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TENSOR PRODUCTS OF ANALYTIC CONTINUATIONS
OF HOLOMORPHIC DISCRETE SERIES

BENT GRSTED AND GENKAI ZHANG

ABSTRACT.  We give the irreducible decomposition of the tensor product of an an-
aytic continuation of the holomorphic discrete series of SU(2, 2) with its conjugate.

0. Introduction. Thework of Segal [|ES] and Mautner [M] established the abstract
Plancherel theorem for type | groups. This meant that for an arbitrary unitary represen-
tation, one could find its spectral decomposition into irreducibles and a corresponding
spectral measure. To make this program explicit on L2-spaces on homogeneousspacesis
one of the main subjects of harmonic analysis. Another interesting caseis that of decom-
posing atensor product of irreducible representations; our aimin this paper isto consider
this for certain holomorphic representations.

The problem of finding the irreducible decomposition of tensor products of holomor-
phic discrete series of the group SL(2, R) has been studied by Repka [Rel]. The results
there were used by Howe [How] to give the decomposition of the metaplectic represen-
tation for certain dual pairs. See also [OZ]. For a general semisimple Lie group G of
Hermitian type a similar problem is studied in [Re2]. It is shown that the tensor prod-
uct m, ® 7, of ascalar holomorphic discrete series 7, with its conjugate 7, is unitarily
equivalent to the L2-space on the corresponding Hermitian symmetric space, L%(G/K).
Thereforewe know its decomposition from the known theory of Harish-Chandra; namely

nom LG/ [ HWICw)

for v > p— 1 wherepisaninteger, also called genusof G/K. Here H (\) istheinduced
representation Indp(1 ® iA ® 1) from the minimal parabolic P. In the above formulathe
isomorphisms are realized by explicit intertwining operators (the second from Harish-
Chandra's and Helgason's theory of spherical functions), and our aim in this paper isto
study variants of these isomorphismsand explicit Plancherel measuresfor alarger range
of the parameter v.

In this paper we take G = SU(2,2) with genus p = 4. The scalar discrete series
7, has an analytic continuation, namely for v € {0, 1} U (1, co) we still get a unitary
representation of SU(2, 2); this set of v is called the Wallach set. See for example the
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references [EHW] and [Wa]. Our problem in this paper is to study the irreducible de-
composition of m, ® 7, for al v in the Wallach set. For v = 0, thisisatrivia problem
since mg isthetrivial representation.

In [OZ] we proved the somewhat surprising fact, that the tensor product =, ® 7, of
the analytic continuation r, of the holomorphic discrete series of SU(1, 1) (or rather its
universal covering group) with it conjugate 7, has a complementary series as a discrete
part when v < % (The parameter v is normalized there so that 7, is the Hardy space
when v = 1.) The idea there was to study the action of the Casimir operator on the
orthogonal basis of K-invariant subspace and to use certain orthogonality relation of a
class of hypergeometric orthogonal polynomials, also called the continuous dual Hahn
polynomials.

It was observed in [PZ] that the Plancherel measure of the decomposition is the sym-
bol of the Berezin transform viewed as function of the invariant differential operators.
Recently Unterberger and Upmeier [UU] have found the symbol function of the Berezin
transform on any Hermitian symmetric space. This gives us an interesting new aspect of
the tensor product problem.

In this paper we will use similar techniques to study the tensor products 7, ® 7,
of analytic continuations of (scalar) holomorphic discrete series 7, of SU(2, 2) with its
conjugate,,. We giveacomplete answer to the question of finding the explicit Plancherel
decomposition of thistensor product. Let a be amaximal non-compact abelian subspace
of g, the Lie algebra of SU(2, 2), and let f; and f, be some basis of a*. We prove, with
explicit decomposition of the invariant differential operators and measures on the right-
hand side, see Theorem 2.13 and Theorem 3.1, that

0.9 neme [ HOuf+ k) d),

JA1>N>0

if v > 3; and

—~ D
02 mem [ LSRR
+ [ H (v =3+ Aoy diz

if 1 <v < 3; hereH (i(2v — 3)fy + \of2) is a subrepresentation of the induced repre-
sentation |ndp(1 ©i(i@2v — 3)fy + o) © 1) with A = i(2v — 3)f; + \ofo; and

(0.3) m @ [[H (=i Agh) di,

if v = 1. This distinction between the cases of v intervals comes about using explicit
densitiesonthereal line, see Lemma1.1 and Lemma2.10. One can furthermore identify
our representations appearing above with those in the Knapp-Speh classification [KS].
The discrete series here are realized as Hilbert spaces of holomorphic functions over
the corresponding bounded symmetric domain D. The diagonal operator from the tensor
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product 7, ® 7, realized as the space of functions f (z, w) that are analytic in zand anti-
analyticinw, to C*°(D) isaformal intertwining operator ([Re2] and [PZ]). When =, isa
discrete series (i.e., » > 3) this operator is bounded from 7, ® 7, to L?(D) and has dense
image; thus by polar decomposition we get a unitary intertwining operator onto L?(D).
However for non-discrete , the diagonal operator is no longer a bounded operator. Our
ideais, roughly speaking, to use the diagonal operator to study the action of the invariant
differential operator on the representation space m, ® 7,. We proceed to explain our
method.

Thering of invariant differential operators on C*°(D) has two generators. By conju-
gating by the diagonal operator wefind a pair of invariant differential operators (01, 02)
on the tensor space 7, @ T,. Now the K-invariant eigenfunctions have an expansionin
terms of the K-invariant polynomials ey, with coefficients €y, and ey form an orthogonal
basis of (m, ® ,)o, the space of K-invariant functionsin =, ® 7,. See (2.7) below. We
provethat (Oi, O) actson ey, by the same formula astheir “symbols’ (Ell(g), DQQ)) on
the polynomials en()). We prove further that ey ()) are orthonormal basisin a L2-space
of asuitable measure on af. Thusthe spectrum of (01, O0) is given by the support of the
measure!

Aninteresting phenomenonoccurswhenr = 1. Therepresentation ; hasone-dimen-
sional K-types and the operator O, acting on m; ® 71 as a scalar 0. Thus the spectral
decomposition of (01, O) isthe same asthat of O;, whichis of course one-dimensional.
This gives us (0.3) above.

The paper is organized as follows. In Section 1 we recall some results about spectral
decomposition of some second order differential operators, which appear in the study
of tensor products of analytic continuations of holomorphic discrete series of SU(1, 1),
and we recall some facts about SU(2, 2). Section 2 is devoted to the study of irreducible
decomposition of the tensor product m,, @ 7, for good values of the parameter v, v > %
Lemma 2.7 and Corollary 2.8, which gives an expansion of the spherical functions in
terms of the K-invariant polynomials, may be of independent interests. Sections 3 and 4
aredevotedto thecases1 < v < % and v = 1 respectively. In Section 5 we give a
generalization of our results to general holomorphic discrete series of a semisimpleLie
group, though the result is less complete.

There remains an open question relating to our work, that isto prove directly (without
using the decomposition of invariant differential operators on K-invariant vectors) the
intertwining property from the tensor product to the spherical principal series or their
submodule. When v > 3, namely when =, is holomorphic discrete, then this can be
doneviathe polar decomposition of diagonal map and the spherical transform, see [PZ].
However for v < 3 the diagonal map doesnot map into L?(D) and we can not directly use
the spherical transform defined on L?(D) ([He], Chapter IV, Section 5) as intertwining
operator; see also the remark after Lemma2.3.

ACKNOWLEDGEMENTS. Itisapleasuretothank therefereefor anumber of clarifying
comments and useful suggestions, in particular for pointing out that some of our results
are valid in the general setting of Hermitian symmetric spaces. This we have added as
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the last section 5, where we also point out that if we had Lemma 2.7 in the general
case, then that could be used to give the required generalization of Proposition 2.9. Asit
stands, Lemma 2.7 is somewhat of an aside (perhaps of independent interest). We also
would like to thank Jaak Peetre for some helpful discussions. The second author thanks
the Magnuson fund, Royal Swedish Academy of Sciences for supporting his research
during April, 1992 at Department of Mathematics, Stockholm University where part of
this work was done.

1. Preliminaries: SU(1,1) and SU(2,2).
1.1 Analysison SU(1, 1) and related orthogonal polynomials. To begin with we recall
some results obtained in [Z], [PZ] and [OZ].

The spherical functionson the unit disk {z€ C; |z| < 1} aregiven by

0@ = -y am (S50 25

wheret = |z]2. See[He].
In [Z] we introduced the function (1 — |2]?)~" ¢, (2), with an extra parameter x. Then
we have the following expansion

(1— 2 6:(d) = io P (A,

where 1o (X 211 2k-1
. h:_
pn,H(A):WS']\_(E) 2155 >,
and
(1.0) A=A =k — %(1+ 22).

It follows from the proof in [Z] that the series convergesuniformly on compact setsin D.
Here S, are the continuous dual Hahn polynomials,

S(%%;a,b,c) = (a+b)y(a+c), sFo(—n,a+ix,a—ix;a+b,a+c;1).

For further details see the above references.
Consider the following operator,

d2

_ _ 12
Co= (L— Vit

d d 2
+a)—2ﬁ?t(l—t)a+lft
P e . | 4y
=1-1) \(1 t) \tdt2+dt>+;-g>(1 t)",
and the functions

frn+s) .,

1.1) en(t) = T+
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Itisprovedin[Z] and [PZ] that C,; hasthe following matrix form on the basisvectorse,
1.2 C.€n = @€ns1 + bn€n + Cnen—1

where
an = (n+1)(n+k), by = —n(2n+ 2k), ¢, = an_1;

and that the multiplication operator by A has the same matrix form on the functions &;

1.3 Ner(A) = anenia(A) +bnen(A) + crena (M),
where
n! 1 [ (\\.112-1
en(\) = mpnﬁ(/\) - m& \— (5) it ) -
The above expansion of (1 — |Z/?) ™" ¢, (2) now reads as follows
(1.4) (1= 12970, = 3 ez
We let 2r(1%)
AT (i
e

be the Harish-Chandra c-function of the group SU(1, 1) and let
25— 1+i\
b= r (*5)

(b, isthe symbol of Berezin transform, see [PZ].)
By using the Askey-Wilson orthogonality relation [AW] we have the following

2

LeEmmA 1.1. Let H be the Hilbert space of functions on [0, 1] with {e,}°, as an
orthonormal basis. Let dy,, be the measure on R defined by

du.(\) = %bh.(,\)|c(A)|*2 d\, )NER,

if & > 1, and let dy,, be the measureon R U {i(1 — 2x)} with du,()\) given as above on

R and
r1—x)r2x)

ra—2x) °
ifo<k < % Then &, form an orthonormal basis in the subspace L%(R, 11,.)o Of even
functionsin L(R, s.,.) if & > 3, and in the subspace L?(R U {i(1 — 2)}, 1, ), of even
functionsin LZ([R{U {£i(1 — 2x)}, uﬁ) if0<k < % Moreover the map €, — € gives
a unitary equivalence between the operator C, on H and the multiplication operator by
the function A(A) = & — 3(\2 + 1) on L2 (R U {i(1 — 2x)}, )

PrROOF. The orthogonality relation of Wilson (see [W] p. 697 and [OZ]) shows that
indeed e, are orthogonal and have norm 1 in the space L2(R, .. )o if K > % and in

d (£i(1 — 25)) = 2
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L2(RU {=i(1 — 2)}, s ), if 0 < & < 3. We need to prove that they are densein the
Hilbert spaces. Thiswill follow from some elementary argument which we sketch bel ow.

Suppose Kk > % and suppose f in L2(R, u,)o is perpendicular to al &,. Then it is
perpendicular to all A?" sincethey are linear combinations of &,, that is,

JLTOATdis () = 0,

if mis an nonnegative even integer. However since f()\) is an even function and the
measuredy,, iIssymmetric under A — — )\ we seethat the aboveistruefor all nonnegative
integers m. We define

(1.5) F@2) = /R €% (\) s (V).

We claim that F(2) is a holomorphic function on the strip —m < 3(2) < «. Infact, using
simple formulas for the Gamma function (see [He., p. 42]), we have

2

2k — 1+i/\) "y

01,09 v 2 r (22

and (see [Ma], Chapter I)

=g

2
— O(|)\|h‘,72e77r|)\|)

if ]\] — oo. By using Holder’s inequality we see that (1.5) is absolute convergent if
—m < $(N\) < 7 and thusthat F(2) is analytic in this strip.

Now differentiating F(2) we seethat all its derivativesare zeroat z = 0, thusF(2) = 0.
In particular taking z € R we see that the Fourier transform of

(1.6) f(\)X tanh (%) ‘r (@)

2

iszero; thisfunctioniseasily seenin L?(R, d\). Thusit iszero and consequently f (\) = 0.
That is the map e, — &5 isonto.

Forthecase0 < k < % we proceed similarly and definethe function F(2). F(z2) = 0
implies that (1.6) has, up to a nonzero constant, Fourier transform

F(i(1 — 2x)) (€42 + e721-29)

whichisin L2(R) if and only if f (i(l - 2;{,)) = 0 and consequently f(\) = 0.
The remaining claim of our lemma follows from (1.2) and (1.3) and the unitarity of
themap e, — €. [
REMARK. Whenk > % the above claim is also equivalent to that the map e, — &
establishes a unitary equivalence between the operator C,, on H and the multiplication
operator by the function A(\) = x — 2(1+\?) onthe space L2[R*, u1,,). When 0 < & < 3
it is equivalent to that the map e, — &, establishes a unitary equivalence between the
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operator C,; on H and the multiplication operator by the function A(A\) = k — %(1 +2?)
on the space L2(R* U {i(1 — 2)}, 1, ).

1.2 Representations of SU(2,2). We proceed to recall some known facts about irre-
ducible representations of SU(2, 2).

Let G = SU(2, 2) bethegroup of linear matriceson C* of determinant oneand keeping
the indefinite metric |z |? + |z|? — |zs|? — |z|? invariant. Let g be the Lie algebraof G.
LetK = S(U(Z), U(Z)), amaximal compact subgroupandf itsLiealgebraandg = f+p
the corresponding Cartan decomposition. We take a maximal abelian subspace a of p as

follows ) e
a_[a—(diag(s,t) 0 ) ,(S,t)e[R{},
and define linear functionals on a by

fi(@) = s, fo(a) =t.

Theroot system of (g, a) consists of (f; &+ f,), +2f; and £2f, with multiplicities 2,
1 and 1 respectively. Let a* be the dual space of a and let af, beits complexification. An
element of af, the complexification of the dual of a, will bewritten as A = Aify + Aofo.
We choose the ordering on a* defined by f; > f, > 0 and let a be the set of positive
elements. For )\ € af welet ¢, bethe corresponding spherical function. The space of G-
translates of ¢, can be completed to a Hilbert space H (\) and in such away that H ())
forms a unitary representation of G, which is equivalent to the induced representation
IndS(1®iA ® 1), where P isthe minimal parabolic corresponding to a. See [Kn, p. 168]
and [He, Chapter |V, Theorem 3.7].

2. Thetensor productsm, @ 7, for v > % for SU(2,2). Let D be the bounded
symmetric domain of 2 x 2 of contractive matrices, that is

D = {Z € M2.2(C), Z'Z < I}.
We consider the Hilbert space H,, of holomorphic functions on D with the norm
c, /D If(2)]? det(1 — Z*Z)"~* dm(Z) < oo

where v > 3, dmis the Lebesgue measure and ¢, is a constant so that the function 1
is a unit vector. The group G = SU(2, 2) (or rather, its universal covering group) acts
unitarily on the Hilbert spaceH, via

1)  m(@:f@ — (det(Cz+D)) f(g'2), g'= (é g) <G

The reproducing kernel of this spaceis

K,(Z,W) = det(1 — W2)™".
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Furthermore, (H,, 7,) has an analytic continuation in » and for v > 1 we still get a
unitary representation. See [FK]. Moreover (H,, ) is a highest weight representation
of g© with highest weight vector the function 1.

The objective of this paper is to give the explicit irreducible decomposition of the
tensor product H, ® H,. (It follows from the general theory that such an irreducible
decomposition exists as a direct integral, see [Pu] and [M].) Here H,, is the complex
conjugate of H, and the group G acts on it by taking the formal complex conjugate
of (2.1).

Denote (H, ® H, )o the space of K-fixed vectors. We will study the spectral decompo-
sition of a pair of generators of invariant differential operators on (H, @ H, ). We will
prove below that this isindeed sufficient to obtain the decomposition for H, @ H,,.

So let temporarily g beasemisimple Lie algebraof Hermitian typeandlet g = p + f
be the Cartan decomposition. Let ) be a Cartan algebra of f. Let A(g®, H°) be the set
of positive roots with respect to an ordering on (i))*, u* and u~ be the sum of positive
and negative root spaces, respectively. Let M bea(g®, ) module. M is called a highest
weight module if there exists a weight vector v € M of {© so that u*v = 0. Thus,
assuming this is a cyclic vector, M = U(u™)v, by the Birkhoff-Witt theorem, where
U (u™) standsfor the universal enveloping algebraof 1~ Similarly onecan definelowest
weight modules.

LEMMA 2.1. Let M; and M, bea highest and a lowest weight modules of g© with the
highest weight and lowest weight vectors vy, vy, respectively. Then M1 @ M, isa cyclic
module with v; @ v, asa cyclic vector. That is U(g%)(vi ® v2) = M1 @ M.

PROOF. For any a € M; there exists an element X € U(u™), such that Xv; = a.
Therefore, notice that Y, = O forany Y € U(u1™),

XVi®@ Vo) = Xv1 @ Vo = a® Va.

Thatisa® vo € U(g%)(v1 ® V). Similarly using the elements from U (11*) we see that
vi @b e U(g®)(vy ® v) for any b € M.
Now wefix b € M. If X € u™ then

X(V]_@ b) = Xvi @ b+v; @ Xb.
Sincev; ® Xb € U(g%)(v1 ® v») we have that
Xvi@b=Xvi®b)—vi®@Xbe U(gc)(Vl ® V)

Thusu—v; ® b C U(g%)(v1 ® v»). Continuing we get (1), @ b € U(g%)(v1 @ o) for
dln=12...SinceM; = U(u)vy = =2 ,(u")"; we see that for any a € M; we
geta® b € U(g")(v1 @ v»). Thisfinishesthe proof. "

LEMMA 2.2. Suppose
o= [ n(s)do(9
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is the irreducible decomposition of 7, @ 7,,. Then each =(s) a.e. in Shas an one-dimen-
sional subspace of K-fixed vectors.

PrROOF. Supposethereexistsaset § C Ssuchthat 0(S) # Oandthat foral se §
the space nr(s) hasno nonzero K -fixed vectors. Thefunction 1@ 1inw, @7, isK-invariant
and thus

1o1= [ 1% 1(s)do(s).
/8%

Let U(g") act on the equality. It follows from Lemma 2.1 that

D
T, QT = [D\ . T(9do(s)

which is a contradiction. That is each s € Sa.e has K-fixed vectors. Now each 7(s)

is irreducible, thus the K-fixed vectors form an one-dimensional subspace ([He, Theo-

rem 3.4]). ]
Now we briefly recall some results obtained in [PZ]. Define an operator R

R H, ® H, — C*(D)
Rf(Z,W) — f(Z, 2K, (2,2 = f(Z,2) det(1 — Z*2)".

Let Ug bethe regular action of G on C>*(D). We have asin [PZ] by direct calculation
LEMMA 2.3. Rintertwinesthe action of 7, ® 7, with Uy.

Itisshownin [PZ] that if » > 3 then Ris a bounded operator from H, @ H, to L?(D)
with respect to the invariant measure. The decomposition of L?(D) under G is done by
the well-known theory of Harish-Chandra of spherical functions. However for v < 3the
image of Risnot all in L2(D).

We will however, as mentioned in the introduction, calculate the actions of invariant
differential operatorson (H, @ H, )o.

The algebra of invariant differential operators on C*°(D) is generated by two oper-
ators. We recall these formulas here. See [Hoo]. Here we are using dlightly different
coordinates.

The polar coordinates of D are given by KA* - 0,and A" - 0 = {(s1,%); 1 > 5 >
s, > 0}. We perform change of variablest; = s, t, = s3. Denote

Q) =t —t), ht)=@Q—-t)1-1t).
Let 2 3
Li=(@1—-1t) (t‘a_tf + a_t.) :

and
A1 = Q7h(Ly +Lo)Qh™L, Ay = Q7 th(LiLy)Qh L.

Then A; and A, generate the algebra of radial parts of invariant differential operatorson
C>(D).

https://doi.org/10.4153/CJM-1997-060-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-060-5

ANALYTIC CONTINUATIONS OF HOLOMORPHIC DISCRETE SERIES 1233

We define

0y = %R‘1A1R+ 2v—1), Op= %R_lﬂzR"‘ (v — 1)0a.

From Lemma 2.3 we see that (01, O,) generatesthe algebra of invariant differential op-
eratorson (H, ® H,)o. Our objectiveisto give the spectral decomposition of (01, () on

(H, ® H,)o.
A direct calculation shows that

(2 1) Dl = Q_l(cl,z/fl + C2,I/7l)Qi
and
(2.2 O = Q 4C1,-1C2,-1)Q,

where Cy,—1 and C,,,—; are the operator C,_; in Section 1 with $ replaced by dltl and
at respectively.
Thefollowing fact is now standard.

LEMMA 2.4. Suppose
o= [ m(9do(

istheirreducibledecomposition of 7, @7,. Then (Oy, O,) actson «(s) by apair of scalars
(Dl(s), Dz(s)) and we have the corresponding spectral decomposition of (01, 0y),

(O1,02) = [[(F2(8), T2(9)) do(9)
counting the multiplicities.

For apair of commuting selfadjoint operators (A, B) of a Hilbert space H we denote
o((A, B), H) its spectrum (counting the multiplicities). Clearly (H, @H, )o isaninvariant
subspacefor (O1, O05).

From Lemma 2.2 we can easily derive

LEMMA 2.5. We have the following formula
(@1, 02), H, @ H,) = o((@1, 02), (H, © H,)o)

That s, restriction to the subspaceof K-invariant functions does not changethe spectrum
of (Dl, |:|2).

We therefore proceed to study the spectrum of (O, O,) on (H, @ H,)o.

For this purpose we recall some known facts about the Hilbert structure of H,,. Let P
be the space of polynomialson D. The group K = S(U(2), U(2)) actson it by changing
of variables. The space P is decomposed as

2.3 P=>3 Pn,

m>0
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where Pm has highest weight m ® m*. Herem = (my, mp), my > mp > 0 and m* isthe
contragredient of m. See [FK] and [Or]. We denotedy, = (my — mp + 1)? the dimension
of the representation space of P Let xm on U(2) be the character of this representation
m. It extends to a polynomial on the space of 2 x 2 matrices. On the diagonal matrices
t = diag(ty, to) itis given by

e W et

Xm(®) = Q) - t—

Following the notation in [FK], we let

2.9 (@) =~ ETEEE =D — (@) (o — D

be the generalized Pochhammer’s symbol.

LEMMA 2.6. If v > 1 Thefunctions

en(W2) = D2, W2), m>0

m

forman orthonormal basis of (H, @ H,)o; if v = 1 the functions
1
en(Z,W) = mxm(\/\ﬁz), m=(m,0), my >0

form an orthonormal basis of (H, @ H,)o.

Proor. Consider the case v > 1 first. In fact, from Theorem 3.4 and Lemma 3.1
in [FK] we know that the K, function thereis given by

da
m
The fact that K (Z, W) span a dense subspace of (H, @ H,)o follows easily from the

Schur’s Lemma. Moreover they are orthogonal. It follows from Corollary 3.7 in [FK]
that

Km(Z, W) =

xm(W*Z).

d
) m
Kally i = G

substituting the aboveformulawefind that e, hasnorm 1. This provesthe casefor v > 1.
If v = 1the K-types appearing in the space (H1, m1) are of thetype m = (my, 0) with

my > 0. Therest of the proof can be done similarly. ]
On diagonal matrices the function e, is given by

(2.5) em(t) = Q(t) " det (em+2-j(t)) -
Heree, isdefinedin (1.1) in Section 1 withk = v — 1.
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We define d
et (Prm2—j -1 (A
Pm, () = (pn;%Z_J,/\il( W)
and
5 (2)m
- ) = PPm) = 573 0 (a2 ).

where ey, isdefinedin (1.3) withk = v — 1. This isthe analogue of &, in the case of the
unit disk. Note that the above definition makes sensefor all v > 1.

Wewill find asimilar expansion as (1.4) in Section 1. For this purpose we recall more
known facts about spherical functions.

The spherical function on type | domains has been obtained explicitly in [Hoo]. From
[Hoo] we have the spherical function on D is given by

—2*h(t)
(A2 = 29)Q()

wheret; = &, t, = s and where the determinant is that of the 2 x 2 matrix in j, k. It
satisfies

Py (51, %) = det (¢5,(s)) »

Mgy = (N +X5+28y, Doy = (M + DN+ D¢y

Lemma2.7 and Corollary 2.8 below can be used to prove Proposition 2.9, though we
give amore direct proof. We present them since they might be of independent interests.
Inview of our main resultsbelow (Theorem 2.13, Theorem 3.1 and Theorem 4.2) it gives
the Clebsch-Gordan coefficients of the tensor product decompositions.

LEMmA 2.7. Thefollowing formula holds

Ki(Z,2)0,(2) = 3 em,(Nem(Z°2),

m>0
and the series converges uniformly on compact sets of D.

PrROOF. Both sides are K-invariant so it suffices to prove the Lemma for diagonal
matricesZ = {(s1,2);1 > s > s > 0}. Now the result follows from Theorem 1.2.1
in[Hu] and (1.4) in Section 1. We omit the details. ]

When v = 0 the above expansion gives the expansion of the spherical function.

COROLLARY 2.8. The spherical function has the following expansion

(D) = Z>o Pm,o(A)xm(Z2)

where

= (5,52

) det(sF2(—(m —2— ) +2, 2 +2, 1 +2:3,31))
N2
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We study now the matrix form of the pair (O, 0,) on the orthonormal basis e, (W*2)
and find similar formulas as (1.2) and (1.3). We thus define the “symbol” of the differ-
ential operators O, O, by

1 1
mQA) =MN+N=2r—-1)— 4_1(1+ A2) — 4_1(1+ A2)?,

and
M2(d) = A\ = ((l/ -1 - %(1+ )\i)) (,, 11— %(1+ )\2)2) ’

where A = (v — 1) — z(1+22),i = 1,2 asin (1.0).
PROPOSITION 2.9.  The pair (O, O,) on ey and the pair of multiplication operators
(N1, n2) on en,, have the same matrix form.

PrROOF. Thisisamost trivial from (1.2)—«1.3) in Section 1, (2.1)—(2.2) and (2.5)—
(2.6) in Section 2. We only check that for O0; and n;. We have

O1em(ta, t2)
= Q) (Cp1+ C2,1/71)(em1+1,1/71(t1)emz,1/71(t2) — emz,z/fl(tl)emﬁl,z/fl(tZ))
= Amy+1€m+e, (t1, t2) + (Bmy+1 + B, )em(te, t2) + Crype18m—-, (t1, t2)
+ Am,€me+s, (11, 12) + Cmyem—o, (1, 12)
where in the second equality we use (1.2). Heree; = (1,0) and 2 = (0, 1) and a,, by

and c, aregivenin Section 1. Note that thoseterms ey, have zero coefficientsif m + ¢;
violate the condition for the highest weight. Similarly

ni(A)em, (A)

= A e (R () — S (i)
2 1

= a'fTh"‘lefﬂ:E/l,l/(A) + (bn\1+1 + bn‘rz)efri;/(&) + Cm1+lefﬁ:1,1/(A)
+ 8y €y 1 (A) + Cry €m0 (1),
where in the second equality we use (1.3). Thus O; and n; have the same matrix form. m
Another proof is to use the expansion (2.7), which we omit.
Note that when = 1 the operator O, acts on ey, as the zero operator.

We now recall a result from [KM] about determinants of orthogonal polynomials,
which can also be proved directly.

LEMMA 2.10. Leta € R and let ¢(X) be a distribution function on the semi-axis
[a, 00) with infinitely many points of increase, and with finite moment of all orders. Let
Qn(X), n=0,1,2,... bethe orthogonal polynomials for the distribution ¢ with

L7 QeQ () = mi;.
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Taking integers0 < iy < i we form the determinant
Qi,in(xa, %2) = det(Q; (%))

Then
//a<x1<x2 Qipip (X1, %2)Qj, j, (X1, X2) dp(Xe) dip(X2) = i, i, 0y i, iy -

The Harish-Chandra C-function of SU(2, 2) is

22T (M) 2221 (i)

2yl
W= e r R )

and Cy isa positive constant. We let

2 2

BV(A) = H

=1

r(y—:—23+i%)

(B, isthe symbol of the transform on the domain D, see[UU].) Note that

CQ) = (M — A9 Te(A)e(N2), B, =b,_1(\)b,—1(N2)

where b, and ¢ are the corresponding symbol function and Harish-Chandra c-function
for SU(1,1) in Section 1.
Using Lemma2.10 (with x; = A\? and x; = A\3) wethen get

PROPOSITION 2.11.
Q) fv> % then we have the following orthogonality relation

— T 7\ 72 _
Cof, _, _oEmr(New, (B QICQ A = b,

where Cy is a positive constant.
2 Ifl<v< % then we have the following orthogonality relation

— — /N _2
Cif o e (B, WIC)] A

C2 /A:i(ZI/73)f1+yf2 y>0 €.y (A)em,"/ (A)C"(y) dy = 5m,m’v

where C; and C, are positive constants and

rEE e régh
i)

o) (((zu 34y

Propositions 2.9 and 2.11 now give us
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PROPOSITION 2.12.

(1) If v > 3 then the operator pair (Oy,00) on (H, ® H,)o is unitarily equivalent
to the operator pair (ng, np) of multiplication operators by ni(A) and ny()) on
L?(a3,B,(A)|C(1)["2dA) and thus the spectrum of (o(01, 02), (H, @ H,)o) is
{(m(2),n2(X)); A € a%}. Moreover each point (ny()), n2())) in the spectrumis
of multiplicity one.

(2) If 1< v < $then (1) istruewith L?(a}, B,(1)|C(A)|~2d)) replaced by

L2(ah, B, )ICQ)[2d)) @ L2(i(2v — 3)fy + R, ¢, () dy),
wherei(2v — 3)f; + R*f, stands for the subset {i(2v — 3)f; + yf;y € R*}.

PROOF.  We need only to prove that the map em — €m, from (H, ® H,)o into the
corresponding spaces of ), is onto. We assume v > % The remaining case is simi-
lar. This is equivalent to that the linear span of the polynomials e, are dense in the
corresponding Hilbert space. From Lemma 1.1 (see also the remark thereafter) we see
that the the linear span of the functions ey, (A\1)em,(\2) are densein the space L2(R* x

R*, b,—1(A1)b,—1(A2)|c(A1)c(A2)| ~2dA1d)2). Now the map
f(A1, A2) = F(A1, A2) — F(A2, A1)
is bounded from L2(R* x R*,b,_1(A1)b,—1(A\2)|c(A1)c(A2)| 72 dA1 dAz) into
|-2<01, b,—1(A1)b,—1(A2)|c(A1)c(h2)| 2 dAs d>\2);

moreover it is easily seen that the map is onto. Under this map the functions
em (A1)em,(\2) are mapped into e, (A1)em,(A2) — €m (A2)em, (\1). Thus they are dense
in the later space. Moreover they are skew-symmetricinm, andmp andif mp = np, =0
they are identically zero. Thus the functions em +1(A1)em,(A2) — em+1(A2)em, (A1) with
my > mp are dense in the space. This is equivalent to that €y, (\) are dense in
L2(a3,B,(1)|C()| 2 d)A). .

Recall the representation H ()) defined in Section 1. Combining Lemma 2.4 and
Proposition 2.12 we now get

THEOREM 2.13. Supposev > % We have the following Plancherel formula and the
decomposition of the representation
nom [ HQBICW 2d)

A1>A>0

3. Thetensor productst, @7, for 1 <v < 2. Letl <wv < 3. It follows from
Lemma 2.4 and Proposition 2.12 that for a. e. A = i(2v — 3)f; + yf, withy € R* thereis
arepresentation H (i(21/ —3)f + yfg) of G appearing in the decomposition of 7, ® 7,
so that it has K-fixed vector and (03, 0) acts on it as a pair of scalar (ny()), n2(3)),
A = i(2v — 3)fy +yfo. Thus H (i(2v — 3)fy + yf,) can be identified as functions on
D generated by the spherical function ¢i(o, 3y, +yr, aNd MOreover @iz, —zyr, +y, IS positive
definite.
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THEOREM 3.1. W have the following Plancherel formula and the decomposition of
the representation, for 1 < v < 2,

neme [T HOBWIOW 2 [[H (i@ -3 +yi)e0)d.

JA1>A2>0

We note that for the group SU(1, 1) the symbol of the Berezin transform is b,()\) =
Fv—3+9)r—31—%) andithasasimplepoleat thepointi(1 —v) oniR* whenv < 3.
This gives the discrete part in the decomposition of the tensor product of the analytic
continuation of the holomophic discrete series 7, ® 7, of SU(1, 1) ([OZ]). However for
SU(2, 2) the symbol of the Berezin transform, B, (), has pole on a line when v < %
This gives us the above continuous decomposition.

We know from the Knapp-Speh classification of unitary representations of SU(2, 2)
([KS, Main Theorem, (iii)-(c)]) that H (i(21/ —3)f1 + )\zfz) isaunitary submodule of the

(non-unitary) induced representation Indp (1 ® i(i(2y —3)fy + )\zfz) ® 1) and the whole
induced representation is reducible.

4. Thetensor productsm, @ 7, for v = 1. Wenow consider the caserv = 1. The
K-types appearing in the representation 71 are of the formm = (my, 0) with my > 0.
The corresponding polynomials ey 1 are now

Pmy+10(A1) — Pmy+1,0(A2)
A — N2

Pm,l(A) =
andif A = (M1, \2) = (—i,y) then

pn11+1,0(_i) =0

and

B 1 1+y? yy2 311
Posro) = — S T e 1) 22 ( (é) 'é’é’é)
where Sy, is the continuous Hahn polynomialsintroduced in Section 1. Thus
_ 1 yz2 311
_ 2 (X Y- =
Pnad) =2 (my + 1)! (ml+1)!S‘“1( (2) ’2’2’2)

wheresF; isthe hypergeometricfunction and S, isthe continuousdual Hahn polynomials
asin Section 1.
Lemma 2.8 when v = 1 takesthe following form.

LEMMA 4.1. WE have the following orthogonality relation
rErEry) [

r(iy)

dy = émym/

co /0°° em1(—i,V)emwa(—1,y)
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form = (m,0) and m" = (m,0) withmy > O and m; > 0. Here ¢y is a positive
constant.

PROOF. Thisisjust the Wilson's orthogonality relation, see (4.4) on p. 697, [W]. =

Thus the map em — €n.1(—i, y) induces a unitary operator from (m; ® 71)k onto the
L2-space on (0, oo) with the corresponding measuregivenin Lemma4.1. That themapis
isometric follows from the Lemma. Theonto claim can be proved as Lemma1.1. Con-
sequently this map induces a unitary equivalence between the pair of operators (001, O5)
on (Hy ® Hy)o and (ny(A), nx(1)) on the above L2-space of functions of y € (0, 00)
with A = (—i,y). Note that both O, and n,()\) are identically zero on the corresponding
spaces. Thuswe havethefollowing decompositionfor the tensor product r; ®77. Denote
H (—if; + yf2) the representation generated by the spherical function ¢_is,+ys, .

THEOREM 4.2. e have the following Plancherel formula and the decomposition of
the representation

M)y
rGy)

D .
7'r1®7r_1%’/R+H(—If1+yf2)’ dy.

5. Thetensor productsof holomor phic discrete series of semisimple Lie group.
We note that much of our calculations above can be generalized to a general bounded
symmetric domain and their holomorphic discrete series. We follow the notation in [FK].
Let D = G/K be an irreducible bounded symmetric domain of rank r. Let g = f +p
be the Cartan decomposition. Let v; > v, > --- > 7, be the Harish-Chandra strongly
orthogonal roots and let 2f1, 2f,, ..., 2f; betheir Cayley transform on amaximal abelian
subspace a of p. Denote a and b the root multiplicity of f; & f and f; respectively, and
p = a(r — 1) + 2 + b be the genus of the symmetric domain. We let 7, be the analytic
continuation of holomorphic discrete series of a general bounded symmetric domain as
defined in [FK]. An orthogonal expansion of the reproducing kernel in terms of K, has
been found in that paper, which then gives an generalization of our Lemma2.6. However
we are unable to find a similar expansion as in Lemma 2.7 for a general bounded sym-
metric domain; even for v = 0, namely the expansion of the spherical function in terms
of Km (which are up to constants the Jack symmetric polynomials), is still an open ques-
tion [Op]. Nevertheless using the intertwining operator R defined in Section 2, the result
of Faraut-Koranyi [FK] and the result of Unterberger-Upmeier [UU] on the symbol of
the Berezin transform RR* we can derive the following

THEOREM 5.1. Letv > p;zl and H () be the principal series representation of G
with parameter A € a*. We have the following decomposition formula for the tensor
product m, ® T,

[P
mem [ Had
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It would be interesting to find out the decomposition of m, ® 7, for other (unitary)
values of ». We plan to pursue this question in the future.
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