
C of the Supplementary Material. It shows that adding controls for bond (1-factor)
beta, volatility, and value-at-risk has little impact on our findings (Table IA.3 in the
Supplementary Material). Similarly, replacing Table 3’s bid–ask spread control
with gamma illiquidity still leaves a significant BBM anomaly, but one that (with
a comparable sample) is virtually identical in magnitude and significance to Table 3
(Table IA.4 in the SupplementaryMaterial). Finally, it shows that the BBM signal is
distinct and separate in its effects from a bond-centric implementation of the
mispricing signal developed by Bartram and Grinblatt ((2018), (2021))
(Table IA.5 in the Supplementary Material).

B. Factor Model Time Series Regressions

As an alternative to FM regressions, Table 4 reports factor model alphas and
factor betas of EW and VW quintile portfolios sorted on the BBM signal using
several factor models. Compared to Table 3 Panel A’s FM cross-sectional analysis,
Table 4’s time series factor model regressions include bond observations that lack
data on the control characteristics. They also facilitate alpha analysis of each of the
BBM quintile portfolios and the use of both equal and value weighting.

For BBM quintile portfolio q, Panels A and B of Table 4 run time series
regressions of the quintile portfolio’s returns (in excess of 1-month U.S. dollar
LIBOR) on 5 or 6 risk factors,

rq,t + 1 = aq +
X6

l = 1

βq,lFl,t + 1 + εq,t + 1:(3)

The intercept aq is the risk-adjusted return or “alpha” of the quintile portfolio.
All factor model regressions report test statistics derived from Newey and West
(1987) standard errors. If systematic risk factors explain differences in bond returns
for portfolios stratified by BBM, the risk-adjusted returns αq of the BBM quintile
portfolio should be indistinguishable from 0. Panels A and B of Table 4 report the
alphas and factor betas, as well as the spread in the Q5-Q1 risk-adjusted returns.

BBW Factors. The BBW 5-factor model controls for overall bond market,
credit, value-at-risk, liquidity, and short-term bond return reversal factors; the
augmented BBW6-factor model adds a term structure factor. The first row of each
of Panel A’s top half (EW portfolios) and bottom half (VW portfolios) shows each
quintile’s BBW risk-adjusted returns. Table 4 Panel A’s EW 19 bp alpha spread is
smaller than the alpha spread (BBMQ5 coefficient) from any of Table 3 Panel A’s
odd-numbered (non-parametric) specifications. The VW spread, 12 bp permonth,
is smaller than the EW spread and statistically insignificant. The small EW and
VWalpha spreads in Panel A of Table 4 may stem from the 5-factor model’s lack
of a term structure control; bonds with similar maturity tend to covary more with
each other than with different maturity bonds. To control for term structure risk,
Panel B of Table 4 supplements BBW’s factors with a term structure factor created
in the spirit of BBW. We independently triple-sort bonds into 125 face-value-
weighted portfolios based on maturity, coupon, and credit rating.We then take the
simple average of returns across the 25 portfolios of the top 20% highest maturity
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TABLE 4

Factor Model Time Series Regressions

Table 4 shows results from time series regressions of monthly portfolio returns (in excess of 1-month USD LIBOR) on bond factor models. Bonds are sorted each month into quintiles based on BBM and combined into
equal- or value-weightedportfolios. The table reports intercepts, slopecoefficients, t-statistics, the number of observations, andR2 separately for eachof the five portfolios (Q1,Q2,Q3,Q4,Q5) and for the return spreads
between the highest bond book-to-market (Q5) and lowest bond book-to-market (Q1) quintiles. Regressors for the Bai et al.’s (2019) factor model in Panel A are the excess return on the bond market portfolio, return
spreads based on value-at-risk (the second worst returns in the previous 3 years), rating (credit rating), illiquidity (Bao et al.’s (2011) measure), and reversal (past 1-month return). The augmented BBW factor model in
Panel B further adds a term structure factor, constructed from independent triple sorts of bonds into 125 face value-weightedportfolios basedonmaturity, coupon, andcredit rating.We take the simple average of returns
across the 25 portfolios of the top 20% of bonds in terms of maturity for the long position and do the same for the bottom 20%. The difference in returns between these 2 extreme maturity quintiles is our term structure
factor. Panel C shows intercepts of equal-weighted portfolios for the BBW factor model and the augmented BBW factor model separately for small and large bonds (from sequential sorts on BBM and size based on the
median monthly bond value). In addition, it reports alphas from a 1-factor CAPM (alternatively from the WRDS returns of a value-weighted index of all corporate bonds and the martingale returns of the bonds in our
sample), as well as 2-factor versions that add equity HML to the CAPM factor. Standard error estimates use the Newey and West (1987) procedure. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively.

Panel A. BBW Factor Model

Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Q5–Q1 (High-Low BBM)

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Equal-Weighted Portfolios
Intercept 0.207 [2.92]*** 0.153 [2.72]*** 0.173 [4.48]*** 0.185 [4.76]*** 0.400 [4.63]*** 0.193 [2.17]**
Bond market factor (t + 1) 0.829 [6.56]*** 0.834 [8.90]*** 0.792 [16.9]*** 0.875 [20.5]*** 0.908 [9.44]*** 0.078 [0.64]
Bond value-at-risk factor (t + 1) 0.044 [0.76] �0.054 [�0.98] �0.085 [�2.43]** �0.172 [�6.80]*** �0.135 [�2.30]** �0.180 [�1.94]*
Bond rating factor (t + 1) �0.139 [�3.30]*** �0.071 [�2.63]*** �0.068 [�3.80]*** �0.036 [�2.63]*** 0.213 [5.01]*** 0.352 [4.91]***
Bond illiquidity factor (t + 1) �0.257 [�1.66]* �0.173 [�1.11] �0.113 [�1.25] 0.013 [0.24] 0.153 [2.37]** 0.411 [2.19]**
Bond reversal factor (t + 1) �0.024 [�0.51] 0.013 [0.35] 0.042 [1.82]* 0.060 [2.45]** �0.019 [�0.49] 0.006 [0.10]
R2 0.74 0.82 0.89 0.88 0.79 0.60
No. of obs. 212 212 212 212 212 212

Value-Weighted Portfolios
Intercept 0.149 [2.26]** 0.093 [2.16]** 0.085 [2.99]*** 0.080 [2.45]** 0.272 [3.42]*** 0.123 [1.44]
Bond market factor (t + 1) 0.985 [8.35]*** 0.936 [12.6]*** 0.927 [33.9]*** 1.010 [25.9]*** 1.061 [11.7]*** 0.077 [0.61]
Bond value-at-risk factor (t + 1) 0.060 [1.22] �0.088 [�2.18]** �0.131 [�4.66]*** �0.202 [�6.18]*** �0.167 [�2.55]** �0.226 [�2.42]**
Bond rating factor (t + 1) �0.190 [�4.33]*** �0.108 [�5.05]*** �0.110 [�7.82]*** �0.070 [�3.88]*** 0.146 [3.21]*** 0.336 [4.38]***
Bond illiquidity factor (t + 1) �0.292 [�2.55]** �0.130 [�1.19] �0.041 [�0.72] 0.053 [0.99] 0.155 [1.10] 0.447 [2.12]**
Bond reversal factor (t + 1) �0.063 [�1.46] �0.006 [�0.19] 0.032 [1.72]* 0.042 [1.82]* 0.012 [0.24] 0.074 [1.17]
R2 0.80 0.88 0.94 0.93 0.82 0.58
No. of obs. 212 212 212 212 212 212

(continued on next page)
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TABLE 4 (continued)

Factor Model Time Series Regressions

Panel B. Augmented BBW Factor Model

Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Q5–Q1 (High–Low BBM)

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Equal-Weighted Portfolios
Intercept 0.128 [2.38]** 0.122 [2.45]** 0.158 [4.59]*** 0.181 [4.75]*** 0.358 [4.35]*** 0.230 [2.55]**
Bond market factor (t + 1) 0.639 [5.76]*** 0.761 [8.45]*** 0.755 [14.5]*** 0.864 [18.8]*** 0.807 [6.58]*** 0.167 [1.13]
Bond value-at-risk factor (t + 1) �0.092 [�1.54] �0.107 [�1.70]* �0.112 [�2.52]** �0.180 [�5.00]*** �0.208 [�3.10]*** �0.116 [�1.53]
Bond rating factor (t + 1) �0.070 [�1.76]* �0.045 [�1.62] �0.055 [�2.44]** �0.032 [�1.69]* 0.250 [4.30]*** 0.320 [3.86]***
Bond illiquidity factor (t + 1) �0.062 [�0.42] �0.098 [�0.62] �0.075 [�0.81] 0.024 [0.45] 0.257 [3.45]*** 0.320 [1.72]*
Bond reversal factor (t + 1) �0.013 [�0.30] 0.018 [0.47] 0.044 [1.86]* 0.061 [2.42]** �0.013 [�0.33] 0.000 [0.00]
Bond term structure factor (t + 1) 0.255 [5.40]*** 0.099 [2.77]*** 0.050 [1.74]* 0.015 [0.50] 0.136 [1.93]* �0.120 [�1.42]
R2 0.79 0.83 0.90 0.88 0.80 0.61
No. of obs. 212 212 212 212 212 212

Value-Weighted Portfolios
Intercept 0.059 [1.33] 0.064 [1.78]* 0.073 [2.95]*** 0.079 [2.56]** 0.236 [3.06]*** 0.177 [2.11]**
Bond market factor (t + 1) 0.764 [7.91]*** 0.865 [12.7]*** 0.898 [25.0]*** 1.009 [21.6]*** 0.972 [9.27]*** 0.208 [1.55]
Bond value-at-risk factor (t + 1) �0.099 [�2.06]** �0.139 [�2.80]*** �0.152 [�4.31]*** �0.203 [�5.28]*** �0.231 [�3.16]*** �0.132 [�1.61]
Bond rating factor (t + 1) �0.110 [�2.76]*** �0.082 [�3.67]*** �0.100 [�5.46]*** �0.070 [�3.23]*** 0.178 [3.14]*** 0.288 [3.43]***
Bond illiquidity factor (t + 1) �0.066 [�0.66] �0.057 [�0.54] �0.011 [�0.19] 0.054 [0.94] 0.247 [1.71]* 0.312 [1.48]
Bond reversal factor (t + 1) �0.049 [�1.35] �0.001 [�0.05] 0.034 [1.72]* 0.042 [1.81]* 0.017 [0.35] 0.066 [1.08]
Bond term structure factor (t + 1) 0.297 [6.30]*** 0.095 [2.81]*** 0.039 [1.62] 0.001 [0.06] 0.120 [2.27]** �0.177 [�2.52]**
R2 0.85 0.88 0.94 0.93 0.83 0.60
No. of obs. 212 212 212 212 212 212

Panel C. Robustness

Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Q5–Q1 (High–Low BBM)

Intercept t-Statistic Intercept t-Statistic Intercept t-Statistic Intercept t-Statistic Intercept t-Statistic Intercept t-Statistic

BBW Factor Model
Small bonds 0.339 [4.29]*** 0.263 [3.64]*** 0.312 [5.69]*** 0.343 [5.20]*** 0.608 [4.67]*** 0.269 [2.21]**
Large bonds 0.113 [1.57] 0.072 [1.57] 0.069 [2.16]** 0.067 [1.97]** 0.261 [3.17]*** 0.148 [1.59]

Augmented BBW Factor Model
Small bonds 0.275 [4.01]*** 0.231 [3.49]*** 0.294 [5.84]*** 0.331 [5.05]*** 0.553 [4.99]*** 0.277 [2.56]**
Large bonds 0.021 [0.41] 0.041 [1.03] 0.052 [1.91]* 0.066 [2.07]** 0.225 [2.82]*** 0.204 [2.22]**

(continued on next page)
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TABLE 4 (continued)

Factor Model Time Series Regressions

Panel C. Robustness

Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Q5–Q1 (High–Low BBM)

Intercept t-Statistic Intercept t-Statistic Intercept t-Statistic Intercept t-Statistic Intercept t-Statistic Intercept t-Statistic

CAPM and CAPM + HML Models
Equal-Weighted Portfolios
Bond market index (own sample) 0.052 [0.85] 0.053 [1.25] 0.109 [4.03]*** 0.149 [4.16]*** 0.362 [3.44]*** 0.310 [2.11]**
Bond market index (WRDS) 0.170 [2.52]** 0.154 [3.41]*** 0.201 [5.85]*** 0.248 [6.08]*** 0.480 [4.83]*** 0.311 [2.39]**
Bondmarket index (own sample) and equity HML 0.053 [0.89] 0.057 [1.65]* 0.110 [4.84]*** 0.152 [4.28]*** 0.381 [3.61]*** 0.328 [2.23]**
Bond market index (WRDS) and equity HML 0.164 [2.36]** 0.152 [3.53]*** 0.197 [5.76]*** 0.245 [5.95]*** 0.492 [4.96]*** 0.328 [2.55]**

Value-Weighted Portfolios
Bond market index (own sample) �0.055 [�0.85] �0.030 [�1.22] 0.009 [0.54] 0.027 [0.78] 0.237 [2.72]*** 0.292 [2.09]**
Bond market index (WRDS) 0.083 [1.13] 0.084 [2.28]** 0.114 [3.86]*** 0.137 [3.70]*** 0.371 [4.22]*** 0.288 [2.29]**
Bondmarket index (own sample) and equity HML �0.058 [�0.91] �0.032 [�1.38] 0.005 [0.33] 0.027 [0.78] 0.245 [2.81]*** 0.304 [2.19]**
Bond market index (WRDS) and equity HML 0.071 [0.93] 0.074 [1.92]* 0.104 [3.55]*** 0.129 [3.83]*** 0.369 [4.42]*** 0.298 [2.44]**
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bonds for the long position, then do the same for the 20% lowest maturity bonds
for the short position. The difference in returns between these 2 extreme maturity
quintiles is our term structure factor. Table 4 Panel B’s augmented BBW factor
model shows that adding this term structure factor increases the EWalpha spread
to 23 bp and the VW spread to 18 bp, both statistically significant. The latter
spreads are closer to the pair of comparison spreads obtained from Table 3 Panel
A’s FM regressions.

Return biases due to bid and ask distributions, as well as Jensen’s inequality,
prevent assessment of whether Table 4’s observed spreads stemmore from the long
or the short end. However, if the bias was the same across all quintile portfolios and
the true alphas of the 5 EW quintile portfolios averaged to 0, the respective EW
alphas in Panels A and B would be 22 bp and 19 bp lower than reported. Reducing
each alpha in Panel A by the 22 bp would generate Q1 and Q5 intercepts of �0.02
and 0.18, respectively. Panel B’s alpha reduction of 19 bp implies Q1 and Q5
intercepts of �0.06 and 0.17, respectively. Based on these transformations, alpha
spreads largely come from the long end (Q5).

Bond Size. BBM’s effects may also differ across risk-adjustment methodolo-
gies because Table 4 lacks factors for many other controls in Table 3 Panel A’s FM
regression, like bond size. Table 4 Panel C’s top 4 rows illustrate the effect of bond
size on factor model EW alpha with the BBW 5-factor and augmented 6-factor
models.13 With both models, bonds with less than intra-quintile median market
capitalization have larger andmore significant alpha spreads than bonds with larger
value outstanding. With the 5-factor model, EW portfolios of “large bonds” exhibit
no significant alpha spread. With the augmented 6-factor model (third and fourth
rows), the small-bond alpha spread is a significant 28 bp and lies between the 27 and
32 bp alpha spreads from specifications 5 and 7 in Panel A of Table 3. However, the
20 bp large-bond spread, while significant, is far smaller. If mispricing accounts for
BBM alpha spreads, this finding, along with the VW finding for the BBW 5-factor
model, suggests that large bonds may be more efficiently priced than small bonds.
BBM’s greater efficacy at predicting small-bond risk-adjusted returns mirrors
equity’s parallel finding.

Alternative Factor Models.As an alternative to the BBW factor models, Panel
C of Table 3 also reports alphas and alpha spreads from two versions of 1-factor
(CAPM) and 2-factor (CAPM + HML) models. The 1-factor model spreads are
intercepts from regressing returns on a value-weighted index of either the WRDS
returns of all WRDS bonds or of the martingale-based intra-month returns of all
bonds used in our sample of traditional bonds; 2-factor models add equity HML as a
second factor. The alternative models show significant and similar alpha spreads
(about 30 bp).

Robustness. Further robustness tests of the raw returns and factor model alpha
spreads are found in Appendix C of the Supplementary Material. These tests find
significant alpha spreads with a 21-factor model described in Table IA.6 in the
Supplementary Material. They also find that BBM’s CAPM alphas are larger for
investment grade bonds (Table IA.7 in the Supplementary Material), and that

13The “Small bonds” and “Large bonds” rows do not average to Table 4 Panel A’s EWalphas because
some bonds lack data on their size.
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neither volatility, individual bondmarket betas, value-at-risk, nor bond institutional
ownership materially influence BBM spread magnitude (Table IA.8 in the Supple-
mentary Material).

IV. Understanding the BBM Alpha Spread: Risk or
Mispricing?

A. Signal Delay

Figure 2 plots alpha spreads (BBM’s Q5 dummy coefficients from specifica-
tion 7, Panel A of Table 3) for signal delays ranging from 0 to 11 months. Unlike
Table 3, Figure 2’s returns always commence Jan. 2004, ensuring apples-to-apples
comparisons across differing lags. Its 30 bp per month alpha spread with no delay
(i.e., first signal from Dec. 2003), approximates the 32 bp coefficient from Panel A
of Table 3 despite a shorter return series. Figure 2 indicates an alpha spread decline
to 9 bp when signal delay is 2 months, losing about 70% of its efficacy. The spread
meanders with further delay, ranging from 2 to 12 bp with a slow downward trend.

Figure 2’s rapid decay rules out omitted risk or liquidity controls as the source
of the BBM anomaly. Bonds with extreme BBM ratios may ultimately exhibit less
extreme BBM. However, BBM is a slowly evolving attribute, and generally, large
price changes are required to move a bond out of an extreme BBM quintile. Most
extreme quintile bonds remain in their quintiles for several months and, for some,
even years.14 BBM’s slow evolution implies that if BBM broadly proxies for
omitted attributes, stale BBM signals should predict bond returns, which is incon-
sistent with Figure 2.

Calibrating delay’s effect on quintile membership supports a view that BBM
cannot broadly proxy for risk or liquidity. More than 85% of the extreme quintiles’
bonds persist in those quintiles the next month, yet signal efficacy diminishes by
42%. With a 2-month lag, alpha declines by 70%, but more than 80% of this stale
strategy is dedicated to bonds that remained in quintiles 1 and 5. Moreover, as time
evolves, bonds leaving extreme quintiles generally move to adjacent quintiles.
Adjacent quintiles have tighter alpha spreads with their more extreme neighbors
than the 2 extreme BM quintiles have with each other. Indeed, unreported coeffi-
cients on BBM quintiles 2–5 are monotonically increasing and significant in all of
Table 3 Panel A’s odd-numbered specifications.

The alpha decay pattern and extreme-quintile spread size also rule out BBM as
a narrow proxy for the omitted risk/liquidity attributes of a small proportion of these
quintiles’ bonds. As a narrow proxy, the omitted risk or liquidity attributes must
earn implausibly large premia to account for the extreme quintile alpha spread and

14BBM changes slowly, just as Gerakos and Linnainmaa (2017) document for equity book-to-
market. To prove that these features make BBM’s quintiles stable, we computed survival rates: the
percentage of each BBM quintile’s month t investment remaining in the quintile’s month t bonds at the
end of months t + 1, t + 2, and t + 3. With 1-month delay, the time series averages of the percentages of
“old bond” investment are 89%, 73%, 67%, 67%, and 82% for Q1, Q2, Q3, Q4, and Q5, respectively.
Thus, the 1-month survival rates for bonds in the 2 extreme BBMquintiles exceed those of the 3 interiors
quintiles. For Q1 and Q5, the 2-month survival rates are 85% and 76%, respectively: only an additional
4% and 6% of bonds leave Q1 and Q5 in the subsequent month, respectively.
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then have the premia shrink once the bonds exit their BBM quintile. With alpha
spreads about twice the spread in YTM, the hidden risk or liquidity attributes would
have to earn at least 20 times the Q5–Q1 spread in promised yields if BBM proxied
for the omitted controls of 20% of the BBM Q5 bonds. An omitted attribute earns
just one-sixth of the needed spread if it earns a 5% per year spread for this narrow
set of bonds. A traditional bond typically earned 5% over Treasury bills during our
sample period without controls, while the narrow proxy hypothesis says BBM
captures many times this premium as a spread. Default’s rarity and a similar-
sized BBM anomaly for our investment grade subsample turn this hypothetical,
enormous, yet rapidly declining risk/liquidity premium into pure fantasy.

Unlike risk or liquidity premia, mispricing can both be distributed unevenly
and be large for a few bonds within BBM’s extreme quintiles. Consistency with
Figure 2’s rapid decay pattern requires only price convergence to fair value within a
couple of months for such highly mispriced bonds. Finance teaches that savvy
traders exploit large arbitrage opportunities quickly. The fact that illiquid markets
with large trading costs prevent instant price convergence to fair value of small
pricing mistakes is no surprise. It takes time for the mispricing of some extreme
quintile bonds to build to sufficiently attractive levels to warrant the attention of
capital-constrained arbitrageurs.

In sum, a few highly mispriced bonds within BBM’s extreme quintiles explain
Table 3 Panel A’s results even when the remaining bonds are at fair value. When
savvy market participants force the prices of highly mispriced bonds to converge to
fair value, the formerly mispriced bonds tend to depart their quintiles. Whether they
depart or stay, other bonds remaining in the extreme BBM quintile will largely
consist of bonds that are close to fair valuations, rendering a delayed BBM signal
useless. As a back of the envelope calculation, if only 10% of the BBM Q5 bonds
are underpriced by 3%, and 10% of the Q1 bonds are overpriced by 3%, 50% of
these mispriced bonds converging to fair value each month is sufficient to generate
a 30 bp alpha spread with no delay (= 3% × 10%/2 + 3% × 10%/2), a 15 bp alpha

FIGURE 2

Signal Delay

Figure 2 shows average coefficients from Fama and MacBeth (1973) regressions of monthly bond returns on bond book-to-
market, controlling for other bond and equity characteristics (specification 7 in Panel A of Table 3). Book-to-market quintile
dummies are laggedby 1 to 12months. The table employs quintile dummies for quintiles 2, 3, 4, and5 of eachcharacteristic as
regressors, but the figure displays only the coefficient on the quintile 5 dummy for bond book-to-market.
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spread with 1-month delay (= 3% × 10%/4 + 3% × 10%/4), and a 7.5 bp alpha
spread with 2-month delay (= 3% × 10%/8 + 3% × 10%/8).

B. Signal Efficacy as a Function of Default Risk and Liquidity

Table 3 Panel A’s extensive controls for credit ratings, default, and liquidity
make it unlikely that omitted controls explain the BBM anomaly. Prior YTM
discussion, expanded here, reinforces our credit risk argument. A default prone
Q5 bond’s YTM should exceed its expected return because payments in default fail
to meet the bond contract’s promises. The Q5 difference implies that the YTM
difference between Q5 and no-default Q1—less than 13 bp in Panel A of Table 2—
should also exceed the spread in their risk-related expected returns. Yet, BBM’s EW
return spread, averaging 44 bp (Panel B of Table 2), is 3.5 times larger than the
spread in the quintiles’ promised yields. Even Table 2 Panel A’s 32 bp (all control)
alpha spread is more than twice YTM’s spread.

If BBM proxied for inadequate credit risk or liquidity controls, the BBM
anomaly may be stronger for bonds that are nearer to default or less liquid.
Table 5 adds interactions to Table 3 Panel A’s regressors, multiplying each BBM
quintile dummy or normal score by a dummy for the 20% of bonds that are nearest
to default (Panel A’s top half) or the 20% that have the lowest credit rating (Panel
A’s bottom half). Panel B correspondinglymultiplies eachBBMquintile dummyby
dummies for either the 20% of bonds with the lowest trading volume, 20%with the
lowest number of trades, 20% with the largest bid–ask spread, or 20% with the
largest bond gamma (Panel B, appearing top to bottom, respectively). For brevity,
reported BBM quintile interactions are only with BBM Q5, representing BBM’s
Q5–Q1 alpha spread. A positive coefficient here indicates larger BBM spreads for
the top 20% of bonds based on default or illiquidity compared to BBM spreads for
the bottom 20% of default or illiquidity.

All of Table 5 Panel A’s specifications have significant BBM Q5 coefficients,
implying the BBM anomaly remains for the 80% of bonds least likely to default.
However, the interaction dummies are insignificant. For example, in specification
7’s top half, bonds in the quintile nearer to default have a 10 bp per month lower
alpha spread than bonds further from default. In all specifications, the 20% most
likely to default bonds and the 80% least likely have statistically indistinguishable
BBM effects.

Panel B of Table 5 shows similar findings for the first 3 illiquidity measures.
Here, all but 2 of BBM’s 24 interaction terms with the 20% least liquid bonds are
insignificant. The exceptions are specifications 2 and 4’s marginally significant
volume interaction, for which the least liquid bonds exhibit stronger BBM normal
score predictability, but only with limited regressor controls. With bond gamma as
the liquidity proxy (bottom quarter of Panel B), low liquidity bonds earn signifi-
cantly greater BBM alpha spreads than high liquidity bonds. The significant inter-
action here is consistent with illiquidity increasing the returns of some bonds and
decreasing the returns of others, depending on the BBM quintile. This is not a
liquidity premium per se, which raises the returns of similarly illiquid BBMQ1 and
Q5 bonds by similar amounts. We would detect such a premium from a significant
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TABLE 5

Default Risk and Liquidity Interactions

Table 5 shows results from Fama and MacBeth (1973) regressions of monthly bond returns on bond and stock characteristics with BBM interaction variables for bonds with the 20% highest default risk (Panel A) or 20% lowest liquidity (Panel B). In Panel A, in
addition to the regressors employed in Panel A of Table 3, all regressions include the fifth quintile dummy for nearness to default (top) or bond credit rating (bottom), as well as interactions of these worst credit indicator variables with the 4 quintile dummies for
bond book-to-market (odd-numbered columns) or normal score of bond book-to-market (even-numbered columns), respectively. In Panel B, all regressions include the fifth quintile dummy for the negative of volume, the negative of the number of trades, the
bond bid–ask spread, or the bond gamma as well as interactions of these illiquidity indicator variables with the 4 quintile dummies for bond book-to-market (odd-numbered columns) or normal score of bond book-to-market (even-numbered columns),
respectively. Volumeand the number of tradesaremultipliedbyminus oneso that the fifth quintile of all 4 liquiditymeasures identify bondswith the lowest degreeof liquidity. The table showsaverage coefficients and test statistics aswell as the average number of
observations and average adjusted R2. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A. Default Risk

1 2 3 4 5 6 7 8

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Nearness to Default
Bond book-to-market Q5 × nearness to default Q5 �0.047 [�0.30] �0.023 [�0.15] �0.071 [�0.48] �0.100 [�0.73]
Bond book-to-market (normal score) × nearness to default Q5 0.111 [1.29] 0.114 [1.32] 0.047 [0.63] 0.080 [1.12]
Bond book-to-market Q5 0.397 [3.82]*** 0.396 [3.77]*** 0.278 [4.04]*** 0.317 [4.31]***
Bond book-to-market (normal score) 0.103 [2.90]*** 0.106 [2.95]*** 0.095 [3.22]*** 0.107 [3.80]***
Nearness to default Q5 0.019 [0.16] �0.039 [�0.52] 0.011 [0.09] �0.035 [�0.47] �0.009 [�0.09] �0.097 [�1.90]* 0.101 [0.82] �0.043 [�0.51]
No. of obs. 1,149 1,149 1,149 1,149 1,149 1,149 1,149 1,149
Adj. R2 0.13 0.13 0.14 0.14 0.26 0.26 0.29 0.29
Bond characteristic controls (see Table 3) No No No No Yes Yes Yes Yes
Stock characteristic controls (see Table 3) No No No No No No Yes Yes
Market microstructure controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry controls Yes Yes Yes Yes Yes Yes Yes Yes

Bond Rating
Bond book-to-market Q5 × bond rating Q5 �0.036 [�0.26] �0.032 [�0.23] �0.100 [�0.78] �0.006 [�0.05]
Bond book-to-market (normal score) × bond rating Q5 0.084 [0.89] 0.086 [0.91] 0.031 [0.37] 0.082 [1.11]
Bond book-to-market Q5 0.411 [3.96]*** 0.411 [3.93]*** 0.275 [4.06]*** 0.293 [4.08]***
Bond book-to-market (normal score) 0.108 [3.09]*** 0.111 [3.13]*** 0.096 [3.30]*** 0.102 [3.62]***
Bond rating Q5 �0.088 [�0.92] �0.070 [�0.84] �0.075 [�0.80] �0.063 [�0.76] �0.201 [�2.18]** �0.306 [�3.70]*** �0.222 [�2.51]** �0.314 [�3.46]***
No. of obs. 1,149 1,149 1,149 1,149 1,149 1,149 1,149 1,149
Adj. R2 0.14 0.14 0.14 0.14 0.26 0.26 0.29 0.29
Bond characteristic controls (see Table 3) No No No No Yes Yes Yes Yes
Stock characteristic controls (see Table 3) No No No No No No Yes Yes
Market microstructure controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry controls Yes Yes Yes Yes Yes Yes Yes Yes

(continued on next page)
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TABLE 5 (continued)

Default Risk and Liquidity Interactions

Panel B. Liquidity

1 2 3 4 5 6 7 8

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Bond Volume
Bond book-to-market Q5 × bond volume Q5 0.091 [1.13] 0.081 [0.95] 0.011 [0.13] �0.025 [�0.31]
Bond book-to-market (normal score) × bond volume Q5 0.067 [2.10]** 0.065 [1.93]* 0.045 [1.41] 0.026 [0.84]
Bond book-to-market Q5 0.394 [3.28]*** 0.401 [3.31]*** 0.262 [3.09]*** 0.306 [3.73]***
Bond book-to-market (normal score) 0.127 [2.91]*** 0.129 [2.93]*** 0.105 [2.34]** 0.124 [2.99]***
Bond volume Q5 0.112 [2.32]** 0.169 [5.08]*** 0.063 [1.31] 0.120 [3.99]*** �0.002 [�0.03] 0.031 [0.76] �0.031 [�0.57] �0.002 [�0.05]
No. of obs. 1,383 1,383 1,383 1,383 1,383 1,383 1,383 1,383
Adj. R2 0.10 0.10 0.11 0.10 0.22 0.23 0.25 0.25
Bond characteristic controls (see Table 3) No No No No Yes Yes Yes Yes
Stock characteristic controls (see Table 3) No No No No No No Yes Yes
Market microstructure controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry controls Yes Yes Yes Yes Yes Yes Yes Yes

Number of Trades
Bond book-to-market Q5 × number of trades Q5 0.021 [0.25] 0.006 [0.07] �0.034 [�0.46] �0.032 [�0.44]
Bond book-to-market (normal score) × number of trades Q5 0.008 [0.25] 0.000 [0.00] 0.000 [0.00] �0.005 [�0.20]
Bond book-to-market Q5 0.412 [3.28]*** 0.412 [3.27]*** 0.272 [3.15]*** 0.312 [3.75]***
Bond book-to-market (normal score) 0.141 [3.05]*** 0.141 [3.02]*** 0.115 [2.51]** 0.133 [3.14]***
Number of trades Q5 0.075 [1.81]* 0.120 [4.43]*** �0.002 [�0.06] 0.025 [0.91] �0.063 [�1.29] �0.046 [�1.33] �0.091 [�1.80]* �0.064 [�1.81]*
No. of obs. 1,383 1,383 1,383 1,383 1,383 1,383 1,383 1,383
Adj. R2 0.10 0.09 0.10 0.10 0.22 0.23 0.25 0.25
Bond characteristic controls (see Table 3) No No No No Yes Yes Yes Yes
Stock characteristic controls (see Table 3) No No No No No No Yes Yes
Market microstructure controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry controls Yes Yes Yes Yes Yes Yes Yes Yes

Bond Bid–Ask Spread
Bond book-to-market Q5 × bid–ask spread Q5 0.037 [0.29] 0.046 [0.36] �0.003 [�0.03] 0.027 [0.28]
Bond book-to-market (normal score) × bid–ask spread Q5 0.065 [1.13] 0.068 [1.22] 0.027 [0.60] 0.036 [0.90]
Bond book-to-market Q5 0.365 [3.12]*** 0.368 [3.12]*** 0.252 [3.40]*** 0.295 [3.86]***
Bond book-to-market (normal score) 0.101 [2.48]** 0.102 [2.50]** 0.097 [2.77]*** 0.111 [3.51]***
Bid–ask spread Q5 0.157 [2.67]*** 0.204 [4.32]*** 0.152 [2.64]*** 0.196 [4.15]*** 0.081 [1.48] 0.041 [1.23] 0.062 [1.07] 0.038 [1.07]
No. of obs. 1,149 1,149 1,149 1,149 1,149 1,149 1,149 1,149
Adj. R2 0.13 0.12 0.13 0.13 0.26 0.26 0.29 0.29

(continued on next page)
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TABLE 5 (continued)

Default Risk and Liquidity Interactions

Panel B. Liquidity (continued)

1 2 3 4 5 6 7 8

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Bond characteristic controls (see Table 3) No No No No Yes Yes Yes Yes
Stock characteristic controls (see Table 3) No No No No No No Yes Yes
Market microstructure controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry controls Yes Yes Yes Yes Yes Yes Yes Yes

Bond Gamma
Bond book-to-market Q5 × bond gamma Q5 0.159 [1.56] 0.150 [1.50] 0.182 [1.89]* 0.177 [1.89]*
Bond book-to-market (normal score) × bond gamma Q5 0.072 [1.88]* 0.071 [1.88]* 0.069 [2.21]** 0.070 [2.43]**
Bond book-to-market Q5 0.394 [3.27]*** 0.390 [3.22]*** 0.151 [1.64] 0.189 [2.35]**
Bond book-to-market (normal score) 0.123 [2.92]*** 0.122 [2.87]*** 0.072 [1.55] 0.091 [2.35]**
Bond gamma Q5 0.029 [0.47] 0.145 [3.17]*** 0.033 [0.54] 0.138 [2.99]*** �0.096 [�1.37] �0.005 [�0.14] �0.081 [�1.12] �0.006 [�0.17]
No. of obs. 1,096 1,096 1,096 1,096 1,096 1,096 1,096 1,096
Adj. R2 0.13 0.12 0.13 0.13 0.27 0.27 0.31 0.31
Bond characteristic controls (see Table 3) No No No No Yes Yes Yes Yes
Stock characteristic controls (see Table 3) No No No No No No Yes Yes
Market microstructure controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry controls Yes Yes Yes Yes Yes Yes Yes Yes
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coefficient on the standalone gamma regressor, but gamma is insignificant in all
regressions with bond controls.

Each of Table 5 Panel B’s 32 regressions imply that all bonds, irrespective of
liquidity quintile, exhibit significant BBM effects, even when liquidity and its
interactions are controlled for. Hence, while some forms of illiquidity may enhance
the BBM effect, for reasons we will explore later, the enhancement is not because
BBM proxies for an omitted or poorly measured liquidity control. Next, we study
whether omitted controls tied to the riskless term structure might explain our
findings.

C. BBM and Lower Risk Treasury Notes and Bonds

If BBM’s anomaly stems from BBM better capturing duration or related
interest rate risk measures than our controls, Treasuries should exhibit a BBM
anomaly. Using CRSP’s U.S. Treasury Database (excluding T-bills, TIPS, and
Treasuries with special tax provisions) instead of corporate bonds, Table 6 repeats
Table 3 Panel A’s regressions with the returns of U.S. Treasuries as the dependent
variable, dropping regressors that do not apply to Treasuries. Panel A covers the
period from July 1961 to Sept. 2020, Panel B covers the period prior to the period
we study with TRACE, and Panel C studies the return period over which we study
corporate bond returns with TRACE – Feb. 2003 to Sept. 2020. The coefficient on
the BBM Q5 dummy is insignificant for all specifications and all time periods. By
contrast, YTM is a significant predictor of U.S. Treasury returns. This finding is
consistent with our controls for duration and term risk being adequate, leaving other
risks or, more likely, mispricing as the better explanation for the BBM anomaly in
the corporate bond market.

A placebo test, which censors most Treasury transactions, assesses whether
our martingale procedure artificially induces a BBM anomaly when trading is
infrequent. Here, we force trades in Treasuries to mimic the distribution of trading
frequencies in the corporate bond market. At the end of each month t, Treasury
security j is randomly assigned a corporate bond (with replacement) from the
universe of corporate bonds that belong to one of our end-of-month t BBM quin-
tiles. If the martingale procedure for the assigned corporate bond employs the
bond’s last transaction on day d1 to compute its month t signal, a day d2 transaction
for the beginning price of its month t + 1 return, and a day d3 transaction for the end
price of that return, we compute Treasury security j’s month t signal and t + 1 return
using the latter security’s end-of-day prices from days d1, d2, and d3, respectively.
Other transactions in the Treasury security are ignored, forcing it to exhibit the same
illiquidity as its assigned corporate bond. We remove observations if day d1 is
before the bond’s issuance or day d3 falls after the bond’s maturity date. After
similar assignments to all qualifying Treasury securities in eachmonth, we estimate
Table 6 Panel C’s regression using the censored Treasury transaction data.

Panel D of Table 6 reports the average values for Table 6 Panel C’s regression
coefficients across 1,000 Monte Carlo simulations. Panel D’s results are virtually
identical to Panel C. For example, with specification 5, Panel D’s coefficient on
BBM Q5 is an insignificant 0.029, whereas Panel C’s coefficient is �0.032. The
similarity of Panels C and D validates the martingale procedure as an appropriate
methodology to assess the BBM anomaly when trading is thin. In work not reported
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TABLE 6

Sample of Treasury Bonds

Table 6 shows results from Fama andMacBeth (1973) regressions of monthly Treasury bond returns on Treasury bond characteristics. Treasury bond returns are regressed on bond book-to-market (BBM), coupon rate, yield to maturity,
market value, age, time to maturity, duration, bid–ask spreads, lagged returns, and cumulative returns from t – 6 to t–1 of Treasury bonds. The regressions include dummy variables for quintiles 2, 3, 4, and 5 of each characteristic, but the
table displays only the coefficients of the quintile dummywith the largest amount of the characteristic (Q5) for brevity. Panels A–C use all daily observations to construct monthly returns, while in Panel D, we randomlymatch each Treasury
security that is used in a BBM quintile in a month to a corporate bond. We then use the signal date, beginning-of-month date, and end-of-month date for the matching corporate bond to calculate BBM for the Treasury security and run
regressions using this simulated data set. We simulate the data 1,000 times and report the average of the coefficients, t-statistics, adjusted R2, and number of observations across simulations in Panel D. The table also shows the average
number of observations and average adjusted R2. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

1 2 3 4 5

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Panel A. 1961.7–2020.9

Bond book-to-market Q5 �0.083 [�1.61] �0.029 [�1.05] �0.036 [�1.56]
Bond coupon rate Q5 0.021 [0.82] 0.010 [0.40] �0.013 [�0.74]
Bond yield Q5 0.295 [3.67]*** 0.213 [4.34]*** 0.190 [4.23]***
Bond value Q5 �0.041 [�1.34] �0.053 [�2.47]** �0.018 [�1.61]
Bond age Q5 �0.013 [�0.30] �0.057 [�1.93]* �0.046 [�1.79]*
Bond maturity Q5 0.128 [1.25] 0.021 [0.73] 0.026 [1.02]
Bond duration Q5 0.039 [2.18]** 0.009 [0.88] 0.010 [0.97]
Bond bid–ask spread Q5 0.014 [0.71] 0.012 [0.69] 0.006 [0.36]
Bond reversal Q5 �0.083 [�2.08]** �0.081 [�2.59]*** �0.075 [�2.48]**
Bond momentum Q5 �0.023 [�1.08] 0.028 [1.12] �0.013 [�0.79]
Intercept 0.589 [9.21]*** 0.605 [8.03]*** 0.377 [9.93]*** 0.418 [7.91]*** 0.518 [9.77]***
No. of obs. 150 150 150 150 150
Adj. R2 0.29 0.78 0.58 0.78 0.79

Panel B. 1961.7-2003.1

Bond book-to-market Q5 �0.050 [�0.89] �0.026 [�0.76] �0.039 [�1.51]
Bond coupon rate Q5 0.014 [0.42] �0.002 [�0.05] �0.034 [�1.60]
Bond yield Q5 0.21 [2.46]** 0.256 [4.34]*** 0.227 [4.26]***
Bond value Q5 �0.056 [�1.20] �0.074 [�2.30]** �0.019 [�1.18]
Bond age Q5 0.025 [0.43] �0.050 [�1.37] �0.024 [�0.95]
Bond maturity Q5 0.086 [1.16] 0.021 [0.67] 0.016 [0.53]
Bond duration Q5 0.026 [1.52] 0.003 [0.20] 0.001 [0.04]
Bond bid–ask spread Q5 0.009 [0.40] 0.014 [0.65] �0.001 [�0.07]
Bond reversal Q5 �0.087 [�1.67]* �0.080 [�2.07]** �0.077 [�2.08]**
Bond momentum Q5 �0.049 [�1.67]* 0.031 [0.89] �0.030 [�1.40]
Intercept 0.635 [9.44]*** 0.758 [7.32]*** 0.472 [9.02]*** 0.490 [6.84]*** 0.633 [9.00]***
No. of obs. 117 117 117 117 117
Adj. R2 0.28 0.73 0.52 0.74 0.73

(continued on next page)
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TABLE 6 (continued)

Sample of Treasury Bonds

1 2 3 4 5

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Panel C. 2003.2-2020.9

Bond book-to-market Q5 �0.162 [�1.43] �0.033 [�0.73] �0.032 [�0.72]
Bond coupon rate Q5 0.038 [1.08] 0.036 [1.02] 0.034 [0.97]
Bond yield Q5 0.495 [2.76]*** 0.033 [0.57] 0.040 [0.61]
Bond value Q5 �0.013 [�0.99] �0.013 [�1.14] �0.016 [�1.27]
Bond age Q5 �0.080 [�1.55] �0.070 [�1.40] �0.081 [�1.53]
Bond maturity Q5 0.186 [0.83] 0.020 [0.39] 0.041 [0.90]
Bond duration Q5 0.070 [1.56] 0.025 [1.41] 0.031 [1.70]*
Bond bid–ask spread Q5 0.023 [0.63] 0.009 [0.29] 0.019 [0.49]
Bond reversal Q5 �0.073 [�1.30] �0.083 [�1.56] �0.071 [�1.35]
Bond momentum Q5 0.027 [1.00] 0.022 [0.83] 0.021 [0.78]
Intercept 0.479 [3.31]*** 0.246 [4.05]*** 0.151 [5.92]*** 0.248 [4.76]*** 0.247 [4.01]***
No. of obs. 229 229 229 229 229
Adj. R2 0.31 0.88 0.73 0.88 0.89

Panel D. 2003.2-2020.9, Simulated Data Accounting for Infrequent Transactions

Bond book-to-market Q5 �0.146 [�1.44] 0.030 [0.54] 0.029 [0.52]
Bond coupon rate Q5 0.112 [2.21]** 0.099 [2.04]** 0.111 [2.15]**
Bond yield Q5 0.392 [2.69]*** 0.200 [1.65]* 0.197 [1.57]
Bond value Q5 �0.025 [�1.07] �0.020 [�0.88] �0.024 [�1.00]
Bond age Q5 �0.059 [�1.03] �0.057 [�1.07] �0.058 [�0.98]
Bond maturity Q5 0.019 [0.08] 0.050 [0.81] 0.032 [0.53]
Bond duration Q5 0.049 [0.96] 0.021 [0.54] 0.023 [0.60]
Bond bid–ask spread Q5 0.013 [0.34] 0.008 [0.25] 0.014 [0.36]
Bond reversal Q5 �0.055 [�0.83] �0.047 [�0.74] �0.047 [�0.73]
Bond momentum Q5 �0.006 [�0.09] �0.013 [�0.18] �0.016 [�0.23]
Intercept 0.454 [3.70]*** 0.186 [2.29]** 0.182 [9.25]*** 0.192 [3.15]*** 0.167 [1.99]**
No. of obs. 204 204 204 204 204
Adj. R2 0.21 0.52 0.44 0.51 0.51

B
artram

,G
rinblatt,and

N
ozaw

a
35

https://doi.org/10.1017/S0022109024000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0022109024000048


in a table, we repeat Panel D of Table 6 but randomly perturb the Treasury prices on
the 3 days d1, d2, and d3 by a randomly assigned positive or negative 20 bp, each
with equal probability. This procedure mimics the impact of a 20 bp half bid–ask
spread. Results with the randomly perturbed prices are highly similar.

D. Does BBM Factor Risk Explain the BBM Alpha?

Davis, Fama, and French (2000) argue that HML factor betas account for both
equity’s book-to-market return anomaly and its book-to-market ratio. Here, we
construct a bond version of HML and show it has only modest ability to diminish
the BBM effect. To create an HML-like factor, we parrot Fama and French’s (1993)
procedure. Each month, we divide bonds into one of 6 categories based on 2 bond
size categories (market value outstanding) and 3 BBM categories. Within each of
the 2 bond size groups (large and small), we compute each month’s return spread
between a value weighting (proportional to each bond’s market capitalization) of
the top- and bottom-third BBM bonds. Averaging the “large” and “small” bond
return spreads generates that month’s bond HML factor (BHML).

Table 7 repeats Table 4’s primary factor regressions, adding BHML factor
returns. Table 7’s top half corresponds to Panel A of Table 4 (the BBW factor
model); its bottom half corresponds to Panel B of Table 4 (the augmented BBW
factor model). For brevity, Table 7 only reports intercepts and factor betas on
BHML. Its rightmost column shows significant differences inQ5–Q1BHML factor
betas with both factor models. The first row of the rightmost column also displays a
significant alpha spread of 15 bp per month (t = 3.11) – 4 bp belowTable 4 Panel A’s
19 bp spread. Including the term structure factor yields a similar, significant alpha
spread (14 bp, t = 3.17).

It is not surprising that Table 7’s alpha spreads are smaller than Table 4’s. If we
had constructed the BHML factor as an equal weighting of the top and bottomBBM
quintile returns, mathematics would ensure a zero alpha spread. The modestly
differing design of BHML similarly leads to a downward bias in the alpha spreads,
albeit a less dramatic one. Such a bias makes the significance of the Q5–Q1
intercepts, even at 14 to 15 bp per month, quite telling. It suggests that it would
be conservative to argue that factor risk does not fully explain the BBM anomaly.

V. Junior Bonds, Trading Frequency, and Transaction Costs

A. BBM’s Return Predictive Ability for All Bonds

Prior analysis studied only senior unsecured bonds with no options other than
simple calls. Table 8 repeats Tables 3, 4, and 7’s regressions, but for all TRACE
bonds, including junior and puttable bonds. Panel A of Table 8, which parrots
Table 3’s FM regressions for the all-bond sample, reports selected coefficients of
interest for brevity. Panel B and C’s factor regressions study EW quintiles using
Tables 4 and 7’s factors, respectively, but report only the intercepts and, for Panel C,
BHML betas as well.

Table 8 supplements the traditional sample with corporate bonds that trade less
frequently and are riskier than the original sample’s senior unsecured bonds. With
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TABLE 7

Factor Model Time Series Regressions with Bond HML Factor

Table 7 shows results from time series regressions ofmonthly portfolio returns (in excess of 1-monthUSDLIBOR) on bond factormodels augmentedwith a high-minus-low factor based onbond book-to-market (BHML).
Bonds are sorted eachmonth into quintiles based on bond book-to-market (BBM) and combined into equal-weighted portfolios. The table reports intercepts, slope coefficients, t-statistics, the number of observations,
and R2 separately for each of the five portfolios (Q1, Q2, Q3, Q4, Q5) and for the corresponding times series of return spreads between the highest (Q5) and lowest (Q1) BBM bond quintiles. To form the BHML factor,
eachmonth, we independently sort bonds into 2 categories based on bond size (bondmarket value outstanding) and 3 based on the BBM ratio. For bonds within each of the 2 size categories, we value-weight returns
(based on bond size) in the 2 extreme BBM terciles and calculate month t + 1’s return spread of the portfolio. We then average the 2 value-weighted return spreads to form BHML. Regressors for the Bai et al.’s (2019)
factor model are the excess return on the bond market portfolio, return spreads based on value-at-risk (the second worst returns in the previous 3 years), rating (credit rating), illiquidity (the Bao et al. (2011) measure),
and reversal (past 1-month return). The augmentedBBW factormodel further adds a term structure factor. Standarderrors are estimated using theNeweyandWest (1987) procedure. ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5%, and 1% levels, respectively.

Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Q5–Q1 (High–Low BBM)

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

BBW Factor Model
Intercept 0.230 [4.34]*** 0.169 [4.61]*** 0.177 [5.18]*** 0.183 [4.63]*** 0.380 [4.58]*** 0.150 [3.11]***
BHML factor (t + 1) �0.580 [�9.33]*** �0.423 [�5.45]*** �0.111 [�1.74]* 0.068 [1.79]* 0.505 [5.00]*** 1.085 [15.1]***
R2 0.848 0.89 0.90 0.88 0.83 0.86
No. of obs. 212 212 212 212 212 212
5 factors (see Panel A of Table 4) Yes Yes Yes Yes Yes Yes

Augmented BBW Factor Model
Intercept 0.171 [4.29]*** 0.157 [4.74]*** 0.166 [5.70]*** 0.174 [4.66]*** 0.309 [4.48]*** 0.138 [3.17]***
BHML factor (t + 1) �0.512 [�8.78]*** �0.408 [�4.87]*** �0.097 [�1.40] 0.078 [2.08]** 0.587 [5.35]*** 1.100 [15.1]***
R2 0.87 0.89 0.90 0.88 0.84 0.87
No. of obs. 212 212 212 212 212 212
6 factors (see Panel B of Table 4) Yes Yes Yes Yes Yes Yes
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TABLE 8

Sample of All Corporate Bonds

Table 8 shows results for regressions using the sample of all bonds including junior bonds and bonds with embedded options. Panel A shows results from Fama andMacBeth (1973) regressions of monthly bond returns on bond and stock characteristics for the
same regression specifications as in Panel A of Table 3. The regressions include dummy variables for the remaining quintiles of each characteristic, but the panel displays only the coefficients of the quintile dummywith the largest amount of bondbook-to-market
(Q5) or the normal score of bond book-to-market for brevity. The panel also shows average coefficients and test statistics as well as the average number of observations and average adjusted R2. Panel B shows results from time series regressions of monthly
equal-weighted portfolio returns (in excess of 1-month USD LIBOR) on bond factor models as in Table 4. For brevity, the panel only displays coefficients and t-statistics for the regression intercept as well as the number of observations and R2. Panel C shows
results from time series regressions of monthly equal-weighted portfolio returns (in excess of 1-month USD LIBOR) on a risk model augmented with a high-minus-low factor based on bond book-to-market (BHML), following Table 7. The panel reports intercepts,
slope coefficients, t-statistics, the number of observations, and R2 separately for each of the five portfolios, Q1–Q5, and for the return spreads between the highest bond book-to-market (Q5) and lowest bond book-to-market (Q1) quintiles. For brevity, the panel
only displays coefficients and t-statistics for the regression intercept and theBHML factor, aswell as the number of observations andR2. Standard errors are estimated using theNewey andWest (1987) procedure. ∗, ∗∗, and ∗∗∗ indicate statistical significance at
the 10%, 5%, and 1% levels, respectively.

Panel A. Fama–MacBeth Cross-Sectional Regressions

1 2 3 4 5 6 7 8

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Bond book-to-market Q5 0.575 [4.79]*** 0.569 [4.72]*** 0.336 [3.64]*** 0.384 [4.26]***
Bond book-to-market (normal score) 0.192 [4.28]*** 0.189 [4.19]*** 0.152 [3.47]*** 0.171 [4.22]***
No. of obs. 1,315 1,315 1,315 1,315 1,315 1,315 1,315 1,315
Adj. R2 0.11 0.10 0.12 0.11 0.23 0.24 0.26 0.26
Bond characteristic controls (see Table 3) No No No No Yes Yes Yes Yes
Stock characteristic controls (see Table 3) No No No No No No Yes Yes
Market microstructure controls (see Table 3) No No Yes Yes Yes Yes Yes Yes
Industry controls Yes Yes Yes Yes Yes Yes Yes Yes

Panel B. Factor Model Time Series Regressions

Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Q5–Q1 (High–Low BBM)

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

BBW Factor Model
Intercept 0.203 [3.11]*** 0.219 [3.91]*** 0.308 [6.76]*** 0.473 [8.29]*** 0.636 [6.82]*** 0.433 [5.13]***
R2 0.77 0.82 0.86 0.76 0.82 0.65
No. of obs. 212 212 212 212 212 212
5 factors (see Panel A of Table 4) Yes Yes Yes Yes Yes Yes

Augmented BBW Factor Model
Intercept 0.137 [2.60]** 0.187 [3.86]*** 0.300 [6.90]*** 0.464 [8.78]*** 0.616 [6.77]*** 0.478 [5.67]***
R2 0.80 0.83 0.86 0.76 0.82 0.67
No. of obs. 212 212 212 212 212 212
6 factors (see Panel B of Table 4) Yes Yes Yes Yes Yes Yes

(continued on next page)
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TABLE 8 (continued)

Sample of All Corporate Bonds

Panel C. Factor Model Time Series Regressions with Bond HML Factor

Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Q5–Q1 (High–Low BBM)

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

BBW Factor Model
Intercept 0.269 [5.11]*** 0.261 [6.27]*** 0.310 [7.46]*** 0.447 [8.12]*** 0.547 [7.16]*** 0.278 [5.70]***
BHML factor (t + 1) �0.397 [�6.16]*** �0.251 [�3.06]*** �0.016 [�0.24] 0.155 [2.81]*** 0.530 [3.40]*** 0.927 [8.36]***
R2 0.83 0.86 0.86 0.77 0.87 0.88
No. of obs. 212 212 212 212 212 212
5 factors (see Panel A of Table 4) Yes Yes Yes Yes Yes Yes

Augmented BBW Factor Model
Intercept 0.212 [5.25]*** 0.235 [7.44]*** 0.302 [8.00]*** 0.428 [8.89]*** 0.495 [7.96]*** 0.283 [6.25]***
BHML factor (t + 1) �0.351 [�5.04]*** �0.230 [�2.59]** �0.009 [�0.14] 0.170 [2.86]*** 0.573 [3.32]*** 0.924 [7.86]***
R2 0.85 0.86 0.86 0.77 0.87 0.88
No. of obs. 212 212 212 212 212 212
6 factors (see Panel B of Table 4) Yes Yes Yes Yes Yes Yes
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full controls (specifications 7 and 8), Table 8 Panel A’s results are stronger than
those from Panel A of Table 3. For example, the BBM Q5 dummy’s coefficient in
specification 7 of Panel A is 38 bp per month (t = 4.26); the corresponding
coefficient from Panel A of Table 3, specification 7 is 32 bp (t = 4.05). Likewise,
factor model alpha spreads between BBMQ5 and Q1—43 and 48 bp per month for
Panel B, 28 and 28 bp per month for Panel C, all significant—exceed those from the
traditional sample’s factor models, as outlined in Tables 4 and 7, respectively. Thus,
the BBM anomaly is stronger for the all-bond sample.

B. Off-Market Prices

The literature is ambiguous about whether dealers offer key customers differ-
ent prices than others or whether central dealers offer bid–ask spreads at discounts
or premia when providing liquidity. TRACE prices bias inferences if the BBM
signal selects time-clustered off-market prices below or above mid-market prices.
For brevity, the arguments below assume key customers get better prices and
oligopolistic central dealers offer worse spreads. The arguments merely reverse
(e.g., bids become asks and vice versa, better becomes worse, higher is lower, etc.)
if off-market prices imply key customers get wider rather than narrower spreads or
central dealers offer narrower rather than wider spreads.

Suppose key customers receive better pricing, and their better prices fre-
quently impute TRACE’s beginning price for returns. Then customer–dealer trades
would earn higher BBM alpha spreads than dealer-to-dealer return-initiating trades.
Table 9 uses Table 3 Panel A’s FM regression methodology to analyze this conjec-
ture. It adds interaction terms to the BBM quintile dummies for a return-beginning
price that is from a customer buy or sell transaction. Column 1’s 0.328 coefficient
onBBMquintile 5 represents theQ5–Q1 alpha spreadwhen a dealer-to-dealer trade
generates the return’s beginning price. The interaction with the customer
beginning-price dummy is insignificant in both specifications. This refutes the
hypothesis that customer groups receiving favorable off-market bid and ask prices
induce spurious BBM correlation with alpha spreads.

The minimum 7-day gap between the signal and the trade used for the return’s
beginning price makes it unlikely that the key customer hypothesis can explain our
results. If a high BBM signal (which comes from trades at both bids and asks)
selects bonds that favored customers are buying at the transaction date of the bond
return’s beginning price (with the reverse for low BBM signals), the minimum
7-day gap should be sufficient to mitigate the signal’s ability to predict the trade
direction of specific customer types receiving favored (or disfavored) pricing.
Below-market ask prices that inflate both BBM and the return’s beginning-of-
month price are theoretically possible. However, with a 7-day gap, it seems unlikely
to be the source of a 44 bp return spread between Q5 and Q1, let alone the alpha
spread observed when controlling for the most recent bid–ask spread.

Further evidence against the key customer hypothesis comes from gap short-
ening, which should increase the spread if favored customers concentrate trades in
short time intervals. Instead, the spread decreases to 43 bp if the gap is reduced by
5 trading days. When increasing the 7-day gap, even by 16–20 trading days,
extreme quintile monthly return spreads still exceed 40 bp.
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The irrelevance of gap lengthening and shortening also refutes claims that the
BBM anomaly is explained by off-market prices transacted with a central dealer
offering liquidity at unfavorable terms to its counterparties. According to the central
dealer hypothesis, liquidity-providing dealers concentrate their trades for periods as
long as a month at below-market bid prices for Q5 bonds and at above-market ask
prices for Q1 bonds. As with favored customers, clustering of central dealer trades
could inflate Q5 signals and returns, while deflating Q1 signals and returns.

For the key customer and central dealer hypotheses to hold, off-market prices
must also persist for no more than 13–15 trading days. If persistence was longer,
biases in month-end prices (typically 13–15 trading days after the beginning-price
trade) would offset the bias in the beginning-of-month transaction price, negating
return bias. Hence, evidence showing that gap lengthening by up to 16–20 trading
days scarcely affects return spreads helps refute off-market price hypotheses.

C. Buy-and-Hold Returns

Many institutional investors rebalance their bond portfolios infrequently,
reducing transaction costs. Table 10 reports factor model alphas (computed as in
Panel A of Table 4) of 5 yearly rebalanced BBM quintiles and the long–short BBM
strategy. These yearly rebalanced BBW and augmented BBW factor models yield
extreme quintile alpha spreads of 12 bp (t = 2.05) and 16 bp (t = 2.67) per month,
respectively.15 This suggests that yearly rebalancing approximately halves BBM’s
risk-adjusted profits.

TABLE 9

Off-Market Prices

Table 9 shows results fromFamaandMacBeth (1973) regressions ofmonthly bond returns on bond and stock characteristics.
BBM quintile dummies have interaction variables for dealer–customer bond transactions with the omitted dummy reflecting a
dealer-to-dealer transaction. In addition, the regression includes the control variables used in specification 7 of Table 3 Panel
A. The table employs quintile dummies for the characteristics as regressors except for bond book-to-market in specification 2,
which employs the normal score of bond book-to-market. All regressions include an indicator variable for customer
transactions, defined as cases where the beginning bond price used to construct the return in month t + 1 comes from a
customer transaction. The customer transaction indicator is also interacted with the quintiles and the normal score for bond
book-to-market. The table shows average coefficients and test statistics of selected regressors aswell as the average number
of observations and average adjusted R2. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

1 2

Coefficient t-Statistic Coefficient t-Statistic

Customer transaction 0.006 [0.24] 0.019 [1.00]
Bond book-to-market Q2 × customer transaction 0.017 [0.51]
Bond book-to-market Q3 × customer transaction 0.019 [0.53]
Bond book-to-market Q4 × customer transaction 0.041 [1.21]
Bond book-to-market Q5 × customer transaction �0.018 [�0.31]
Bond book-to-market (normal score) × customer transaction 0.005 [0.23]
Bond book-to-market Q5 0.328 [4.69]***
Bond book-to-market (normal score) 0.101 [3.18]***
No. of obs. 1,104 1,104
Adj. R2 0.27 0.28
Bond characteristic controls (see Table 3) Yes Yes
Stock characteristic controls (see Table 3) Yes Yes
Market microstructure controls (see Table 3) Yes Yes
Industry controls Yes Yes

15To address statistical pitfalls from 12-month returns that roll over each month, we apply Jegadeesh
and Titman’s (1993) technique. They construct an independent monthly return series that mimics a buy-
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TABLE 10

Buy-and-Hold Returns

Table 10 shows results from time series regressions ofmonthly bondportfolio returns (in excess of 1-monthUSDLIBOR) on risk factors. Following Jegadeesh and Titman ((1993), (2001)), the tablemeasures themonthly
performance of a portfolio held for 12 months with the following non-overlapping returns methodology. Bonds are sorted each month into 12 sets of quintiles based on BBM that is delayed from 0 to 11 months and
combined into equal-weighted portfolios within the same signal delay cohort. The monthly return that is used in the regression equally weights the 12 portfolios that belong to the same quintile. The table reports
intercepts and associated t-statistics separately for each of the five portfolios (Q1, Q2, Q3, Q4, Q5) and for the corresponding time series of return spreads between the highest book-to-market (Q5) and lowest book-to-
market (Q1) bond quintiles. Regressors for the Bai et al. (2019) factor model are the excess return on the bond market portfolio, return spreads based on value-at-risk (the second worst returns in the previous 3 years),
rating (credit rating), illiquidity (theBao et al.’s (2011)measure), and reversal (past 1-month return). The augmentedBBW factormodel further adds a term structure factor. Standard errors are estimated using theNewey
and West (1987) procedure. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

Q1 (Low BBM) Q2 Q3 Q4 Q5 (High BBM) Q5–Q1 (High–Low BBM)

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Alpha BBW factor model 0.208 [3.11]*** 0.151 [2.83]*** 0.165 [4.54]*** 0.195 [5.23]*** 0.332 [4.75]*** 0.124 [2.05]**
Alpha augmented BBW factor model 0.141 [2.63]*** 0.117 [2.43]** 0.148 [4.51]*** 0.182 [5.77]*** 0.298 [4.72]*** 0.157 [2.67]***
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D. Transaction Costs

BBM’s extreme quintile pre-transaction cost alpha spread assesses market
efficiency, but a BBM trading strategy is unprofitable if transaction costs exceed
gross profits. Corporate bond market transaction costs are generally high (Chen,
Lesmond, and Wei (2007), Edwards, Harris, and Piwowar (2007), Bao et al.
(2011), and Feldhütter (2012)), which might deter exploitation of BBM signals
as stand-alone “arb strategies.”Appendix D of the SupplementaryMaterial details
how TRACE is used to estimate trading costs from turnover and effective half
spreads per dollar trade for every BBM quintile in each month. Month t 2-way
turnover is twice the sum of the portfolio weights of the bonds leaving the
portfolio in month t + 1, thus accounting for both purchases and sales.
Equation (4) in Appendix D of the Supplementary Material computes trading
costs from 2-way turnover.

While dealers meeting customer liquidity needs execute on the profitable side
of the bid–ask midpoint, customers can bilaterally negotiate prices with a dealer.
Hence, costs may depend on the type of investor, the type of trade, and the relative
market power dealers have over the customer (Bessembinder, Kahle, Maxwell, and
Xu (2009)). Consistent with this, Bao et al. (2011) show that large bond transactions
face lower trading costs. Accordingly, we compute 2 alternative sets of transaction
costs. The first includes all dealer–customer transactions in TRACE-sourced
bonds; the second is limited to dealer–customer transactions with volumes of at
least $100,000. The latter captures trades that incur tighter bid–ask spreads due to
larger customers’ greater bargaining power.

Figure 3 graphs monthly bid–ask spreads for all trades (Graph A) and for
large trades (Graph B). It displays the average bid–ask spreads for an equal
weighting of all BBM quintiles as well as for bonds in Q1 and Q5. The overall
bid–ask spread patterns are consistent with Choi, Huh, and Shin’s (2023) findings.
Figure 3 also shows bid–ask spreads spiking during the 2008–2009 financial
crisis.

Table 11 reports average turnover and transaction costs as well as gross and net
performance for trades within BBM’s extreme quintiles. Net performance is the
intercept from regressing quintile portfolio excess returns net of trading costs
on factors. Subtracting these costs monthly alters factor betas, so Table 11’s net
performance is not exactly equal to the difference between Table 4 and Table 10’s
average gross alpha and average transaction costs. Panel A and B’s alpha columns
reproduce Tables 4 and 11’s monthly and yearly rebalanced factor model alphas,
respectively. With monthly rebalancing, the long–short BBM strategy has a pre-
transaction-cost BBW factor model alpha of 19 bp per month. The transaction cost
associated with its turnover of 31% amounts to 50 bp for all investors, which
exceeds the alpha spreads computed for the strategy. Even applying the (more than

and-hold outcome. Their 12-month buy-and-hold series equally weighs the same-month returns from
12 partially overlapping strategies that simultaneously buy bonds based on slightly differing signals.
Each quintile employs 12 same-quintile indicator signals, differing by signal-delay lags ranging from
0 to 11months. This yields a singlemonthly return series for each quintile that approximates the true buy-
and-hold quintile portfolio’s returns. Time series averaging of the difference between quintile 5 and 1’s
time series vectors is BBM’s buy-and-hold alpha spread.
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50%) lower transaction costs of 19 bp for large trades to the same gross alpha offers
no consolation, yielding an insignificant 2 bp per month net alpha. Augmented
BBW factor model alphas net of transactions costs are an insignificant 7 bp per
month for large trades.

Buy-and-hold (i.e., yearly rebalanced) strategies reduce turnover—as borne
out in Panel B, with turnover of 7% andmonthly transaction costs of 11 bp and 4 bp
for all investors and institutions (i.e., trades of $100,000 or more), respectively.
While these strategies earn lower risk-adjusted gross profits due to alpha decay, all

FIGURE 3

Monthly Bid–Ask Spreads for Bond Book-to-Market Quintiles

Figure 3 shows monthly bid–ask spreads by bond book-to-market quintiles, separately for all transactions (Graph A) and
institutional transactions (Graph B). Every day, we take the average of buy transactions and sell transactions for all bonds in
each quintile. We take the average of daily prices in amonth separately for buys and sells and compute the quintile-level bid–
ask spreads from the average buys and sells for the month. The figure shows the spreads for quintile 1 (lowest BBM), quintile
5 (highest BBM), and the average of all quintiles.

Graph A. All Transactions
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Graph B. Institutional Transactions 
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buy-and-hold alphas net of transaction costs are positive. BBW 5-factor net profit
for all customer trades remains insignificant, but the augmented BBWmodel shows
net profits of 12 bp (t = 2.06). Thus, the buy-and-hold strategy survives the costs
incurred by larger trades, typically initiated by institutions, enhancing overall net
performance. While institutions may also face additional short sales costs and
constraints, these can be avoided when merely tilting long-only portfolios toward
underpriced and away from overpriced bonds.

E. Trading Costs and Arbitrage Barriers

Panel B of Table 5 showed that the gamma measure of illiquidity, which is
linked to trading costs, significantly predicts returns when interacted with BBM.
This finding is consistent with trading cost heterogeneity deterring arbitrage for
some bonds but not others. Bao et al. (2011) find that gamma illiquidity correlates
with yields, but the article does not study gamma’s effect on returns. Moreover,

TABLE 11

Turnover and Transaction Costs

Table 11 shows monthly one-way turnover, transaction costs, as well as gross and net performance of the long-short
investment strategy based on bond book-to-market for monthly rebalanced (Panel A) and 12-month buy-and-hold
strategies (Panel B). Results are reported separately for the returns of the portfolios of the lowest bond book-to-market
bonds (Q1), the highest bond book-to-market bonds (Q5), and the spread portfolio (Q5–Q1). Separately for the BBW factor
model and the augmented BBW factor model, column 1 reproduces the factor alphas from Tables 4 and 11, respectively.
Regressors for the Bai et al. (2019) factor model are the excess return on the bond market portfolio, return spreads based on
value-at-risk (the second worst returns in the previous 3 years), rating (credit rating), illiquidity (the Bao et al.’s (2011)
measure), and reversal (past 1-month return). The augmented BBW factor model further adds a term structure factor.
Column 2 reports one-way turnover (in percent per month). Columns 3–8 report the average transaction costs based on
2-way turnover and transaction cost adjusted (net) performance as the intercept of a regression of quintile portfolio returns (in
excess of 1-month USD LIBOR) minus monthly transaction costs on the risk factors. Standard errors are estimated using the
Newey and West (1987) procedure. Daily average bid and ask prices are computed by taking the average of all dealer buy
and dealer sell transactions for all bonds in a quintile.We then take the average of daily bids and asks in amonth separately for
bids and asks and compute monthly bid–ask spreads. We assign these quintile-level half spreads to bonds that join the
quintile andcalculate transaction costs as in equation (4) in theSupplementaryMaterial. As shown in the columnheadings, the
bid–ask spreads are calculated alternatively for all traditional bond transactions in TRACE (“All”) and transactionswith volume
of at least 100,000 U.S. dollars (“Institutions”). The return sample period is Feb. 2003 to Sept. 2020.

All Institutions

Portfolio Alpha
One-Way
Turnover

Transaction
Costs

Net
Performance t-Statistic

Transaction
Costs

Net
Performance t-Statistic

Panel A. Monthly Rebalancing

BBW Factor Model
Q1 0.207 12% 0.085 0.282 [3.75]*** 0.045 0.250 [3.35]***
Q5 0.400 19% 0.410 0.032 [0.34] 0.147 0.270 [3.13]***
Q5–Q1 0.193 31% 0.495 �0.250 [�2.46]** 0.192 0.020 [0.22]

Augmented BBW Factor Model
Q1 0.128 12% 0.085 0.198 [3.65]*** 0.045 0.165 [3.08]***
Q5 0.358 19% 0.410 �0.004 [�0.05] 0.147 0.234 [2.76]***
Q5-Q1 0.230 31% 0.495 �0.202 [�2.03]** 0.192 0.069 [0.75]

Panel B. Buy-and-Hold

BBW Factor Model
Q1 0.208 2% 0.018 0.226 [3.30]*** 0.009 0.219 [3.20]***
Q5 0.332 4% 0.090 0.255 [3.60]*** 0.033 0.307 [4.36]***
Q5–Q1 0.124 7% 0.108 0.029 [0.46] 0.043 0.088 [1.44]

Augmented BBW Factor Model
Q1 0.141 2% 0.018 0.157 [2.89]*** 0.009 0.150 [2.77]***
Q5 0.298 4% 0.090 0.221 [3.36]*** 0.033 0.273 [4.25]***
Q5–Q1 0.157 7% 0.108 0.064 [1.04] 0.043 0.123 [2.06]**
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Table 5 Panel B’s Fama–MacBeth regressions control for YTM in specifications
with bond controls.

Independent quintile sorts of gamma and BBM further assess whether trading
costs allow large deviations from fair value to emerge. The deviations entice
arbitrageurs to exploit the profit opportunity and, in so doing, drive the BBM
anomaly. Table 12 reports raw return spreads along with alpha spreads from the
1-factor CAPM. Table 12 shows evidence that arbitrage barriers, tied to transaction
costs, account for our findings. BBM spreads are fairly monotonic across liquidity
quintiles, irrespective of whether the portfolios are equal- or value-weighted.While
unreported, the largest spread changes are driven by illiquidity’s enhancement of
BBM Q5’s return. There is little power to assess liquidity’s impact on low-BBM
bond alphas, as highly illiquid bonds with very low BBM are rare. So, it is possible
that BBM Q1’s relatively low return for illiquid bonds is statistical noise or stems
from other arbitrage deterrents, like short sales frictions.

VI. Conclusion

Alpha spreads between BBM’s extreme quintile portfolios – 32 bp per month
with the most extensive controls – are sizable considering the volatility of corporate
bonds compared to stocks. The raw return spread’s Sharpe ratio, 0.92, exceeds those
of both the S&P 500 and the Fama and French’s (1993) HML factor. These findings
likely stem from mispricing, particularly for small-issue bonds. Alternative expla-
nations, like omitted risk, microstructure, or liquidity controls, are inconsistent with
the pattern of profits from BBM signal delay, calibrations from yield spreads, and
BBM signal efficacy for bonds with more default risk, with less liquidity, or hedged
with equity.

Bond trading faces greater trading and liquidity frictions than several other
asset classes, which allows deviations from fair value to exist initially. Indeed,
average transaction costs, estimated for different trade sizes, are large enough to
deter arbitrageurs who would otherwise profit from the anomaly’s monthly

TABLE 12

Bond Return and Alpha Spreads from Quintile Sorts of Gamma and BBM

Table 12 reports the average return and alpha spreads between the extreme quintile bond book-to-market (BBM) portfolios,
when sorted into bond gamma quintiles (rows). To form the spread portfolios, each month, we independently sort bonds into
25 categories basedongamma illiquidity andBBM. For eachgammaquintile, we compute the spread in themonth t+1equal-
and value-weighted bond returns (based on bond value outstanding) between the top and bottom BBMquintiles. To estimate
alphas, we regress the return spreads on the bond market factor constructed using the WRDS bond returns and report the
intercept. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Equal-Weighted Portfolios Value-Weighted Portfolios

Raw Returns
Bond Market Index

(WRDS) Raw Returns
Bond Market Index

(WRDS)

Gamma
Quintile Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Q1 (liquid) 0.271 [1.36] 0.038 [0.20] 0.280 [1.51] 0.077 [0.42]
Q2 0.269 [1.95]* 0.160 [0.93] 0.264 [1.75]* 0.137 [0.78]
Q3 0.404 [3.27]*** 0.260 [2.41]** 0.447 [3.36]*** 0.316 [2.92]***
Q4 0.421 [3.14]*** 0.281 [2.30]** 0.451 [3.53]*** 0.309 [2.83]***
Q5 (illiquid) 0.505 [2.63]*** 0.245 [1.41] 0.541 [3.40]*** 0.352 [2.75]***
Q5–Q1 0.234 [2.38]** 0.207 [1.75]* 0.260 [2.63]*** 0.275 [2.25]**
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rebalancing signal. However, institutional strategies with lower turnover, like
1-year buy-and-hold strategies, do earn significant risk-adjusted profits even net
of transaction costs. Moreover, long-term investors, who incur transaction costs
anyway, benefit from knowing which bonds have the highest and lowest risk- and
liquidity-adjusted returns.

BBM spreads tend to be larger for higher gamma (i.e., lower liquidity) bonds.
This is likely due to arbitrageurs devoting their talents to their most profitable
opportunities and is not a liquidity premium per se. For bonds with large gamma,
convergence needs to wait until hedge funds find the mispricing large enough to
offset its costs. For others, convergence to fair value is left to the supply and demand
of less sophisticated agents who trade bonds with less haste and different
motivations.

Mispricing may explain book-to-market’s effects in other asset classes. If
bonds, which have adequate risk controls, favor a mispricing explanation for
BBM’s effect, mispricing becomes a more likely explanation for the related anom-
alies of other assets, like equity, where controls are harder to come by. Consistent
with the equity mispricing explanation is equity HML’s missing premium in the last
25 years, as trading frictions declined and the anomaly became a popular topic.

Supplementary Material

Supplementary Material for this article is available at https://doi.org/10.1017/
S0022109024000048.
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